changeset 32:2c0df656094a draft

planemo upload for repository https://github.com/sblanck/smagexp/tree/master/smagexp_tools commit 071df0c8b84f98fb643b2b9eaa5e238b94ffa254
author sblanck
date Thu, 21 Jun 2018 08:25:36 -0400
parents 8191cc63589c
children 2d7595c8041d
files MetaRNASeq.R
diffstat 1 files changed, 4 insertions(+), 133 deletions(-) [+]
line wrap: on
line diff
--- a/MetaRNASeq.R	Thu Jun 21 08:05:35 2018 -0400
+++ b/MetaRNASeq.R	Thu Jun 21 08:25:36 2018 -0400
@@ -54,8 +54,6 @@
 
 alpha=as.numeric(opt$fdr)
 
-#print(comparison)
-
 listData=lapply(listfiles,read.table)
 orderData=lapply(listData, function(x) x[order(x[1]), ])
 rawpval=lapply(orderData,function(x) x[6])
@@ -71,99 +69,12 @@
 colnames(DE)=listfilenames
 FC=as.data.frame(FC)
 colnames(FC)=listfilenames
-# the comparison must only have two values and the conds must
-# be a vector from those values, at least one of each.
-
-#if (length(comparison) != 2) {
-#	stop("Comparison type must be a tuple: ", cargs[length(cargs) - 8])
-#}
-
-sink("/dev/null")
-dir.create(html.files.path, recursive=TRUE)
-#library(DESeq)
-#library(HTSFilter)
-
-#DE=list()
-#FC=list()
-#i=1
-
-# Open the html output file
-#file.conn = file(diag.html, open="w")
-
-#writeLines( c("<html><body>"), file.conn)
-
-# Perform deseq analysis on each study
-#for(i in 1:length(listfiles))
-#{
-#  f=listfiles[i]
-#  fname=listfilenames[i]
-#  study_name=unlist(strsplit(fname,"[.]"))[1]
-#  print(paste0("study.name ",study_name))
-#  d <- read.table(f, sep=" ", header=TRUE, row.names=1)
-#  conds<-sapply(strsplit(colnames(d),"[.]"),FUN=function(x) x[1])
-#  if (length(unique(conds)) != 2) {
-#  	warning(as.data.frame(strsplit(colnames(d),"[.]")))
-#  	stop("You can only have two columns types: ", paste(conds,collapse=" "))
-#  }
-#  if (!identical(sort(comparison), sort(unique(conds)))) {
-#  	stop("Column types must use the two names from Comparison type, and vice versa.  Must have at least one of each in the Column types.\nColumn types: ", cargs[2], "\n", "Comparison type: ", cargs[3])
-#  }
-#  if (length(d) != length(conds)) {
-#  	stop("Number of total sample columns in counts file must correspond to the columns types field.  E.g. if column types is 'kidney,kidney,liver,liver' then number of sample columns in counts file must be 4 as well.")
-#  }
-#  
-#  cds <- newCountDataSet(d, conds)
-#  cds <- estimateSizeFactors(cds)
-#  
-#  cdsBlind <- estimateDispersions( cds, method="blind" )
-#  
-#  if (length(conds) != 2) {
-#  	cds <- estimateDispersions( cds )
-#  	norep = FALSE
-#  }
-#  
-#  if (length(conds) == 2) {
-#  	cds <- estimateDispersions( cds, method=method, sharingMode=mod, fitType="parametric" )
-#  	norep = TRUE
-#  }
-#  
-#  filter<-HTSFilter(cds, plot=FALSE)
-#  cds.filter<-filter$filteredData
-#  on.index<-which(filter$on==1)
-#
-#  res<-as.data.frame(matrix(NA,nrow=nrow(cds),ncol=ncol(cds)))
-#  nbT <- nbinomTest(cds.filter, comparison[1], comparison[2])
-#  colnames(res)<-colnames(nbT)
-#  res[on.index,]<-nbT
-#  #write.table(res[order(res$padj), ], file=outputfile, quote=FALSE, row.names=FALSE, sep="\t")
-#  
-#
-#  temp.pval.plot = file.path( html.files.path, paste("PvalHist",i,".png",sep=""))
-#  png( temp.pval.plot, width=500, height=500 )
-#  hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="")
-#  dev.off()
-#  
-#  writeLines( c("<h2>P-value histogram for ",study_name,"</h2>"), file.conn)
-#  writeLines( c("<img src='PvalHist",i,".png'><br/><br/>"), file.conn)
-#  
-#  #on enregistre la p-value
-#  rawpval[[study_name]]<-res$pval
-#  DE[[study_name]]<-ifelse(res$padj<=alpha,1,0)
-#  FC[[study_name]]<-res$log2FoldChange 
-#  
-#  i=i+1
-#}
-
 
 # combinations
 library(metaRNASeq)
 library(UpSetR)
 fishcomb<-fishercomb(rawpval, BHth=alpha)
 warning(length(rawpval))
-
-#nrep=c(length(listFiles))
-
-
 invnormcomb<-invnorm(rawpval, nrep=nbreplicates, BHth=alpha)
 #DE[["fishercomb"]]<-ifelse(fishcomb$adjpval<=alpha,1,0)
 #DE[["invnormcomb"]]<-ifelse(invnormcomb$adjpval<=alpha,1,0)
@@ -189,18 +100,17 @@
 IDDIRRfishcomb=IDD.IRR(fishcomb_de,indstudy_de)
 IDDIRRinvnorm=IDD.IRR(invnorm_de,indstudy_de)
 
-#conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],Fishercomb=DEresults[["DE.fishercomb"]],Invnormcomb=DEresults[["DE.invnorm"]],sign=commonsgnFC)
 conflits<-data.frame(ID=listData[[1]][rownames(DEresults),1],DE=DEresults,FC=FC,signFC=commonsgnFC)
 #write DE outputfile
 write.table(conflits, outputfile,sep="\t",,row.names=FALSE)
 library(VennDiagram)
 DE_num=apply(keepDE[,1:(length(listfiles)+2)], 2, FUN=function(x) which(x==1))
 #DE_num=apply(DEresults, 2, FUN=function(x) which(x==1))
-if (length(listfiles<=2)) {
+temp.venn.plot = file.path( html.files.path, paste("venn.png"))
+if (length(listfiles)<=2) {
 	title="VENN DIAGRAM"
 	width=500
 	venn.plot<-venn.diagram(x=as.list(DE_num),filename=NULL, col="black", fill=1:length(DE_num)+1,alpha=0.6)
-	temp.venn.plot = file.path( html.files.path, paste("venn.png"))
 	png(temp.venn.plot,width=width,height=500)
 	grid.draw(venn.plot)
 	dev.off()
@@ -220,11 +130,6 @@
 summaryFishcombjson=toJSON(as.matrix(t(IDDIRRfishcomb)),pretty = TRUE)
 summaryinvnormjson=toJSON(as.matrix(t(IDDIRRinvnorm)),pretty = TRUE)
 
-
-#vennsplit=strsplit(result.venn,split="/")[[1]]
-#venn=paste0("./",vennsplit[length(vennsplit)])
-
-
 vennFilename="venn.png"
 vennFile=file.path(html.files.path,vennFilename)
 htmlfile=readChar(result.template, file.info(result.template)$size)
@@ -232,41 +137,7 @@
 htmlfile=gsub(x=htmlfile,pattern = "###FISHSUMMARYJSON###",replacement = summaryFishcombjson, fixed = TRUE)
 htmlfile=gsub(x=htmlfile,pattern = "###INVSUMMARYJSON###",replacement = summaryinvnormjson, fixed = TRUE)
 htmlfile=gsub(x=htmlfile,pattern = "###VENN###",replacement = vennFilename, fixed = TRUE)
-htmlfile=gsub(x=htmlfile,pattern = "###WIDTH##",replacement = as.character(width), fixed = TRUE)
-htmlfile=gsub(x=htmlfile,pattern = "###TITLE##",replacement = title, fixed = TRUE)
+htmlfile=gsub(x=htmlfile,pattern = "###WIDTH###",replacement = as.character(width), fixed = TRUE)
+htmlfile=gsub(x=htmlfile,pattern = "###TITLE###",replacement = title, fixed = TRUE)
 write(htmlfile,result.html)
 
-#library(VennDiagram)
-#flog.threshold(ERROR)
-#
-##venn.plot<-venn.diagram(x = c(res[c(1:(length(res)-3))],meta=list(res$Meta)),filename = v, col = "black", fill = c(1:(length(res)-2)), margin=0.05, alpha = 0.6,imagetype = "png")
-#dir.create(result.path, showWarnings = TRUE, recursive = FALSE)
-#
-#showVenn<-function(liste,file)
-#{
-#	venn.plot<-venn.diagram(x = liste,
-#			filename = vennFilename, col = "black",
-#			fill = 1:length(liste)+1,
-#			margin=0.05, alpha = 0.6,imagetype = "png")
-##	png(file);
-##	grid.draw(venn.plot);
-##	dev.off();
-#	
-#}
-#
-#l=list()
-#for(i in 1:length(esets))
-#{
-#	l[[paste("study",i,sep="")]]<-res[[i]]
-#}
-#l[["Meta"]]=res[[length(res)-1]]
-#showVenn(l,vennFile)
-#file.copy(vennFilename,result.path)
-
-
-#writeLines( c("<h2>Venn Plot</h2>"), file.conn)
-#writeLines( c("<img src='venn.png'><br/><br/>"), file.conn)
-#writeLines( c("</body></html>"), file.conn)
-#close(file.conn)
-#print("passe6")
-#sink(NULL)