Mercurial > repos > yating-l > data_manager_fetch_reference_data
view data_manager/fetch_reference_data.py @ 6:2eb398f3649c draft
planemo upload
author | yating-l |
---|---|
date | Wed, 03 May 2017 17:49:01 -0400 |
parents | 2f926e7d623d |
children | 83362eed7868 |
line wrap: on
line source
#!/usr/bin/env python # ref: https://galaxyproject.org/admin/tools/data-managers/how-to/define/ import sys import os import tempfile import shutil import argparse import urllib2 import tarfile from galaxy.util.json import from_json_string, to_json_string CHUNK_SIZE = 2**20 #1mb def cleanup_before_exit(tmp_dir): if tmp_dir and os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) def stop_err(msg): sys.stderr.write(msg) sys.exit(1) def get_reference_id_name(params): genome_id = params['param_dict']['genome_id'] genome_name = params['param_dict']['genome_name'] return genome_id, genome_name def get_url(params): trained_url = params['param_dict']['trained_url'] return trained_url def download_from_GlimmerHMM(data_manager_dict, target_directory, sequence_id, sequence_name, trained_dir): if not trained_dir: trained_dir = 'ftp://ccb.jhu.edu/pub/software/glimmerhmm/GlimmerHMM-3.0.4.tar.gz' #Download trained data, ref: https://dzone.com/articles/how-download-file-python f = urllib2.urlopen(trained_dir) data = f.read() downloadpath = 'tmp' os.mkdir(downloadpath) filepath = os.path.join(downloadpath, 'GlimmerHMM-3.0.4.tar') with open(filepath, 'wb') as code: code.write(data) with tarfile.open(filepath, mode='r:*') as tar: subdir = [ tarinfo for tarinfo in tar.getmembers() if sequence_id in tarinfo.name ] tar.extractall(path=downloadpath, members=subdir) glimmerhmm_trained_dir = os.path.join(downloadpath, 'GlimmerHMM', 'trained_dir', sequence_id) glimmerhmm_trained_target_dir = os.path.join(target_directory, sequence_id) shutil.copytree(glimmerhmm_trained_dir, glimmerhmm_trained_target_dir) data_table_entry = dict(value=sequence_id, name=sequence_name, path=glimmerhmm_trained_target_dir) _add_data_table_entry(data_manager_dict, data_table_entry) cleanup_before_exit('tmp') def _add_data_table_entry(data_manager_dict, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get( 'data_tables', {} ) data_manager_dict['data_tables']['reference_data'] = data_manager_dict['data_tables'].get('reference_data', []) data_manager_dict['data_tables']['reference_data'].append( data_table_entry ) return data_manager_dict def main(): #Parse Command Line parser = argparse.ArgumentParser() parser.add_argument('-o', '--out', help='Output file') args = parser.parse_args() filename = args.out params = from_json_string(open(filename).read()) target_directory = params['output_data'][0]['extra_files_path'] os.mkdir(target_directory) data_manager_dict = {} sequence_id, sequence_name = get_reference_id_name(params) trained_dir = get_url(params) #Fetch the FASTA download_from_GlimmerHMM(data_manager_dict, target_directory, sequence_id, sequence_name, trained_dir) #save info to json file open(filename, 'wb').write(to_json_string(data_manager_dict)) if __name__ == "__main__": main()