Mercurial > repos > stevecassidy > parseeval
view parseval.R @ 0:6c1e450b02c3 draft default tip
planemo upload commit 72cee9103c0ae4acb5794afaed179bea2c729f2c-dirty
author | stevecassidy |
---|---|
date | Sat, 11 Mar 2017 21:35:38 -0500 |
parents | |
children |
line wrap: on
line source
parseEval <- function (c1, c2, c3, cipi12, cipi23, voweld, anchor=15, var_anchor=3, types, words=12, simN=1000, RE_rsd, CC_rsd, LE_rsd) { # basic validy-check ... input parameters c1<-as.numeric(c1) c2<-as.numeric(c2) c3<-as.numeric(c3) cipi12<-as.numeric(cipi12) cipi23<-as.numeric(cipi23) voweld<-as.numeric(voweld) anchor<-as.integer(anchor) var_anchor<-as.integer(var_anchor) types<-as.integer(types) words<-as.integer(words) simN<-as.integer(simN) RE_rsd<-as.numeric(RE_rsd) CC_rsd<-as.numeric(CC_rsd) LE_rsd<-as.numeric(LE_rsd) # phonetic parameters C1p<-c3[1] # plateau duration of the first consonant in triconsonantal clusters C1stdv<-c3[2] # standard deviation of the first consonant in triconsonantal clusters C2p<-c2[1] # plateau duration of the second consonant in triconsonantal clusters and the first consonant in bi-consonantal clusters C2stdv<-c2[2] # standard deviation of the second consonant in triconsonantal clusters and the first consonant in bi-consonantal clusters C3p<-c1[1] # plateau duration of the immediately prevocalic consonant C3stdv<-c1[2] # standard deviation of the immediately prevocalic consonant C12ipi<-cipi12[1] # the duration of the interval between the plateaus of the first two consonants in triconsonantal clusters C12stdv<-cipi12[2] # the standard deviation of the interval between the plateaus of the first two consonants in triconsonantal clusters C23ipi<-cipi23[1] # the duration of the interval between the plateaus of the first two consonants in biconsonantal clusters and between the second two consonants in triconsonantal clusters C23stdv<-cipi23[2] # the standard deviation of the interval between the plateaus of the first two consonants in biconsonantal clusters and between the second two consonants in triconsonantal clusters vowel_duration<-voweld # the duration of the vowel variability_range<-anchor # number of stepwise increases in variability simulated by the model variability_resolution<-var_anchor # size of each stepwise increase in variability words_per_word_type<-words # the number of words (stimuli) per word type, aka "little n" word_types<-types # number of different word types, e.g. #CV-, #CCV-, #CCCV- data_RSD<-c(RE_rsd, LE_rsd, CC_rsd) # lumps RSD measures into single array #creating matrices for later use A_simp <- matrix(nrow=variability_range, ncol=words_per_word_type) A_comp <- matrix(nrow=variability_range, ncol=words_per_word_type) # creating matrices to hold the SD values LE_SD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) LE_SD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) RE_SD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) RE_SD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) CC_SD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) CC_SD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) # creating matrices to hold the RSD values LE_RSD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) LE_RSD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) RE_RSD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) RE_RSD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) CC_RSD_simp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) CC_RSD_comp<-matrix(nrow=simN, ncol=variability_range, byrow=TRUE) if (word_types==3) { tepa<-c("Testing Triads") # print(c("Simulating Data (Triads)"), quote=F) # pb <- txtProgressBar(min = 0, max = simN, style = 3) for (count in 1:simN) { # setTxtProgressBar(pb, count) # generate CCC tokens # generate timestamps for C3 (the prevocalic consonant) # generate general error-term for C3 e <- C3stdv*(rnorm(1)) # generate R(ight plateau edge = Release) of prevocalic consonant # generate words_per_word_type/word_types Gaussian distributed numbers (for CCC tokens only) # with mean 500, variance 10 CCCR3 <- rnorm(words_per_word_type/word_types, mean=500, sd=sqrt(20)) # generate L(eft plateau edge = Target) of prevocalic consonant CCCL3 <- CCCR3 - C3p + e #generate L3 corresponding to R3 by assuming a plateau duration of C3p # calculate midpoint of prevocalic consonant plateau CCCM3 <- ((CCCR3 + CCCL3) / 2) # generate timestamps for C2 # generate general error-term for C2 e1 <- C23stdv * (rnorm(1)) #normally distributed random error mean=0, sd=1 e2 <- C2stdv * (rnorm(1)) #normally distributed random error mean=0, sd=1 # Generate right edge of C2 CCCR2 <- CCCL3 - C23ipi + e1 # generate right edge of C2 from left edge of C3 assuming an ipi of C23ipi # Generate left edge of C2 CCCL2 <- CCCR2 - C2p + e2 # generate left edge from right edge by assuming a plateau duration # Calculate midpoint of C2 CCCM2 <- ((CCCR2+CCCL2)/2) # generate timestamps for C1 # generate general error-term for C1 e1 <- C12stdv * (rnorm(1)) # normally distributed random error e2 <- C3stdv * (rnorm(1)) # Generate right edge CCCR1 <- CCCL2 - C12ipi + e1 # generate right edge of C1 from left edge of C2 assuming ipi of 40ms # generate L(eft plateau edge = Target) of C1 CCCL1 <- CCCR1 - C3p + e2 # generate L2 corresponding to CR1 by assuming a plateau of 10ms # calculate midpoint of prevocalic consonant CCCM1 <- ((CCCR1 + CCCL1)/2) # right edge of C1 #generate CC tokens #generate timestamps for C3 (prevocalic consonant) # generate general error-term for C3 e <- C3stdv * (rnorm(1)) # normally distributed random error # generate R(ight plateau edge = Release) of prevocalic consonant CCR3 <- rnorm(words_per_word_type/word_types, mean=500, sd=sqrt(20)) # generate N Gaussian distributed numbers with mean 500, variance 10 # generate L(eft plateau edge = Target) of prevocalic consonant CCL3 <- CCR3 - C3p + e # generate L3 corresponding to R3 by assuming a plateau duration of C3p # calculate midpoint of prevocalic consonant plateau CCM3 <- ((CCR3 + CCL3) / 2) #generate timestamps for C2 # generate general error-term for C2 e1 <- C23stdv * (rnorm(1)) e2 <- C2stdv * (rnorm(1)) # Generate right edge of C2 CCR2 <- CCL3 - C23ipi + e1 # generate right edge of C2 from left edge of C3 assuming an ipi of C23ipi # Generate left edge of C2 CCL2 <- CCR2 - C2p + e2 # generate left edge from right edge by assuming a plateau duration # Calculate midpoint of C2 CCM2 <- ((CCR2 + CCL2) / 2) # generate C tokens # generate timestamps for C3 (the prevocalic consonant) # generate general error-term for C3 e <- C3stdv * (rnorm(1)) # Generate R(ight plateau edge = Release) of prevocalic consonant CR3 <- rnorm(words_per_word_type/word_types, mean=500, sd=sqrt(20)) # generate N Gaussian distributed numbers with mean 500, variance 10 # generate L(eft plateau edge = Target) of prevocalic consonant CL3 <- CR3 - C3p + e # generate L3 corresponding to R3 by assuming a plateau duration of C3p # calculate midpoint of prevocalic consonant plateau CM3 <- ((CR3 + CL3) / 2) # generate timestamps for CCglobal # for CCC clusters CCglobal <- apply(cbind(CCCM1, CCCM2, CCCM3), 1, mean) #mean of consonant plateaux midpoints # for CC clusters CCglobal <- append(CCglobal, apply(cbind(CCM2, CCM3), 1, mean)) # mean of consonant plateaux midpoints # for C clusters CCglobal <- append(CCglobal, CM3) # populate a single array with the midpoint of the pre-vocalic # consonant of every word type; this array will be used to generate anchors # for CCC clusters Global_CM3 <- CCCM3 # mean of consonant plateaux midpoints # for CC clusters Global_CM3 <- append(Global_CM3, CCM3) # mean of consonant plateaux midpoints # for C clusters Global_CM3 <- append(Global_CM3, CM3) # populate a single array with the Left_edge of the consonant cluster for every token # this array will be used to calculate SD and RSD for EDGE to Anchor intervals # for CCC clusters Global_CL1 <- CCCL1 # Assigns the left edge of tri-consonantal tokens to the first third of Global_Cl1 # for CC clusters Global_CL1 <- append(Global_CL1, CCL2) # Assigns the left edge of bi-consonantal tokens to the second third of Global_Cl1 # for C clusters Global_CL1 <- append(Global_CL1, CL3) # Assigns the left edge of mono-consonantal tokens to the last third of Global_Cl1 # populate a single array with the Right_edge of the consonant cluster for every token # this array is used to calculate SD and RSD for EDGE to Anchor intervals # for CCC clusters Global_CR3 <- CCCR3 # mean of consonant plateaux midpoints # for CC clusters Global_CR3 <- append(Global_CR3, CCR3) # mean of consonant plateaux midpoints # for C clusters Global_CR3 <- append(Global_CR3, CR3) # CCglobal synchronous with prevocalic consonant's plateau midpoint # generate series of anchor points increasing in variability and/or distance from # the prevocalic consonant reset the anchor array to zero # one row for each anchor and one column for each token # loop produces data/anchor for each token based on Simplex Hypothesis stdv <- 0 # reset the value of the anchor stdev to zero Ae <- NULL # reset anchor-error-term for (cycle in 1:variability_range){ #creates multiple anchor points for each token for (m in 1:words_per_word_type){ #creates anchor point for each token from the right edge of the token Ae<-stdv*(rnorm(n=1)) #normally distributed random error, assuming mean of 0 A_simp[cycle, m] <- Global_CM3[m] + vowel_duration + Ae #generate anchor A according to the simplex onset hypothesis } stdv<-stdv+variability_resolution #creates new anchor point } # loop produces data/anchor for each token based on Complex Hypothesis stdv <- 0 # reset the value of the anchor stdev to zero Ae <- NULL # reset anchor-error-term for (cycle in 1:variability_range) { #creates multiple anchor points for each token for (m in 1:words_per_word_type) { #creates anchor point for each token from the right edge of the token Ae<-stdv*(rnorm(1)) #normally distributed random error, assuming mean of 0 A_comp[cycle, m]<-CCglobal[m]+vowel_duration+Ae #generate anchor A according to the complex onset hypothesis } stdv<-stdv+variability_resolution #creates new anchor point } # Note about consonantal landmarks: # they are replaced with each cycle of the simulation # in constrast, RSD values for each landmark are stored across simulations. # creating matrices to hold the SD values x <- function(x) {sd(x-Global_CL1)} y <- function(y) {sd(y-Global_CR3)} z <- function(z) {sd(z-CCglobal)} # computing the SD values LE_SD_simp[count,] <- apply(A_simp, 1, x) LE_SD_comp[count,] <- apply(A_comp, 1, x) RE_SD_simp[count,] <- apply(A_simp, 1, y) RE_SD_comp[count,] <- apply(A_comp, 1, y) CC_SD_simp[count,] <- apply(A_simp, 1, z) CC_SD_comp[count,] <- apply(A_comp, 1, z) # computing the RSD values LE_RSD_simp[count,] <- (apply(A_simp, 1, x))/((apply(A_simp, 1, mean))-mean(Global_CL1)) LE_RSD_comp[count,] <- (apply(A_comp, 1, x))/((apply(A_comp, 1, mean))-mean(Global_CL1)) RE_RSD_simp[count,] <- (apply(A_simp, 1, y))/((apply(A_simp, 1, mean))-mean(Global_CR3)) RE_RSD_comp[count,] <- (apply(A_comp, 1, y))/((apply(A_comp, 1, mean))-mean(Global_CR3)) CC_RSD_simp[count,] <- (apply(A_simp, 1, z))/(apply(A_simp, 1, mean)-mean(CCglobal)) CC_RSD_comp[count,] <- (apply(A_comp, 1, z))/(apply(A_comp, 1, mean)-mean(CCglobal)) } # close(pb) } if (word_types==2) { tepa<-c("Testing Dyads") # print(c("Simulating Data (Dyads)"), quote=F) # pb <- txtProgressBar(min = 0, max = simN, style = 3) for (count in 1:simN) { # setTxtProgressBar(pb, count) # generate CCC tokens # generate timestamps for C3 (the prevocalic consonant) # generate general error-term for C3 e <- C3stdv * (rnorm(1)) # generate R(ight plateau edge = Release) of prevocalic consonant # generate words_per_word_type/word_types Gaussian distributed numbers (for CCC tokens only) # with mean 500, variance 10 CCCR3 <- rnorm(words_per_word_type/word_types, mean=500, sd=sqrt(20)) # generate L(eft plateau edge = Target) of prevocalic consonant CCCL3 <- abs(CCCR3 - C3p + e) #generate L3 corresponding to R3 by assuming a plateau duration of C3p # calculate midpoint of prevocalic consonant plateau CCCM3 <- abs((CCCR3 + CCCL3) / 2) # generate timestamps for C2 # generate general error-term for C2 e1 <- C23stdv * (rnorm(1)) #normally distributed random error e2 <- C2stdv * (rnorm(1)) #normally distributed random error # Generate right edge of C2 CCCR2 <- abs(CCCL3 - C23ipi + e1) # generate right edge of C2 from left edge of C3 assuming an ipi of C23ipi # Generate left edge of C2 CCCL2 <- abs(CCCR2 - C2p + e2) # generate left edge from right edge by assuming a plateau duration # Calculate midpoint of C2 CCCM2 <- abs((CCCR2 + CCCL2) / 2) # generate timestamps for C1 # generate general error-term for C1 e1 <- C12stdv * (rnorm(1)) # normally distributed random error e2<-C3stdv * (rnorm(1)) # Generate right edge CCCR1 <- abs(CCCL2 - C12ipi + e1) # generate right edge of C1 from left edge of C2 assuming ipi of 40ms # generate L(eft plateau edge = Target) of C1 CCCL1 <- abs(CCCR1 - C3p + e2) # generate L2 corresponding to CR1 by assuming a plateau of 10ms # calculate midpoint of prevocalic consonant CCCM1 <- abs((CCCR1 + CCCL1) / 2) # right edge of C1 #generate CC tokens #generate timestamps for C3 (prevocalic consonant) # generate general error-term for C3 e <- C3stdv * (rnorm(1)) # normally distributed random error, 0 mean # generate R(ight plateau edge = Release) of prevocalic consonant CCR3 <- rnorm(words_per_word_type/word_types, mean=500, sd=sqrt(20)) # generate N Gaussian distributed numbers with mean 500, variance 10 # generate L(eft plateau edge = Target) of prevocalic consonant CCL3 <- abs(CCR3 - C3p + e) # generate L3 corresponding to R3 by assuming a plateau duration of C3p # calculate midpoint of prevocalic consonant plateau CCM3 <- abs((CCR3 + CCL3) / 2) #generate timestamps for C2 # generate general error-term for C2 e1 <- C23stdv * (rnorm(1)) e2 <- C2stdv * (rnorm(1)) # Generate right edge of C2 CCR2 <- abs(CCL3 - C23ipi + e) # generate right edge of C2 from left edge of C3 assuming an ipi of C23ipi # Generate left edge of C2 CCL2 <- abs(CCR2 - C2p + e) # generate left edge from right edge by assuming a plateau duration # Calculate midpoint of C2 CCM2 <- abs((CCR2 + CCL2) / 2) # generate timestamps for CCglobal # for CCC clusters CCglobal <- apply(cbind(CCCM1, CCCM2, CCCM3), 1, mean) #mean of consonant plateaux midpoints # for CC clusters CCglobal <- append(CCglobal, apply(cbind(CCM2, CCM3), 1, mean)) # mean of consonant plateaux midpoints # populate a single array with the midpoint of the pre-vocalic # consonant of every word type; this array will be used to generate anchors # for CCC clusters Global_CM3 <- CCCM3 # mean of consonant plateaux midpoints # for CC clusters Global_CM3 <- append(Global_CM3, CCM3, after=length(CCCM3)) # mean of consonant plateaux midpoints # populate a single array with the Left_edge of the consonant cluster for every token # this array will be used to calculate SD and RSD for EDGE to Anchor intervals # for CCC clusters Global_CL1 <- CCCL1 # Assigns the left edge of tri-consonantal tokens to the first third of Global_Cl1 # for CC clusters Global_CL1 <- append(Global_CL1, CCL2, after=length(CCCL1)) # Assigns the left edge of bi-consonantal tokens to the second third of Global_Cl1 # populate a single array with the Right_edge of the consonant cluster for every token # this array is used to calculate SD and RSD for EDGE to Anchor intervals # for CCC clusters Global_CR3 <- CCCR3 # mean of consonant plateaux midpoints # for CC clusters Global_CR3 <- append(Global_CR3, CCR3, after=length(CCCR3)) # mean of consonant plateaux midpoints # generate series of anchor points increasing # in variability and/or distance from the prevocalic consonant stdv <- 0 Ae <- NULL for (cycle in 1:variability_range){ #creates multiple anchor points for each token for (m in 1:words_per_word_type){ #creates anchor point for each token from the right edge of the token Ae<-stdv*(rnorm(n=1)) #normally distributed random error, assuming mean of 0 A_simp[cycle, m]<-Global_CM3[m] + vowel_duration + Ae #generate anchor A according to the simplex onset hypothesis } stdv<-stdv+variability_resolution } # loop produces anchor for each token based on Complex Hypothesis stdv <- 0 Ae <- NULL for (cycle in 1:variability_range){ #creates multiple anchor points for each token for (m in 1:words_per_word_type){ #creates anchor point for each token from the right edge of the token Ae<-stdv*(rnorm(1)) #normally distributed random error, assuming mean of 0 A_comp[cycle, m]<-CCglobal[m]+vowel_duration+Ae #generate anchor A according to the complex onset hypothesis } stdv<-stdv+variability_resolution #creates new anchor point } #creating matrices to hold the SD values x <- function(x) {sd(x-Global_CL1)} y <- function(y) {sd(y-Global_CR3)} z <- function(z) {sd(z-CCglobal)} # computing the SD values LE_SD_simp[count,] <- abs(apply(A_simp, 1, x)) LE_SD_comp[count,] <- abs(apply(A_comp, 1, x)) RE_SD_simp[count,] <- abs(apply(A_simp, 1, y)) RE_SD_comp[count,] <- abs(apply(A_comp, 1, y)) CC_SD_simp[count,] <- abs(apply(A_simp, 1, z)) CC_SD_comp[count,] <- abs(apply(A_comp, 1, z)) # computing the RSD values LE_RSD_simp[count,] <- abs((apply(A_simp, 1, x))/((apply(A_simp, 1, mean))-mean(Global_CL1))) LE_RSD_comp[count,] <- abs((apply(A_comp, 1, x))/((apply(A_comp, 1, mean))-mean(Global_CL1))) RE_RSD_simp[count,] <- abs((apply(A_simp, 1, y))/((apply(A_simp, 1, mean))-mean(Global_CR3))) RE_RSD_comp[count,] <- abs((apply(A_comp, 1, y))/((apply(A_comp, 1, mean))-mean(Global_CR3))) CC_RSD_simp[count,] <- abs((apply(A_simp, 1, z))/(apply(A_simp, 1, mean)-mean(CCglobal))) CC_RSD_comp[count,] <- abs((apply(A_comp, 1, z))/(apply(A_comp, 1, mean)-mean(CCglobal))) } } # close(pb) # pb <- txtProgressBar(min = 1, max = variability_range, style = 3) # assorted variables for diagnostics / plotting aip_1<-rep(c(1:variability_range), 3) edgep_1<-rep(c("LE_RSD", "RE_RSD", "CC_RSD"), each=variability_range) LE_RSD_simp_median<-apply(apply(LE_RSD_simp, 2, sort), 2, median) RE_RSD_simp_median<-apply(apply(RE_RSD_simp, 2, sort), 2, median) CC_RSD_simp_median<-apply(apply(CC_RSD_simp, 2, sort), 2, median) LE_RSD_comp_median<-apply(apply(LE_RSD_comp, 2, sort), 2, median) RE_RSD_comp_median<-apply(apply(RE_RSD_comp, 2, sort), 2, median) CC_RSD_comp_median<-apply(apply(CC_RSD_comp, 2, sort), 2, median) simp<-c(LE_RSD_simp_median, RE_RSD_simp_median, CC_RSD_simp_median) comp<-c(LE_RSD_comp_median, RE_RSD_comp_median, CC_RSD_comp_median) RE_RSD_median<-c(RE_RSD_simp_median, RE_RSD_comp_median) CC_RSD_median<-c(CC_RSD_simp_median, CC_RSD_comp_median) # median RDSs across simulations as a function of anchorindex plot.1<-data.frame(anchorindex=aip_1, edge=edgep_1, parse_s=simp, parse_c=comp) # aggregating data for goodness of fit evaluation RE_RSD_simp<-t(RE_RSD_simp) LE_RSD_simp<-t(LE_RSD_simp) CC_RSD_simp<-t(CC_RSD_simp) RE_RSD_comp<-t(RE_RSD_comp) LE_RSD_comp<-t(LE_RSD_comp) CC_RSD_comp<-t(CC_RSD_comp) # looping through the data to get the gof results data_simp<-matrix(ncol=4) data_comp<-matrix(ncol=4) sigfit<-function(x) { if(x > 98.503) { SigFit<-1 } else { SigFit<-0 } } # analyzing data simplex # print(c("Analysing... simple parse"), quote=F) for (i in 1 : variability_range) { # setTxtProgressBar(pb, i) sim_RSD<-cbind(RE_RSD_simp[i,], LE_RSD_simp[i,],CC_RSD_simp[i,]) temp<-apply(sim_RSD, 1, function(x) (lm(data_RSD ~ x))) # organizing data for final analyses # creating anchor-index anchor_idx<-rep(i, times=simN) # extracting F-Statistics fstat<-unlist(lapply(temp, function(x) summary(x)$fstatistic[1])) # extracting R-Squared values rsquared<-unlist(lapply(temp, function(x) summary(x)$r.squared)) # check for SigFit sgf<-sapply(fstat, sigfit) # aggregating data agg_mat<-matrix(data=c(anchor_idx, fstat, rsquared, sgf), nrow=length(anchor_idx), ncol=4, dimnames=list(c(NULL), c("Anchorindex", "Fratio", "Rsquared", "SigFit"))) # adding sgf to existing data data_simp<-rbind(data_simp, agg_mat) } outp_sp<-temp data_simp<-data_simp[complete.cases(data_simp),] data_simp<-as.data.frame(data_simp) data_simp$Anchorindex<-as.factor(data_simp$Anchorindex) output_simp<-tapply(data_simp$SigFit, data_simp$Anchorindex, sum) # analyzing data complex # print(c("Analysing... complex parse"), quote=F) for (i in 1 : variability_range) { # setTxtProgressBar(pb, i) sim_RSD<-cbind(RE_RSD_comp[i,], LE_RSD_comp[i,],CC_RSD_comp[i,]) temp<-apply(sim_RSD, 1, function(x) (lm(data_RSD ~ x))) # organizing data for final analyses anchor_idx<-rep(i, times=simN) # extracting F-Statistics fstat<-unlist(lapply(temp, function(x) summary(x)$fstatistic[1])) # extracting R-Squared values rsquared<-unlist(lapply(temp, function(x) summary(x)$r.squared)) # check for SigFit sgf<-sapply(fstat, sigfit) # aggregating data agg_mat<-matrix(data=c(anchor_idx, fstat, rsquared, sgf), nrow=length(anchor_idx), ncol=4, dimnames=list(c(NULL), c("Anchorindex", "Fratio", "Rsquared", "SigFit"))) # adding sgf to existing data data_comp<-rbind(data_comp, agg_mat) } outp_cp<-temp data_comp<-data_comp[complete.cases(data_comp),] data_comp<-as.data.frame(data_comp) data_comp$Anchorindex<-as.factor(data_comp$Anchorindex) output_comp<-tapply(data_comp$SigFit, data_comp$Anchorindex, sum) # diagnostic plot 2 output_plot.2<-cbind(output_simp, output_comp) names(output_plot.2)<-NULL colnames(output_plot.2)<-c("parse_s", "parse_c") aip_2<-(1:variability_range) plot.2<-data.frame(anchorindex=aip_2, output_plot.2, hitr_s=(output_simp/simN), hitr_c=(output_comp/simN)) # assessing overall model quality # sum of hits per number of simulations modq_s<-(sum(plot.2[,2]))/simN modq_c<-(sum(plot.2[,3]))/simN # assorted data for third diagnostic plot # sorting by Rsquared (asc), tie-breaker by Fratio (asc) data_simp_o<-data_simp[order(data_simp[,3], data_simp[,2]),] data_comp_o<-data_comp[order(data_comp[,3], data_comp[,2]),] aip_3<-rep(c(1:variability_range), 2) parse.f<-rep(c("simp","comp"), each=variability_range) # median simp_rs_median<-tapply(data_simp_o$Rsquared, data_simp_o$Anchorindex, median) comp_rs_median<-tapply(data_comp_o$Rsquared, data_comp_o$Anchorindex, median) simp_fr_median<-tapply(data_simp_o$Fratio, data_simp_o$Anchorindex, median) comp_fr_median<-tapply(data_comp_o$Fratio, data_comp_o$Anchorindex, median) rs_median<-c(simp_rs_median, comp_rs_median) fr_median<-c(simp_fr_median, comp_fr_median) plot.3_median<-data.frame(anchorindex=aip_3, parse=parse.f, rs_median=rs_median, fr_median=fr_median) # mean simp_rs_mean<-tapply(data_simp_o$Rsquared, data_simp_o$Anchorindex, mean) comp_rs_mean<-tapply(data_comp_o$Rsquared, data_comp_o$Anchorindex, mean) simp_fr_mean<-tapply(data_simp_o$Fratio, data_simp_o$Anchorindex, mean) comp_fr_mean<-tapply(data_comp_o$Fratio, data_comp_o$Anchorindex, mean) rs_mean<-c(simp_rs_mean, comp_rs_mean) fr_mean<-c(simp_fr_mean, comp_fr_mean) plot.3_mean<-data.frame(anchorindex=aip_3, parse=parse.f, rs_mean=rs_mean, fr_mean=fr_mean) # prepare for output # close(pb) output<-list("perf"=list("Performance Simple"=modq_s, "Performance Complex"=modq_c), "mode"=tepa, "Plot_1"=plot.1, "Plot_2"=plot.2, "Plot_3"=list("mean"=plot.3_mean, "median"=plot.3_median), "reg"=list("simplex_parse"<-outp_sp, "complex_parse"<-outp_cp), "sim_RSD"=list("simp"=data_simp, "comp"=data_comp)) cat("\n", "\n","Overall Quality of Modell-Performance", "\t", "(", tepa, ")", "\n", "(Ratio of:","\t", "Total Number of Hits / Number of Simulations)","\n", "------------------------","\n", "Simple Modelling:", "\t", modq_s, "\t","\t","\t","\t", sum(plot.2[,2])," / ", simN, "\n", "\n", "Complex Modelling:", "\t", modq_c, "\t","\t","\t","\t", sum(plot.2[,3])," / ", simN, "\n", "\n", sep="") return(invisible(output)) }