Mercurial > repos > jbrayet > maketssdist
comparison makeTSSdist.R @ 33:7705cb40c04b draft
Uploaded
| author | jbrayet |
|---|---|
| date | Wed, 12 Aug 2015 05:38:55 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 32:e89a2dd5de6d | 33:7705cb40c04b |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 #usage $0 STEP RIGHT chipPeaks outputFile.png output.txt [controlPeaks] [1 for pdf] | |
| 4 args <- commandArgs(TRUE) | |
| 5 #print (args) | |
| 6 myStep <- type.convert(args[2]) | |
| 7 maxValue <- type.convert(args[3]) | |
| 8 | |
| 9 dataTable <-read.table(file=paste(args[4],".genes.ClosestPeakDist", sep=""), header=TRUE); | |
| 10 chip.genes.ClosestPeakDist<-data.frame(dataTable) | |
| 11 ifReg <- 0 | |
| 12 if (length(unique(chip.genes.ClosestPeakDist$Reg))>1) { | |
| 13 ifReg <- 1 | |
| 14 } | |
| 15 ifControl <- 0 | |
| 16 | |
| 17 options(bitmapType='cairo') | |
| 18 | |
| 19 ifPDF <- 0 | |
| 20 if (length(args)>=8) { | |
| 21 ifPDF=args[8] | |
| 22 } | |
| 23 if (length(args)==7 & args[7]==1) { | |
| 24 ifPDF=1 | |
| 25 } | |
| 26 | |
| 27 suppressMessages(library(Hmisc)) | |
| 28 | |
| 29 if (length(args)>=7 & args[7]!=1 & args[7]!=0) { | |
| 30 dataTable <-read.table(file=paste(args[7],".genes.ClosestPeakDist", sep=""), header=TRUE); | |
| 31 control.genes.ClosestPeakDist<-data.frame(dataTable) | |
| 32 ifControl <- 1 | |
| 33 } | |
| 34 if (ifReg & ifControl) { | |
| 35 if (ifPDF==1) { | |
| 36 pdf(file = args[5], width = 19, height = 8, pointsize = 20, bg = "white") | |
| 37 } else { | |
| 38 png(filename = args[5], width = 1440 , height = 680, units = "px", pointsize = 20, bg = "white", res = NA) | |
| 39 plot(1:10) | |
| 40 } | |
| 41 op <- par(mfrow = c(2,3)) | |
| 42 } else { | |
| 43 if (ifPDF==1) { | |
| 44 pdf(file = args[5], width = 10, height = 13, pointsize = 20, bg = "white") | |
| 45 } else { | |
| 46 png(filename = args[5], width = 680, height = 880, units = "px", pointsize = 20, bg = "white", res = NA) | |
| 47 plot(1:10) | |
| 48 } | |
| 49 # plot(1:10) | |
| 50 op <- par(mfrow = c(2,1)) | |
| 51 } | |
| 52 myColor <- 1 | |
| 53 myColor[1] <- colors()[131] | |
| 54 myColor[2] <- "darkolivegreen3" | |
| 55 myColor[3] <- "azure4" | |
| 56 myColor[4] <- "royalblue3" | |
| 57 myColor[5] <- colors()[17] | |
| 58 | |
| 59 myColorControl <- 1 | |
| 60 | |
| 61 myColorControl[1] <- colors()[24] | |
| 62 myColorControl[2] <- colors()[278] | |
| 63 myColorControl[3] <- colors()[305] | |
| 64 myColorControl[4] <- colors()[219] | |
| 65 myColorControl[5] <- colors()[343] | |
| 66 | |
| 67 | |
| 68 | |
| 69 #for cumulative: | |
| 70 dist_real_f <- chip.genes.ClosestPeakDist | |
| 71 if (ifControl) { | |
| 72 dist_control_f <- control.genes.ClosestPeakDist | |
| 73 } | |
| 74 step <- myStep | |
| 75 lim <- maxValue | |
| 76 x <- 0 | |
| 77 count <- 1 | |
| 78 countL <-1 | |
| 79 n.types <- 1 | |
| 80 myLevels <- 0 | |
| 81 countTotalCont <- 0 | |
| 82 countTotal <-0 | |
| 83 countLCont <- 0 | |
| 84 cumTotalCont <- 0 | |
| 85 if (ifReg) { | |
| 86 n.types <- length(levels(chip.genes.ClosestPeakDist$Reg)) | |
| 87 myLevels <- levels(chip.genes.ClosestPeakDist$Reg) | |
| 88 cum = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE) | |
| 89 for (i in c(1:n.types)) { | |
| 90 t <- which ((dist_real_f$Reg==myLevels[i])) | |
| 91 countL[i] <- length(t) | |
| 92 } | |
| 93 count <-1 | |
| 94 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 95 for (t in c(1:n.types)) { | |
| 96 tt <- which ((dist_real_f$Reg==myLevels[t])&(dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i)) | |
| 97 cum[count,t] <- length(tt) | |
| 98 } | |
| 99 x[count] <- i | |
| 100 count <- count + 1 | |
| 101 } | |
| 102 ymax <- max(cum[,1]/countL[1], na.rm=TRUE) | |
| 103 for (i in c(2:n.types)) { | |
| 104 ymax <- max(ymax,max(cum[,i]/countL[i], na.rm=TRUE)) | |
| 105 } | |
| 106 myLocCol <- myColor[2] | |
| 107 | |
| 108 par(mar=c(5.1, 7.1, 4.1, 2.1)) | |
| 109 | |
| 110 plot (x,cum[,1]/countL[1] ,col = myColor[2],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax)) | |
| 111 for (i in c(2:n.types)) { | |
| 112 colorr <- i+1 | |
| 113 myLocCol <- c(myLocCol,myColor[colorr]) | |
| 114 lines (x,cum[,i]/countL[i] ,col = myColor[colorr],type="l", lwd = 2) | |
| 115 # print (myColor[colorr]) | |
| 116 } | |
| 117 | |
| 118 gradi <- 1000 | |
| 119 if (lim>10000) { | |
| 120 gradi <- 10000 | |
| 121 } | |
| 122 if (lim<3000) { | |
| 123 gradi <- 500 | |
| 124 } | |
| 125 axisx <- seq(length=lim/gradi+1, from=0, by=gradi) | |
| 126 axisxlab <- paste(axisx/1000,"", sep = "") | |
| 127 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 128 ymax <- max(cum[,i]/countL[i], na.rm=TRUE) | |
| 129 | |
| 130 minor.tick(nx=5,tick.ratio=0.5) | |
| 131 | |
| 132 legend(lim*0.45, ymax*0.45, myLevels, cex=1, lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE) | |
| 133 | |
| 134 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)") | |
| 135 | |
| 136 if (ifControl) { | |
| 137 count <-1 | |
| 138 n.types <- length(levels(control.genes.ClosestPeakDist$Reg)) | |
| 139 myLevels <- levels(control.genes.ClosestPeakDist$Reg) | |
| 140 cumCont = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE) | |
| 141 for (i in c(1:n.types)) { | |
| 142 t <- which ((dist_control_f$Reg==myLevels[i])) | |
| 143 countLCont[i] <- length(t) | |
| 144 } | |
| 145 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 146 for (t in c(1:n.types)) { | |
| 147 tt <- which ((dist_control_f$Reg==myLevels[t])&(dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i)) | |
| 148 cumCont[count,t] <- length(tt) | |
| 149 } | |
| 150 x[count] <- i | |
| 151 count <- count + 1 | |
| 152 } | |
| 153 ymax <- max(cumCont[,1]/countLCont[1], na.rm=TRUE) | |
| 154 for (i in c(2:n.types)) { | |
| 155 ymax <- max(ymax,max(cumCont[,i]/countLCont[i], na.rm=TRUE)) | |
| 156 } | |
| 157 myLocColCntr <- myColorControl[2] | |
| 158 plot (x,cumCont[,1]/countLCont[1] ,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax)) | |
| 159 for (i in c(2:n.types)) { | |
| 160 colorr <- i+1 | |
| 161 myLocColCntr <- c(myLocColCntr,myColorControl[colorr]) | |
| 162 lines (x,cumCont[,i]/countLCont[i] ,col = myColorControl[colorr],type="l", lwd = 2) | |
| 163 } | |
| 164 if (lim>10000) { | |
| 165 gradi <- 10000 | |
| 166 } | |
| 167 if (lim<3000) { | |
| 168 gradi <- 500 | |
| 169 } | |
| 170 axisx <- seq(length=lim/gradi+1, from=0, by=gradi) | |
| 171 axisxlab <- paste(axisx/1000, sep = "") | |
| 172 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 173 minor.tick(nx=5,tick.ratio=0.5) | |
| 174 legend(lim*0.45, ymax*0.45, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE) | |
| 175 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)") | |
| 176 #real_vs_control_cumulative: | |
| 177 count <-1 | |
| 178 countTotal <- length(dist_real_f$Reg) | |
| 179 cumTotal <- 0 | |
| 180 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 181 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i)) | |
| 182 cumTotal[count] <- length(t) | |
| 183 x[count] <- i | |
| 184 count <- count + 1 | |
| 185 } | |
| 186 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" ) | |
| 187 gradi <- 1000 | |
| 188 if (lim>10000) { | |
| 189 gradi <- 10000 | |
| 190 } | |
| 191 if (lim<3000) { | |
| 192 gradi <- 500 | |
| 193 } | |
| 194 axisx <- seq(length=lim/gradi+1, from=0, by=gradi) | |
| 195 axisxlab <- paste(axisx/1000, sep = "") | |
| 196 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 197 ymax <- max(cumTotal/countTotal, na.rm=TRUE) | |
| 198 minor.tick(nx=5,tick.ratio=0.5) | |
| 199 countTotalCont <- length(dist_control_f$Reg) | |
| 200 cumTotalCont <- 0 | |
| 201 count <- 1 | |
| 202 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 203 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i)) | |
| 204 cumTotalCont[count] <- length(t) | |
| 205 x[count] <- i | |
| 206 count <- count + 1 | |
| 207 } | |
| 208 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2) | |
| 209 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE) | |
| 210 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)") | |
| 211 } | |
| 212 } else { | |
| 213 countTotal <- length(dist_real_f$Reg) | |
| 214 cumTotal <- 0 | |
| 215 count <-1 | |
| 216 | |
| 217 gradi <- 1000 | |
| 218 if (lim>10000) { | |
| 219 gradi <- 10000 | |
| 220 } | |
| 221 if (lim<3000) { | |
| 222 gradi <- 500 | |
| 223 } | |
| 224 | |
| 225 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 226 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i)) | |
| 227 cumTotal[count] <- length(t) | |
| 228 x[count] <- i | |
| 229 count <- count + 1 | |
| 230 } | |
| 231 par(mar=c(5.1, 7.1, 4.1, 2.1)) | |
| 232 | |
| 233 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" ) | |
| 234 axisx <- seq(length=lim/gradi+1, from=0, by=gradi) | |
| 235 axisxlab <- paste(axisx/1000, sep = "") | |
| 236 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 237 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)") | |
| 238 ymax <- max(cumTotal/countTotal, na.rm=TRUE) | |
| 239 if (ifControl) { | |
| 240 countTotalCont <- length(dist_control_f$Reg) | |
| 241 cumTotalCont <- 0 | |
| 242 count <- 1 | |
| 243 for (i in seq(length=lim/step +1, from=0, by=step)) { | |
| 244 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i)) | |
| 245 cumTotalCont[count] <- length(t) | |
| 246 x[count] <- i | |
| 247 count <- count + 1 | |
| 248 } | |
| 249 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2) | |
| 250 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE) | |
| 251 } else { | |
| 252 legend(lim*0.45, ymax*0.45, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE) | |
| 253 } | |
| 254 } | |
| 255 | |
| 256 sink(args[6], append=FALSE, split=FALSE) | |
| 257 if (ifReg) { | |
| 258 if (ifControl) { | |
| 259 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t')) | |
| 260 cat("\t") | |
| 261 for (i in c(1:n.types)) { | |
| 262 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", sep="")) | |
| 263 cat("\t") | |
| 264 } | |
| 265 | |
| 266 for (i in c(1:n.types)) { | |
| 267 cat(paste("% ", myLevels[i]," genes w/ a peak in Control", sep="")) | |
| 268 cat("\t") | |
| 269 } | |
| 270 cat("\n") | |
| 271 for (i in c(1:length(x))) { | |
| 272 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t")) | |
| 273 cat("\t") | |
| 274 for (t in c(1:n.types)) { | |
| 275 cat(paste(cum[i,t]/countL[t],"\t", sep="")) | |
| 276 } | |
| 277 for (t in c(1:n.types)) { | |
| 278 cat(paste(cumCont[i,t]/countLCont[t],"\t", sep="")) | |
| 279 } | |
| 280 cat("\n") | |
| 281 } | |
| 282 }else { | |
| 283 cat (paste("Dist_TSS","\t",sep='')) | |
| 284 for (i in c(1:n.types)) { | |
| 285 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", "\t", sep="")) | |
| 286 } | |
| 287 cat("\n") | |
| 288 for (i in c(1:length(x))) { | |
| 289 cat(paste(x[i],"\t",sep="")) | |
| 290 for (t in c(1:n.types)) { | |
| 291 cat(paste(cum[i,t]/countL[t],"\t", sep="")) | |
| 292 } | |
| 293 cat("\n") | |
| 294 } | |
| 295 } | |
| 296 } else { | |
| 297 if (ifControl) { | |
| 298 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t')) | |
| 299 cat("\n") | |
| 300 for (i in c(1:length(x))) { | |
| 301 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t")) | |
| 302 cat("\n") | |
| 303 } | |
| 304 }else { | |
| 305 cat (paste("Dist_TSS","% genes w/ a peak in ChIP",sep='\t')) | |
| 306 cat("\n") | |
| 307 for (i in c(1:length(x))) { | |
| 308 cat(paste(x[i],cumTotal[i]/countTotal,sep="\t")) | |
| 309 cat("\n") | |
| 310 } | |
| 311 | |
| 312 } | |
| 313 } | |
| 314 | |
| 315 | |
| 316 #stop sinking: | |
| 317 sink() | |
| 318 | |
| 319 #around TSS: | |
| 320 lim <- maxValue | |
| 321 step <- myStep | |
| 322 my_breaks <- seq(length=lim/step*2 +1, from=-lim, by=step) | |
| 323 chip.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ; | |
| 324 dist_real_f <- chip.genes | |
| 325 if (ifControl) { | |
| 326 control.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ; | |
| 327 dist_control_f<-data.frame(control.genes) | |
| 328 } | |
| 329 if (ifReg) { | |
| 330 #n.types <- length(levels(chip.genes.ClosestPeakDist$Reg)) | |
| 331 #myLevels <- levels(dist_real_f$Reg) | |
| 332 | |
| 333 t<- which (dist_real_f$Reg==myLevels[1]) | |
| 334 values_real <-dist_real_f$Dist[t] | |
| 335 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 336 ymax <- max(hTSSreal$density, na.rm=TRUE) | |
| 337 for (i in c(2:n.types)) { | |
| 338 t<- which (dist_real_f$Reg==myLevels[i]) | |
| 339 values_real <-dist_real_f$Dist[t] | |
| 340 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 341 ymax <- max(ymax,max(hTSSreal$density, na.rm=TRUE)) | |
| 342 } | |
| 343 | |
| 344 | |
| 345 t<- which (dist_real_f$Reg==myLevels[1]) | |
| 346 values_real <-dist_real_f$Dist[t] | |
| 347 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 348 plot (hTSSreal$mids,hTSSreal$density,col = myLocCol[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax), xaxt="n" ) | |
| 349 | |
| 350 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)") | |
| 351 | |
| 352 for (i in c(2:n.types)) { | |
| 353 t<- which (dist_real_f$Reg==myLevels[i]) | |
| 354 values_real <-dist_real_f$Dist[t] | |
| 355 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 356 lines (hTSSreal$mids,hTSSreal$density,col = myLocCol[i],type="l", lwd = 2) | |
| 357 } | |
| 358 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE) | |
| 359 | |
| 360 gradi <- 1000 | |
| 361 if (lim>10000) { | |
| 362 gradi <- 10000 | |
| 363 } | |
| 364 if (lim<3000) { | |
| 365 gradi <- 500 | |
| 366 } | |
| 367 | |
| 368 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi) | |
| 369 axisxlab <- paste(axisx/1000, sep = "") | |
| 370 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 371 | |
| 372 | |
| 373 #minor.tick(nx=10,tick.ratio=0.5) | |
| 374 if (ifControl) { | |
| 375 t<- which (dist_control_f$Reg==myLevels[1]) | |
| 376 values_control <-dist_control_f$Dist[t] | |
| 377 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 378 ymax <- max(hTSScontrol$density, na.rm=TRUE) | |
| 379 for (i in c(2:n.types)) { | |
| 380 t<- which (dist_control_f$Reg==myLevels[i]) | |
| 381 values_control <-dist_control_f$Dist[t] | |
| 382 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 383 ymax <- max(ymax,max(hTSScontrol$density, na.rm=TRUE)) | |
| 384 } | |
| 385 t<- which (dist_control_f$Reg==myLevels[1]) | |
| 386 values_control <-dist_control_f$Dist[t] | |
| 387 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 388 plot (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax),xaxt="n" ) | |
| 389 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)") | |
| 390 for (i in c(2:n.types)) { | |
| 391 t<- which (dist_control_f$Reg==myLevels[i]) | |
| 392 values_control <-dist_control_f$Dist[t] | |
| 393 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 394 lines (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[i],type="l", lwd = 2) | |
| 395 } | |
| 396 | |
| 397 gradi <- 1000 | |
| 398 if (lim>10000) { | |
| 399 gradi <- 10000 | |
| 400 } | |
| 401 if (lim<3000) { | |
| 402 gradi <- 500 | |
| 403 } | |
| 404 | |
| 405 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi) | |
| 406 axisxlab <- paste(axisx/1000, sep = "") | |
| 407 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 408 | |
| 409 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE) | |
| 410 | |
| 411 # minor.tick(nx=10,tick.ratio=0.5) | |
| 412 #control vs real | |
| 413 values_real <-dist_real_f$Dist | |
| 414 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 415 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n") | |
| 416 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)") | |
| 417 ymax <- max(hTSSreal$density, na.rm=TRUE) | |
| 418 values_control <-dist_control_f$Dist | |
| 419 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 420 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2) | |
| 421 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE) | |
| 422 | |
| 423 gradi <- 1000 | |
| 424 if (lim>10000) { | |
| 425 gradi <- 10000 | |
| 426 } | |
| 427 if (lim<3000) { | |
| 428 gradi <- 500 | |
| 429 } | |
| 430 | |
| 431 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi) | |
| 432 axisxlab <- paste(axisx/1000, sep = "") | |
| 433 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 434 | |
| 435 | |
| 436 | |
| 437 # minor.tick(nx=10,tick.ratio=0.5) | |
| 438 } | |
| 439 } else { | |
| 440 values_real <-dist_real_f$Dist | |
| 441 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) ) | |
| 442 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n") | |
| 443 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)") | |
| 444 ymax <- max(hTSSreal$density, na.rm=TRUE) | |
| 445 if (ifControl) { | |
| 446 values_control <-dist_control_f$Dist | |
| 447 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) ) | |
| 448 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2) | |
| 449 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE) | |
| 450 } else { | |
| 451 legend(lim*0.2, ymax*0.9, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE) | |
| 452 } | |
| 453 | |
| 454 gradi <- 1000 | |
| 455 if (lim>10000) { | |
| 456 gradi <- 10000 | |
| 457 } | |
| 458 if (lim<3000) { | |
| 459 gradi <- 500 | |
| 460 } | |
| 461 | |
| 462 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi) | |
| 463 axisxlab <- paste(axisx/1000, sep = "") | |
| 464 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1) | |
| 465 | |
| 466 | |
| 467 # minor.tick(nx=10,tick.ratio=0.5) | |
| 468 } | |
| 469 suppressMessages(dev.off()) | |
| 470 q(); | |
| 471 cat (paste("peak height","# peaks in ChIP","# peaks in Control","#control/chip","\n",sep='\t')) | |
| 472 for (xval in c(minValue:maxValue)) { | |
| 473 for (i in (1:length(chipHist$mids))) { | |
| 474 if (xval==chipHist$mids[i]) { | |
| 475 ychip <- chipHist$counts[i] | |
| 476 } | |
| 477 } | |
| 478 for (i in (1:length(controlHist$mids))) { | |
| 479 if (xval==controlHist$mids[i]) { | |
| 480 ycontrol <- controlHist$counts[i] | |
| 481 } | |
| 482 } | |
| 483 cat (paste(xval,ychip,ycontrol,ycontrol/ychip,"\n",sep='\t')) | |
| 484 } |
