diff tools/chasm/chasm_web.xml @ 1:8eaaa7f6b619

Move files to tools
author Saket Choudhary <saketkc@gmail.com>
date Fri, 01 Nov 2013 02:07:53 +0530
parents
children 89407d4da3ca
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tools/chasm/chasm_web.xml	Fri Nov 01 02:07:53 2013 +0530
@@ -0,0 +1,94 @@
+<tool id="chasm_webservice" name="CHASM Webservice" version="1.0.0" hidden="false">
+    <requirements>
+        <requirement type="python-module">requests</requirement>
+        <requirement type="python-module">xlrd</requirement>
+    </requirements>
+    <description>CHASM score using CRAVAT webservice</description>
+    <command interpreter="python">
+        chasm_web.py --path $input --analysis_type $analysis_type --cancertype $tissue_type --email $__user_email__ --gene_analysis_out $gene_analysis_out  --variant_analysis_out $variant_analysis_out --amino_acid_level_analysis_out $amino_acid_level_analysis_out  --error_file $error_file
+    </command>
+    <inputs>
+        <param format="txt" name="input" type="data" label="Variants File" />
+        <param name="analysis_type" type="select" label="Choose analysis type" help="
+                                                                        Cancer driver analysis predicts whether\
+                                                                        the submitted variants are cancer drivers.\
+                                                                        Functional effect analysis predicts whether\
+                                                                        the submitted variants will have any\
+                                                                        functional effect on their translated proteins.\
+                                                                        Annotation only provides\
+                                                                        GeneCard and PubMed information on\
+                                                                        the genes containing the submitted variants.">
+            <option value="driver">Cancer driver analysis</option>
+            <option value="functional">Functional effect analysis</option>
+            <option value="geneannotationonly">Annotation only</option>
+        </param>
+
+        <param name="gene_annotation" type="select" label="Include Gene annotation">
+            <option value="no">No</option>
+            <option value="yes">Yes</option>
+        </param>
+
+        <param name="tissue_type" type="select" label="Tissue Type">
+            <option value="Bladder">Bladder</option>
+            <option value="Blood-Lymphocyte">Blood-Lymphocyte</option>
+            <option value="Blood-Myeloid">Blood-Myeloid</option>
+            <option value="Brain-Cerebellum">Brain-Cerebellum</option>
+            <option value="Brain-Glioblastoma_Multiforme">Brain-Glioblastoma_Multiforme</option>
+            <option value="Brain-Lower_Grade_Glioma">Brain-Lower_Grade_Glioma</option>
+            <option value="Breast">Breast</option>
+            <option value="Cervix">Cervix</option>
+            <option value="Colon">Colon</option>
+            <option value="Head_and_Neck">Head_and_Neck</option>
+            <option value="Kidney-Chromophobe">Kidney-Chromophobe</option>
+            <option value="Kidney-Clear_Cell">Kidney-Clear_Cell</option>
+            <option value="Kidney-Papiallary_Cell">Kidney-Papiallary_Cell</option>
+            <option value="Liver-Nonviral">Liver-Nonviral</option>
+            <option value="Liver-Viral">Liver-Viral</option>
+            <option value="Lung-Adenocarcinoma">Lung-Adenocarcinoma</option>
+            <option value="Lung-Squamous_Cell">Lung-Squamous_Cell</option>
+            <option value="Melanoma">Melanoma</option>
+            <option value="Other">Other</option>
+            <option value="Ovary">Ovary</option>
+            <option value="Pancreas">Pancreas</option>
+            <option value="Prostate-Adenocarcinoma">Prostate-Adenocarcinoma</option>
+            <option value="Rectum">Rectum</option>
+            <option value="Skin">Skin</option>
+            <option value="Stomach">Stomach</option>
+            <option value="Thyroid">Thyroid</option>
+            <option value="Uterus">Uterus</option>
+        </param>
+    </inputs>
+    <outputs>
+        <data format="tabular" name="gene_analysis_out"/>
+        <data format="tabular" name="variant_analysis_out" />
+        <data format="tabular" name="amino_acid_level_analysis_out" />
+        <data format="tabular" name="error_file"/>
+    </outputs>
+    <help>
+        **What it does**
+        * CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) is a method that predicts the functional significance of somatic missense variants
+        observed in the genomes of cancer cells, allowing variants to be prioritized in subsequent functional studies, based on the probability that they confer
+        increased fitness to a cancer cell. CHASM uses a machine learning method called Random Forest to distinguish between driver and passenger somatic missense variation.
+        The Random Forest is trained on a positive class of drivers curated from the COSMIC database and a negative class of passengers, generated in silico,
+        according to passenger base substitution frequencies estimated for a specific tumor type. Each variant is represented by a list of features,
+        including amino acid substitution properties, alignment-based estimates of conservation at the variant position, predicted local structure and annotations from
+        the UniProt Knowledgebase. Only missense mutations are analyzed by CHASM.  For more information on CHASM, please visit http://wiki.chasmsoftware.org
+
+        * SNVGet retrieves selected predictive features for a variant. Features can be broadly categorized into 3 types:
+            - Amino Acid Substitution features
+            - Protein-based position-specific features
+            - Exon-specific features
+            Only missense mutations are analyzed by SNVGet. For more information on SNVBox (database made with SNVGet), please visit http://wiki.chasmsoftware.org
+        * VEST is a method that predicts the functional effect of a variant.
+
+
+
+        **Citation**
+        If you use this Galaxy tool in work leading to a scientific publication please cite:
+
+        Carter, Hannah, et al. "Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations."
+        Cancer research 69.16 (2009): 6660-6667.
+
+        Wong, Wing Chung, et al. "CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer."
+        Bioinformatics 27.15 (2011): 2147-2148.
+</tool>