Mercurial > repos > bgruening > flexynesis
view flexynesis_utils.py @ 3:525c661a7fdc draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/flexynesis commit b2463fb68d0ae54864d87718ee72f5e063aa4587
author | bgruening |
---|---|
date | Tue, 24 Jun 2025 05:55:40 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import argparse import os import sys from pathlib import Path import pandas as pd def read_data(data_input, index=False): """Load CSV or TSV data file.""" try: file_ext = Path(data_input).suffix.lower() sep = ',' if file_ext == '.csv' else '\t' index_col = 0 if index else None if file_ext in ['.csv', '.tsv', '.txt', '.tab', '.tabular']: return pd.read_csv(data_input, sep=sep, index_col=index_col) else: raise ValueError(f"Unsupported file extension: {file_ext}") except Exception as e: raise ValueError(f"Error loading data from {data_input}: {e}") from e def binarize_mutations(df, gene_idx=1, sample_idx=2): """ Binarize mutation data by creating a matrix of gene x sample with 1/0 values. """ # galaxy index is 1-based, convert to zero-based gene_idx -= 1 sample_idx -= 1 # check idx if gene_idx >= len(df.columns) or sample_idx >= len(df.columns): raise ValueError(f"Column indices out of bounds. DataFrame has {len(df.columns)} columns, " f"but requested indices are {gene_idx} and {sample_idx}") if gene_idx == sample_idx: raise ValueError("Gene and sample column indices must be different") # Get column names by index gene_col = df.columns[gene_idx] print(f"Using gene column: {gene_col} (index {gene_idx})") sample_col = df.columns[sample_idx] print(f"Using sample column: {sample_col} (index {sample_idx})") # Check if columns contain data if df[gene_col].isna().all(): raise ValueError(f"Gene column (index {gene_idx}) contains only NaN values.") if df[sample_col].isna().all(): raise ValueError(f"Sample column (index {sample_idx}) contains only NaN values.") # Group by gene and sample, count mutations mutation_counts = df.groupby([gene_col, sample_col]).size().reset_index(name='count') # Create pivot table mutation_matrix = mutation_counts.pivot(index=gene_col, columns=sample_col, values='count').fillna(0) # Binarize: convert any count > 0 to 1 mutation_matrix[mutation_matrix > 0] = 1 return mutation_matrix def make_data_dict(clin_path, omics_paths): """Read clinical and omics data files into a dictionary.""" data = {} # Read clinical data print(f"Reading clinical data from {clin_path}") try: clin = read_data(clin_path, index=True) if clin.empty: raise ValueError(f"Clinical file {clin_path} is empty") data['clin'] = clin print(f"Loaded clinical data: {clin.shape[0]} samples, {clin.shape[1]} features") except Exception as e: raise ValueError(f"Error reading clinical file {clin_path}: {e}") # Read omics data print(f"Reading omics data from {', '.join(omics_paths)}") for path in omics_paths: try: name = os.path.splitext(os.path.basename(path))[0] df = read_data(path, index=True) if df.empty: print(f"Warning: Omics file {path} is empty, skipping") continue data[name] = df print(f"Loaded {name}: {df.shape[0]} features, {df.shape[1]} samples") except Exception as e: print(f"Warning: Error reading omics file {path}: {e}") continue if len(data) == 1: # Only clinical data loaded raise ValueError("No omics data was successfully loaded") return data def validate_data_consistency(data): """Validate that clinical and omics data have consistent samples.""" clin_samples = set(data['clin'].index) for name, df in data.items(): if name == 'clin': continue omics_samples = set(df.columns) # Check for sample overlap common_samples = clin_samples.intersection(omics_samples) if len(common_samples) == 0: raise ValueError(f"No common samples between clinical data and {name}") missing_in_omics = clin_samples - omics_samples missing_in_clin = omics_samples - clin_samples if missing_in_omics: print(f"Warning: {len(missing_in_omics)} clinical samples not found in {name}") if missing_in_clin: print(f"Warning: {len(missing_in_clin)} samples in {name} not found in clinical data") return True def split_and_save_data(data, ratio=0.7, output_dir='.'): """Split data into train/test sets and save to files.""" # Validate data consistency first validate_data_consistency(data) samples = data['clin'].index.tolist() train_samples = list(pd.Series(samples).sample(frac=ratio, random_state=42)) test_samples = list(set(samples) - set(train_samples)) train_data = {} test_data = {} for key, df in data.items(): try: if key == 'clin': train_data[key] = df.loc[df.index.intersection(train_samples)] test_data[key] = df.loc[df.index.intersection(test_samples)] else: train_data[key] = df.loc[:, df.columns.intersection(train_samples)] test_data[key] = df.loc[:, df.columns.intersection(test_samples)] except Exception as e: print(f"Error splitting data {key}: {e}") continue # Create output directories os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'test'), exist_ok=True) # Save train and test data for key in data.keys(): try: train_data[key].to_csv(os.path.join(output_dir, 'train', f'{key}.csv')) test_data[key].to_csv(os.path.join(output_dir, 'test', f'{key}.csv')) except Exception as e: print(f"Error saving {key}: {e}") continue def main(): parser = argparse.ArgumentParser(description='Flexynesis extra utilities') parser.add_argument("--util", type=str, required=True, choices=['split', 'binarize'], help="Utility function: 'split' for spiting data to train and test, 'binarize' for creating a binarized matrix from a mutation data") # Arguments for split parser.add_argument('--clin', required=False, help='Path to clinical data CSV file (samples in rows)') parser.add_argument('--omics', required=False, help='Comma-separated list of omics CSV files (samples in columns)') parser.add_argument('--split', type=float, default=0.7, help='Train split ratio (default: 0.7)') # Arguments for binarize parser.add_argument('--mutations', type=str, required=False, help='Path to mutation data CSV file (samples in rows, genes in columns)') parser.add_argument('--gene_idx', type=int, default=0, help='Column index for genes in mutation data (default: 0)') parser.add_argument('--sample_idx', type=int, default=1, help='Column index for samples in mutation data (default: 1)') # common arguments parser.add_argument('--out', default='.', help='Output directory (default: current directory)') args = parser.parse_args() try: # validate utility function if not args.util: raise ValueError("Utility function must be specified") if args.util not in ['split', 'binarize']: raise ValueError(f"Invalid utility function: {args.util}") if args.util == 'split': # Validate inputs if not args.clin: raise ValueError("Clinical data file must be provided") if not args.omics: raise ValueError("At least one omics file must be provided") if not os.path.isfile(args.clin): raise FileNotFoundError(f"Clinical file not found: {args.clin}") # Validate split ratio if not 0 < args.split < 1: raise ValueError(f"Split ratio must be between 0 and 1, got {args.split}") elif args.util == 'binarize': # Validate mutation data file if not args.mutations: raise ValueError("Mutation data file must be provided") if not os.path.isfile(args.mutations): raise FileNotFoundError(f"Mutation data file not found: {args.mutations}") # Validate gene and sample indices if args.gene_idx < 0 or args.sample_idx < 0: raise ValueError("Gene and sample indices must be non-negative integers") # Create output directory if it doesn't exist if not os.path.exists(args.out): os.makedirs(args.out) if args.util == 'split': # Parse omics files omics_files = [f.strip() for f in args.omics.split(',') if f.strip()] if not omics_files: raise ValueError("At least one omics file must be provided") # Check omics files exist for f in omics_files: if not os.path.isfile(f): raise FileNotFoundError(f"Omics file not found: {f}") data = make_data_dict(args.clin, omics_files) split_and_save_data(data, ratio=args.split, output_dir=args.out) elif args.util == 'binarize': mutations_df = read_data(args.mutations, index=False) if mutations_df.empty: raise ValueError("Mutation data file is empty") binarized_matrix = binarize_mutations(mutations_df, gene_idx=args.gene_idx, sample_idx=args.sample_idx) # Save binarized matrix output_file = os.path.join(args.out, 'binarized_mutations.csv') binarized_matrix.to_csv(output_file) print(f"Binarized mutation matrix saved to {output_file}") except Exception as e: print(f"Error: {e}", file=sys.stderr) sys.exit(1) if __name__ == "__main__": main()