0
|
1 #!/usr/bin/env python2.7
|
|
2 # -*- coding: utf-8 -*-
|
|
3
|
|
4 '''
|
|
5 Created on sep. 2013
|
|
6 @author: rachel legendre
|
|
7 @copyright: rachel.legendre@igmors.u-psud.fr
|
|
8 @license: GPL v3
|
|
9 '''
|
|
10
|
|
11 from __future__ import division
|
|
12 import os, sys, optparse, tempfile, subprocess, re, shutil, commands, urllib, time
|
|
13 import itertools
|
|
14 import math
|
|
15 from decimal import Decimal
|
|
16 from Bio import SeqIO
|
|
17 from Bio.Seq import Seq
|
|
18 from numpy import arange, std, array, linspace, average
|
|
19 #from matplotlib import pyplot as pl
|
|
20 import matplotlib
|
|
21 matplotlib.use('Agg')
|
|
22 import matplotlib.pyplot as pl
|
|
23 from matplotlib import font_manager
|
|
24 from matplotlib import colors
|
|
25 import csv
|
|
26 from scipy import stats
|
|
27 from collections import OrderedDict
|
|
28 # #libraries for debugg
|
|
29 # import pdb
|
|
30 # import cPickle
|
|
31
|
|
32 def stop_err(msg):
|
|
33 sys.stderr.write("%s\n" % msg)
|
|
34 sys.stderr.write("Programme aborted at %s\n" % time.asctime(time.localtime(time.time())))
|
|
35 sys.exit()
|
|
36
|
|
37
|
|
38 def store_gff(gff):
|
|
39 '''
|
|
40 parse and store gff file in a dictionnary
|
|
41 '''
|
|
42 try:
|
|
43 GFF = OrderedDict({})
|
|
44 with open(gff, 'r') as f_gff :
|
|
45 # GFF['order'] = []
|
|
46 for line in f_gff:
|
|
47 # # switch commented lines
|
|
48 head = line.split("#")[0]
|
|
49 if head != "" :
|
|
50 feature = (line.split('\t')[8]).split(';')
|
|
51 chrom = line.split('\t')[0]
|
|
52 if chrom not in GFF :
|
|
53 GFF[chrom] = {}
|
|
54 # first line is already gene line :
|
|
55 if line.split('\t')[2] == 'gene' :
|
|
56 gene = feature[0].replace("ID=", "")
|
|
57 if re.search('gene', feature[2]) :
|
|
58 Name = feature[2].replace("gene=", "")
|
|
59 else :
|
|
60 Name = "Unknown"
|
|
61 # #get annotation
|
|
62 note = re.sub(r".+\;Note\=(.+)\;display\=.+", r"\1", line)
|
|
63 note = urllib.unquote(str(note)).replace("\n", "")
|
|
64 # # store gene information
|
|
65 # GFF['order'].append(gene)
|
|
66 GFF[chrom][gene] = {}
|
|
67 GFF[chrom][gene]['chrom'] = line.split('\t')[0]
|
|
68 GFF[chrom][gene]['start'] = int(line.split('\t')[3])
|
|
69 GFF[chrom][gene]['stop'] = int(line.split('\t')[4])
|
|
70 GFF[chrom][gene]['strand'] = line.split('\t')[6]
|
|
71 GFF[chrom][gene]['name'] = Name
|
|
72 GFF[chrom][gene]['note'] = note
|
|
73 GFF[chrom][gene]['exon'] = {}
|
|
74 GFF[chrom][gene]['exon_number'] = 0
|
|
75 # print Name
|
|
76 elif line.split('\t')[2] == 'CDS' :
|
|
77 gene = re.sub(r"Parent\=(.+)_mRNA", r"\1", feature[0])
|
|
78 if GFF[chrom].has_key(gene) :
|
|
79 GFF[chrom][gene]['exon_number'] += 1
|
|
80 exon_number = GFF[chrom][gene]['exon_number']
|
|
81 GFF[chrom][gene]['exon'][exon_number] = {}
|
|
82 GFF[chrom][gene]['exon'][exon_number]['frame'] = line.split('\t')[7]
|
|
83 GFF[chrom][gene]['exon'][exon_number]['start'] = int(line.split('\t')[3])
|
|
84 GFF[chrom][gene]['exon'][exon_number]['stop'] = int(line.split('\t')[4])
|
|
85 # # if there is a five prim UTR intron, we change start of gene
|
|
86 elif line.split('\t')[2] == 'five_prime_UTR_intron' :
|
|
87 if GFF[chrom][gene]['strand'] == "+" :
|
|
88 GFF[chrom][gene]['start'] = GFF[chrom][gene]['exon'][1]['start']
|
|
89 else :
|
|
90 GFF[chrom][gene]['stop'] = GFF[chrom][gene]['exon'][exon_number]['stop']
|
|
91 return GFF
|
|
92 except Exception, e:
|
|
93 stop_err('Error during gff storage : ' + str(e))
|
|
94
|
|
95 #chrI SGD gene 87286 87752 . + . ID=YAL030W;Name=YAL030W;gene=SNC1;Alias=SNC1;Ontology_term=GO:0005484,GO:0005768,GO:0005802,GO:0005886,GO:0005935,GO:0006887,GO:0006893,GO:000689
|
|
96 #7,GO:0006906,GO:0030658,GO:0031201;Note=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29%3B%20involved%20in%20the%20fusion%20between%20Golgi-derived%20secretory%20vesicles%20with%20the%20plasma%20membra
|
|
97 #ne%3B%20proposed%20to%20be%20involved%20in%20endocytosis%3B%20member%20of%20the%20synaptobrevin%2FVAMP%20family%20of%20R-type%20v-SNARE%20proteins%3B%20SNC1%20has%20a%20paralog%2C%20SNC2%2C%20that%20arose%20fr
|
|
98 #om%20the%20whole%20genome%20duplication;display=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29;dbxref=SGD:S000000028;orf_classification=Verified
|
|
99 #chrI SGD CDS 87286 87387 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified
|
|
100 #chrI SGD CDS 87501 87752 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified
|
|
101
|
|
102
|
|
103
|
|
104 def init_codon_dict():
|
|
105
|
|
106 Codon_dict = OrderedDict([('AAA', 0), ('AAC', 0), ('AAG', 0), ('AAT', 0), ('ACA', 0), ('ACC', 0), ('ACG', 0), ('ACT', 0), ('AGA', 0), ('AGC', 0), ('AGG', 0), ('AGT', 0), ('ATA', 0), ('ATC', 0), ('ATG', 0), ('ATT', 0), ('CAA', 0), ('CAC', 0), ('CAG', 0), ('CAT', 0), ('CCA', 0), ('CCC', 0), ('CCG', 0), ('CCT', 0), ('CGA', 0), ('CGC', 0), ('CGG', 0), ('CGT', 0), ('CTA', 0), ('CTC', 0), ('CTG', 0), ('CTT', 0), ('GAA', 0), ('GAC', 0), ('GAG', 0), ('GAT', 0), ('GCA', 0), ('GCC', 0), ('GCG', 0), ('GCT', 0), ('GGA', 0), ('GGC', 0), ('GGG', 0), ('GGT', 0), ('GTA', 0), ('GTC', 0), ('GTG', 0), ('GTT', 0), ('TAA', 0), ('TAC', 0), ('TAG', 0), ('TAT', 0), ('TCA', 0), ('TCC', 0), ('TCG', 0), ('TCT', 0), ('TGA', 0), ('TGC', 0), ('TGG', 0), ('TGT', 0), ('TTA', 0), ('TTC', 0), ('TTG', 0), ('TTT', 0)])
|
|
107 return Codon_dict
|
|
108
|
|
109
|
|
110
|
|
111 def get_codon_usage(bamfile, GFF, site, kmer, a_pos):
|
|
112 '''
|
|
113 Read GFF dict and get gene codon usage.
|
|
114 Return dict of codons usage
|
|
115 '''
|
|
116 try:
|
|
117 codon = init_codon_dict()
|
|
118
|
|
119 for chrom in GFF.iterkeys():
|
|
120 for gene in GFF[chrom] :
|
|
121 codon_dict = init_codon_dict()
|
|
122 start = GFF[chrom][gene]['start']
|
|
123 stop = GFF[chrom][gene]['stop']
|
|
124 region = chrom + ':' + str(start) + '-' + str(stop)
|
|
125 # #get all reads in this gene
|
|
126 reads = subprocess.check_output(["samtools", "view", bamfile, region])
|
|
127 head = subprocess.check_output(["samtools", "view", "-H", bamfile])
|
|
128 read_tab = reads.split('\n')
|
|
129 for read in read_tab:
|
|
130 # # search mapper for eliminate multiple alignements
|
|
131 if 'bowtie' in head:
|
|
132 multi_tag = "XS:i:"
|
|
133 elif 'bwa' in head:
|
|
134 multi_tag = "XT:A:R"
|
|
135 else :
|
|
136 stop_err("No PG tag find in"+samfile+". Please use bowtie or bwa for mapping")
|
|
137 if len(read) == 0:
|
|
138 continue
|
|
139
|
|
140 len_read = len(read.split('\t')[9])
|
|
141 # if it's read of good length
|
|
142 if len_read == kmer and multi_tag not in read:
|
|
143 feat = read.split('\t')
|
|
144 seq = feat[9]
|
|
145 # if it's a reverse read
|
|
146 if feat[1] == '16' :
|
|
147 if site == "A" :
|
|
148 # #get A-site
|
|
149 cod = str(Seq(seq[a_pos-5:a_pos-2]).reverse_complement())
|
|
150 elif site == "P" :
|
|
151 # #get P-site
|
|
152 cod = str(Seq(seq[a_pos-2:a_pos+1]).reverse_complement())
|
|
153 else :
|
|
154 # #get site-E
|
|
155 cod = str(Seq(seq[a_pos+1:a_pos+4]).reverse_complement())
|
|
156 # # test if it's a true codon not a CNG codon for example
|
|
157 if codon_dict.has_key(cod) :
|
|
158 codon_dict[cod] += 1
|
|
159 # if it's a forward read
|
|
160 elif feat[1] == '0' :
|
|
161 if site == "A" :
|
|
162 # #get A-site
|
|
163 cod = seq[a_pos:a_pos+3]
|
|
164 elif site == "P" :
|
|
165 # #get P-site
|
|
166 cod = seq[a_pos-3:a_pos]
|
|
167 else :
|
|
168 # #get site-E
|
|
169 cod = seq[a_pos-6:a_pos-3]
|
|
170 if codon_dict.has_key(cod) :
|
|
171 codon_dict[cod] += 1
|
|
172 # # add in global dict
|
|
173 for cod, count in codon_dict.iteritems() :
|
|
174 codon[cod] += count
|
|
175
|
|
176 return codon
|
|
177
|
|
178 except Exception, e:
|
|
179 stop_err('Error during codon usage calcul: ' + str(e))
|
|
180
|
|
181
|
|
182 '''
|
|
183 http://pyinsci.blogspot.fr/2009/09/violin-plot-with-matplotlib.html
|
|
184 '''
|
|
185 def violin_plot(ax, data, pos, bp=False):
|
|
186 '''
|
|
187 create violin plots on an axis
|
|
188 '''
|
|
189 dist = max(pos) - min(pos)
|
|
190 w = min(0.15 * max(dist, 1.0), 0.5)
|
|
191 for d, p in zip(data, pos):
|
|
192 k = stats.gaussian_kde(d) # calculates the kernel density
|
|
193 m = k.dataset.min() # lower bound of violin
|
|
194 M = k.dataset.max() # upper bound of violin
|
|
195 x = arange(m, M, (M - m) / 100.) # support for violin
|
|
196 v = k.evaluate(x) # violin profile (density curve)
|
|
197 v = v / v.max() * w # scaling the violin to the available space
|
|
198 ax.fill_betweenx(x, p, v + p, facecolor=color1, alpha=0.3)
|
|
199 ax.fill_betweenx(x, p, -v + p, facecolor=color2, alpha=0.3)
|
|
200 if bp:
|
|
201 ax.boxplot(data, notch=1, positions=pos, vert=1)
|
|
202
|
|
203
|
|
204
|
|
205 '''
|
|
206 http://log.ooz.ie/2013/02/matplotlib-comparative-histogram-recipe.html
|
|
207 '''
|
|
208 def comphist(x1, x2, orientation='vertical', **kwargs):
|
|
209 """Draw a comparative histogram."""
|
|
210 # Split keyword args:
|
|
211 kwargs1 = {}
|
|
212 kwargs2 = {}
|
|
213 kwcommon = {}
|
|
214 for arg in kwargs:
|
|
215 tgt_arg = arg[:-1]
|
|
216 if arg.endswith('1'):
|
|
217 arg_dict = kwargs1
|
|
218 elif arg.endswith('2'):
|
|
219 arg_dict = kwargs2
|
|
220 else:
|
|
221 arg_dict = kwcommon
|
|
222 tgt_arg = arg
|
|
223 arg_dict[tgt_arg] = kwargs[arg]
|
|
224 kwargs1.update(kwcommon)
|
|
225 kwargs2.update(kwcommon)
|
|
226
|
|
227 fig = pl.figure()
|
|
228
|
|
229 # Have both histograms share one axis.
|
|
230 if orientation == 'vertical':
|
|
231 ax1 = pl.subplot(211)
|
|
232 ax2 = pl.subplot(212, sharex=ax1)
|
|
233 # Flip the ax2 histogram horizontally.
|
|
234 ax2.set_ylim(ax1.get_ylim()[::-1])
|
|
235 pl.setp(ax1.get_xticklabels(), visible=False)
|
|
236 legend_loc = (1, 4)
|
|
237 else:
|
|
238 ax1 = pl.subplot(122)
|
|
239 ax2 = pl.subplot(121, sharey=ax1)
|
|
240 # Flip the ax2 histogram vertically.
|
|
241 ax2.set_xlim(ax2.get_xlim()[::-1])
|
|
242 pl.setp(ax1.get_yticklabels(), visible=False)
|
|
243 legend_loc = (1, 2)
|
|
244
|
|
245 ax1.hist(x1, orientation=orientation, **kwargs1)
|
|
246 ax2.hist(x2, orientation=orientation, **kwargs2)
|
|
247 ax2.set_ylim(ax1.get_ylim()[::-1])
|
|
248 ax1.legend(loc=legend_loc[0])
|
|
249 ax2.legend(loc=legend_loc[1])
|
|
250 # Tighten up the layout.
|
|
251 pl.subplots_adjust(wspace=0.0, hspace=0.0)
|
|
252 return fig
|
|
253
|
|
254
|
|
255 def compute_FC_plot(cond1_norm, cond2_norm, cod_name, codon_to_test, dirout):
|
|
256
|
|
257 FC_tab = []
|
|
258 for z, y in zip(cond1_norm.itervalues(), cond2_norm.itervalues()):
|
|
259 fc = z - y
|
|
260 FC_tab.append(fc)
|
|
261 # #codon_to_test = ['TGA','TAG','TAA']
|
|
262
|
|
263 a = []
|
|
264 b = []
|
|
265 cod = []
|
|
266 for codon in cond1_norm.iterkeys():
|
|
267 if codon in codon_to_test :
|
|
268 fc = cond1_norm[codon] - cond2_norm[codon]
|
|
269 b.append(fc)
|
|
270 cod.append(codon)
|
|
271 else :
|
|
272 fc = cond1_norm[codon] - cond2_norm[codon]
|
|
273 a.append(fc)
|
|
274
|
|
275
|
|
276 fig = pl.figure(num=1)
|
|
277 comphist(array(a), array(b), label1='All codon', label2=cod_name, color2='green', bins=30, rwidth=1)
|
|
278 # pl.show()
|
|
279 pl.savefig(dirout + '/hist_codon_fc.png', format="png", dpi=340)
|
|
280 pl.clf()
|
|
281
|
|
282
|
|
283 # #violin plot
|
|
284 pos = range(2)
|
|
285 dat = array([array(a), array(b)])
|
|
286 fig = pl.figure()
|
|
287 pl.title("Distribution of codons FoldChange between two conditions")
|
|
288 ax = fig.add_subplot(1, 1, 1)
|
|
289 lab = array(['All codons', cod_name])
|
|
290 violin_plot(ax, dat, pos, bp=1)
|
|
291 for x, z in zip(dat, pos):
|
|
292 ax.plot(z, average(x), color='r', marker='*', markeredgecolor='r')
|
|
293 xtickNames = pl.setp(ax, xticklabels=lab)
|
|
294 pl.savefig(dirout + '/violinplot_codon.png', format="png", dpi=340)
|
|
295 pl.clf()
|
|
296
|
|
297 # (Fval,pval) = stats.ttest_ind(a, b, axis=0, equal_var=True)
|
|
298 (Fval, pval) = stats.mannwhitneyu(a, b)
|
|
299 return pval
|
|
300
|
|
301
|
|
302 def get_aa_dict(cond1_norm, cond2_norm):
|
|
303
|
|
304 # ## create amino acid dictionnary:
|
|
305 AA = OrderedDict({})
|
|
306 AA['Phe'] = [cond1_norm['TTT'] + cond1_norm['TTC'], cond2_norm['TTT'] + cond2_norm['TTC']]
|
|
307 AA['Leu'] = [cond1_norm['TTA'] + cond1_norm['TTG'] + cond1_norm['CTT'] + cond1_norm['CTC'] + cond1_norm['CTA'] + cond1_norm['CTG'], cond2_norm['TTA'] + cond2_norm['TTG'] + cond2_norm['CTT'] + cond2_norm['CTC'] + cond2_norm['CTA'] + cond2_norm['CTG']]
|
|
308 AA['Ile'] = [cond1_norm['ATT'] + cond1_norm['ATC'] + cond1_norm['ATA'], cond2_norm['ATT'] + cond2_norm['ATC'] + cond2_norm['ATA']]
|
|
309 AA['Met'] = [cond1_norm['ATG'], cond2_norm['ATG']]
|
|
310 AA['Val'] = [cond1_norm['GTT'] + cond1_norm['GTC'] + cond1_norm['GTA'] + cond1_norm['GTG'] + cond1_norm['AGT'] + cond1_norm['AGC'], cond2_norm['GTT'] + cond2_norm['GTC'] + cond2_norm['GTA'] + cond2_norm['GTG'] + cond2_norm['AGT'] + cond2_norm['AGC']]
|
|
311 AA['Ser'] = [cond1_norm['TCT'] + cond1_norm['TCC'] + cond1_norm['TCA'] + cond1_norm['TCG'], cond2_norm['TCT'] + cond2_norm['TCC'] + cond2_norm['TCA'] + cond2_norm['TCG']]
|
|
312 AA['Pro'] = [cond1_norm['CCT'] + cond1_norm['CCC'] + cond1_norm['CCA'] + cond1_norm['CCG'], cond2_norm['CCT'] + cond2_norm['CCC'] + cond2_norm['CCA'] + cond2_norm['CCG']]
|
|
313 AA['Thr'] = [cond1_norm['ACT'] + cond1_norm['ACC'] + cond1_norm['ACA'] + cond1_norm['ACG'], cond2_norm['ACT'] + cond2_norm['ACC'] + cond2_norm['ACA'] + cond2_norm['ACG']]
|
|
314 AA['Ala'] = [cond1_norm['GCT'] + cond1_norm['GCC'] + cond1_norm['GCA'] + cond1_norm['GCG'], cond2_norm['GCT'] + cond2_norm['GCC'] + cond2_norm['GCA'] + cond2_norm['GCG']]
|
|
315 AA['Tyr'] = [cond1_norm['TAT'] + cond1_norm['TAC'], cond2_norm['TAT'] + cond2_norm['TAC']]
|
|
316 AA['Stop'] = [cond1_norm['TAA'] + cond1_norm['TAG'] + cond1_norm['TGA'], cond2_norm['TAA'] + cond2_norm['TAG'] + cond2_norm['TGA']]
|
|
317 AA['His'] = [cond1_norm['CAT'] + cond1_norm['CAC'], cond2_norm['CAT'] + cond2_norm['CAC']]
|
|
318 AA['Gln'] = [cond1_norm['CAA'] + cond1_norm['CAG'], cond2_norm['CAA'] + cond2_norm['CAG']]
|
|
319 AA['Asn'] = [cond1_norm['AAT'] + cond1_norm['AAC'], cond2_norm['AAT'] + cond2_norm['AAC']]
|
|
320 AA['Lys'] = [cond1_norm['AAA'] + cond1_norm['AAG'], cond2_norm['AAA'] + cond2_norm['AAG']]
|
|
321 AA['Asp'] = [cond1_norm['GAT'] + cond1_norm['GAC'], cond2_norm['GAT'] + cond2_norm['GAC']]
|
|
322 AA['Glu'] = [cond1_norm['GAA'] + cond1_norm['GAG'], cond2_norm['GAA'] + cond2_norm['GAG']]
|
|
323 AA['Cys'] = [cond1_norm['TGT'] + cond1_norm['TGC'], cond2_norm['TGT'] + cond2_norm['TGC']]
|
|
324 AA['Trp'] = [cond1_norm['TGG'], cond2_norm['TGG']]
|
|
325 AA['Arg'] = [cond1_norm['CGT'] + cond1_norm['CGC'] + cond1_norm['CGA'] + cond1_norm['CGG'] + cond1_norm['AGA'] + cond1_norm['AGG'], cond2_norm['CGT'] + cond2_norm['CGC'] + cond2_norm['CGA'] + cond2_norm['CGG'] + cond2_norm['AGA'] + cond2_norm['AGG']]
|
|
326 AA['Gly'] = [cond1_norm['GGT'] + cond1_norm['GGC'] + cond1_norm['GGA'] + cond1_norm['GGG'], cond2_norm['GGT'] + cond2_norm['GGC'] + cond2_norm['GGA'] + cond2_norm['GGG']]
|
|
327
|
|
328
|
|
329 return AA
|
|
330
|
|
331
|
|
332
|
|
333 def plot_codon_usage(result, dirout, c1, c2, outfile, color1, color2):
|
|
334 '''
|
|
335 Take list of dict of codon usage and use matplotlib for do graph
|
|
336 '''
|
|
337
|
|
338 # #if there are replicat
|
|
339 if len(result) == 4 :
|
|
340 # store each dict in variables to make code more readable
|
|
341 cond1_1 = result[0].copy()
|
|
342 cond1_2 = result[1].copy()
|
|
343 cond2_1 = result[2].copy()
|
|
344 cond2_2 = result[3].copy()
|
|
345 # get codon order in one of list
|
|
346 codon_sorted = sorted(cond1_1.iterkeys(), reverse=False)
|
|
347 # get max of each list
|
|
348 sum11 = sum(list(cond1_1.itervalues()))
|
|
349 sum12 = sum(list(cond1_2.itervalues()))
|
|
350 sum21 = sum(list(cond2_1.itervalues()))
|
|
351 sum22 = sum(list(cond2_2.itervalues()))
|
|
352 # for each codon, get values and sd in each condition
|
|
353 cond1_val = {}
|
|
354 cond1 = {}
|
|
355 cond2_val = {}
|
|
356 cond2 = {}
|
|
357 std_cond1 = []
|
|
358 std_cond2 = []
|
|
359 max_val = [] # # max value for graph
|
|
360 for i in codon_sorted:
|
|
361 # # cond1 = moyenne of replicats cond1 divided by max
|
|
362 cond1_val[i] = ((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2)
|
|
363 cond1[i] = ((cond1_1[i] + cond1_2[i]) / 2)
|
|
364 # # standard deviation = absolute value of diffence between replicats of cond1
|
|
365 std_cond1.append(std(array([(cond1_1[i] * 100 / sum11), (cond1_2[i] * 100 / sum12)])))
|
|
366 # # cond2 = moyenne of replicats cond1divided by max
|
|
367 cond2_val[i] = ((cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2)
|
|
368 cond2[i] = ((cond2_1[i] + cond2_2[i]) / 2)
|
|
369 # # standard deviation = absolute value of diffence between replicats of cond2
|
|
370 std_cond2.append(std(array([((cond2_1[i]) * 100 / sum21), ((cond2_2[i]) * 100 / sum22)])))
|
|
371 # # max value for each codon
|
|
372 max_val.append(max((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2, (cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2))
|
|
373
|
|
374 # for graph design
|
|
375 cond1_norm = OrderedDict(sorted(cond1_val.items(), key=lambda t: t[0]))
|
|
376 cond1_norm.update ((x, y * 100) for x, y in cond1_norm.items())
|
|
377 cond2_norm = OrderedDict(sorted(cond2_val.items(), key=lambda t: t[0]))
|
|
378 cond2_norm.update ((x, y * 100) for x, y in cond2_norm.items())
|
|
379 max_val = [x * 100 for x in max_val]
|
|
380
|
|
381 AA = get_aa_dict(cond1_norm, cond2_norm)
|
|
382 max_valaa = []
|
|
383 cond1_aa = []
|
|
384 cond2_aa = []
|
|
385 aa_name = list(AA.iterkeys())
|
|
386 for z in AA.itervalues():
|
|
387 cond1_aa.append(z[0])
|
|
388 cond2_aa.append(z[1])
|
|
389 max_valaa.append(max(z))
|
|
390 # # plot amino acid profile :
|
|
391 fig = pl.figure(figsize=(24, 10), num=1)
|
|
392 width = .50
|
|
393 ax = fig.add_subplot(111)
|
|
394 ax.xaxis.set_ticks([])
|
|
395 ind = arange(21)
|
|
396 pl.xlim(0, 21)
|
|
397 ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1)
|
|
398 ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2)
|
|
399 for x, y, z in zip(ind, max_valaa, aa_name):
|
|
400 ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14)
|
|
401 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)')
|
|
402 ax.set_xlabel('Amino Acid')
|
|
403 handles, labels = ax.get_legend_handles_labels()
|
|
404 ax.legend(handles, labels)
|
|
405 pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340)
|
|
406 pl.clf()
|
|
407
|
|
408
|
|
409 # # compute theorical count in COND2
|
|
410 sum2 = (sum21 + sum22) / 2
|
|
411 cond2_count = []
|
|
412 for z in cond1_norm.itervalues() :
|
|
413 count = int(z * sum2 / 100)
|
|
414 cond2_count.append(count)
|
|
415
|
|
416 expected = array(cond2_count)
|
|
417 observed = array(list(cond2.itervalues()))
|
|
418
|
|
419 # write result
|
|
420 with open(outfile, 'w') as out :
|
|
421 out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC\tFC_' + c1 + '\tFC_' + c2 + '\n')
|
|
422 for i in codon_sorted:
|
|
423 out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\t' + str((cond2_1[i] / sum21) / (cond1_1[i] / sum11)) + '\t' + str((cond2_2[i] / sum22) / (cond1_1[i] / sum11)) + '\n')
|
|
424 chi = stats.chisquare(observed, expected)
|
|
425 out.write('Khi2 test\n')
|
|
426 out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n')
|
|
427
|
|
428
|
|
429
|
|
430 # plot result
|
|
431 fig = pl.figure(figsize=(24, 10), num=1)
|
|
432 width = .50
|
|
433 ind = arange(len(codon_sorted))
|
|
434 ax = fig.add_subplot(111)
|
|
435 pl.xlim(0, len(codon_sorted) + 1)
|
|
436 ax.spines['right'].set_color('none')
|
|
437 ax.spines['top'].set_color('none')
|
|
438 ax.xaxis.set_ticks([])
|
|
439 ax.spines['left'].set_smart_bounds(True)
|
|
440 ax.yaxis.set_ticks_position('left')
|
|
441 ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, yerr=std_cond1, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c1)
|
|
442 ax.bar(ind + width, list(cond2_norm.itervalues()), width, yerr=std_cond2, facecolor=color2, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c2)
|
|
443 for x, y, z in zip(ind, max_val, codon_sorted):
|
|
444 ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=8)
|
|
445 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)')
|
|
446 ax.set_xlabel('Codons')
|
|
447 handles, labels = ax.get_legend_handles_labels()
|
|
448 ax.legend(handles, labels)
|
|
449 pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340)
|
|
450 pl.clf()
|
|
451
|
|
452
|
|
453
|
|
454 elif len(result) == 2 :
|
|
455
|
|
456 # store each dict in OrderedDict sorted by key to make code more readable
|
|
457 cond1 = result[0]
|
|
458 cond2 = result[1]
|
|
459 cond1_norm = result[0].copy()
|
|
460 cond2_norm = result[1].copy()
|
|
461 # pdb.set_trace()
|
|
462 # get codon order in one of list
|
|
463 codon_sorted = sorted(cond1.iterkeys(), reverse=False)
|
|
464
|
|
465 # get sum of each list
|
|
466 sum1 = sum(list(cond1.itervalues()))
|
|
467 sum2 = sum(list(cond2.itervalues()))
|
|
468 # #Normalize values by sum of each libraries
|
|
469 cond1_norm.update ((x, (y / sum1) * 100.0) for x, y in cond1_norm.items())
|
|
470 cond2_norm.update((x, (y / sum2) * 100.0) for x, y in cond2_norm.items())
|
|
471
|
|
472 # # compute theorical count in COND2
|
|
473 cond2_count = []
|
|
474 for z in cond1_norm.itervalues() :
|
|
475 count = int(z * sum2 / 100.0)
|
|
476 cond2_count.append(count)
|
|
477
|
|
478 expected = array(cond2_count)
|
|
479 observed = array(list(cond2.itervalues()))
|
|
480
|
|
481 AA = get_aa_dict(cond1_norm, cond2_norm)
|
|
482
|
|
483 max_val = []
|
|
484 cond1_aa = []
|
|
485 cond2_aa = []
|
|
486 aa_name = list(AA.iterkeys())
|
|
487 for z in AA.itervalues():
|
|
488 cond1_aa.append(z[0])
|
|
489 cond2_aa.append(z[1])
|
|
490 max_val.append(max(z))
|
|
491
|
|
492 # # plot amino acid profile :
|
|
493 fig = pl.figure(num=1)
|
|
494 width = .35
|
|
495 ax = fig.add_subplot(111)
|
|
496 ind = arange(21)
|
|
497 pl.xlim(0, 21)
|
|
498 #kwargs = {"hatch":'x'}
|
|
499 #ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1, **kwargs)
|
|
500 #kwargs = {"hatch":'.'}
|
|
501 #ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2, **kwargs)
|
|
502 ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1)
|
|
503 ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2)
|
|
504 #for x, y, z in zip(ind, max_val, aa_name):
|
|
505 # ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14)
|
|
506 axis_font = {'size':'16'}
|
|
507 pl.xticks(ind + width, aa_name,**axis_font)
|
|
508 ax.spines['right'].set_visible(False)
|
|
509 ax.spines['top'].set_visible(False)
|
|
510 ax.yaxis.set_ticks_position('left')
|
|
511 ax.xaxis.set_ticks_position('bottom')
|
|
512 #ax.xaxis.set_ticks([])
|
|
513 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)',**axis_font)
|
|
514 ax.set_xlabel('Amino Acids', **axis_font)
|
|
515 handles, labels = ax.get_legend_handles_labels()
|
|
516 font_prop = font_manager.FontProperties(size=12)
|
|
517 ax.legend(handles, labels, prop=font_prop)
|
|
518 pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340)
|
|
519 pl.clf()
|
|
520
|
|
521 # write result
|
|
522 with open(outfile, 'w') as out :
|
|
523 out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC(Mut/WT)\n')
|
|
524 for i in codon_sorted:
|
|
525 out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\n')
|
|
526 out.write('Khi2 test\n')
|
|
527 chi = stats.chisquare(observed, expected)
|
|
528 out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n')
|
|
529
|
|
530 # # get max value for each codon for histogram
|
|
531 max_val = [] # # max value for graph
|
|
532 for i in cond1:
|
|
533 # # max value for each codon
|
|
534 max_val.append(max(cond1_norm[i], cond2_norm[i]))
|
|
535
|
|
536 # plot result
|
|
537 fig = pl.figure(figsize=(24, 10), num=1)
|
|
538 width = .50
|
|
539 ind = arange(len(codon_sorted))
|
|
540 ax = fig.add_subplot(111)
|
|
541 pl.xlim(0, len(codon_sorted) + 1)
|
|
542 ax.spines['right'].set_color('none')
|
|
543 ax.spines['top'].set_color('none')
|
|
544 ax.xaxis.set_ticks([])
|
|
545 ax.spines['left'].set_smart_bounds(True)
|
|
546 ax.yaxis.set_ticks_position('left')
|
|
547 ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, label=c1)
|
|
548 ax.bar(ind + width, list(cond2_norm.itervalues()), width, facecolor=color2, label=c2)
|
|
549 for x, y, z in zip(ind, max_val, codon_sorted):
|
|
550 ax.text(x + width, y + 0.02, '%s' % z, ha='center', va='bottom', fontsize=8)
|
|
551 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)')
|
|
552 ax.set_xlabel('Codons')
|
|
553 handles, labels = ax.get_legend_handles_labels()
|
|
554 ax.legend(handles, labels)
|
|
555 pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340)
|
|
556 pl.clf()
|
|
557
|
|
558
|
|
559 else :
|
|
560 stop_err('Error running codon usage plotting : ' + str(e))
|
|
561
|
|
562
|
|
563 return (cond1_norm, cond2_norm, chi[1])
|
|
564
|
|
565 def write_html_file(html, chi_pval, cond1, cond2):
|
|
566 try :
|
|
567
|
|
568
|
|
569 html_str = """
|
|
570 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
|
571 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
572
|
|
573 <html xmlns="http://www.w3.org/1999/xhtml">
|
|
574 <head>
|
|
575 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
576 <link href="/static/june_2007_style/blue/base.css" media="screen" rel="Stylesheet" type="text/css" />
|
|
577 </head>
|
|
578 <body>
|
|
579 <h3>Global visualization</h3>
|
|
580 <p>
|
|
581 <h5>Visualization of density footprint in each codon.</h5><br> If user has selected analyse with replicats, standart error deviation between each replicate as plotting as error bar in histogram.<br>
|
|
582 <img border="0" src="hist_codons.png" width="1040"/>
|
|
583 </p>
|
|
584 <p>
|
|
585 <h5>Test for homogeneity distribution between each condition</h5><br>
|
|
586 H0 : %s and %s are same distribution <br>
|
|
587 Khi2 test p-value: %s<br><br>
|
|
588 If p-value less than 0.05, we can reject homogeneity distribution so we can hypothesize that distributions are not the same. Otherwise, we accept H0<br>
|
|
589
|
|
590 </p>
|
|
591 <p>
|
|
592 <h5>Visualization of density footprint in each codon groupe by amino acid</h5><br>
|
|
593 <img border="0" src="hist_amino_acid.png" width="1040"/>
|
|
594 </p>
|
|
595 </body>
|
|
596 </html> """ % (cond1,cond2,chi_pval)
|
|
597
|
|
598
|
|
599 html_file = open(html, "w")
|
|
600 html_file.write(html_str)
|
|
601 html_file.close()
|
|
602
|
|
603 except Exception, e :
|
|
604 stop_err('Error during html page creation : ' + str(e))
|
|
605
|
|
606
|
|
607
|
|
608
|
|
609 def check_codons_list (codons) :
|
|
610
|
|
611 for codon in codons :
|
|
612 if codon not in init_codon_dict().iterkeys() :
|
|
613 stop_err('Please to enter a valid codon : ' + codon + ' is not find\n')
|
|
614
|
|
615
|
|
616 def check_index_bam (bamfile) :
|
|
617 # #testing indexed bam file
|
|
618 if os.path.isfile(bamfile + ".bai") :
|
|
619 pass
|
|
620 else :
|
|
621 cmd = "samtools index %s " % (bamfile)
|
|
622 proc = subprocess.Popen(args=cmd, shell=True, stderr=subprocess.PIPE)
|
|
623 returncode = proc.wait()
|
|
624 # if returncode != 0:
|
|
625 # raise Exception
|
|
626
|
|
627 def __main__():
|
|
628 '''
|
|
629 python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -1 psiM1_sorted.bam,psiM2_sorted.bam -2 psiP1_sorted.bam,psiP2_sorted.bam -c psiM -C psiP -l TAG,TAA,TGA -r yes -o psi_count -d psi.html,html_dir > log2
|
|
630 python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -c psiM -C psiP -1 RPF_psi-_28sorted.bam -2 RPF_psi+_28sorted.bam -l TAG,TAA,TGA -n Stop Codon -r no -o psi_count -d psi.html,html_dir > log2
|
|
631 '''
|
|
632
|
|
633 # Parse command line options
|
|
634 parser = optparse.OptionParser()
|
|
635 parser.add_option("-g", "--gff", dest="gff", type="string",
|
|
636 help="gff file", metavar="FILE")
|
|
637
|
|
638 parser.add_option("-1", "--file1", dest="file1", type="string",
|
|
639 help="Bam Ribo-Seq alignments cond 1, if rep option, separate files by commas ", metavar="FILE")
|
|
640
|
|
641 parser.add_option("-2", "--file2", dest="file2", type="string",
|
|
642 help="Bam Ribo-Seq alignments cond 2, if rep option, separate files by commas", metavar="FILE")
|
|
643
|
|
644 parser.add_option("-c", "--cond1", dest="c1", type="string",
|
|
645 help="Name for first condition", metavar="STR")
|
|
646
|
|
647 parser.add_option("-C", "--cond2", dest="c2", type="string",
|
|
648 help="Name of second condition", metavar="STR")
|
|
649
|
|
650 parser.add_option("-k", "--kmer", dest="kmer", type="int",
|
|
651 help="Longer of your phasing reads", metavar="INT")
|
|
652
|
|
653 # parser.add_option("-l", "--list", dest="list_cod", type= "string",
|
|
654 # help="list of codons to compare to other", metavar="STR")
|
|
655
|
|
656 parser.add_option("-o", "--out", dest="outfile", type="string",
|
|
657 help="write report to FILE", metavar="FILE")
|
|
658
|
|
659 parser.add_option("-d", "--dirout", dest="dirout", type="string",
|
|
660 help="write report to PNG files", metavar="FILE")
|
|
661
|
|
662 parser.add_option("-a", "--asite", dest="asite", type="int",
|
|
663 help="Off-set from the 5'end of the footprint to the A-site", metavar="INT")
|
|
664
|
|
665 parser.add_option("-s", "--site", dest="site", type="string",
|
|
666 help="Script can compute in site A, P or E", metavar="A|P|E")
|
|
667
|
|
668 parser.add_option("-r", "--rep", dest="rep", type="string",
|
|
669 help="if replicate or not", metavar="yes|no")
|
|
670
|
|
671 parser.add_option("-x", "--hex_col1", dest="color1", type= "string",
|
|
672 help="Color for first condition", metavar="STR")
|
|
673
|
|
674 parser.add_option("-X", "--hex_col2", dest="color2", type= "string",
|
|
675 help="Color for second condition", metavar="STR")
|
|
676
|
|
677 parser.add_option("-q", "--quiet",
|
|
678 action="store_false", dest="verbose", default=True,
|
|
679 help="don't print status messages to stdout")
|
|
680
|
|
681 (options, args) = parser.parse_args()
|
|
682 print "Begin codon frequency analysis at", time.asctime(time.localtime(time.time()))
|
|
683
|
|
684 try:
|
|
685 authorized_site = ["A", "P", "E"]
|
|
686 if options.site not in authorized_site :
|
|
687 stop_err(options.site + ' is not a authorized ribosome site')
|
|
688
|
|
689 ## Check if colors exist
|
|
690 if not colors.is_color_like(options.color1) :
|
|
691 stop_err( options.color1+' is not a proper color' )
|
|
692 if not colors.is_color_like(options.color2) :
|
|
693 stop_err( options.color2+' is not a proper color' )
|
|
694
|
|
695 GFF = store_gff(options.gff)
|
|
696
|
|
697 #### NOT USE IN FINAL VERSION
|
|
698 # # get codon list
|
|
699 # codons = options.list_cod.upper().split(',')
|
|
700 # check_codons_list(codons)
|
|
701
|
|
702 # # get html file and directory :
|
|
703 (html, html_dir) = options.dirout.split(',')
|
|
704 if os.path.exists(html_dir):
|
|
705 raise
|
|
706 try:
|
|
707 os.mkdir(html_dir)
|
|
708 except:
|
|
709 raise Exception(html_dir + ' mkdir')
|
|
710 # #RUN analysis
|
|
711 # #If there are replicats
|
|
712 if options.rep == "yes" :
|
|
713 result = []
|
|
714 # split name of each file options by ","
|
|
715 cond1 = options.file1.split(',')
|
|
716 cond2 = options.file2.split(',')
|
|
717 # # calcul for each file
|
|
718 for fh in itertools.chain(cond1, cond2):
|
|
719 check_index_bam (fh)
|
|
720 result.append(get_codon_usage(fh, GFF, options.site, options.kmer, options.asite))
|
|
721 (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2)
|
|
722 # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir)
|
|
723
|
|
724
|
|
725 # #If there are no replicat
|
|
726 elif options.rep == "no" :
|
|
727 result = []
|
|
728 # #calcul for each cond
|
|
729 for fh in (options.file1, options.file2):
|
|
730 check_index_bam (fh)
|
|
731 result.append(get_codon_usage(fh, GFF, options.site, options.kmer,options.asite))
|
|
732 (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2)
|
|
733 # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir)
|
|
734
|
|
735 else :
|
|
736 sys.stderr.write("Please enter yes or no for --rep option. Programme aborted at %s" % time.asctime(time.localtime(time.time())))
|
|
737 sys.exit()
|
|
738
|
|
739 # write_html_file(html,chi_pval,t_pval,codons,options.c1, options.c2)
|
|
740 write_html_file(html, chi_pval, options.c1, options.c2)
|
|
741
|
|
742 print "Finish codon frequency analysis at", time.asctime(time.localtime(time.time()))
|
|
743 except Exception, e:
|
|
744 stop_err('Error running codon frequency analysis (main program) : ' + str(e))
|
|
745
|
|
746
|
|
747 if __name__=="__main__":
|
|
748 __main__()
|