2
|
1 #######################################################################
|
|
2 #######################################################################
|
|
3 # CoNIFER: Copy Number Inference From Exome Reads
|
|
4 # Developed by Niklas Krumm (C) 2012
|
|
5 # nkrumm@gmail.com
|
|
6 #
|
|
7 # homepage: http://conifer.sf.net
|
|
8 # This program is described in:
|
|
9 # Krumm et al. 2012. Genome Research. doi:10.1101/gr.138115.112
|
|
10 #
|
|
11 # This file is part of CoNIFER.
|
|
12 # CoNIFER is free software: you can redistribute it and/or modify
|
|
13 # it under the terms of the GNU General Public License as published by
|
|
14 # the Free Software Foundation, either version 3 of the License, or
|
|
15 # (at your option) any later version.
|
|
16 #
|
|
17 # This program is distributed in the hope that it will be useful,
|
|
18 # but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
20 # GNU General Public License for more details.
|
|
21 #
|
|
22 # You should have received a copy of the GNU General Public License
|
|
23 # along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
24 #######################################################################
|
|
25 #######################################################################
|
|
26
|
|
27 import csv
|
|
28 from tables import *
|
|
29 import numpy as np
|
|
30 import operator
|
|
31
|
|
32 class rpkm_value(IsDescription):
|
|
33 probeID = UInt32Col(pos=0)
|
|
34 rpkm = FloatCol(pos=1)
|
|
35
|
|
36 class probe(IsDescription):
|
|
37 probeID = UInt32Col(pos=0)
|
|
38 start = UInt32Col(pos=1) # start of probe
|
|
39 stop = UInt32Col(pos=2) # stop of probe
|
|
40 name = StringCol(20,pos=3) # 20-character String
|
|
41
|
|
42 def chrInt2Str(chromosome_int):
|
|
43 if int(chromosome_int) == 23:
|
|
44 return 'chrX'
|
|
45 elif int(chromosome_int) == 24:
|
|
46 return 'chrY'
|
|
47 else:
|
|
48 return 'chr' + str(chromosome_int)
|
|
49
|
|
50
|
|
51 def chrStr2Int(chromosome_str):
|
|
52 chr = chromosome_str.replace('chr','')
|
|
53 if chr == 'X':
|
|
54 return 23
|
|
55 elif chr == 'Y':
|
|
56 return 24
|
|
57 else:
|
|
58 return int(chr)
|
|
59
|
|
60 def parseLocString(locstr):
|
|
61 try:
|
|
62 chr,locstr = locstr.split(":")
|
|
63 start, stop = locstr.split("-")
|
|
64 except:
|
|
65 chr, start, stop = locstr.split("\t")
|
|
66
|
|
67 chr = chrStr2Int(chr)
|
|
68 start = int(start)
|
|
69 stop = int(stop)
|
|
70 return (chr,start,stop)
|
|
71
|
|
72 def zrpkm(rpkm,median,sd):
|
|
73 return (rpkm - median) / sd
|
|
74
|
|
75
|
|
76
|
|
77 class sample(IsDescription):
|
|
78 sampleID = StringCol(100,pos=0) # 20-char string (sampleID)
|
|
79
|
|
80 def loadProbeList(CF_probe_filename):
|
|
81 # Load data files
|
|
82 probefile = open(CF_probe_filename, 'rb')
|
|
83 s = csv.Sniffer()
|
|
84 header = s.has_header(probefile.read(1024))
|
|
85 probefile.seek(0)
|
|
86 dialect = s.sniff(probefile.read(1024))
|
|
87 probefile.seek(0)
|
|
88 if header:
|
|
89 r = csv.DictReader(probefile, dialect=dialect)
|
|
90 else:
|
|
91 r = csv.DictReader(probefile, dialect=dialect, fieldnames=['chr','start','stop','name'])
|
|
92
|
|
93 probes = []
|
|
94 probeID = 1
|
|
95 for row in r:
|
|
96 probes.append({'probeID': probeID, 'chr':chrStr2Int(row['chr']),'start':int(row['start']),'stop':int(row['stop']), 'name':row['name']})
|
|
97 probeID +=1
|
|
98
|
|
99 if len(probes) == 0:
|
|
100 raise Exception("No probes in probe file")
|
|
101
|
|
102 return probes
|
|
103
|
|
104
|
|
105 def export_sample(h5file_in,sample,probes,outfile_f):
|
|
106 dt = np.dtype([('chr','|S10'),('start', '<u4'), ('stop', '<u4'), ('name', '|S20'),('SVDZRPKM',np.float)])
|
|
107 for chr in h5file_in.root:
|
|
108 if chr._v_title in ('probes','samples'):
|
|
109 continue
|
|
110
|
|
111 out_data = np.empty(len(probes[chr._v_title]),dtype=dt)
|
|
112 out_data["SVDZRPKM"] = chr._f_getChild("sample_" + sample).read(field='rpkm')
|
|
113 out_data["chr"] = np.repeat(chr._v_title,len(out_data))
|
|
114 out_data["start"] = probes[chr._v_title]["start"]
|
|
115 out_data["stop"] = probes[chr._v_title]["stop"]
|
|
116 out_data["name"] = probes[chr._v_title]["name"]
|
|
117 np.savetxt(outfile_f, out_data,fmt=["%s","%d","%d","%s","%f"], delimiter="\t")
|
|
118
|
|
119
|
|
120
|
|
121 def plotGenes(axis, rpkm_data, levels=5,x_pos=-2,text_pos='right',line_spacing=0.1,text_offset=0.25,data_range=None):
|
|
122 from matplotlib.lines import Line2D
|
|
123 counter = 0
|
|
124 prev_gene = ""
|
|
125 if data_range is not None:
|
|
126 exon_set = rpkm_data.exons[data_range]
|
|
127 else:
|
|
128 exon_set = rpkm_data.exons
|
|
129 for gene in exon_set["name"]:
|
|
130 if gene == prev_gene:
|
|
131 continue
|
|
132 elif gene == 'None':
|
|
133 continue
|
|
134 start = np.min(np.where(exon_set["name"] == gene))
|
|
135 stop = np.max(np.where(exon_set["name"] == gene)) + 1
|
|
136 _ = axis.add_line(Line2D([start-0.5,stop-0.5],[x_pos - (counter * line_spacing),x_pos - (counter * line_spacing)],color=(102/255.,33/255.,168/255.,0.6),linewidth=5,linestyle='-',alpha=0.5,solid_capstyle='butt'))
|
|
137 _ = axis.text(stop+text_offset, x_pos - (counter * line_spacing), gene, ha='left',va='center',fontsize=6)
|
|
138 counter +=1
|
|
139 prev_gene = gene
|
|
140 if counter > 5:
|
|
141 counter = 0
|
|
142
|
|
143
|
|
144 def plotGenomicCoords(plt, rpkm_data,fontsize=10,rotation=0):
|
|
145 import operator
|
|
146 import locale
|
|
147 exon_set = rpkm_data.exons
|
|
148 genomic_coords = np.array(map(operator.itemgetter("start"),exon_set))
|
|
149
|
|
150 ticks = range(0,len(exon_set),len(exon_set)/5)
|
|
151
|
|
152 ticks[-1] -= 1 # the last tick is going to be off the chart, so we estimate it as the second to last genomic coord.
|
|
153 labels = [locale.format("%d", genomic_coords[i], grouping=True) for i in ticks if i < len(genomic_coords)]
|
|
154 if rotation != 0:
|
|
155 ha = "right"
|
|
156 else:
|
|
157 ha = "center"
|
|
158 _ = plt.xticks(ticks,labels,fontsize=fontsize,rotation=rotation,ha=ha)
|
|
159
|
|
160
|
|
161 def plotRawData(axis, rpkm_data, color='r',linewidth=0.7):
|
|
162 zero_stack = np.zeros(len(rpkm_data))
|
|
163 positions = np.repeat(np.arange(0,len(rpkm_data)),3)
|
|
164 logr = np.vstack([zero_stack,rpkm_data.flatten(),zero_stack]).transpose().ravel()
|
|
165 axis.plot(positions,logr,color=color,marker=None,linewidth=1)
|
|
166
|
|
167 def getbkpoints(mask):
|
|
168 bkpoints = np.nonzero(np.logical_xor(mask[0:-1],mask[1:]))[0]+1
|
|
169 if mask[0] == 1:
|
|
170 bkpoints = np.hstack([0,bkpoints])
|
|
171 if mask[-1] == 1:
|
|
172 bkpoints = np.hstack([bkpoints,len(mask)])
|
|
173 return bkpoints.reshape(len(bkpoints)/2,2)
|
|
174
|
|
175 def mergeCalls(calls):
|
|
176 if len(calls) == 0:
|
|
177 return []
|
|
178
|
|
179 out_calls = []
|
|
180 calls=np.array(calls)[np.argsort(np.array(map(operator.itemgetter("start"),calls),dtype=np.int))]
|
|
181 pstart = calls[0]["start"]
|
|
182 pstop = calls[0]["stop"]
|
|
183 for d in calls:
|
|
184 if d["start"] <= pstop:
|
|
185 pstop = max(d["stop"],pstop)
|
|
186 else:
|
|
187 out_calls.append({"sampleID": d["sampleID"], "chromosome": d["chromosome"], "start":pstart, "stop":pstop, "state": d["state"]})
|
|
188 pstart = d["start"]
|
|
189 pstop = d["stop"]
|
|
190
|
|
191 out_calls.append({"sampleID": d["sampleID"], "chromosome": d["chromosome"], "start":pstart, "stop":pstop, "state": d["state"]})
|
|
192 return out_calls
|
|
193
|
|
194 class rpkm_data:
|
|
195 def __init__(self):
|
|
196 self.rpkm = None
|
|
197 self.samples = None
|
|
198 self.exons = None
|
|
199 self.isGenotype = False
|
|
200 self.calls = []
|
|
201 self.refined_calls = []
|
|
202
|
|
203 def smooth(self, window = 15, padded = False): #todo, fix the padding here
|
|
204 if self.isGenotype:
|
|
205 print "Warning: the data in this rpkm_data container are single genotype values. Smoothing will have no effect!"
|
|
206 return self.rpkm
|
|
207
|
|
208 if window > 0:
|
|
209 weightings=np.blackman(window)
|
|
210 weightings = weightings/weightings.sum()
|
|
211 smoothed_data = np.array([])
|
|
212 for row in self.rpkm.transpose():
|
|
213 smoothed = np.convolve(row, weightings)[(window-1)/2:-((window-1)/2)]
|
|
214 if len(smoothed_data) == 0:
|
|
215 smoothed_data = smoothed
|
|
216 else:
|
|
217 smoothed_data = np.vstack([smoothed_data,smoothed])
|
|
218
|
|
219 self.rpkm = smoothed_data.transpose()
|
|
220 return self.rpkm
|
|
221 else:
|
|
222 return self.rpkm
|
|
223
|
|
224 def getSample(self, sampleIDs):
|
|
225 sample_array = np.array(self.samples)
|
|
226 if isinstance(sampleIDs,list):
|
|
227 mask = np.zeros(len(sample_array),dtype=np.bool)
|
|
228 for sampleID in sampleIDs:
|
|
229 mask = np.logical_or(mask, sample_array == str(sampleID))
|
|
230
|
|
231 return self.rpkm[:,mask]
|
|
232 else:
|
|
233 mask = sample_array == str(sampleID)
|
|
234 return self.rpkm[:,mask]
|
|
235
|
|
236 def getSamples(self, sampleIDs):
|
|
237 return self.getSample(sampleIDs)
|
|
238
|
|
239 @property
|
|
240 def shape(self):
|
|
241 if self.isGenotype:
|
|
242 return [len(self.samples), 1]
|
|
243 else:
|
|
244 return [len(self.samples), len(self.exons)]
|
|
245
|
|
246
|
|
247 class rpkm_reader:
|
|
248 def __init__(self, rpkm_fn=None):
|
|
249 """Initialize an rpkm_reader instance. Specify the location of the data file"""
|
|
250
|
|
251 if rpkm_fn == None:
|
|
252 print "Must specify RPKM HDF5 file!"
|
|
253 return 0
|
|
254 # set up file access
|
|
255 # self.h5file = openFile(rpkm_fn, mode='r')
|
|
256 self.h5file = open_file(rpkm_fn, mode='r')
|
|
257 self.sample_table = self.h5file.root.samples.samples
|
|
258
|
|
259 def __del__(self):
|
|
260 self.h5file.close()
|
|
261
|
|
262 def getExonValuesByExons(self, chromosome, start_exon, stop_exon, sampleList=None,genotype=False):
|
|
263
|
|
264 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome))
|
|
265 #table_rows = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop))
|
|
266 start_exon = max(start_exon,0)
|
|
267 stop_exon = min(stop_exon, probe_tbl.nrows)
|
|
268 #print start_exon, stop_exon
|
|
269 table_rows = np.arange(start_exon,stop_exon,1)
|
|
270 data_tbl = self.h5file.root._f_getChild("chr" + str(chromosome))
|
|
271
|
|
272 if sampleList == None:
|
|
273 num_samples = data_tbl._v_nchildren
|
|
274 samples = data_tbl
|
|
275 else:
|
|
276 num_samples = len(sampleList)
|
|
277 samples = [data_tbl._f_getChild("sample_" + s) for s in sampleList]
|
|
278
|
|
279 data = np.empty([num_samples,len(table_rows)],dtype=np.float)
|
|
280
|
|
281 out_sample_list = []
|
|
282 cnt = 0
|
|
283 for sample_tbl in samples:
|
|
284 d = sample_tbl.readCoordinates(table_rows,field="rpkm")
|
|
285 data[cnt,:] = d
|
|
286 cnt +=1
|
|
287 out_sample_list.append(sample_tbl.title)
|
|
288
|
|
289 d = rpkm_data()
|
|
290 if genotype: # return average #todo-- implement median and SD?
|
|
291 d.rpkm = data.transpose().mean(axis=0)
|
|
292 d.isGenotype = True
|
|
293 else: #return all data points
|
|
294 d.rpkm = data.transpose()
|
|
295 d.samples = out_sample_list
|
|
296 d.exons = probe_tbl.readCoordinates(table_rows)
|
|
297
|
|
298 return d
|
|
299
|
|
300 def getExonValuesByRegion(self, chromosome, start=None, stop=None, sampleList=None,genotype=False):
|
|
301 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome))
|
|
302 if (start is not None) and (stop is not None):
|
|
303 table_rows = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop))
|
|
304 else:
|
|
305 table_rows = probe_tbl.getWhereList('(start >= 0) & (stop <= 1000000000)')
|
|
306
|
|
307 data_tbl = self.h5file.root._f_getChild("chr" + str(chromosome))
|
|
308
|
|
309 if sampleList == None:
|
|
310 num_samples = data_tbl._v_nchildren
|
|
311 samples = data_tbl
|
|
312 else:
|
|
313 num_samples = len(sampleList)
|
|
314 samples = [data_tbl._f_getChild("sample_" + s) for s in sampleList]
|
|
315
|
|
316 data = np.empty([num_samples,len(table_rows)],dtype=np.float)
|
|
317
|
|
318 out_sample_list = []
|
|
319 cnt = 0
|
|
320 for sample_tbl in samples:
|
|
321 d = sample_tbl.readCoordinates(table_rows,field="rpkm")
|
|
322 data[cnt,:] = d
|
|
323 cnt +=1
|
|
324 out_sample_list.append(sample_tbl.title)
|
|
325
|
|
326 d = rpkm_data()
|
|
327 if genotype: # return average #todo-- implement median and SD?
|
|
328 d.rpkm = data.transpose().mean(axis=0)
|
|
329 d.isGenotype = True
|
|
330 else: #return all data points
|
|
331 d.rpkm = data.transpose()
|
|
332 d.samples = out_sample_list
|
|
333 d.exons = probe_tbl.readCoordinates(table_rows)
|
|
334
|
|
335 return d
|
|
336
|
|
337 def getSampleList(self,cohort=None,sex=None,ethnicity=None,custom=None):
|
|
338 """Return a list of available samples in the current data file. Specifying no arguments will return all available samples"""
|
|
339
|
|
340 readWhereStr = ""
|
|
341 if custom != None:
|
|
342 readWhereStr = custom
|
|
343 else:
|
|
344 if cohort != None:
|
|
345 if isinstance(cohort,list):
|
|
346 for c in cohort:
|
|
347 readWhereStr += "(cohort=='%s') | " % c
|
|
348 readWhereStr = readWhereStr.strip(" |")
|
|
349 readWhereStr += " & "
|
|
350 else:
|
|
351 readWhereStr += "(cohort=='%s') " % cohort
|
|
352 if sex != None:
|
|
353 if sex not in ['M','F']:
|
|
354 sex = sex.upper()[0]
|
|
355 readWhereStr += " (sex=='%s') &" % sex
|
|
356 if ethnicity != None:
|
|
357 readWhereStr += " (ethnicity=='%s') &" % ethnicity
|
|
358
|
|
359 readWhereStr = readWhereStr.strip(" &") # remove leading or trailing characters
|
|
360 if readWhereStr != "":
|
|
361 #print readWhereStr
|
|
362 sampleIDs = self.sample_table.readWhere(readWhereStr,field='sampleID')
|
|
363 else:
|
|
364 sampleIDs = self.sample_table.read(field='sampleID')
|
|
365
|
|
366 return sampleIDs
|
|
367
|
|
368 def getExonIDs(self, chromosome, start, stop):
|
|
369 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome))
|
|
370 exons = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop))
|
|
371 return exons
|