Mercurial > repos > yhoogstrate > edger_with_design_matrix
view edgeR_DGE_test.R @ 3:df239301559a draft
Uploaded
author | yhoogstrate |
---|---|
date | Thu, 09 Jan 2014 02:44:37 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # edgeR citation: # Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression # analysis of digital gene expression data. Bioinformatics 26, 139-140 # # Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag # abundance. Bioinformatics 23, 2881-2887 # Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with # applications to SAGE data. Biostatistics, 9, 321-332 # McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis of multifactor RNA-Seq # experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297 # R script Author: # - MSc. René Böttcher (Erasmus MC) # Hooked into Galaxy Server: # - MSc. Youri Hoogstrate (Erasmus MC) setwd("/home/youri/Desktop/galaxy/tools/TraIT/edgeR/DGE") library(edgeR) # Fetch commandline arguments args <- commandArgs(trailingOnly = TRUE) designmatrix = args[1] contrast = args[2] output_1 = args[3] output_2 = args[4] output_3 = args[5] #FPKM file - to be implemented output_4 = args[6] QC = nchar(args[7]) > 0 output_5 = args[8] output_6 = args[9] output_7 = args[10] output_8 = args[11] library(edgeR) raw_data <- read.delim(designmatrix,header=T,stringsAsFactors=T) # Obtain read-counts read_counts = read.delim(as.character(raw_data[1,1]),header=F,stringsAsFactors=F,row.names=1) for(i in 2:length(raw_data[,1])) { print("parsing counts from:") print(raw_data[i,1]) read_counts = cbind(read_counts,read.delim(as.character(raw_data[i,1]),header=F,stringsAsFactors=F,row.names=1)) print(i) } # Filter for HTSeq predifined counts: exclude_HTSeq = c("no_feature","ambiguous","too_low_aQual","not_aligned","alignment_not_unique") exclude_DEXSeq = c("_ambiguous","_empty","_lowaqual","_notaligned") exclude = match(c(exclude_HTSeq, exclude_DEXSeq),rownames(read_counts)) exclude = exclude[is.na(exclude)==0] if(length(exclude) != 0) { read_counts = read_counts[-exclude,] } colnames(read_counts) = raw_data[,2] dge = DGEList(counts=read_counts,genes=rownames(read_counts)) design_tmp <- raw_data[3:length(raw_data)] rownames(design_tmp) <- colnames(dge) formula = paste(c("~0",colnames(design_tmp)),collapse = " + ") design <- model.matrix(as.formula(formula),design_tmp) prefixes = colnames(design_tmp)[attr(design,"assign")] avoid = nchar(prefixes) == nchar(colnames(design)) replacements = substr(colnames(design),nchar(prefixes)+1,nchar(colnames(design))) replacements[avoid] = colnames(design)[avoid] colnames(design) = replacements print("Calculating normalization factors...") dge = calcNormFactors(dge) print("Estimating common dispersion...") dge = estimateGLMCommonDisp(dge,design) print("Estimating trended dispersion...") dge = estimateGLMTrendedDisp(dge,design) print("Estimating tagwise dispersion...") dge = estimateGLMTagwiseDisp(dge,design) if (QC == TRUE) { print("Creating QC plots...") ## MDS Plot pdf(output_5) plotMDS(dge, main="edgeR MDS Plot") dev.off() ## Biological coefficient of variation plot pdf(output_6) plotBCV(dge, cex=0.4, main="edgeR: Biological coefficient of variation (BCV) vs abundance") dev.off() } print("Fitting GLM...") fit = glmFit(dge,design) print(paste("Performing likelihood ratio test: ",contrast,sep="")) cont <- c(contrast) cont <- makeContrasts(contrasts=cont, levels=design) lrt <- glmLRT(fit, contrast=cont[,1]) print(paste("Exporting to file: ",output_1,sep="")) write.table(file=output_1,topTags(lrt,n=nrow(read_counts))$table,sep="\t",row.names=T) write.table(file=output_2,cpm(dge,normalized.lib.sizes=TRUE),sep="\t") # todo EXPORT FPKM write.table(file=output_4,dge$counts,sep="\t") if (QC == TRUE) { print("Creating MA plots...") etable <- topTags(lrt, n=nrow(dge))$table etable <- etable[order(etable$FDR), ] pdf(output_7) with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance")) with(subset(etable, FDR<0.05), points(logCPM, logFC, pch=20, col="red")) abline(h=c(-1,1), col="blue") dev.off() } print("Done!")