Mercurial > repos > rlegendre > ribo_tools
comparison get_codon_frequency.py @ 0:b8c070add3b7
Uploaded
author | rlegendre |
---|---|
date | Mon, 20 Oct 2014 11:06:17 -0400 |
parents | |
children | 707807fee542 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b8c070add3b7 |
---|---|
1 #!/usr/bin/env python2.7 | |
2 # -*- coding: utf-8 -*- | |
3 | |
4 ''' | |
5 Created on sep. 2013 | |
6 @author: rachel legendre | |
7 @copyright: rachel.legendre@igmors.u-psud.fr | |
8 @license: GPL v3 | |
9 ''' | |
10 | |
11 from __future__ import division | |
12 import os, sys, optparse, tempfile, subprocess, re, shutil, commands, urllib, time | |
13 import itertools | |
14 import math | |
15 from decimal import Decimal | |
16 from Bio import SeqIO | |
17 from Bio.Seq import Seq | |
18 from numpy import arange, std, array, linspace, average | |
19 #from matplotlib import pyplot as pl | |
20 import matplotlib | |
21 matplotlib.use('Agg') | |
22 import matplotlib.pyplot as pl | |
23 from matplotlib import font_manager | |
24 from matplotlib import colors | |
25 import csv | |
26 from scipy import stats | |
27 from collections import OrderedDict | |
28 # #libraries for debugg | |
29 # import pdb | |
30 # import cPickle | |
31 | |
32 def stop_err(msg): | |
33 sys.stderr.write("%s\n" % msg) | |
34 sys.stderr.write("Programme aborted at %s\n" % time.asctime(time.localtime(time.time()))) | |
35 sys.exit() | |
36 | |
37 | |
38 def store_gff(gff): | |
39 ''' | |
40 parse and store gff file in a dictionnary | |
41 ''' | |
42 try: | |
43 GFF = OrderedDict({}) | |
44 with open(gff, 'r') as f_gff : | |
45 # GFF['order'] = [] | |
46 for line in f_gff: | |
47 # # switch commented lines | |
48 head = line.split("#")[0] | |
49 if head != "" : | |
50 feature = (line.split('\t')[8]).split(';') | |
51 chrom = line.split('\t')[0] | |
52 if chrom not in GFF : | |
53 GFF[chrom] = {} | |
54 # first line is already gene line : | |
55 if line.split('\t')[2] == 'gene' : | |
56 gene = feature[0].replace("ID=", "") | |
57 if re.search('gene', feature[2]) : | |
58 Name = feature[2].replace("gene=", "") | |
59 else : | |
60 Name = "Unknown" | |
61 # #get annotation | |
62 note = re.sub(r".+\;Note\=(.+)\;display\=.+", r"\1", line) | |
63 note = urllib.unquote(str(note)).replace("\n", "") | |
64 # # store gene information | |
65 # GFF['order'].append(gene) | |
66 GFF[chrom][gene] = {} | |
67 GFF[chrom][gene]['chrom'] = line.split('\t')[0] | |
68 GFF[chrom][gene]['start'] = int(line.split('\t')[3]) | |
69 GFF[chrom][gene]['stop'] = int(line.split('\t')[4]) | |
70 GFF[chrom][gene]['strand'] = line.split('\t')[6] | |
71 GFF[chrom][gene]['name'] = Name | |
72 GFF[chrom][gene]['note'] = note | |
73 GFF[chrom][gene]['exon'] = {} | |
74 GFF[chrom][gene]['exon_number'] = 0 | |
75 # print Name | |
76 elif line.split('\t')[2] == 'CDS' : | |
77 gene = re.sub(r"Parent\=(.+)_mRNA", r"\1", feature[0]) | |
78 if GFF[chrom].has_key(gene) : | |
79 GFF[chrom][gene]['exon_number'] += 1 | |
80 exon_number = GFF[chrom][gene]['exon_number'] | |
81 GFF[chrom][gene]['exon'][exon_number] = {} | |
82 GFF[chrom][gene]['exon'][exon_number]['frame'] = line.split('\t')[7] | |
83 GFF[chrom][gene]['exon'][exon_number]['start'] = int(line.split('\t')[3]) | |
84 GFF[chrom][gene]['exon'][exon_number]['stop'] = int(line.split('\t')[4]) | |
85 # # if there is a five prim UTR intron, we change start of gene | |
86 elif line.split('\t')[2] == 'five_prime_UTR_intron' : | |
87 if GFF[chrom][gene]['strand'] == "+" : | |
88 GFF[chrom][gene]['start'] = GFF[chrom][gene]['exon'][1]['start'] | |
89 else : | |
90 GFF[chrom][gene]['stop'] = GFF[chrom][gene]['exon'][exon_number]['stop'] | |
91 return GFF | |
92 except Exception, e: | |
93 stop_err('Error during gff storage : ' + str(e)) | |
94 | |
95 #chrI SGD gene 87286 87752 . + . ID=YAL030W;Name=YAL030W;gene=SNC1;Alias=SNC1;Ontology_term=GO:0005484,GO:0005768,GO:0005802,GO:0005886,GO:0005935,GO:0006887,GO:0006893,GO:000689 | |
96 #7,GO:0006906,GO:0030658,GO:0031201;Note=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29%3B%20involved%20in%20the%20fusion%20between%20Golgi-derived%20secretory%20vesicles%20with%20the%20plasma%20membra | |
97 #ne%3B%20proposed%20to%20be%20involved%20in%20endocytosis%3B%20member%20of%20the%20synaptobrevin%2FVAMP%20family%20of%20R-type%20v-SNARE%20proteins%3B%20SNC1%20has%20a%20paralog%2C%20SNC2%2C%20that%20arose%20fr | |
98 #om%20the%20whole%20genome%20duplication;display=Vesicle%20membrane%20receptor%20protein%20%28v-SNARE%29;dbxref=SGD:S000000028;orf_classification=Verified | |
99 #chrI SGD CDS 87286 87387 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified | |
100 #chrI SGD CDS 87501 87752 . + 0 Parent=YAL030W_mRNA;Name=YAL030W_CDS;orf_classification=Verified | |
101 | |
102 | |
103 | |
104 def init_codon_dict(): | |
105 | |
106 Codon_dict = OrderedDict([('AAA', 0), ('AAC', 0), ('AAG', 0), ('AAT', 0), ('ACA', 0), ('ACC', 0), ('ACG', 0), ('ACT', 0), ('AGA', 0), ('AGC', 0), ('AGG', 0), ('AGT', 0), ('ATA', 0), ('ATC', 0), ('ATG', 0), ('ATT', 0), ('CAA', 0), ('CAC', 0), ('CAG', 0), ('CAT', 0), ('CCA', 0), ('CCC', 0), ('CCG', 0), ('CCT', 0), ('CGA', 0), ('CGC', 0), ('CGG', 0), ('CGT', 0), ('CTA', 0), ('CTC', 0), ('CTG', 0), ('CTT', 0), ('GAA', 0), ('GAC', 0), ('GAG', 0), ('GAT', 0), ('GCA', 0), ('GCC', 0), ('GCG', 0), ('GCT', 0), ('GGA', 0), ('GGC', 0), ('GGG', 0), ('GGT', 0), ('GTA', 0), ('GTC', 0), ('GTG', 0), ('GTT', 0), ('TAA', 0), ('TAC', 0), ('TAG', 0), ('TAT', 0), ('TCA', 0), ('TCC', 0), ('TCG', 0), ('TCT', 0), ('TGA', 0), ('TGC', 0), ('TGG', 0), ('TGT', 0), ('TTA', 0), ('TTC', 0), ('TTG', 0), ('TTT', 0)]) | |
107 return Codon_dict | |
108 | |
109 | |
110 | |
111 def get_codon_usage(bamfile, GFF, site, kmer, a_pos): | |
112 ''' | |
113 Read GFF dict and get gene codon usage. | |
114 Return dict of codons usage | |
115 ''' | |
116 try: | |
117 codon = init_codon_dict() | |
118 | |
119 for chrom in GFF.iterkeys(): | |
120 for gene in GFF[chrom] : | |
121 codon_dict = init_codon_dict() | |
122 start = GFF[chrom][gene]['start'] | |
123 stop = GFF[chrom][gene]['stop'] | |
124 region = chrom + ':' + str(start) + '-' + str(stop) | |
125 # #get all reads in this gene | |
126 reads = subprocess.check_output(["samtools", "view", bamfile, region]) | |
127 head = subprocess.check_output(["samtools", "view", "-H", bamfile]) | |
128 read_tab = reads.split('\n') | |
129 for read in read_tab: | |
130 # # search mapper for eliminate multiple alignements | |
131 if 'bowtie' in head: | |
132 multi_tag = "XS:i:" | |
133 elif 'bwa' in head: | |
134 multi_tag = "XT:A:R" | |
135 else : | |
136 stop_err("No PG tag find in"+samfile+". Please use bowtie or bwa for mapping") | |
137 if len(read) == 0: | |
138 continue | |
139 | |
140 len_read = len(read.split('\t')[9]) | |
141 # if it's read of good length | |
142 if len_read == kmer and multi_tag not in read: | |
143 feat = read.split('\t') | |
144 seq = feat[9] | |
145 # if it's a reverse read | |
146 if feat[1] == '16' : | |
147 if site == "A" : | |
148 # #get A-site | |
149 cod = str(Seq(seq[a_pos-5:a_pos-2]).reverse_complement()) | |
150 elif site == "P" : | |
151 # #get P-site | |
152 cod = str(Seq(seq[a_pos-2:a_pos+1]).reverse_complement()) | |
153 else : | |
154 # #get site-E | |
155 cod = str(Seq(seq[a_pos+1:a_pos+4]).reverse_complement()) | |
156 # # test if it's a true codon not a CNG codon for example | |
157 if codon_dict.has_key(cod) : | |
158 codon_dict[cod] += 1 | |
159 # if it's a forward read | |
160 elif feat[1] == '0' : | |
161 if site == "A" : | |
162 # #get A-site | |
163 cod = seq[a_pos:a_pos+3] | |
164 elif site == "P" : | |
165 # #get P-site | |
166 cod = seq[a_pos-3:a_pos] | |
167 else : | |
168 # #get site-E | |
169 cod = seq[a_pos-6:a_pos-3] | |
170 if codon_dict.has_key(cod) : | |
171 codon_dict[cod] += 1 | |
172 # # add in global dict | |
173 for cod, count in codon_dict.iteritems() : | |
174 codon[cod] += count | |
175 | |
176 return codon | |
177 | |
178 except Exception, e: | |
179 stop_err('Error during codon usage calcul: ' + str(e)) | |
180 | |
181 | |
182 ''' | |
183 http://pyinsci.blogspot.fr/2009/09/violin-plot-with-matplotlib.html | |
184 ''' | |
185 def violin_plot(ax, data, pos, bp=False): | |
186 ''' | |
187 create violin plots on an axis | |
188 ''' | |
189 dist = max(pos) - min(pos) | |
190 w = min(0.15 * max(dist, 1.0), 0.5) | |
191 for d, p in zip(data, pos): | |
192 k = stats.gaussian_kde(d) # calculates the kernel density | |
193 m = k.dataset.min() # lower bound of violin | |
194 M = k.dataset.max() # upper bound of violin | |
195 x = arange(m, M, (M - m) / 100.) # support for violin | |
196 v = k.evaluate(x) # violin profile (density curve) | |
197 v = v / v.max() * w # scaling the violin to the available space | |
198 ax.fill_betweenx(x, p, v + p, facecolor=color1, alpha=0.3) | |
199 ax.fill_betweenx(x, p, -v + p, facecolor=color2, alpha=0.3) | |
200 if bp: | |
201 ax.boxplot(data, notch=1, positions=pos, vert=1) | |
202 | |
203 | |
204 | |
205 ''' | |
206 http://log.ooz.ie/2013/02/matplotlib-comparative-histogram-recipe.html | |
207 ''' | |
208 def comphist(x1, x2, orientation='vertical', **kwargs): | |
209 """Draw a comparative histogram.""" | |
210 # Split keyword args: | |
211 kwargs1 = {} | |
212 kwargs2 = {} | |
213 kwcommon = {} | |
214 for arg in kwargs: | |
215 tgt_arg = arg[:-1] | |
216 if arg.endswith('1'): | |
217 arg_dict = kwargs1 | |
218 elif arg.endswith('2'): | |
219 arg_dict = kwargs2 | |
220 else: | |
221 arg_dict = kwcommon | |
222 tgt_arg = arg | |
223 arg_dict[tgt_arg] = kwargs[arg] | |
224 kwargs1.update(kwcommon) | |
225 kwargs2.update(kwcommon) | |
226 | |
227 fig = pl.figure() | |
228 | |
229 # Have both histograms share one axis. | |
230 if orientation == 'vertical': | |
231 ax1 = pl.subplot(211) | |
232 ax2 = pl.subplot(212, sharex=ax1) | |
233 # Flip the ax2 histogram horizontally. | |
234 ax2.set_ylim(ax1.get_ylim()[::-1]) | |
235 pl.setp(ax1.get_xticklabels(), visible=False) | |
236 legend_loc = (1, 4) | |
237 else: | |
238 ax1 = pl.subplot(122) | |
239 ax2 = pl.subplot(121, sharey=ax1) | |
240 # Flip the ax2 histogram vertically. | |
241 ax2.set_xlim(ax2.get_xlim()[::-1]) | |
242 pl.setp(ax1.get_yticklabels(), visible=False) | |
243 legend_loc = (1, 2) | |
244 | |
245 ax1.hist(x1, orientation=orientation, **kwargs1) | |
246 ax2.hist(x2, orientation=orientation, **kwargs2) | |
247 ax2.set_ylim(ax1.get_ylim()[::-1]) | |
248 ax1.legend(loc=legend_loc[0]) | |
249 ax2.legend(loc=legend_loc[1]) | |
250 # Tighten up the layout. | |
251 pl.subplots_adjust(wspace=0.0, hspace=0.0) | |
252 return fig | |
253 | |
254 | |
255 def compute_FC_plot(cond1_norm, cond2_norm, cod_name, codon_to_test, dirout): | |
256 | |
257 FC_tab = [] | |
258 for z, y in zip(cond1_norm.itervalues(), cond2_norm.itervalues()): | |
259 fc = z - y | |
260 FC_tab.append(fc) | |
261 # #codon_to_test = ['TGA','TAG','TAA'] | |
262 | |
263 a = [] | |
264 b = [] | |
265 cod = [] | |
266 for codon in cond1_norm.iterkeys(): | |
267 if codon in codon_to_test : | |
268 fc = cond1_norm[codon] - cond2_norm[codon] | |
269 b.append(fc) | |
270 cod.append(codon) | |
271 else : | |
272 fc = cond1_norm[codon] - cond2_norm[codon] | |
273 a.append(fc) | |
274 | |
275 | |
276 fig = pl.figure(num=1) | |
277 comphist(array(a), array(b), label1='All codon', label2=cod_name, color2='green', bins=30, rwidth=1) | |
278 # pl.show() | |
279 pl.savefig(dirout + '/hist_codon_fc.png', format="png", dpi=340) | |
280 pl.clf() | |
281 | |
282 | |
283 # #violin plot | |
284 pos = range(2) | |
285 dat = array([array(a), array(b)]) | |
286 fig = pl.figure() | |
287 pl.title("Distribution of codons FoldChange between two conditions") | |
288 ax = fig.add_subplot(1, 1, 1) | |
289 lab = array(['All codons', cod_name]) | |
290 violin_plot(ax, dat, pos, bp=1) | |
291 for x, z in zip(dat, pos): | |
292 ax.plot(z, average(x), color='r', marker='*', markeredgecolor='r') | |
293 xtickNames = pl.setp(ax, xticklabels=lab) | |
294 pl.savefig(dirout + '/violinplot_codon.png', format="png", dpi=340) | |
295 pl.clf() | |
296 | |
297 # (Fval,pval) = stats.ttest_ind(a, b, axis=0, equal_var=True) | |
298 (Fval, pval) = stats.mannwhitneyu(a, b) | |
299 return pval | |
300 | |
301 | |
302 def get_aa_dict(cond1_norm, cond2_norm): | |
303 | |
304 # ## create amino acid dictionnary: | |
305 AA = OrderedDict({}) | |
306 AA['Phe'] = [cond1_norm['TTT'] + cond1_norm['TTC'], cond2_norm['TTT'] + cond2_norm['TTC']] | |
307 AA['Leu'] = [cond1_norm['TTA'] + cond1_norm['TTG'] + cond1_norm['CTT'] + cond1_norm['CTC'] + cond1_norm['CTA'] + cond1_norm['CTG'], cond2_norm['TTA'] + cond2_norm['TTG'] + cond2_norm['CTT'] + cond2_norm['CTC'] + cond2_norm['CTA'] + cond2_norm['CTG']] | |
308 AA['Ile'] = [cond1_norm['ATT'] + cond1_norm['ATC'] + cond1_norm['ATA'], cond2_norm['ATT'] + cond2_norm['ATC'] + cond2_norm['ATA']] | |
309 AA['Met'] = [cond1_norm['ATG'], cond2_norm['ATG']] | |
310 AA['Val'] = [cond1_norm['GTT'] + cond1_norm['GTC'] + cond1_norm['GTA'] + cond1_norm['GTG'] + cond1_norm['AGT'] + cond1_norm['AGC'], cond2_norm['GTT'] + cond2_norm['GTC'] + cond2_norm['GTA'] + cond2_norm['GTG'] + cond2_norm['AGT'] + cond2_norm['AGC']] | |
311 AA['Ser'] = [cond1_norm['TCT'] + cond1_norm['TCC'] + cond1_norm['TCA'] + cond1_norm['TCG'], cond2_norm['TCT'] + cond2_norm['TCC'] + cond2_norm['TCA'] + cond2_norm['TCG']] | |
312 AA['Pro'] = [cond1_norm['CCT'] + cond1_norm['CCC'] + cond1_norm['CCA'] + cond1_norm['CCG'], cond2_norm['CCT'] + cond2_norm['CCC'] + cond2_norm['CCA'] + cond2_norm['CCG']] | |
313 AA['Thr'] = [cond1_norm['ACT'] + cond1_norm['ACC'] + cond1_norm['ACA'] + cond1_norm['ACG'], cond2_norm['ACT'] + cond2_norm['ACC'] + cond2_norm['ACA'] + cond2_norm['ACG']] | |
314 AA['Ala'] = [cond1_norm['GCT'] + cond1_norm['GCC'] + cond1_norm['GCA'] + cond1_norm['GCG'], cond2_norm['GCT'] + cond2_norm['GCC'] + cond2_norm['GCA'] + cond2_norm['GCG']] | |
315 AA['Tyr'] = [cond1_norm['TAT'] + cond1_norm['TAC'], cond2_norm['TAT'] + cond2_norm['TAC']] | |
316 AA['Stop'] = [cond1_norm['TAA'] + cond1_norm['TAG'] + cond1_norm['TGA'], cond2_norm['TAA'] + cond2_norm['TAG'] + cond2_norm['TGA']] | |
317 AA['His'] = [cond1_norm['CAT'] + cond1_norm['CAC'], cond2_norm['CAT'] + cond2_norm['CAC']] | |
318 AA['Gln'] = [cond1_norm['CAA'] + cond1_norm['CAG'], cond2_norm['CAA'] + cond2_norm['CAG']] | |
319 AA['Asn'] = [cond1_norm['AAT'] + cond1_norm['AAC'], cond2_norm['AAT'] + cond2_norm['AAC']] | |
320 AA['Lys'] = [cond1_norm['AAA'] + cond1_norm['AAG'], cond2_norm['AAA'] + cond2_norm['AAG']] | |
321 AA['Asp'] = [cond1_norm['GAT'] + cond1_norm['GAC'], cond2_norm['GAT'] + cond2_norm['GAC']] | |
322 AA['Glu'] = [cond1_norm['GAA'] + cond1_norm['GAG'], cond2_norm['GAA'] + cond2_norm['GAG']] | |
323 AA['Cys'] = [cond1_norm['TGT'] + cond1_norm['TGC'], cond2_norm['TGT'] + cond2_norm['TGC']] | |
324 AA['Trp'] = [cond1_norm['TGG'], cond2_norm['TGG']] | |
325 AA['Arg'] = [cond1_norm['CGT'] + cond1_norm['CGC'] + cond1_norm['CGA'] + cond1_norm['CGG'] + cond1_norm['AGA'] + cond1_norm['AGG'], cond2_norm['CGT'] + cond2_norm['CGC'] + cond2_norm['CGA'] + cond2_norm['CGG'] + cond2_norm['AGA'] + cond2_norm['AGG']] | |
326 AA['Gly'] = [cond1_norm['GGT'] + cond1_norm['GGC'] + cond1_norm['GGA'] + cond1_norm['GGG'], cond2_norm['GGT'] + cond2_norm['GGC'] + cond2_norm['GGA'] + cond2_norm['GGG']] | |
327 | |
328 | |
329 return AA | |
330 | |
331 | |
332 | |
333 def plot_codon_usage(result, dirout, c1, c2, outfile, color1, color2): | |
334 ''' | |
335 Take list of dict of codon usage and use matplotlib for do graph | |
336 ''' | |
337 | |
338 # #if there are replicat | |
339 if len(result) == 4 : | |
340 # store each dict in variables to make code more readable | |
341 cond1_1 = result[0].copy() | |
342 cond1_2 = result[1].copy() | |
343 cond2_1 = result[2].copy() | |
344 cond2_2 = result[3].copy() | |
345 # get codon order in one of list | |
346 codon_sorted = sorted(cond1_1.iterkeys(), reverse=False) | |
347 # get max of each list | |
348 sum11 = sum(list(cond1_1.itervalues())) | |
349 sum12 = sum(list(cond1_2.itervalues())) | |
350 sum21 = sum(list(cond2_1.itervalues())) | |
351 sum22 = sum(list(cond2_2.itervalues())) | |
352 # for each codon, get values and sd in each condition | |
353 cond1_val = {} | |
354 cond1 = {} | |
355 cond2_val = {} | |
356 cond2 = {} | |
357 std_cond1 = [] | |
358 std_cond2 = [] | |
359 max_val = [] # # max value for graph | |
360 for i in codon_sorted: | |
361 # # cond1 = moyenne of replicats cond1 divided by max | |
362 cond1_val[i] = ((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2) | |
363 cond1[i] = ((cond1_1[i] + cond1_2[i]) / 2) | |
364 # # standard deviation = absolute value of diffence between replicats of cond1 | |
365 std_cond1.append(std(array([(cond1_1[i] * 100 / sum11), (cond1_2[i] * 100 / sum12)]))) | |
366 # # cond2 = moyenne of replicats cond1divided by max | |
367 cond2_val[i] = ((cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2) | |
368 cond2[i] = ((cond2_1[i] + cond2_2[i]) / 2) | |
369 # # standard deviation = absolute value of diffence between replicats of cond2 | |
370 std_cond2.append(std(array([((cond2_1[i]) * 100 / sum21), ((cond2_2[i]) * 100 / sum22)]))) | |
371 # # max value for each codon | |
372 max_val.append(max((cond1_1[i] / sum11 + cond1_2[i] / sum12) / 2, (cond2_1[i] / sum21 + cond2_2[i] / sum22) / 2)) | |
373 | |
374 # for graph design | |
375 cond1_norm = OrderedDict(sorted(cond1_val.items(), key=lambda t: t[0])) | |
376 cond1_norm.update ((x, y * 100) for x, y in cond1_norm.items()) | |
377 cond2_norm = OrderedDict(sorted(cond2_val.items(), key=lambda t: t[0])) | |
378 cond2_norm.update ((x, y * 100) for x, y in cond2_norm.items()) | |
379 max_val = [x * 100 for x in max_val] | |
380 | |
381 AA = get_aa_dict(cond1_norm, cond2_norm) | |
382 max_valaa = [] | |
383 cond1_aa = [] | |
384 cond2_aa = [] | |
385 aa_name = list(AA.iterkeys()) | |
386 for z in AA.itervalues(): | |
387 cond1_aa.append(z[0]) | |
388 cond2_aa.append(z[1]) | |
389 max_valaa.append(max(z)) | |
390 # # plot amino acid profile : | |
391 fig = pl.figure(figsize=(24, 10), num=1) | |
392 width = .50 | |
393 ax = fig.add_subplot(111) | |
394 ax.xaxis.set_ticks([]) | |
395 ind = arange(21) | |
396 pl.xlim(0, 21) | |
397 ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1) | |
398 ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2) | |
399 for x, y, z in zip(ind, max_valaa, aa_name): | |
400 ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14) | |
401 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') | |
402 ax.set_xlabel('Amino Acid') | |
403 handles, labels = ax.get_legend_handles_labels() | |
404 ax.legend(handles, labels) | |
405 pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340) | |
406 pl.clf() | |
407 | |
408 | |
409 # # compute theorical count in COND2 | |
410 sum2 = (sum21 + sum22) / 2 | |
411 cond2_count = [] | |
412 for z in cond1_norm.itervalues() : | |
413 count = int(z * sum2 / 100) | |
414 cond2_count.append(count) | |
415 | |
416 expected = array(cond2_count) | |
417 observed = array(list(cond2.itervalues())) | |
418 | |
419 # write result | |
420 with open(outfile, 'w') as out : | |
421 out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC\tFC_' + c1 + '\tFC_' + c2 + '\n') | |
422 for i in codon_sorted: | |
423 out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\t' + str((cond2_1[i] / sum21) / (cond1_1[i] / sum11)) + '\t' + str((cond2_2[i] / sum22) / (cond1_1[i] / sum11)) + '\n') | |
424 chi = stats.chisquare(observed, expected) | |
425 out.write('Khi2 test\n') | |
426 out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n') | |
427 | |
428 | |
429 | |
430 # plot result | |
431 fig = pl.figure(figsize=(24, 10), num=1) | |
432 width = .50 | |
433 ind = arange(len(codon_sorted)) | |
434 ax = fig.add_subplot(111) | |
435 pl.xlim(0, len(codon_sorted) + 1) | |
436 ax.spines['right'].set_color('none') | |
437 ax.spines['top'].set_color('none') | |
438 ax.xaxis.set_ticks([]) | |
439 ax.spines['left'].set_smart_bounds(True) | |
440 ax.yaxis.set_ticks_position('left') | |
441 ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, yerr=std_cond1, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c1) | |
442 ax.bar(ind + width, list(cond2_norm.itervalues()), width, yerr=std_cond2, facecolor=color2, error_kw={'elinewidth':1, 'ecolor':'black'}, label=c2) | |
443 for x, y, z in zip(ind, max_val, codon_sorted): | |
444 ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=8) | |
445 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') | |
446 ax.set_xlabel('Codons') | |
447 handles, labels = ax.get_legend_handles_labels() | |
448 ax.legend(handles, labels) | |
449 pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340) | |
450 pl.clf() | |
451 | |
452 | |
453 | |
454 elif len(result) == 2 : | |
455 | |
456 # store each dict in OrderedDict sorted by key to make code more readable | |
457 cond1 = result[0] | |
458 cond2 = result[1] | |
459 cond1_norm = result[0].copy() | |
460 cond2_norm = result[1].copy() | |
461 # pdb.set_trace() | |
462 # get codon order in one of list | |
463 codon_sorted = sorted(cond1.iterkeys(), reverse=False) | |
464 | |
465 # get sum of each list | |
466 sum1 = sum(list(cond1.itervalues())) | |
467 sum2 = sum(list(cond2.itervalues())) | |
468 # #Normalize values by sum of each libraries | |
469 cond1_norm.update ((x, (y / sum1) * 100.0) for x, y in cond1_norm.items()) | |
470 cond2_norm.update((x, (y / sum2) * 100.0) for x, y in cond2_norm.items()) | |
471 | |
472 # # compute theorical count in COND2 | |
473 cond2_count = [] | |
474 for z in cond1_norm.itervalues() : | |
475 count = int(z * sum2 / 100.0) | |
476 cond2_count.append(count) | |
477 | |
478 expected = array(cond2_count) | |
479 observed = array(list(cond2.itervalues())) | |
480 | |
481 AA = get_aa_dict(cond1_norm, cond2_norm) | |
482 | |
483 max_val = [] | |
484 cond1_aa = [] | |
485 cond2_aa = [] | |
486 aa_name = list(AA.iterkeys()) | |
487 for z in AA.itervalues(): | |
488 cond1_aa.append(z[0]) | |
489 cond2_aa.append(z[1]) | |
490 max_val.append(max(z)) | |
491 | |
492 # # plot amino acid profile : | |
493 fig = pl.figure(num=1) | |
494 width = .35 | |
495 ax = fig.add_subplot(111) | |
496 ind = arange(21) | |
497 pl.xlim(0, 21) | |
498 #kwargs = {"hatch":'x'} | |
499 #ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1, **kwargs) | |
500 #kwargs = {"hatch":'.'} | |
501 #ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2, **kwargs) | |
502 ax.bar(ind, cond1_aa, width, facecolor=color1, label=c1) | |
503 ax.bar(ind + width, cond2_aa, width, facecolor=color2, label=c2) | |
504 #for x, y, z in zip(ind, max_val, aa_name): | |
505 # ax.text(x + width, y + 0.2, '%s' % z, ha='center', va='bottom', fontsize=14) | |
506 axis_font = {'size':'16'} | |
507 pl.xticks(ind + width, aa_name,**axis_font) | |
508 ax.spines['right'].set_visible(False) | |
509 ax.spines['top'].set_visible(False) | |
510 ax.yaxis.set_ticks_position('left') | |
511 ax.xaxis.set_ticks_position('bottom') | |
512 #ax.xaxis.set_ticks([]) | |
513 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)',**axis_font) | |
514 ax.set_xlabel('Amino Acids', **axis_font) | |
515 handles, labels = ax.get_legend_handles_labels() | |
516 font_prop = font_manager.FontProperties(size=12) | |
517 ax.legend(handles, labels, prop=font_prop) | |
518 pl.savefig(dirout + '/hist_amino_acid.png', format="png", dpi=340) | |
519 pl.clf() | |
520 | |
521 # write result | |
522 with open(outfile, 'w') as out : | |
523 out.write('Codon\tRaw_' + c1 + '\tRaw_' + c2 + '\tNorm_' + c1 + '\tNorm_' + c2 + '\tFC(Mut/WT)\n') | |
524 for i in codon_sorted: | |
525 out.write(i + '\t' + str(cond1[i]) + '\t' + str(cond2[i]) + '\t' + str(cond1_norm[i]) + '\t' + str(cond2_norm[i]) + '\t' + str(cond2_norm[i] / cond1_norm[i]) + '\n') | |
526 out.write('Khi2 test\n') | |
527 chi = stats.chisquare(observed, expected) | |
528 out.write('T : ' + str(chi[0]) + '; p-value : ' + str(chi[1]) + '\n') | |
529 | |
530 # # get max value for each codon for histogram | |
531 max_val = [] # # max value for graph | |
532 for i in cond1: | |
533 # # max value for each codon | |
534 max_val.append(max(cond1_norm[i], cond2_norm[i])) | |
535 | |
536 # plot result | |
537 fig = pl.figure(figsize=(24, 10), num=1) | |
538 width = .50 | |
539 ind = arange(len(codon_sorted)) | |
540 ax = fig.add_subplot(111) | |
541 pl.xlim(0, len(codon_sorted) + 1) | |
542 ax.spines['right'].set_color('none') | |
543 ax.spines['top'].set_color('none') | |
544 ax.xaxis.set_ticks([]) | |
545 ax.spines['left'].set_smart_bounds(True) | |
546 ax.yaxis.set_ticks_position('left') | |
547 ax.bar(ind, list(cond1_norm.itervalues()), width, facecolor=color1, label=c1) | |
548 ax.bar(ind + width, list(cond2_norm.itervalues()), width, facecolor=color2, label=c2) | |
549 for x, y, z in zip(ind, max_val, codon_sorted): | |
550 ax.text(x + width, y + 0.02, '%s' % z, ha='center', va='bottom', fontsize=8) | |
551 ax.set_ylabel('Ribosome Occupancy (percent of normalized reads)') | |
552 ax.set_xlabel('Codons') | |
553 handles, labels = ax.get_legend_handles_labels() | |
554 ax.legend(handles, labels) | |
555 pl.savefig(dirout + '/hist_codons.png', format="png", dpi=340) | |
556 pl.clf() | |
557 | |
558 | |
559 else : | |
560 stop_err('Error running codon usage plotting : ' + str(e)) | |
561 | |
562 | |
563 return (cond1_norm, cond2_norm, chi[1]) | |
564 | |
565 def write_html_file(html, chi_pval, cond1, cond2): | |
566 try : | |
567 | |
568 | |
569 html_str = """ | |
570 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" | |
571 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> | |
572 | |
573 <html xmlns="http://www.w3.org/1999/xhtml"> | |
574 <head> | |
575 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> | |
576 <link href="/static/june_2007_style/blue/base.css" media="screen" rel="Stylesheet" type="text/css" /> | |
577 </head> | |
578 <body> | |
579 <h3>Global visualization</h3> | |
580 <p> | |
581 <h5>Visualization of density footprint in each codon.</h5><br> If user has selected analyse with replicats, standart error deviation between each replicate as plotting as error bar in histogram.<br> | |
582 <img border="0" src="hist_codons.png" width="1040"/> | |
583 </p> | |
584 <p> | |
585 <h5>Test for homogeneity distribution between each condition</h5><br> | |
586 H0 : %s and %s are same distribution <br> | |
587 Khi2 test p-value: %s<br><br> | |
588 If p-value less than 0.05, we can reject homogeneity distribution so we can hypothesize that distributions are not the same. Otherwise, we accept H0<br> | |
589 | |
590 </p> | |
591 <p> | |
592 <h5>Visualization of density footprint in each codon groupe by amino acid</h5><br> | |
593 <img border="0" src="hist_amino_acid.png" width="1040"/> | |
594 </p> | |
595 </body> | |
596 </html> """ % (cond1,cond2,chi_pval) | |
597 | |
598 | |
599 html_file = open(html, "w") | |
600 html_file.write(html_str) | |
601 html_file.close() | |
602 | |
603 except Exception, e : | |
604 stop_err('Error during html page creation : ' + str(e)) | |
605 | |
606 | |
607 | |
608 | |
609 def check_codons_list (codons) : | |
610 | |
611 for codon in codons : | |
612 if codon not in init_codon_dict().iterkeys() : | |
613 stop_err('Please to enter a valid codon : ' + codon + ' is not find\n') | |
614 | |
615 | |
616 def check_index_bam (bamfile) : | |
617 # #testing indexed bam file | |
618 if os.path.isfile(bamfile + ".bai") : | |
619 pass | |
620 else : | |
621 cmd = "samtools index %s " % (bamfile) | |
622 proc = subprocess.Popen(args=cmd, shell=True, stderr=subprocess.PIPE) | |
623 returncode = proc.wait() | |
624 # if returncode != 0: | |
625 # raise Exception | |
626 | |
627 def __main__(): | |
628 ''' | |
629 python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -1 psiM1_sorted.bam,psiM2_sorted.bam -2 psiP1_sorted.bam,psiP2_sorted.bam -c psiM -C psiP -l TAG,TAA,TGA -r yes -o psi_count -d psi.html,html_dir > log2 | |
630 python /home/rlegendre/galaxy/galaxy-dist/tools/rib_profiling/get_codon_frequency.py -i /home/rlegendre/galaxy/galaxy-dist/SharedData/Ribo/Saccer3.fa -g Saccer3.gff -t tAI.csv -c psiM -C psiP -1 RPF_psi-_28sorted.bam -2 RPF_psi+_28sorted.bam -l TAG,TAA,TGA -n Stop Codon -r no -o psi_count -d psi.html,html_dir > log2 | |
631 ''' | |
632 | |
633 # Parse command line options | |
634 parser = optparse.OptionParser() | |
635 parser.add_option("-g", "--gff", dest="gff", type="string", | |
636 help="gff file", metavar="FILE") | |
637 | |
638 parser.add_option("-1", "--file1", dest="file1", type="string", | |
639 help="Bam Ribo-Seq alignments cond 1, if rep option, separate files by commas ", metavar="FILE") | |
640 | |
641 parser.add_option("-2", "--file2", dest="file2", type="string", | |
642 help="Bam Ribo-Seq alignments cond 2, if rep option, separate files by commas", metavar="FILE") | |
643 | |
644 parser.add_option("-c", "--cond1", dest="c1", type="string", | |
645 help="Name for first condition", metavar="STR") | |
646 | |
647 parser.add_option("-C", "--cond2", dest="c2", type="string", | |
648 help="Name of second condition", metavar="STR") | |
649 | |
650 parser.add_option("-k", "--kmer", dest="kmer", type="int", | |
651 help="Longer of your phasing reads", metavar="INT") | |
652 | |
653 # parser.add_option("-l", "--list", dest="list_cod", type= "string", | |
654 # help="list of codons to compare to other", metavar="STR") | |
655 | |
656 parser.add_option("-o", "--out", dest="outfile", type="string", | |
657 help="write report to FILE", metavar="FILE") | |
658 | |
659 parser.add_option("-d", "--dirout", dest="dirout", type="string", | |
660 help="write report to PNG files", metavar="FILE") | |
661 | |
662 parser.add_option("-a", "--asite", dest="asite", type="int", | |
663 help="Off-set from the 5'end of the footprint to the A-site", metavar="INT") | |
664 | |
665 parser.add_option("-s", "--site", dest="site", type="string", | |
666 help="Script can compute in site A, P or E", metavar="A|P|E") | |
667 | |
668 parser.add_option("-r", "--rep", dest="rep", type="string", | |
669 help="if replicate or not", metavar="yes|no") | |
670 | |
671 parser.add_option("-x", "--hex_col1", dest="color1", type= "string", | |
672 help="Color for first condition", metavar="STR") | |
673 | |
674 parser.add_option("-X", "--hex_col2", dest="color2", type= "string", | |
675 help="Color for second condition", metavar="STR") | |
676 | |
677 parser.add_option("-q", "--quiet", | |
678 action="store_false", dest="verbose", default=True, | |
679 help="don't print status messages to stdout") | |
680 | |
681 (options, args) = parser.parse_args() | |
682 print "Begin codon frequency analysis at", time.asctime(time.localtime(time.time())) | |
683 | |
684 try: | |
685 authorized_site = ["A", "P", "E"] | |
686 if options.site not in authorized_site : | |
687 stop_err(options.site + ' is not a authorized ribosome site') | |
688 | |
689 ## Check if colors exist | |
690 if not colors.is_color_like(options.color1) : | |
691 stop_err( options.color1+' is not a proper color' ) | |
692 if not colors.is_color_like(options.color2) : | |
693 stop_err( options.color2+' is not a proper color' ) | |
694 | |
695 GFF = store_gff(options.gff) | |
696 | |
697 #### NOT USE IN FINAL VERSION | |
698 # # get codon list | |
699 # codons = options.list_cod.upper().split(',') | |
700 # check_codons_list(codons) | |
701 | |
702 # # get html file and directory : | |
703 (html, html_dir) = options.dirout.split(',') | |
704 if os.path.exists(html_dir): | |
705 raise | |
706 try: | |
707 os.mkdir(html_dir) | |
708 except: | |
709 raise Exception(html_dir + ' mkdir') | |
710 # #RUN analysis | |
711 # #If there are replicats | |
712 if options.rep == "yes" : | |
713 result = [] | |
714 # split name of each file options by "," | |
715 cond1 = options.file1.split(',') | |
716 cond2 = options.file2.split(',') | |
717 # # calcul for each file | |
718 for fh in itertools.chain(cond1, cond2): | |
719 check_index_bam (fh) | |
720 result.append(get_codon_usage(fh, GFF, options.site, options.kmer, options.asite)) | |
721 (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2) | |
722 # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir) | |
723 | |
724 | |
725 # #If there are no replicat | |
726 elif options.rep == "no" : | |
727 result = [] | |
728 # #calcul for each cond | |
729 for fh in (options.file1, options.file2): | |
730 check_index_bam (fh) | |
731 result.append(get_codon_usage(fh, GFF, options.site, options.kmer,options.asite)) | |
732 (cond1, cond2, chi_pval) = plot_codon_usage(result, html_dir, options.c1, options.c2, options.outfile,options.color1, options.color2) | |
733 # t_pval = compute_FC_plot(cond1,cond2,codons,html_dir) | |
734 | |
735 else : | |
736 sys.stderr.write("Please enter yes or no for --rep option. Programme aborted at %s" % time.asctime(time.localtime(time.time()))) | |
737 sys.exit() | |
738 | |
739 # write_html_file(html,chi_pval,t_pval,codons,options.c1, options.c2) | |
740 write_html_file(html, chi_pval, options.c1, options.c2) | |
741 | |
742 print "Finish codon frequency analysis at", time.asctime(time.localtime(time.time())) | |
743 except Exception, e: | |
744 stop_err('Error running codon frequency analysis (main program) : ' + str(e)) | |
745 | |
746 | |
747 if __name__=="__main__": | |
748 __main__() |