Mercurial > repos > zzhou > spp_phantompeak
comparison spp/man/get.mser.interpolation.Rd @ 6:ce08b0efa3fd draft
Uploaded
author | zzhou |
---|---|
date | Tue, 27 Nov 2012 16:11:40 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
5:608a8e0eac56 | 6:ce08b0efa3fd |
---|---|
1 \name{get.mser.interpolation} | |
2 \alias{get.mser.interpolation} | |
3 %- Also NEED an '\alias' for EACH other topic documented here. | |
4 \title{ Interpolate MSER dependency on the tag count } | |
5 \description{ | |
6 MSER generally decreases with increasing sequencing depth. This | |
7 function interpolates the dependency of MSER on tag counts as a | |
8 log-log linear function. The log-log fit is used to estimate the depth | |
9 of sequencing required to reach desired \code{target.fold.enrichment}. | |
10 } | |
11 \usage{ | |
12 get.mser.interpolation(signal.data, control.data, target.fold.enrichment = 5, n.chains = 10, n.steps = 6, step.size = 1e+05, chains = NULL, test.agreement = 0.99, return.chains = F, enrichment.background.scales = c(1), excluded.steps = c(seq(2, n.steps - 2)), ...) | |
13 } | |
14 %- maybe also 'usage' for other objects documented here. | |
15 \arguments{ | |
16 \item{signal.data}{ signal chromosome tag vector list } | |
17 \item{control.data}{ control chromosome tag vector list } | |
18 \item{target.fold.enrichment}{ target MSER for which the depth should | |
19 be estimated} | |
20 \item{n.steps}{ number of steps in each subset chain. } | |
21 \item{step.size}{ Either number of tags or fraction of the dataset | |
22 size, see \code{step.size} parameter for \code{\link{get.mser}}. } | |
23 \item{test.agreement}{ Fraction of the detected peaks that should | |
24 agree between the full and subsampled datasets. See \code{test.agreement} parameter for \code{\link{get.mser}}} | |
25 \item{n.chains}{ number of random subset chains } | |
26 \item{chains}{ optional structure of pre-calculated chains | |
27 (e.g. generated by an earlier call with \code{return.chains=T}.} | |
28 | |
29 \item{return.chains}{ whether to return peak predictions calculated on | |
30 random chains. These can be passed back using \code{chains} argument | |
31 to skip subsampling/prediction steps, and just recalculate the depth | |
32 estimate for a different MSER.} | |
33 \item{enrichment.background.scales}{ see \code{enrichment.background.scales} parameter for \code{\link{get.mser}} } | |
34 \item{excluded.steps}{ Intermediate subsampling steps that should be excluded from | |
35 the chains to speed up the calculation. By default, all intermediate | |
36 steps except for first two and last two are skipped. Adding | |
37 intermediate steps improves interpolation at the expense of | |
38 computational time.} | |
39 \item{\dots}{ additional parameters are passed to \code{\link{get.mser}} } | |
40 } | |
41 \details{ | |
42 To simulate sequencing growth, the method calculates peak predictions | |
43 on random chains. Each chain is produced by sequential random | |
44 subsampling of the original data. The number of steps in the chain | |
45 indicates how many times the random subsampling will be performed. | |
46 } | |
47 \value{ | |
48 Normally reurns a list, specifying for each backgroundscale: | |
49 \item{prediction}{estimated sequencing depth required to reach | |
50 specified target MSER} | |
51 \item{log10.fit}{linear fit model, a result of \code{lm()} call} | |
52 | |
53 If \code{return.chains=T}, the above structure is returned under | |
54 \code{interpolation} field, along with \code{chains} field containing | |
55 results of \code{\link{find.binding.positions}} calls on subsampled chains. | |
56 } |