0
|
1 library('getopt')
|
|
2 library('ape')
|
|
3 suppressPackageStartupMessages(library('phyloseq'))
|
|
4 library(biomformat)
|
|
5 library(plyr)
|
|
6 Sys.setenv("DISPLAY"=":1")
|
|
7 library("ggplot2")
|
|
8 suppressPackageStartupMessages(library("doParallel"))
|
|
9 ncores = ceiling(detectCores() * 0.8)
|
|
10 registerDoParallel(cores=ncores)
|
|
11
|
|
12 options(warn=-1)
|
|
13
|
|
14 theme_set(theme_bw())
|
|
15
|
|
16 #http://saml.rilspace.com/creating-a-galaxy-tool-for-r-scripts-that-output-images-and-pdfs
|
|
17 #http://joey711.github.io/phyloseq-demo/phyloseq-demo.html
|
|
18 option_specification = matrix(c(
|
|
19 'otu_table','o',2,'character',
|
|
20 'tax_table','t',2,'character',
|
|
21 'meta_table','m',2,'character',
|
|
22 'biom','b',2,'character',
|
|
23 'subset','s',2,'character',
|
|
24 'method','n',2,'character',
|
|
25 'distance','d',2,'character',
|
|
26 'kingdom','k',2,'character',
|
|
27 'plottype','e',2,'numeric',
|
|
28 'category','g',2,'numeric',
|
|
29 'outdir','r',2,'character',
|
|
30 'htmlfile','h',2,'character'
|
|
31 ),byrow=TRUE,ncol=4);
|
|
32
|
|
33
|
|
34 options <- getopt(option_specification);
|
|
35 options(bitmapType="cairo")
|
|
36
|
|
37 if (!is.null(options$outdir)) {
|
|
38 # Create the directory
|
|
39 dir.create(options$outdir,FALSE)
|
|
40 }
|
|
41
|
|
42
|
|
43
|
|
44 method<-options$method
|
|
45 ### select a kingdom for phyloseq plot (e.g., "phylum")
|
|
46 #kingdom_str<-colnames(tax_table)[options$kingdom]
|
|
47 kingdom_str<-options$kingdom
|
|
48 distance<-options$distance
|
|
49 plottype<-options$plottype
|
|
50
|
|
51 ### prepare the directory and file name
|
|
52 pdffile <- gsub("[ ]+", "", paste(options$outdir,"/pdffile.pdf"))
|
|
53 pngfile_nmds <- gsub("[ ]+", "", paste(options$outdir,"/nmds.png"))
|
|
54 pngfile_nmds_facet <- gsub("[ ]+", "", paste(options$outdir,"/nmds_facet.png"))
|
|
55 htmlfile <- gsub("[ ]+", "", paste(options$htmlfile))
|
|
56
|
|
57
|
|
58 ### This function accepts different two different type of BIOM file format
|
|
59 readBIOM<-function(inBiom){
|
|
60 tryCatch({
|
|
61 phyloseq_obj<-import_biom(inBiom,parallel=TRUE)
|
|
62 return(phyloseq_obj)
|
|
63 },
|
|
64 error=function(e){
|
|
65 biom_obj<-read_biom(inBiom)
|
|
66
|
|
67 otu_matrix = as(biom_data(biom_obj), "matrix")
|
|
68 OTU_TABLE = otu_table(otu_matrix, taxa_are_rows=TRUE)
|
|
69
|
|
70 taxonomy_matrix = as.matrix(observation_metadata(biom_obj), rownames.force=TRUE)
|
|
71 TAXONOMY_TABLE = tax_table(taxonomy_matrix)
|
|
72
|
|
73 metadata.temp<-sample_metadata(biom_obj)
|
|
74 METADATA_TABLE<-plyr::ldply(metadata.temp, rbind)
|
|
75 rownames(METADATA_TABLE)<-as.character(METADATA_TABLE$.id)
|
|
76
|
|
77 phyloseq_obj = phyloseq(OTU_TABLE, TAXONOMY_TABLE,sample_data(METADATA_TABLE))
|
|
78 return(phyloseq_obj)
|
|
79 }
|
|
80 )
|
|
81 }
|
|
82
|
|
83
|
|
84 create_OTU_PDF<-function(pdf_file,phyloseq_obj,phyloseq_ord,kingdom_str,htmlfile,pngfile_nmds,pngfile_nmds_facet){
|
|
85 pdf(pdf_file);
|
|
86 p1<-plot_ordination(phyloseq_obj,phyloseq_ord,type="taxa",color="Phylum",title="taxa")
|
|
87 print(p1)
|
|
88 p2<-plot_ordination(phyloseq_obj,phyloseq_ord,type="taxa",color="Phylum",title="taxa") + facet_wrap(formula(paste('~',kingdom_str)),3)
|
|
89 print(p2)
|
|
90 garbage<-dev.off();
|
|
91
|
|
92 #png('nmds.png')
|
|
93 bitmap(pngfile_nmds,"png16m")
|
|
94 p3<-plot_ordination(phyloseq_obj,phyloseq_ord,type="taxa",color="Phylum",title="taxa")
|
|
95 print(p3)
|
|
96 garbage<-dev.off()
|
|
97
|
|
98 #png('nmds_facet.png')
|
|
99 bitmap(pngfile_nmds_facet,"png16m")
|
|
100 p4<-plot_ordination(phyloseq_obj,phyloseq_ord,type="taxa",color="Phylum",title="taxa") + facet_wrap(formula(paste('~',kingdom_str)),3)
|
|
101 print(p4)
|
|
102 garbage<-dev.off()
|
|
103
|
|
104 create_HTML_1(htmlfile)
|
|
105 }
|
|
106
|
|
107 create_SAMPLE_PDF<-function(pdf_file,phyloseq_obj,phyloseq_ord,htmlfile,pngfile_nmds,category_type){
|
|
108 pdf(pdf_file);
|
|
109 p <- plot_ordination(phyloseq_obj, phyloseq_ord, type="samples", color=category_type)
|
|
110 p <- p + geom_point(aes(fill=category_type)) + geom_point(size=5) + ggtitle("samples")
|
|
111 print(p)
|
|
112 garbage<-dev.off();
|
|
113
|
|
114 #png('nmds.png')
|
|
115 bitmap(pngfile_nmds,"png16m")
|
|
116 p1 <- plot_ordination(phyloseq_obj, phyloseq_ord, type="samples", color=category_type)
|
|
117 p1 <- p1 + geom_point(aes(fill=category_type)) + geom_point(size=5) + ggtitle("samples")
|
|
118 print(p1)
|
|
119 garbage<-dev.off();
|
|
120
|
|
121 create_HTML_2(htmlfile)
|
|
122 }
|
|
123
|
|
124 create_BIPLOT_PDF<-function(pdf_file,phyloseq_obj,phyloseq_ord,kingdom_str,htmlfile,pngfile_nmds,category_type){
|
|
125 pdf(pdf_file);
|
|
126 print(category_type)
|
|
127 p_biplot <- plot_ordination(phyloseq_obj, phyloseq_ord, type="biplot", color=category_type, shape=kingdom_str,title="BIPLOT")
|
|
128 print(p_biplot)
|
|
129 garbage<-dev.off();
|
|
130
|
|
131 bitmap(pngfile_nmds,"png16m")
|
|
132 p_biplot_png <- plot_ordination(phyloseq_obj, phyloseq_ord, type="biplot", color=category_type, shape=kingdom_str,title="BIPLOT")
|
|
133 print(p_biplot_png)
|
|
134 garbage<-dev.off();
|
|
135
|
|
136 create_HTML_2(htmlfile)
|
|
137 }
|
|
138
|
|
139 create_SPLITPLOT_PDF<-function(pdf_file,phyloseq_obj,phyloseq_ord,kingdom_str,htmlfile,pngfile_nmds,category_type){
|
|
140 pdf(pdf_file,width=10, height=6);
|
|
141 split_plot <- plot_ordination(phyloseq_obj, phyloseq_ord, type="split", color=kingdom_str, shape=kingdom_str, label=category_type, title="SPLIT PLOT")
|
|
142 split_plot <- split_plot + theme(plot.margin = unit(c(12,18,12,18),"pt"))
|
|
143 print(split_plot)
|
|
144 garbage<-dev.off();
|
|
145
|
|
146 bitmap(pngfile_nmds,"png16m", width=6, height=4, units="in",res=200)
|
|
147 split_plot <- plot_ordination(phyloseq_obj, phyloseq_ord, type="split", color=kingdom_str, shape=kingdom_str, label=category_type, title="SPLIT PLOT")
|
|
148 split_plot <- split_plot + theme(plot.margin = unit(c(12,18,12,18),"pt"))
|
|
149 print(split_plot)
|
|
150 garbage<-dev.off();
|
|
151 create_HTML_2(htmlfile)
|
|
152 }
|
|
153
|
|
154 create_HTML_1<-function(htmlfile){
|
|
155 htmlfile_handle <- file(htmlfile)
|
|
156 html_output = c('<html><body>',
|
|
157 '<table align="center>',
|
|
158 '<tr>',
|
|
159 '<td valign="middle" style="vertical-align:middle;">',
|
|
160 '<a href="pdffile.pdf"><img src="nmds.png"/></a>',
|
|
161 '</td>',
|
|
162 '</tr>',
|
|
163 '<tr>',
|
|
164 '<td valign="middle" style="vertical-align:middle;">',
|
|
165 '<a href="pdffile.pdf"><img src="nmds_facet.png"/></a>',
|
|
166 '</td>',
|
|
167 '</tr>',
|
|
168 '</table>',
|
|
169 '</html></body>');
|
|
170 writeLines(html_output, htmlfile_handle);
|
|
171 close(htmlfile_handle);
|
|
172 }
|
|
173
|
|
174 create_HTML_2<-function(htmlfile){
|
|
175 htmlfile_handle <- file(htmlfile)
|
|
176 html_output = c('<html><body>',
|
|
177 '<table align="center>',
|
|
178 '<tr>',
|
|
179 '<td valign="middle" style="vertical-align:middle;">',
|
|
180 '<a href="pdffile.pdf"><img src="nmds.png"/></a>',
|
|
181 '</td>',
|
|
182 '</tr>',
|
|
183 '</table>',
|
|
184 '</html></body>');
|
|
185 writeLines(html_output, htmlfile_handle);
|
|
186 close(htmlfile_handle);
|
|
187 }
|
|
188
|
|
189 if(!is.null(options$biom)){
|
|
190
|
|
191 #physeq<-import_biom(options$biom)
|
|
192 physeq<-readBIOM(options$biom)
|
|
193
|
|
194 if(length(rank_names(physeq)) == 8){
|
|
195 tax_table(physeq) <- tax_table(physeq)[,-1]
|
|
196 colnames(tax_table(physeq)) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
|
197 } else {
|
|
198 colnames(tax_table(physeq)) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
|
199 }
|
|
200
|
|
201 ### select column name from sample table for nmds plot
|
|
202 ## which(colnames(sample_data(biom)) == "vegetation_type_id")
|
|
203 #category_type<-colnames(sample_data(physeq))[options$subset]
|
|
204 category_type <- options$subset
|
|
205
|
|
206 ### obtain the unique value in the selected column from sample table
|
|
207 category_option<-unique(sample_data(physeq))[,options$subset]
|
|
208
|
|
209 }else{
|
|
210
|
|
211 ### read the data into correct data type to create phyloseq object
|
|
212 otu_table<-as.matrix(read.table(options$otu_table,header=T,sep="\t"))
|
|
213 tax_table<-as.matrix(read.table(options$tax_table,header=T,sep="\t"))
|
|
214 sample_table<-read.table(options$meta_table,header=T,sep="\t",stringsAsFactors=F)
|
|
215
|
|
216
|
|
217 ### select column name from sample table for nmds plot
|
|
218 category_type<-colnames(sample_table)[options$category]
|
|
219
|
|
220 ### obtain the unique value in the selected column from sample table
|
|
221 category_option<-unique(sample_table[,options$category])
|
|
222
|
|
223
|
|
224 ### create a sample object for phyloseq
|
|
225 sample_object<-sample_data(sample_table)
|
|
226
|
|
227 ### create otu object for phyloseq
|
|
228 OTU<-otu_table(otu_table, taxa_are_rows = TRUE)
|
|
229
|
|
230 ### create tax object for phyloseq
|
|
231 TAX<-tax_table(tax_table)
|
|
232
|
|
233 ### create a phyloseq object
|
|
234 physeq = phyloseq(OTU,TAX,sample_object)
|
|
235 }
|
|
236 # sample_data(physeq_filter)$category_input <- factor(category_input)
|
|
237 category_input = get_variable(physeq, category_type) %in% category_option
|
|
238 sample_data(physeq)$category_input <- factor(category_input)
|
|
239
|
|
240 # physeq_ord<-ordinate(physeq_filter,method,distance)
|
|
241 physeq_ord<-ordinate(physeq,method,distance)
|
|
242
|
|
243 if(plottype == 1){
|
|
244 #kingdom_str = colnames(tax_table)[2]
|
|
245 create_OTU_PDF(pdffile,physeq,physeq_ord,kingdom_str,htmlfile,pngfile_nmds,pngfile_nmds_facet)
|
|
246 }else if(plottype == 2){
|
|
247 create_SAMPLE_PDF(pdffile,physeq,physeq_ord,htmlfile,pngfile_nmds,category_type)
|
|
248 }else if(plottype == 3){
|
|
249 create_BIPLOT_PDF(pdffile,physeq,physeq_ord,kingdom_str,htmlfile,pngfile_nmds,category_type)
|
|
250 }else{
|
|
251 create_SPLITPLOT_PDF(pdffile,physeq,physeq_ord,kingdom_str,htmlfile,pngfile_nmds,category_type)
|
|
252 }
|
|
253
|