Mercurial > repos > bzonnedda > conifer2
comparison conifer_functions.py @ 2:bc0e3b10d339 draft
Uploaded
author | bzonnedda |
---|---|
date | Mon, 06 Feb 2017 10:55:38 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:54973c4a1125 | 2:bc0e3b10d339 |
---|---|
1 ####################################################################### | |
2 ####################################################################### | |
3 # CoNIFER: Copy Number Inference From Exome Reads | |
4 # Developed by Niklas Krumm (C) 2012 | |
5 # nkrumm@gmail.com | |
6 # | |
7 # homepage: http://conifer.sf.net | |
8 # This program is described in: | |
9 # Krumm et al. 2012. Genome Research. doi:10.1101/gr.138115.112 | |
10 # | |
11 # This file is part of CoNIFER. | |
12 # CoNIFER is free software: you can redistribute it and/or modify | |
13 # it under the terms of the GNU General Public License as published by | |
14 # the Free Software Foundation, either version 3 of the License, or | |
15 # (at your option) any later version. | |
16 # | |
17 # This program is distributed in the hope that it will be useful, | |
18 # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 # GNU General Public License for more details. | |
21 # | |
22 # You should have received a copy of the GNU General Public License | |
23 # along with this program. If not, see <http://www.gnu.org/licenses/>. | |
24 ####################################################################### | |
25 ####################################################################### | |
26 | |
27 import csv | |
28 from tables import * | |
29 import numpy as np | |
30 import operator | |
31 | |
32 class rpkm_value(IsDescription): | |
33 probeID = UInt32Col(pos=0) | |
34 rpkm = FloatCol(pos=1) | |
35 | |
36 class probe(IsDescription): | |
37 probeID = UInt32Col(pos=0) | |
38 start = UInt32Col(pos=1) # start of probe | |
39 stop = UInt32Col(pos=2) # stop of probe | |
40 name = StringCol(20,pos=3) # 20-character String | |
41 | |
42 def chrInt2Str(chromosome_int): | |
43 if int(chromosome_int) == 23: | |
44 return 'chrX' | |
45 elif int(chromosome_int) == 24: | |
46 return 'chrY' | |
47 else: | |
48 return 'chr' + str(chromosome_int) | |
49 | |
50 | |
51 def chrStr2Int(chromosome_str): | |
52 chr = chromosome_str.replace('chr','') | |
53 if chr == 'X': | |
54 return 23 | |
55 elif chr == 'Y': | |
56 return 24 | |
57 else: | |
58 return int(chr) | |
59 | |
60 def parseLocString(locstr): | |
61 try: | |
62 chr,locstr = locstr.split(":") | |
63 start, stop = locstr.split("-") | |
64 except: | |
65 chr, start, stop = locstr.split("\t") | |
66 | |
67 chr = chrStr2Int(chr) | |
68 start = int(start) | |
69 stop = int(stop) | |
70 return (chr,start,stop) | |
71 | |
72 def zrpkm(rpkm,median,sd): | |
73 return (rpkm - median) / sd | |
74 | |
75 | |
76 | |
77 class sample(IsDescription): | |
78 sampleID = StringCol(100,pos=0) # 20-char string (sampleID) | |
79 | |
80 def loadProbeList(CF_probe_filename): | |
81 # Load data files | |
82 probefile = open(CF_probe_filename, 'rb') | |
83 s = csv.Sniffer() | |
84 header = s.has_header(probefile.read(1024)) | |
85 probefile.seek(0) | |
86 dialect = s.sniff(probefile.read(1024)) | |
87 probefile.seek(0) | |
88 if header: | |
89 r = csv.DictReader(probefile, dialect=dialect) | |
90 else: | |
91 r = csv.DictReader(probefile, dialect=dialect, fieldnames=['chr','start','stop','name']) | |
92 | |
93 probes = [] | |
94 probeID = 1 | |
95 for row in r: | |
96 probes.append({'probeID': probeID, 'chr':chrStr2Int(row['chr']),'start':int(row['start']),'stop':int(row['stop']), 'name':row['name']}) | |
97 probeID +=1 | |
98 | |
99 if len(probes) == 0: | |
100 raise Exception("No probes in probe file") | |
101 | |
102 return probes | |
103 | |
104 | |
105 def export_sample(h5file_in,sample,probes,outfile_f): | |
106 dt = np.dtype([('chr','|S10'),('start', '<u4'), ('stop', '<u4'), ('name', '|S20'),('SVDZRPKM',np.float)]) | |
107 for chr in h5file_in.root: | |
108 if chr._v_title in ('probes','samples'): | |
109 continue | |
110 | |
111 out_data = np.empty(len(probes[chr._v_title]),dtype=dt) | |
112 out_data["SVDZRPKM"] = chr._f_getChild("sample_" + sample).read(field='rpkm') | |
113 out_data["chr"] = np.repeat(chr._v_title,len(out_data)) | |
114 out_data["start"] = probes[chr._v_title]["start"] | |
115 out_data["stop"] = probes[chr._v_title]["stop"] | |
116 out_data["name"] = probes[chr._v_title]["name"] | |
117 np.savetxt(outfile_f, out_data,fmt=["%s","%d","%d","%s","%f"], delimiter="\t") | |
118 | |
119 | |
120 | |
121 def plotGenes(axis, rpkm_data, levels=5,x_pos=-2,text_pos='right',line_spacing=0.1,text_offset=0.25,data_range=None): | |
122 from matplotlib.lines import Line2D | |
123 counter = 0 | |
124 prev_gene = "" | |
125 if data_range is not None: | |
126 exon_set = rpkm_data.exons[data_range] | |
127 else: | |
128 exon_set = rpkm_data.exons | |
129 for gene in exon_set["name"]: | |
130 if gene == prev_gene: | |
131 continue | |
132 elif gene == 'None': | |
133 continue | |
134 start = np.min(np.where(exon_set["name"] == gene)) | |
135 stop = np.max(np.where(exon_set["name"] == gene)) + 1 | |
136 _ = axis.add_line(Line2D([start-0.5,stop-0.5],[x_pos - (counter * line_spacing),x_pos - (counter * line_spacing)],color=(102/255.,33/255.,168/255.,0.6),linewidth=5,linestyle='-',alpha=0.5,solid_capstyle='butt')) | |
137 _ = axis.text(stop+text_offset, x_pos - (counter * line_spacing), gene, ha='left',va='center',fontsize=6) | |
138 counter +=1 | |
139 prev_gene = gene | |
140 if counter > 5: | |
141 counter = 0 | |
142 | |
143 | |
144 def plotGenomicCoords(plt, rpkm_data,fontsize=10,rotation=0): | |
145 import operator | |
146 import locale | |
147 exon_set = rpkm_data.exons | |
148 genomic_coords = np.array(map(operator.itemgetter("start"),exon_set)) | |
149 | |
150 ticks = range(0,len(exon_set),len(exon_set)/5) | |
151 | |
152 ticks[-1] -= 1 # the last tick is going to be off the chart, so we estimate it as the second to last genomic coord. | |
153 labels = [locale.format("%d", genomic_coords[i], grouping=True) for i in ticks if i < len(genomic_coords)] | |
154 if rotation != 0: | |
155 ha = "right" | |
156 else: | |
157 ha = "center" | |
158 _ = plt.xticks(ticks,labels,fontsize=fontsize,rotation=rotation,ha=ha) | |
159 | |
160 | |
161 def plotRawData(axis, rpkm_data, color='r',linewidth=0.7): | |
162 zero_stack = np.zeros(len(rpkm_data)) | |
163 positions = np.repeat(np.arange(0,len(rpkm_data)),3) | |
164 logr = np.vstack([zero_stack,rpkm_data.flatten(),zero_stack]).transpose().ravel() | |
165 axis.plot(positions,logr,color=color,marker=None,linewidth=1) | |
166 | |
167 def getbkpoints(mask): | |
168 bkpoints = np.nonzero(np.logical_xor(mask[0:-1],mask[1:]))[0]+1 | |
169 if mask[0] == 1: | |
170 bkpoints = np.hstack([0,bkpoints]) | |
171 if mask[-1] == 1: | |
172 bkpoints = np.hstack([bkpoints,len(mask)]) | |
173 return bkpoints.reshape(len(bkpoints)/2,2) | |
174 | |
175 def mergeCalls(calls): | |
176 if len(calls) == 0: | |
177 return [] | |
178 | |
179 out_calls = [] | |
180 calls=np.array(calls)[np.argsort(np.array(map(operator.itemgetter("start"),calls),dtype=np.int))] | |
181 pstart = calls[0]["start"] | |
182 pstop = calls[0]["stop"] | |
183 for d in calls: | |
184 if d["start"] <= pstop: | |
185 pstop = max(d["stop"],pstop) | |
186 else: | |
187 out_calls.append({"sampleID": d["sampleID"], "chromosome": d["chromosome"], "start":pstart, "stop":pstop, "state": d["state"]}) | |
188 pstart = d["start"] | |
189 pstop = d["stop"] | |
190 | |
191 out_calls.append({"sampleID": d["sampleID"], "chromosome": d["chromosome"], "start":pstart, "stop":pstop, "state": d["state"]}) | |
192 return out_calls | |
193 | |
194 class rpkm_data: | |
195 def __init__(self): | |
196 self.rpkm = None | |
197 self.samples = None | |
198 self.exons = None | |
199 self.isGenotype = False | |
200 self.calls = [] | |
201 self.refined_calls = [] | |
202 | |
203 def smooth(self, window = 15, padded = False): #todo, fix the padding here | |
204 if self.isGenotype: | |
205 print "Warning: the data in this rpkm_data container are single genotype values. Smoothing will have no effect!" | |
206 return self.rpkm | |
207 | |
208 if window > 0: | |
209 weightings=np.blackman(window) | |
210 weightings = weightings/weightings.sum() | |
211 smoothed_data = np.array([]) | |
212 for row in self.rpkm.transpose(): | |
213 smoothed = np.convolve(row, weightings)[(window-1)/2:-((window-1)/2)] | |
214 if len(smoothed_data) == 0: | |
215 smoothed_data = smoothed | |
216 else: | |
217 smoothed_data = np.vstack([smoothed_data,smoothed]) | |
218 | |
219 self.rpkm = smoothed_data.transpose() | |
220 return self.rpkm | |
221 else: | |
222 return self.rpkm | |
223 | |
224 def getSample(self, sampleIDs): | |
225 sample_array = np.array(self.samples) | |
226 if isinstance(sampleIDs,list): | |
227 mask = np.zeros(len(sample_array),dtype=np.bool) | |
228 for sampleID in sampleIDs: | |
229 mask = np.logical_or(mask, sample_array == str(sampleID)) | |
230 | |
231 return self.rpkm[:,mask] | |
232 else: | |
233 mask = sample_array == str(sampleID) | |
234 return self.rpkm[:,mask] | |
235 | |
236 def getSamples(self, sampleIDs): | |
237 return self.getSample(sampleIDs) | |
238 | |
239 @property | |
240 def shape(self): | |
241 if self.isGenotype: | |
242 return [len(self.samples), 1] | |
243 else: | |
244 return [len(self.samples), len(self.exons)] | |
245 | |
246 | |
247 class rpkm_reader: | |
248 def __init__(self, rpkm_fn=None): | |
249 """Initialize an rpkm_reader instance. Specify the location of the data file""" | |
250 | |
251 if rpkm_fn == None: | |
252 print "Must specify RPKM HDF5 file!" | |
253 return 0 | |
254 # set up file access | |
255 # self.h5file = openFile(rpkm_fn, mode='r') | |
256 self.h5file = open_file(rpkm_fn, mode='r') | |
257 self.sample_table = self.h5file.root.samples.samples | |
258 | |
259 def __del__(self): | |
260 self.h5file.close() | |
261 | |
262 def getExonValuesByExons(self, chromosome, start_exon, stop_exon, sampleList=None,genotype=False): | |
263 | |
264 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome)) | |
265 #table_rows = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop)) | |
266 start_exon = max(start_exon,0) | |
267 stop_exon = min(stop_exon, probe_tbl.nrows) | |
268 #print start_exon, stop_exon | |
269 table_rows = np.arange(start_exon,stop_exon,1) | |
270 data_tbl = self.h5file.root._f_getChild("chr" + str(chromosome)) | |
271 | |
272 if sampleList == None: | |
273 num_samples = data_tbl._v_nchildren | |
274 samples = data_tbl | |
275 else: | |
276 num_samples = len(sampleList) | |
277 samples = [data_tbl._f_getChild("sample_" + s) for s in sampleList] | |
278 | |
279 data = np.empty([num_samples,len(table_rows)],dtype=np.float) | |
280 | |
281 out_sample_list = [] | |
282 cnt = 0 | |
283 for sample_tbl in samples: | |
284 d = sample_tbl.readCoordinates(table_rows,field="rpkm") | |
285 data[cnt,:] = d | |
286 cnt +=1 | |
287 out_sample_list.append(sample_tbl.title) | |
288 | |
289 d = rpkm_data() | |
290 if genotype: # return average #todo-- implement median and SD? | |
291 d.rpkm = data.transpose().mean(axis=0) | |
292 d.isGenotype = True | |
293 else: #return all data points | |
294 d.rpkm = data.transpose() | |
295 d.samples = out_sample_list | |
296 d.exons = probe_tbl.readCoordinates(table_rows) | |
297 | |
298 return d | |
299 | |
300 def getExonValuesByRegion(self, chromosome, start=None, stop=None, sampleList=None,genotype=False): | |
301 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome)) | |
302 if (start is not None) and (stop is not None): | |
303 table_rows = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop)) | |
304 else: | |
305 table_rows = probe_tbl.getWhereList('(start >= 0) & (stop <= 1000000000)') | |
306 | |
307 data_tbl = self.h5file.root._f_getChild("chr" + str(chromosome)) | |
308 | |
309 if sampleList == None: | |
310 num_samples = data_tbl._v_nchildren | |
311 samples = data_tbl | |
312 else: | |
313 num_samples = len(sampleList) | |
314 samples = [data_tbl._f_getChild("sample_" + s) for s in sampleList] | |
315 | |
316 data = np.empty([num_samples,len(table_rows)],dtype=np.float) | |
317 | |
318 out_sample_list = [] | |
319 cnt = 0 | |
320 for sample_tbl in samples: | |
321 d = sample_tbl.readCoordinates(table_rows,field="rpkm") | |
322 data[cnt,:] = d | |
323 cnt +=1 | |
324 out_sample_list.append(sample_tbl.title) | |
325 | |
326 d = rpkm_data() | |
327 if genotype: # return average #todo-- implement median and SD? | |
328 d.rpkm = data.transpose().mean(axis=0) | |
329 d.isGenotype = True | |
330 else: #return all data points | |
331 d.rpkm = data.transpose() | |
332 d.samples = out_sample_list | |
333 d.exons = probe_tbl.readCoordinates(table_rows) | |
334 | |
335 return d | |
336 | |
337 def getSampleList(self,cohort=None,sex=None,ethnicity=None,custom=None): | |
338 """Return a list of available samples in the current data file. Specifying no arguments will return all available samples""" | |
339 | |
340 readWhereStr = "" | |
341 if custom != None: | |
342 readWhereStr = custom | |
343 else: | |
344 if cohort != None: | |
345 if isinstance(cohort,list): | |
346 for c in cohort: | |
347 readWhereStr += "(cohort=='%s') | " % c | |
348 readWhereStr = readWhereStr.strip(" |") | |
349 readWhereStr += " & " | |
350 else: | |
351 readWhereStr += "(cohort=='%s') " % cohort | |
352 if sex != None: | |
353 if sex not in ['M','F']: | |
354 sex = sex.upper()[0] | |
355 readWhereStr += " (sex=='%s') &" % sex | |
356 if ethnicity != None: | |
357 readWhereStr += " (ethnicity=='%s') &" % ethnicity | |
358 | |
359 readWhereStr = readWhereStr.strip(" &") # remove leading or trailing characters | |
360 if readWhereStr != "": | |
361 #print readWhereStr | |
362 sampleIDs = self.sample_table.readWhere(readWhereStr,field='sampleID') | |
363 else: | |
364 sampleIDs = self.sample_table.read(field='sampleID') | |
365 | |
366 return sampleIDs | |
367 | |
368 def getExonIDs(self, chromosome, start, stop): | |
369 probe_tbl = self.h5file.root.probes._f_getChild("probes_chr" + str(chromosome)) | |
370 exons = probe_tbl.getWhereList('(start >= %d) & (stop <= %d)' % (start,stop)) | |
371 return exons |