comparison flexynesis_utils.py @ 3:525c661a7fdc draft default tip

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/flexynesis commit b2463fb68d0ae54864d87718ee72f5e063aa4587
author bgruening
date Tue, 24 Jun 2025 05:55:40 +0000
parents
children
comparison
equal deleted inserted replaced
2:902e26dc8e81 3:525c661a7fdc
1 #!/usr/bin/env python
2
3 import argparse
4 import os
5 import sys
6 from pathlib import Path
7
8 import pandas as pd
9
10
11 def read_data(data_input, index=False):
12 """Load CSV or TSV data file."""
13 try:
14 file_ext = Path(data_input).suffix.lower()
15 sep = ',' if file_ext == '.csv' else '\t'
16 index_col = 0 if index else None
17
18 if file_ext in ['.csv', '.tsv', '.txt', '.tab', '.tabular']:
19 return pd.read_csv(data_input, sep=sep, index_col=index_col)
20 else:
21 raise ValueError(f"Unsupported file extension: {file_ext}")
22 except Exception as e:
23 raise ValueError(f"Error loading data from {data_input}: {e}") from e
24
25
26 def binarize_mutations(df, gene_idx=1, sample_idx=2):
27 """
28 Binarize mutation data by creating a matrix of gene x sample with 1/0 values.
29 """
30 # galaxy index is 1-based, convert to zero-based
31 gene_idx -= 1
32 sample_idx -= 1
33 # check idx
34 if gene_idx >= len(df.columns) or sample_idx >= len(df.columns):
35 raise ValueError(f"Column indices out of bounds. DataFrame has {len(df.columns)} columns, "
36 f"but requested indices are {gene_idx} and {sample_idx}")
37 if gene_idx == sample_idx:
38 raise ValueError("Gene and sample column indices must be different")
39
40 # Get column names by index
41 gene_col = df.columns[gene_idx]
42 print(f"Using gene column: {gene_col} (index {gene_idx})")
43 sample_col = df.columns[sample_idx]
44 print(f"Using sample column: {sample_col} (index {sample_idx})")
45
46 # Check if columns contain data
47 if df[gene_col].isna().all():
48 raise ValueError(f"Gene column (index {gene_idx}) contains only NaN values.")
49 if df[sample_col].isna().all():
50 raise ValueError(f"Sample column (index {sample_idx}) contains only NaN values.")
51
52 # Group by gene and sample, count mutations
53 mutation_counts = df.groupby([gene_col, sample_col]).size().reset_index(name='count')
54
55 # Create pivot table
56 mutation_matrix = mutation_counts.pivot(index=gene_col, columns=sample_col, values='count').fillna(0)
57
58 # Binarize: convert any count > 0 to 1
59 mutation_matrix[mutation_matrix > 0] = 1
60
61 return mutation_matrix
62
63
64 def make_data_dict(clin_path, omics_paths):
65 """Read clinical and omics data files into a dictionary."""
66 data = {}
67
68 # Read clinical data
69 print(f"Reading clinical data from {clin_path}")
70 try:
71 clin = read_data(clin_path, index=True)
72
73 if clin.empty:
74 raise ValueError(f"Clinical file {clin_path} is empty")
75 data['clin'] = clin
76 print(f"Loaded clinical data: {clin.shape[0]} samples, {clin.shape[1]} features")
77 except Exception as e:
78 raise ValueError(f"Error reading clinical file {clin_path}: {e}")
79
80 # Read omics data
81 print(f"Reading omics data from {', '.join(omics_paths)}")
82 for path in omics_paths:
83 try:
84 name = os.path.splitext(os.path.basename(path))[0]
85 df = read_data(path, index=True)
86 if df.empty:
87 print(f"Warning: Omics file {path} is empty, skipping")
88 continue
89 data[name] = df
90 print(f"Loaded {name}: {df.shape[0]} features, {df.shape[1]} samples")
91 except Exception as e:
92 print(f"Warning: Error reading omics file {path}: {e}")
93 continue
94
95 if len(data) == 1: # Only clinical data loaded
96 raise ValueError("No omics data was successfully loaded")
97
98 return data
99
100
101 def validate_data_consistency(data):
102 """Validate that clinical and omics data have consistent samples."""
103 clin_samples = set(data['clin'].index)
104
105 for name, df in data.items():
106 if name == 'clin':
107 continue
108
109 omics_samples = set(df.columns)
110
111 # Check for sample overlap
112 common_samples = clin_samples.intersection(omics_samples)
113 if len(common_samples) == 0:
114 raise ValueError(f"No common samples between clinical data and {name}")
115
116 missing_in_omics = clin_samples - omics_samples
117 missing_in_clin = omics_samples - clin_samples
118
119 if missing_in_omics:
120 print(f"Warning: {len(missing_in_omics)} clinical samples not found in {name}")
121 if missing_in_clin:
122 print(f"Warning: {len(missing_in_clin)} samples in {name} not found in clinical data")
123
124 return True
125
126
127 def split_and_save_data(data, ratio=0.7, output_dir='.'):
128 """Split data into train/test sets and save to files."""
129 # Validate data consistency first
130 validate_data_consistency(data)
131
132 samples = data['clin'].index.tolist()
133
134 train_samples = list(pd.Series(samples).sample(frac=ratio, random_state=42))
135 test_samples = list(set(samples) - set(train_samples))
136
137 train_data = {}
138 test_data = {}
139
140 for key, df in data.items():
141 try:
142 if key == 'clin':
143 train_data[key] = df.loc[df.index.intersection(train_samples)]
144 test_data[key] = df.loc[df.index.intersection(test_samples)]
145 else:
146 train_data[key] = df.loc[:, df.columns.intersection(train_samples)]
147 test_data[key] = df.loc[:, df.columns.intersection(test_samples)]
148 except Exception as e:
149 print(f"Error splitting data {key}: {e}")
150 continue
151
152 # Create output directories
153 os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True)
154 os.makedirs(os.path.join(output_dir, 'test'), exist_ok=True)
155
156 # Save train and test data
157 for key in data.keys():
158 try:
159 train_data[key].to_csv(os.path.join(output_dir, 'train', f'{key}.csv'))
160 test_data[key].to_csv(os.path.join(output_dir, 'test', f'{key}.csv'))
161 except Exception as e:
162 print(f"Error saving {key}: {e}")
163 continue
164
165
166 def main():
167 parser = argparse.ArgumentParser(description='Flexynesis extra utilities')
168
169 parser.add_argument("--util", type=str, required=True,
170 choices=['split', 'binarize'],
171 help="Utility function: 'split' for spiting data to train and test, 'binarize' for creating a binarized matrix from a mutation data")
172
173 # Arguments for split
174 parser.add_argument('--clin', required=False,
175 help='Path to clinical data CSV file (samples in rows)')
176 parser.add_argument('--omics', required=False,
177 help='Comma-separated list of omics CSV files (samples in columns)')
178 parser.add_argument('--split', type=float, default=0.7,
179 help='Train split ratio (default: 0.7)')
180
181 # Arguments for binarize
182 parser.add_argument('--mutations', type=str, required=False,
183 help='Path to mutation data CSV file (samples in rows, genes in columns)')
184 parser.add_argument('--gene_idx', type=int, default=0,
185 help='Column index for genes in mutation data (default: 0)')
186 parser.add_argument('--sample_idx', type=int, default=1,
187 help='Column index for samples in mutation data (default: 1)')
188
189 # common arguments
190 parser.add_argument('--out', default='.',
191 help='Output directory (default: current directory)')
192
193 args = parser.parse_args()
194
195 try:
196 # validate utility function
197 if not args.util:
198 raise ValueError("Utility function must be specified")
199 if args.util not in ['split', 'binarize']:
200 raise ValueError(f"Invalid utility function: {args.util}")
201
202 if args.util == 'split':
203 # Validate inputs
204 if not args.clin:
205 raise ValueError("Clinical data file must be provided")
206 if not args.omics:
207 raise ValueError("At least one omics file must be provided")
208 if not os.path.isfile(args.clin):
209 raise FileNotFoundError(f"Clinical file not found: {args.clin}")
210 # Validate split ratio
211 if not 0 < args.split < 1:
212 raise ValueError(f"Split ratio must be between 0 and 1, got {args.split}")
213
214 elif args.util == 'binarize':
215 # Validate mutation data file
216 if not args.mutations:
217 raise ValueError("Mutation data file must be provided")
218 if not os.path.isfile(args.mutations):
219 raise FileNotFoundError(f"Mutation data file not found: {args.mutations}")
220 # Validate gene and sample indices
221 if args.gene_idx < 0 or args.sample_idx < 0:
222 raise ValueError("Gene and sample indices must be non-negative integers")
223
224 # Create output directory if it doesn't exist
225 if not os.path.exists(args.out):
226 os.makedirs(args.out)
227
228 if args.util == 'split':
229 # Parse omics files
230 omics_files = [f.strip() for f in args.omics.split(',') if f.strip()]
231 if not omics_files:
232 raise ValueError("At least one omics file must be provided")
233 # Check omics files exist
234 for f in omics_files:
235 if not os.path.isfile(f):
236 raise FileNotFoundError(f"Omics file not found: {f}")
237 data = make_data_dict(args.clin, omics_files)
238 split_and_save_data(data, ratio=args.split, output_dir=args.out)
239
240 elif args.util == 'binarize':
241 mutations_df = read_data(args.mutations, index=False)
242 if mutations_df.empty:
243 raise ValueError("Mutation data file is empty")
244
245 binarized_matrix = binarize_mutations(mutations_df, gene_idx=args.gene_idx, sample_idx=args.sample_idx)
246 # Save binarized matrix
247 output_file = os.path.join(args.out, 'binarized_mutations.csv')
248 binarized_matrix.to_csv(output_file)
249 print(f"Binarized mutation matrix saved to {output_file}")
250
251 except Exception as e:
252 print(f"Error: {e}", file=sys.stderr)
253 sys.exit(1)
254
255
256 if __name__ == "__main__":
257 main()