6
|
1 \name{get.mser.interpolation}
|
|
2 \alias{get.mser.interpolation}
|
|
3 %- Also NEED an '\alias' for EACH other topic documented here.
|
|
4 \title{ Interpolate MSER dependency on the tag count }
|
|
5 \description{
|
|
6 MSER generally decreases with increasing sequencing depth. This
|
|
7 function interpolates the dependency of MSER on tag counts as a
|
|
8 log-log linear function. The log-log fit is used to estimate the depth
|
|
9 of sequencing required to reach desired \code{target.fold.enrichment}.
|
|
10 }
|
|
11 \usage{
|
|
12 get.mser.interpolation(signal.data, control.data, target.fold.enrichment = 5, n.chains = 10, n.steps = 6, step.size = 1e+05, chains = NULL, test.agreement = 0.99, return.chains = F, enrichment.background.scales = c(1), excluded.steps = c(seq(2, n.steps - 2)), ...)
|
|
13 }
|
|
14 %- maybe also 'usage' for other objects documented here.
|
|
15 \arguments{
|
|
16 \item{signal.data}{ signal chromosome tag vector list }
|
|
17 \item{control.data}{ control chromosome tag vector list }
|
|
18 \item{target.fold.enrichment}{ target MSER for which the depth should
|
|
19 be estimated}
|
|
20 \item{n.steps}{ number of steps in each subset chain. }
|
|
21 \item{step.size}{ Either number of tags or fraction of the dataset
|
|
22 size, see \code{step.size} parameter for \code{\link{get.mser}}. }
|
|
23 \item{test.agreement}{ Fraction of the detected peaks that should
|
|
24 agree between the full and subsampled datasets. See \code{test.agreement} parameter for \code{\link{get.mser}}}
|
|
25 \item{n.chains}{ number of random subset chains }
|
|
26 \item{chains}{ optional structure of pre-calculated chains
|
|
27 (e.g. generated by an earlier call with \code{return.chains=T}.}
|
|
28
|
|
29 \item{return.chains}{ whether to return peak predictions calculated on
|
|
30 random chains. These can be passed back using \code{chains} argument
|
|
31 to skip subsampling/prediction steps, and just recalculate the depth
|
|
32 estimate for a different MSER.}
|
|
33 \item{enrichment.background.scales}{ see \code{enrichment.background.scales} parameter for \code{\link{get.mser}} }
|
|
34 \item{excluded.steps}{ Intermediate subsampling steps that should be excluded from
|
|
35 the chains to speed up the calculation. By default, all intermediate
|
|
36 steps except for first two and last two are skipped. Adding
|
|
37 intermediate steps improves interpolation at the expense of
|
|
38 computational time.}
|
|
39 \item{\dots}{ additional parameters are passed to \code{\link{get.mser}} }
|
|
40 }
|
|
41 \details{
|
|
42 To simulate sequencing growth, the method calculates peak predictions
|
|
43 on random chains. Each chain is produced by sequential random
|
|
44 subsampling of the original data. The number of steps in the chain
|
|
45 indicates how many times the random subsampling will be performed.
|
|
46 }
|
|
47 \value{
|
|
48 Normally reurns a list, specifying for each backgroundscale:
|
|
49 \item{prediction}{estimated sequencing depth required to reach
|
|
50 specified target MSER}
|
|
51 \item{log10.fit}{linear fit model, a result of \code{lm()} call}
|
|
52
|
|
53 If \code{return.chains=T}, the above structure is returned under
|
|
54 \code{interpolation} field, along with \code{chains} field containing
|
|
55 results of \code{\link{find.binding.positions}} calls on subsampled chains.
|
|
56 }
|