Mercurial > repos > yhoogstrate > edger_with_design_matrix
changeset 3:df239301559a draft
Uploaded
author | yhoogstrate |
---|---|
date | Thu, 09 Jan 2014 02:44:37 -0500 |
parents | 521bfa975110 |
children | b1aee4b59049 |
files | edgeR_DGE_test.R |
diffstat | 1 files changed, 151 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/edgeR_DGE_test.R Thu Jan 09 02:44:37 2014 -0500 @@ -0,0 +1,151 @@ +#!/usr/bin/env Rscript + +# edgeR citation: +# Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression +# analysis of digital gene expression data. Bioinformatics 26, 139-140 +# +# Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag +# abundance. Bioinformatics 23, 2881-2887 + +# Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with +# applications to SAGE data. Biostatistics, 9, 321-332 + +# McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis of multifactor RNA-Seq +# experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297 + +# R script Author: +# - MSc. René Böttcher (Erasmus MC) + +# Hooked into Galaxy Server: +# - MSc. Youri Hoogstrate (Erasmus MC) + + +setwd("/home/youri/Desktop/galaxy/tools/TraIT/edgeR/DGE") + +library(edgeR) + +# Fetch commandline arguments +args <- commandArgs(trailingOnly = TRUE) +designmatrix = args[1] +contrast = args[2] + +output_1 = args[3] +output_2 = args[4] +output_3 = args[5] #FPKM file - to be implemented +output_4 = args[6] + +QC = nchar(args[7]) > 0 + +output_5 = args[8] +output_6 = args[9] +output_7 = args[10] + +output_8 = args[11] + + + + +library(edgeR) +raw_data <- read.delim(designmatrix,header=T,stringsAsFactors=T) + +# Obtain read-counts +read_counts = read.delim(as.character(raw_data[1,1]),header=F,stringsAsFactors=F,row.names=1) +for(i in 2:length(raw_data[,1])) { + print("parsing counts from:") + print(raw_data[i,1]) + read_counts = cbind(read_counts,read.delim(as.character(raw_data[i,1]),header=F,stringsAsFactors=F,row.names=1)) + print(i) +} + + + +# Filter for HTSeq predifined counts: +exclude_HTSeq = c("no_feature","ambiguous","too_low_aQual","not_aligned","alignment_not_unique") +exclude_DEXSeq = c("_ambiguous","_empty","_lowaqual","_notaligned") + +exclude = match(c(exclude_HTSeq, exclude_DEXSeq),rownames(read_counts)) +exclude = exclude[is.na(exclude)==0] +if(length(exclude) != 0) { + read_counts = read_counts[-exclude,] +} + + + + + + + + + +colnames(read_counts) = raw_data[,2] +dge = DGEList(counts=read_counts,genes=rownames(read_counts)) + +design_tmp <- raw_data[3:length(raw_data)] +rownames(design_tmp) <- colnames(dge) +formula = paste(c("~0",colnames(design_tmp)),collapse = " + ") +design <- model.matrix(as.formula(formula),design_tmp) + +prefixes = colnames(design_tmp)[attr(design,"assign")] +avoid = nchar(prefixes) == nchar(colnames(design)) +replacements = substr(colnames(design),nchar(prefixes)+1,nchar(colnames(design))) +replacements[avoid] = colnames(design)[avoid] +colnames(design) = replacements + + + +print("Calculating normalization factors...") +dge = calcNormFactors(dge) +print("Estimating common dispersion...") +dge = estimateGLMCommonDisp(dge,design) +print("Estimating trended dispersion...") +dge = estimateGLMTrendedDisp(dge,design) +print("Estimating tagwise dispersion...") +dge = estimateGLMTagwiseDisp(dge,design) + + + + +if (QC == TRUE) { + print("Creating QC plots...") + ## MDS Plot + pdf(output_5) + plotMDS(dge, main="edgeR MDS Plot") + dev.off() + ## Biological coefficient of variation plot + pdf(output_6) + plotBCV(dge, cex=0.4, main="edgeR: Biological coefficient of variation (BCV) vs abundance") + dev.off() +} + + + +print("Fitting GLM...") +fit = glmFit(dge,design) + +print(paste("Performing likelihood ratio test: ",contrast,sep="")) +cont <- c(contrast) +cont <- makeContrasts(contrasts=cont, levels=design) + +lrt <- glmLRT(fit, contrast=cont[,1]) +print(paste("Exporting to file: ",output_1,sep="")) +write.table(file=output_1,topTags(lrt,n=nrow(read_counts))$table,sep="\t",row.names=T) +write.table(file=output_2,cpm(dge,normalized.lib.sizes=TRUE),sep="\t") +# todo EXPORT FPKM +write.table(file=output_4,dge$counts,sep="\t") + + + +if (QC == TRUE) { + print("Creating MA plots...") + + + etable <- topTags(lrt, n=nrow(dge))$table + etable <- etable[order(etable$FDR), ] + pdf(output_7) + with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance")) + with(subset(etable, FDR<0.05), points(logCPM, logFC, pch=20, col="red")) + abline(h=c(-1,1), col="blue") + dev.off() +} +print("Done!") +