Mercurial > repos > yating-l > data_manager_fetch_reference_data
changeset 5:2f926e7d623d draft
planemo upload
author | yating-l |
---|---|
date | Wed, 03 May 2017 17:43:57 -0400 |
parents | 464d75111b16 |
children | 2eb398f3649c |
files | data_manager/fetch_reference_data.py data_manager/fetch_reference_data.xml |
diffstat | 2 files changed, 23 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/data_manager/fetch_reference_data.py Wed May 03 16:54:57 2017 -0400 +++ b/data_manager/fetch_reference_data.py Wed May 03 17:43:57 2017 -0400 @@ -26,30 +26,41 @@ genome_name = params['param_dict']['genome_name'] return genome_id, genome_name -def download_from_GlimmerHMM(data_manager_dict, params, target_directory, sequence_id, sequence_name ): - GlimmerHMM_DOWNLOAD_URL = 'ftp://ccb.jhu.edu/pub/software/glimmerhmm/GlimmerHMM-3.0.4.tar.gz' - GlimmerHMM_TRAINED_DIR = os.path.join('GlimmerHMM', 'trained_dir', sequence_id) - with tarfile.open('GlimmerHMM-3.0.4.tar', mode='r:*') as tar: +def get_url(params): + trained_url = params['param_dict']['trained_url'] + return trained_url + +def download_from_GlimmerHMM(data_manager_dict, target_directory, sequence_id, sequence_name, trained_dir): + if not trained_dir: + trained_dir = 'ftp://ccb.jhu.edu/pub/software/glimmerhmm/GlimmerHMM-3.0.4.tar.gz' + #Download trained data, ref: https://dzone.com/articles/how-download-file-python + f = urllib2.urlopen(trained_dir) + data = f.read() + downloadpath = 'tmp' + os.mkdir(downloadpath) + filepath = os.path.join(downloadpath, 'GlimmerHMM-3.0.4.tar') + with open(filepath, 'wb') as code: + code.write(data) + with tarfile.open(filepath, mode='r:*') as tar: subdir = [ tarinfo for tarinfo in tar.getmembers() if sequence_id in tarinfo.name ] tar.extractall(members=subdir) + GlimmerHMM_TRAINED_DIR = os.path.join(downloadpath, 'GlimmerHMM', 'trained_dir', sequence_id) glimmerhmm_trained_target_dir = os.path.join(target_directory, sequence_id) shutil.copytree(GlimmerHMM_TRAINED_DIR, glimmerhmm_trained_target_dir) data_table_entry = dict(value=sequence_id, name=sequence_name, path=glimmerhmm_trained_target_dir) _add_data_table_entry(data_manager_dict, data_table_entry) + + cleanup_before_exit('tmp') - cleanup_before_exit(GlimmerHMM_TRAINED_DIR) - -def _add_data_table_entry( data_manager_dict, data_table_entry ): +def _add_data_table_entry(data_manager_dict, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get( 'data_tables', {} ) data_manager_dict['data_tables']['reference_data'] = data_manager_dict['data_tables'].get('reference_data', []) data_manager_dict['data_tables']['reference_data'].append( data_table_entry ) return data_manager_dict -REFERENCE_SOURCE_TO_DOWNLOAD = dict(glimmerhmm=download_from_GlimmerHMM) - def main(): #Parse Command Line parser = argparse.ArgumentParser() @@ -64,10 +75,9 @@ data_manager_dict = {} sequence_id, sequence_name = get_reference_id_name(params) - + trained_dir = get_url(params) #Fetch the FASTA - REFERENCE_SOURCE_TO_DOWNLOAD[params['param_dict']['trained_dir']](data_manager_dict, params, target_directory, sequence_id, sequence_name) - + download_from_GlimmerHMM(data_manager_dict, target_directory, sequence_id, sequence_name, trained_dir) #save info to json file open(filename, 'wb').write(to_json_string(data_manager_dict))
--- a/data_manager/fetch_reference_data.xml Wed May 03 16:54:57 2017 -0400 +++ b/data_manager/fetch_reference_data.xml Wed May 03 17:43:57 2017 -0400 @@ -4,7 +4,7 @@ <inputs> <param name="genome_id" type="text" label="Id of the reference genome" /> <param name="genome_name" type="text" label="Name of the reference genome" /> - <param name="trained_dir" type="text" value="" label="Directory of the genome file" /> + <param name="trained_url" type="text" value="" label="Directory of the genome file" /> </inputs> <outputs> <data name="out_file" format="data_manager_json" />