|
33
|
1 #!/usr/bin/env Rscript
|
|
|
2
|
|
|
3 #usage $0 STEP RIGHT chipPeaks outputFile.png output.txt [controlPeaks] [1 for pdf]
|
|
|
4 args <- commandArgs(TRUE)
|
|
|
5 #print (args)
|
|
|
6 myStep <- type.convert(args[2])
|
|
|
7 maxValue <- type.convert(args[3])
|
|
|
8
|
|
|
9 dataTable <-read.table(file=paste(args[4],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
|
10 chip.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
|
11 ifReg <- 0
|
|
|
12 if (length(unique(chip.genes.ClosestPeakDist$Reg))>1) {
|
|
|
13 ifReg <- 1
|
|
|
14 }
|
|
|
15 ifControl <- 0
|
|
|
16
|
|
|
17 options(bitmapType='cairo')
|
|
|
18
|
|
|
19 ifPDF <- 0
|
|
|
20 if (length(args)>=8) {
|
|
|
21 ifPDF=args[8]
|
|
|
22 }
|
|
|
23 if (length(args)==7 & args[7]==1) {
|
|
|
24 ifPDF=1
|
|
|
25 }
|
|
|
26
|
|
|
27 suppressMessages(library(Hmisc))
|
|
|
28
|
|
|
29 if (length(args)>=7 & args[7]!=1 & args[7]!=0) {
|
|
|
30 dataTable <-read.table(file=paste(args[7],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
|
31 control.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
|
32 ifControl <- 1
|
|
|
33 }
|
|
|
34 if (ifReg & ifControl) {
|
|
|
35 if (ifPDF==1) {
|
|
|
36 pdf(file = args[5], width = 19, height = 8, pointsize = 20, bg = "white")
|
|
|
37 } else {
|
|
|
38 png(filename = args[5], width = 1440 , height = 680, units = "px", pointsize = 20, bg = "white", res = NA)
|
|
|
39 plot(1:10)
|
|
|
40 }
|
|
|
41 op <- par(mfrow = c(2,3))
|
|
|
42 } else {
|
|
|
43 if (ifPDF==1) {
|
|
|
44 pdf(file = args[5], width = 10, height = 13, pointsize = 20, bg = "white")
|
|
|
45 } else {
|
|
|
46 png(filename = args[5], width = 680, height = 880, units = "px", pointsize = 20, bg = "white", res = NA)
|
|
|
47 plot(1:10)
|
|
|
48 }
|
|
|
49 # plot(1:10)
|
|
|
50 op <- par(mfrow = c(2,1))
|
|
|
51 }
|
|
|
52 myColor <- 1
|
|
|
53 myColor[1] <- colors()[131]
|
|
|
54 myColor[2] <- "darkolivegreen3"
|
|
|
55 myColor[3] <- "azure4"
|
|
|
56 myColor[4] <- "royalblue3"
|
|
|
57 myColor[5] <- colors()[17]
|
|
|
58
|
|
|
59 myColorControl <- 1
|
|
|
60
|
|
|
61 myColorControl[1] <- colors()[24]
|
|
|
62 myColorControl[2] <- colors()[278]
|
|
|
63 myColorControl[3] <- colors()[305]
|
|
|
64 myColorControl[4] <- colors()[219]
|
|
|
65 myColorControl[5] <- colors()[343]
|
|
|
66
|
|
|
67
|
|
|
68
|
|
|
69 #for cumulative:
|
|
|
70 dist_real_f <- chip.genes.ClosestPeakDist
|
|
|
71 if (ifControl) {
|
|
|
72 dist_control_f <- control.genes.ClosestPeakDist
|
|
|
73 }
|
|
|
74 step <- myStep
|
|
|
75 lim <- maxValue
|
|
|
76 x <- 0
|
|
|
77 count <- 1
|
|
|
78 countL <-1
|
|
|
79 n.types <- 1
|
|
|
80 myLevels <- 0
|
|
|
81 countTotalCont <- 0
|
|
|
82 countTotal <-0
|
|
|
83 countLCont <- 0
|
|
|
84 cumTotalCont <- 0
|
|
|
85 if (ifReg) {
|
|
|
86 n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
|
87 myLevels <- levels(chip.genes.ClosestPeakDist$Reg)
|
|
|
88 cum = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
|
89 for (i in c(1:n.types)) {
|
|
|
90 t <- which ((dist_real_f$Reg==myLevels[i]))
|
|
|
91 countL[i] <- length(t)
|
|
|
92 }
|
|
|
93 count <-1
|
|
|
94 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
95 for (t in c(1:n.types)) {
|
|
|
96 tt <- which ((dist_real_f$Reg==myLevels[t])&(dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
97 cum[count,t] <- length(tt)
|
|
|
98 }
|
|
|
99 x[count] <- i
|
|
|
100 count <- count + 1
|
|
|
101 }
|
|
|
102 ymax <- max(cum[,1]/countL[1], na.rm=TRUE)
|
|
|
103 for (i in c(2:n.types)) {
|
|
|
104 ymax <- max(ymax,max(cum[,i]/countL[i], na.rm=TRUE))
|
|
|
105 }
|
|
|
106 myLocCol <- myColor[2]
|
|
|
107
|
|
|
108 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
|
109
|
|
|
110 plot (x,cum[,1]/countL[1] ,col = myColor[2],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
|
111 for (i in c(2:n.types)) {
|
|
|
112 colorr <- i+1
|
|
|
113 myLocCol <- c(myLocCol,myColor[colorr])
|
|
|
114 lines (x,cum[,i]/countL[i] ,col = myColor[colorr],type="l", lwd = 2)
|
|
|
115 # print (myColor[colorr])
|
|
|
116 }
|
|
|
117
|
|
|
118 gradi <- 1000
|
|
|
119 if (lim>10000) {
|
|
|
120 gradi <- 10000
|
|
|
121 }
|
|
|
122 if (lim<3000) {
|
|
|
123 gradi <- 500
|
|
|
124 }
|
|
|
125 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
126 axisxlab <- paste(axisx/1000,"", sep = "")
|
|
|
127 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
128 ymax <- max(cum[,i]/countL[i], na.rm=TRUE)
|
|
|
129
|
|
|
130 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
131
|
|
|
132 legend(lim*0.45, ymax*0.45, myLevels, cex=1, lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
133
|
|
|
134 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
135
|
|
|
136 if (ifControl) {
|
|
|
137 count <-1
|
|
|
138 n.types <- length(levels(control.genes.ClosestPeakDist$Reg))
|
|
|
139 myLevels <- levels(control.genes.ClosestPeakDist$Reg)
|
|
|
140 cumCont = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
|
141 for (i in c(1:n.types)) {
|
|
|
142 t <- which ((dist_control_f$Reg==myLevels[i]))
|
|
|
143 countLCont[i] <- length(t)
|
|
|
144 }
|
|
|
145 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
146 for (t in c(1:n.types)) {
|
|
|
147 tt <- which ((dist_control_f$Reg==myLevels[t])&(dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
148 cumCont[count,t] <- length(tt)
|
|
|
149 }
|
|
|
150 x[count] <- i
|
|
|
151 count <- count + 1
|
|
|
152 }
|
|
|
153 ymax <- max(cumCont[,1]/countLCont[1], na.rm=TRUE)
|
|
|
154 for (i in c(2:n.types)) {
|
|
|
155 ymax <- max(ymax,max(cumCont[,i]/countLCont[i], na.rm=TRUE))
|
|
|
156 }
|
|
|
157 myLocColCntr <- myColorControl[2]
|
|
|
158 plot (x,cumCont[,1]/countLCont[1] ,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
|
159 for (i in c(2:n.types)) {
|
|
|
160 colorr <- i+1
|
|
|
161 myLocColCntr <- c(myLocColCntr,myColorControl[colorr])
|
|
|
162 lines (x,cumCont[,i]/countLCont[i] ,col = myColorControl[colorr],type="l", lwd = 2)
|
|
|
163 }
|
|
|
164 if (lim>10000) {
|
|
|
165 gradi <- 10000
|
|
|
166 }
|
|
|
167 if (lim<3000) {
|
|
|
168 gradi <- 500
|
|
|
169 }
|
|
|
170 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
171 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
172 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
173 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
174 legend(lim*0.45, ymax*0.45, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
175 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
176 #real_vs_control_cumulative:
|
|
|
177 count <-1
|
|
|
178 countTotal <- length(dist_real_f$Reg)
|
|
|
179 cumTotal <- 0
|
|
|
180 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
181 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
182 cumTotal[count] <- length(t)
|
|
|
183 x[count] <- i
|
|
|
184 count <- count + 1
|
|
|
185 }
|
|
|
186 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
|
187 gradi <- 1000
|
|
|
188 if (lim>10000) {
|
|
|
189 gradi <- 10000
|
|
|
190 }
|
|
|
191 if (lim<3000) {
|
|
|
192 gradi <- 500
|
|
|
193 }
|
|
|
194 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
195 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
196 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
197 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
|
198 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
199 countTotalCont <- length(dist_control_f$Reg)
|
|
|
200 cumTotalCont <- 0
|
|
|
201 count <- 1
|
|
|
202 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
203 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
204 cumTotalCont[count] <- length(t)
|
|
|
205 x[count] <- i
|
|
|
206 count <- count + 1
|
|
|
207 }
|
|
|
208 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
|
209 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
210 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
211 }
|
|
|
212 } else {
|
|
|
213 countTotal <- length(dist_real_f$Reg)
|
|
|
214 cumTotal <- 0
|
|
|
215 count <-1
|
|
|
216
|
|
|
217 gradi <- 1000
|
|
|
218 if (lim>10000) {
|
|
|
219 gradi <- 10000
|
|
|
220 }
|
|
|
221 if (lim<3000) {
|
|
|
222 gradi <- 500
|
|
|
223 }
|
|
|
224
|
|
|
225 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
226 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
227 cumTotal[count] <- length(t)
|
|
|
228 x[count] <- i
|
|
|
229 count <- count + 1
|
|
|
230 }
|
|
|
231 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
|
232
|
|
|
233 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
|
234 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
235 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
236 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
237 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
238 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
|
239 if (ifControl) {
|
|
|
240 countTotalCont <- length(dist_control_f$Reg)
|
|
|
241 cumTotalCont <- 0
|
|
|
242 count <- 1
|
|
|
243 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
244 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
245 cumTotalCont[count] <- length(t)
|
|
|
246 x[count] <- i
|
|
|
247 count <- count + 1
|
|
|
248 }
|
|
|
249 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
|
250 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
251 } else {
|
|
|
252 legend(lim*0.45, ymax*0.45, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
|
253 }
|
|
|
254 }
|
|
|
255
|
|
|
256 sink(args[6], append=FALSE, split=FALSE)
|
|
|
257 if (ifReg) {
|
|
|
258 if (ifControl) {
|
|
|
259 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
|
260 cat("\t")
|
|
|
261 for (i in c(1:n.types)) {
|
|
|
262 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", sep=""))
|
|
|
263 cat("\t")
|
|
|
264 }
|
|
|
265
|
|
|
266 for (i in c(1:n.types)) {
|
|
|
267 cat(paste("% ", myLevels[i]," genes w/ a peak in Control", sep=""))
|
|
|
268 cat("\t")
|
|
|
269 }
|
|
|
270 cat("\n")
|
|
|
271 for (i in c(1:length(x))) {
|
|
|
272 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
|
273 cat("\t")
|
|
|
274 for (t in c(1:n.types)) {
|
|
|
275 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
|
276 }
|
|
|
277 for (t in c(1:n.types)) {
|
|
|
278 cat(paste(cumCont[i,t]/countLCont[t],"\t", sep=""))
|
|
|
279 }
|
|
|
280 cat("\n")
|
|
|
281 }
|
|
|
282 }else {
|
|
|
283 cat (paste("Dist_TSS","\t",sep=''))
|
|
|
284 for (i in c(1:n.types)) {
|
|
|
285 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", "\t", sep=""))
|
|
|
286 }
|
|
|
287 cat("\n")
|
|
|
288 for (i in c(1:length(x))) {
|
|
|
289 cat(paste(x[i],"\t",sep=""))
|
|
|
290 for (t in c(1:n.types)) {
|
|
|
291 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
|
292 }
|
|
|
293 cat("\n")
|
|
|
294 }
|
|
|
295 }
|
|
|
296 } else {
|
|
|
297 if (ifControl) {
|
|
|
298 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
|
299 cat("\n")
|
|
|
300 for (i in c(1:length(x))) {
|
|
|
301 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
|
302 cat("\n")
|
|
|
303 }
|
|
|
304 }else {
|
|
|
305 cat (paste("Dist_TSS","% genes w/ a peak in ChIP",sep='\t'))
|
|
|
306 cat("\n")
|
|
|
307 for (i in c(1:length(x))) {
|
|
|
308 cat(paste(x[i],cumTotal[i]/countTotal,sep="\t"))
|
|
|
309 cat("\n")
|
|
|
310 }
|
|
|
311
|
|
|
312 }
|
|
|
313 }
|
|
|
314
|
|
|
315
|
|
|
316 #stop sinking:
|
|
|
317 sink()
|
|
|
318
|
|
|
319 #around TSS:
|
|
|
320 lim <- maxValue
|
|
|
321 step <- myStep
|
|
|
322 my_breaks <- seq(length=lim/step*2 +1, from=-lim, by=step)
|
|
|
323 chip.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
|
324 dist_real_f <- chip.genes
|
|
|
325 if (ifControl) {
|
|
|
326 control.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
|
327 dist_control_f<-data.frame(control.genes)
|
|
|
328 }
|
|
|
329 if (ifReg) {
|
|
|
330 #n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
|
331 #myLevels <- levels(dist_real_f$Reg)
|
|
|
332
|
|
|
333 t<- which (dist_real_f$Reg==myLevels[1])
|
|
|
334 values_real <-dist_real_f$Dist[t]
|
|
|
335 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
336 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
337 for (i in c(2:n.types)) {
|
|
|
338 t<- which (dist_real_f$Reg==myLevels[i])
|
|
|
339 values_real <-dist_real_f$Dist[t]
|
|
|
340 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
341 ymax <- max(ymax,max(hTSSreal$density, na.rm=TRUE))
|
|
|
342 }
|
|
|
343
|
|
|
344
|
|
|
345 t<- which (dist_real_f$Reg==myLevels[1])
|
|
|
346 values_real <-dist_real_f$Dist[t]
|
|
|
347 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
348 plot (hTSSreal$mids,hTSSreal$density,col = myLocCol[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax), xaxt="n" )
|
|
|
349
|
|
|
350 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
351
|
|
|
352 for (i in c(2:n.types)) {
|
|
|
353 t<- which (dist_real_f$Reg==myLevels[i])
|
|
|
354 values_real <-dist_real_f$Dist[t]
|
|
|
355 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
356 lines (hTSSreal$mids,hTSSreal$density,col = myLocCol[i],type="l", lwd = 2)
|
|
|
357 }
|
|
|
358 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
359
|
|
|
360 gradi <- 1000
|
|
|
361 if (lim>10000) {
|
|
|
362 gradi <- 10000
|
|
|
363 }
|
|
|
364 if (lim<3000) {
|
|
|
365 gradi <- 500
|
|
|
366 }
|
|
|
367
|
|
|
368 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
369 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
370 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
371
|
|
|
372
|
|
|
373 #minor.tick(nx=10,tick.ratio=0.5)
|
|
|
374 if (ifControl) {
|
|
|
375 t<- which (dist_control_f$Reg==myLevels[1])
|
|
|
376 values_control <-dist_control_f$Dist[t]
|
|
|
377 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
378 ymax <- max(hTSScontrol$density, na.rm=TRUE)
|
|
|
379 for (i in c(2:n.types)) {
|
|
|
380 t<- which (dist_control_f$Reg==myLevels[i])
|
|
|
381 values_control <-dist_control_f$Dist[t]
|
|
|
382 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
383 ymax <- max(ymax,max(hTSScontrol$density, na.rm=TRUE))
|
|
|
384 }
|
|
|
385 t<- which (dist_control_f$Reg==myLevels[1])
|
|
|
386 values_control <-dist_control_f$Dist[t]
|
|
|
387 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
388 plot (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax),xaxt="n" )
|
|
|
389 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
390 for (i in c(2:n.types)) {
|
|
|
391 t<- which (dist_control_f$Reg==myLevels[i])
|
|
|
392 values_control <-dist_control_f$Dist[t]
|
|
|
393 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
394 lines (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[i],type="l", lwd = 2)
|
|
|
395 }
|
|
|
396
|
|
|
397 gradi <- 1000
|
|
|
398 if (lim>10000) {
|
|
|
399 gradi <- 10000
|
|
|
400 }
|
|
|
401 if (lim<3000) {
|
|
|
402 gradi <- 500
|
|
|
403 }
|
|
|
404
|
|
|
405 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
406 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
407 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
408
|
|
|
409 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
410
|
|
|
411 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
412 #control vs real
|
|
|
413 values_real <-dist_real_f$Dist
|
|
|
414 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
415 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
|
416 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
417 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
418 values_control <-dist_control_f$Dist
|
|
|
419 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
420 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
|
421 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
422
|
|
|
423 gradi <- 1000
|
|
|
424 if (lim>10000) {
|
|
|
425 gradi <- 10000
|
|
|
426 }
|
|
|
427 if (lim<3000) {
|
|
|
428 gradi <- 500
|
|
|
429 }
|
|
|
430
|
|
|
431 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
432 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
433 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
434
|
|
|
435
|
|
|
436
|
|
|
437 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
438 }
|
|
|
439 } else {
|
|
|
440 values_real <-dist_real_f$Dist
|
|
|
441 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
442 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
|
443 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
444 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
445 if (ifControl) {
|
|
|
446 values_control <-dist_control_f$Dist
|
|
|
447 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
448 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
|
449 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
450 } else {
|
|
|
451 legend(lim*0.2, ymax*0.9, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
|
452 }
|
|
|
453
|
|
|
454 gradi <- 1000
|
|
|
455 if (lim>10000) {
|
|
|
456 gradi <- 10000
|
|
|
457 }
|
|
|
458 if (lim<3000) {
|
|
|
459 gradi <- 500
|
|
|
460 }
|
|
|
461
|
|
|
462 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
463 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
464 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
465
|
|
|
466
|
|
|
467 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
468 }
|
|
|
469 suppressMessages(dev.off())
|
|
|
470 q();
|
|
|
471 cat (paste("peak height","# peaks in ChIP","# peaks in Control","#control/chip","\n",sep='\t'))
|
|
|
472 for (xval in c(minValue:maxValue)) {
|
|
|
473 for (i in (1:length(chipHist$mids))) {
|
|
|
474 if (xval==chipHist$mids[i]) {
|
|
|
475 ychip <- chipHist$counts[i]
|
|
|
476 }
|
|
|
477 }
|
|
|
478 for (i in (1:length(controlHist$mids))) {
|
|
|
479 if (xval==controlHist$mids[i]) {
|
|
|
480 ycontrol <- controlHist$counts[i]
|
|
|
481 }
|
|
|
482 }
|
|
|
483 cat (paste(xval,ychip,ycontrol,ycontrol/ychip,"\n",sep='\t'))
|
|
|
484 }
|