comparison edgeR_DGE_test.R @ 3:df239301559a draft

Uploaded
author yhoogstrate
date Thu, 09 Jan 2014 02:44:37 -0500
parents
children
comparison
equal deleted inserted replaced
2:521bfa975110 3:df239301559a
1 #!/usr/bin/env Rscript
2
3 # edgeR citation:
4 # Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression
5 # analysis of digital gene expression data. Bioinformatics 26, 139-140
6 #
7 # Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
8 # abundance. Bioinformatics 23, 2881-2887
9
10 # Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with
11 # applications to SAGE data. Biostatistics, 9, 321-332
12
13 # McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis of multifactor RNA-Seq
14 # experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297
15
16 # R script Author:
17 # - MSc. René Böttcher (Erasmus MC)
18
19 # Hooked into Galaxy Server:
20 # - MSc. Youri Hoogstrate (Erasmus MC)
21
22
23 setwd("/home/youri/Desktop/galaxy/tools/TraIT/edgeR/DGE")
24
25 library(edgeR)
26
27 # Fetch commandline arguments
28 args <- commandArgs(trailingOnly = TRUE)
29 designmatrix = args[1]
30 contrast = args[2]
31
32 output_1 = args[3]
33 output_2 = args[4]
34 output_3 = args[5] #FPKM file - to be implemented
35 output_4 = args[6]
36
37 QC = nchar(args[7]) > 0
38
39 output_5 = args[8]
40 output_6 = args[9]
41 output_7 = args[10]
42
43 output_8 = args[11]
44
45
46
47
48 library(edgeR)
49 raw_data <- read.delim(designmatrix,header=T,stringsAsFactors=T)
50
51 # Obtain read-counts
52 read_counts = read.delim(as.character(raw_data[1,1]),header=F,stringsAsFactors=F,row.names=1)
53 for(i in 2:length(raw_data[,1])) {
54 print("parsing counts from:")
55 print(raw_data[i,1])
56 read_counts = cbind(read_counts,read.delim(as.character(raw_data[i,1]),header=F,stringsAsFactors=F,row.names=1))
57 print(i)
58 }
59
60
61
62 # Filter for HTSeq predifined counts:
63 exclude_HTSeq = c("no_feature","ambiguous","too_low_aQual","not_aligned","alignment_not_unique")
64 exclude_DEXSeq = c("_ambiguous","_empty","_lowaqual","_notaligned")
65
66 exclude = match(c(exclude_HTSeq, exclude_DEXSeq),rownames(read_counts))
67 exclude = exclude[is.na(exclude)==0]
68 if(length(exclude) != 0) {
69 read_counts = read_counts[-exclude,]
70 }
71
72
73
74
75
76
77
78
79
80 colnames(read_counts) = raw_data[,2]
81 dge = DGEList(counts=read_counts,genes=rownames(read_counts))
82
83 design_tmp <- raw_data[3:length(raw_data)]
84 rownames(design_tmp) <- colnames(dge)
85 formula = paste(c("~0",colnames(design_tmp)),collapse = " + ")
86 design <- model.matrix(as.formula(formula),design_tmp)
87
88 prefixes = colnames(design_tmp)[attr(design,"assign")]
89 avoid = nchar(prefixes) == nchar(colnames(design))
90 replacements = substr(colnames(design),nchar(prefixes)+1,nchar(colnames(design)))
91 replacements[avoid] = colnames(design)[avoid]
92 colnames(design) = replacements
93
94
95
96 print("Calculating normalization factors...")
97 dge = calcNormFactors(dge)
98 print("Estimating common dispersion...")
99 dge = estimateGLMCommonDisp(dge,design)
100 print("Estimating trended dispersion...")
101 dge = estimateGLMTrendedDisp(dge,design)
102 print("Estimating tagwise dispersion...")
103 dge = estimateGLMTagwiseDisp(dge,design)
104
105
106
107
108 if (QC == TRUE) {
109 print("Creating QC plots...")
110 ## MDS Plot
111 pdf(output_5)
112 plotMDS(dge, main="edgeR MDS Plot")
113 dev.off()
114 ## Biological coefficient of variation plot
115 pdf(output_6)
116 plotBCV(dge, cex=0.4, main="edgeR: Biological coefficient of variation (BCV) vs abundance")
117 dev.off()
118 }
119
120
121
122 print("Fitting GLM...")
123 fit = glmFit(dge,design)
124
125 print(paste("Performing likelihood ratio test: ",contrast,sep=""))
126 cont <- c(contrast)
127 cont <- makeContrasts(contrasts=cont, levels=design)
128
129 lrt <- glmLRT(fit, contrast=cont[,1])
130 print(paste("Exporting to file: ",output_1,sep=""))
131 write.table(file=output_1,topTags(lrt,n=nrow(read_counts))$table,sep="\t",row.names=T)
132 write.table(file=output_2,cpm(dge,normalized.lib.sizes=TRUE),sep="\t")
133 # todo EXPORT FPKM
134 write.table(file=output_4,dge$counts,sep="\t")
135
136
137
138 if (QC == TRUE) {
139 print("Creating MA plots...")
140
141
142 etable <- topTags(lrt, n=nrow(dge))$table
143 etable <- etable[order(etable$FDR), ]
144 pdf(output_7)
145 with(etable, plot(logCPM, logFC, pch=20, main="edgeR: Fold change vs abundance"))
146 with(subset(etable, FDR<0.05), points(logCPM, logFC, pch=20, col="red"))
147 abline(h=c(-1,1), col="blue")
148 dev.off()
149 }
150 print("Done!")
151