1
|
1 <tool id="chasm_webservice" name="CHASM Webservice" version="1.0.0" hidden="false">
|
|
2 <requirements>
|
|
3 <requirement type="python-module">requests</requirement>
|
|
4 <requirement type="python-module">xlrd</requirement>
|
|
5 </requirements>
|
|
6 <description>CHASM score using CRAVAT webservice</description>
|
|
7 <command interpreter="python">
|
|
8 chasm_web.py --path $input --analysis_type $analysis_type --cancertype $tissue_type --email $__user_email__ --gene_analysis_out $gene_analysis_out --variant_analysis_out $variant_analysis_out --amino_acid_level_analysis_out $amino_acid_level_analysis_out --error_file $error_file
|
|
9 </command>
|
|
10 <inputs>
|
|
11 <param format="txt" name="input" type="data" label="Variants File" />
|
|
12 <param name="analysis_type" type="select" label="Choose analysis type" help="
|
|
13 Cancer driver analysis predicts whether\
|
|
14 the submitted variants are cancer drivers.\
|
|
15 Functional effect analysis predicts whether\
|
|
16 the submitted variants will have any\
|
|
17 functional effect on their translated proteins.\
|
|
18 Annotation only provides\
|
|
19 GeneCard and PubMed information on\
|
|
20 the genes containing the submitted variants.">
|
|
21 <option value="driver">Cancer driver analysis</option>
|
|
22 <option value="functional">Functional effect analysis</option>
|
|
23 <option value="geneannotationonly">Annotation only</option>
|
|
24 </param>
|
|
25
|
|
26 <param name="gene_annotation" type="select" label="Include Gene annotation">
|
|
27 <option value="no">No</option>
|
|
28 <option value="yes">Yes</option>
|
|
29 </param>
|
|
30
|
|
31 <param name="tissue_type" type="select" label="Tissue Type">
|
|
32 <option value="Bladder">Bladder</option>
|
|
33 <option value="Blood-Lymphocyte">Blood-Lymphocyte</option>
|
|
34 <option value="Blood-Myeloid">Blood-Myeloid</option>
|
|
35 <option value="Brain-Cerebellum">Brain-Cerebellum</option>
|
|
36 <option value="Brain-Glioblastoma_Multiforme">Brain-Glioblastoma_Multiforme</option>
|
|
37 <option value="Brain-Lower_Grade_Glioma">Brain-Lower_Grade_Glioma</option>
|
|
38 <option value="Breast">Breast</option>
|
|
39 <option value="Cervix">Cervix</option>
|
|
40 <option value="Colon">Colon</option>
|
|
41 <option value="Head_and_Neck">Head_and_Neck</option>
|
|
42 <option value="Kidney-Chromophobe">Kidney-Chromophobe</option>
|
|
43 <option value="Kidney-Clear_Cell">Kidney-Clear_Cell</option>
|
|
44 <option value="Kidney-Papiallary_Cell">Kidney-Papiallary_Cell</option>
|
|
45 <option value="Liver-Nonviral">Liver-Nonviral</option>
|
|
46 <option value="Liver-Viral">Liver-Viral</option>
|
|
47 <option value="Lung-Adenocarcinoma">Lung-Adenocarcinoma</option>
|
|
48 <option value="Lung-Squamous_Cell">Lung-Squamous_Cell</option>
|
|
49 <option value="Melanoma">Melanoma</option>
|
|
50 <option value="Other">Other</option>
|
|
51 <option value="Ovary">Ovary</option>
|
|
52 <option value="Pancreas">Pancreas</option>
|
|
53 <option value="Prostate-Adenocarcinoma">Prostate-Adenocarcinoma</option>
|
|
54 <option value="Rectum">Rectum</option>
|
|
55 <option value="Skin">Skin</option>
|
|
56 <option value="Stomach">Stomach</option>
|
|
57 <option value="Thyroid">Thyroid</option>
|
|
58 <option value="Uterus">Uterus</option>
|
|
59 </param>
|
|
60 </inputs>
|
|
61 <outputs>
|
|
62 <data format="tabular" name="gene_analysis_out"/>
|
|
63 <data format="tabular" name="variant_analysis_out" />
|
|
64 <data format="tabular" name="amino_acid_level_analysis_out" />
|
|
65 <data format="tabular" name="error_file"/>
|
|
66 </outputs>
|
|
67 <help>
|
|
68 **What it does**
|
|
69 * CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) is a method that predicts the functional significance of somatic missense variants
|
|
70 observed in the genomes of cancer cells, allowing variants to be prioritized in subsequent functional studies, based on the probability that they confer
|
|
71 increased fitness to a cancer cell. CHASM uses a machine learning method called Random Forest to distinguish between driver and passenger somatic missense variation.
|
|
72 The Random Forest is trained on a positive class of drivers curated from the COSMIC database and a negative class of passengers, generated in silico,
|
|
73 according to passenger base substitution frequencies estimated for a specific tumor type. Each variant is represented by a list of features,
|
|
74 including amino acid substitution properties, alignment-based estimates of conservation at the variant position, predicted local structure and annotations from
|
|
75 the UniProt Knowledgebase. Only missense mutations are analyzed by CHASM. For more information on CHASM, please visit http://wiki.chasmsoftware.org
|
|
76
|
|
77 * SNVGet retrieves selected predictive features for a variant. Features can be broadly categorized into 3 types:
|
|
78 - Amino Acid Substitution features
|
|
79 - Protein-based position-specific features
|
|
80 - Exon-specific features
|
|
81 Only missense mutations are analyzed by SNVGet. For more information on SNVBox (database made with SNVGet), please visit http://wiki.chasmsoftware.org
|
|
82 * VEST is a method that predicts the functional effect of a variant.
|
|
83
|
|
84
|
|
85
|
|
86 **Citation**
|
|
87 If you use this Galaxy tool in work leading to a scientific publication please cite:
|
|
88
|
|
89 Carter, Hannah, et al. "Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations."
|
|
90 Cancer research 69.16 (2009): 6660-6667.
|
|
91
|
|
92 Wong, Wing Chung, et al. "CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer."
|
|
93 Bioinformatics 27.15 (2011): 2147-2148.
|
3
|
94 </help>
|
1
|
95 </tool>
|