Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/consensus.clustering.xml @ 8:a58527c632b7 draft
Uploaded
author | peter-waltman |
---|---|
date | Mon, 11 Mar 2013 16:31:29 -0400 |
parents | 0decf3fd54bc |
children |
line wrap: on
line source
<tool id="consensus_clustering" name="Consensus Clustering" force_history_refresh="True"> <command interpreter="python">consensus.clustering.py -d $dataset -n ${direction} -a ${method.algorithm} #if $method.algorithm == 'hc' # -m ${method.hc_distance_metric} -i ${method.innerLinkage} #end if #if $method.algorithm == 'pam' # -m ${method.pam_distance_metric} #end if #if $method.algorithm == 'km' # -m euclidean #end if -k ${kmax} -r ${reps} -f ${finalLinkage} #if str($direction) == "rows": -o ${rdata_output_rows} #end if #if str($direction) == "cols": -o ${rdata_output_cols} #end if -h $report -p ${report.files_path} </command> <inputs> <param name="dataset" type="data" format='tabular' label="Data Set" help="Specify the data matrix (tab-delimited) to be clustered"/> <param name="direction" type="select" label="Cluster Samples or Genes?" help="Specify the matrix dimension to cluster (see help below)"> <option value="rows">Genes (rows)</option> <option value="cols" selected="true">Samples (columns)</option> </param> <conditional name='method'> <param name="algorithm" type="select" label="Clustering Algorithm" help="Specify the cluster method to use (see help below)"> <option value="hc">Hierarchical Clustering</option> <option value="pam" selected='true'>Partioning around Medioids</option> <option value="km">K-Means Clustering</option> </param> <when value='hc'> <param name="hc_distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> <option value="cosine" selected='true'>Cosine</option> <option value="abscosine">Absolute Cosine</option> <option value="pearson">Pearson</option> <option value="abspearson">Absolute Pearson</option> <option value="spearman">Spearman</option> <option value="kendall">Kendall</option> <option value="euclidean">Euclidean</option> <option value="maximum">Maximum</option> <option value="manhattan">Manhattan (AKA city block)</option> <option value="canberra">Canberra</option> <option value="binary">Binary</option> </param> <param name="innerLinkage" type="select" label="Linkage for inner HAC " help="Specify the linkage to use during the 'inner' hierarchcial clustering (see help below)"> <option value="average">Average</option> <option value="centroid">Centroid</option> <option value="complete" selected='true'>Complete</option> <option value="mcquitty">McQuitty</option> <option value="median">Median</option> <option value="single">Single</option> <option value="ward">Ward</option> </param> </when> <when value='pam'> <param name="pam_distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> <option value="cosine" selected='true'>Cosine</option> <option value="abscosine">Absolute Cosine</option> <option value="pearson">Pearson</option> <option value="abspearson">Absolute Pearson</option> <option value="spearman">Spearman</option> <option value="kendall">Kendall</option> <option value="euclidean">Euclidean</option> <option value="maximum">Maximum</option> <option value="manhattan">Manhattan (AKA city block)</option> <option value="canberra">Canberra</option> <option value="binary">Binary</option> </param> </when> </conditional> <param name="finalLinkage" type="select" label="Final Linkage" help="Specify the linkage to use when clustering the consensus matrix (see help below)"> <option value="average">Average</option> <option value="centroid">Centroid</option> <option value="complete" selected='true'>Complete</option> <option value="mcquitty">McQuitty</option> <option value="median">Median</option> <option value="single">Single</option> <option value="ward">Ward</option> </param> <param name="kmax" type="integer" label="K Max" value="10" help="Maximum number of K to analyze" /> <param name="reps" type="integer" label="Repetitions" value="500" help="Number of Sample Permutations to Repeat"/> </inputs> <outputs> <data format="html" name="report" label="Consensus Clustering Report (HTML)"/> <data format="rdata" name="rdata_output_rows" label="Consensus Clustering Results; Gene Clusters (RData)"> <filter>(direction)=="rows"</filter> </data> <data format="rdata" name="rdata_output_cols" label="Consensus Clustering Results; Sample Clusters (RData)"> <filter>(direction)=="cols"</filter> </data> </outputs> <help> .. class:: infomark **Perform Consensus Clustering (Cluster Samples) on a specified data set** ---- **Parameters** - **Data Set** - Specify the data matrix to be clustered. Data must be formated as follows: * Tab-delimited * Use row/column headers - **Cluster Samples or Genes** - Specify the dimension of the matrix to cluster: * Rows (Genes) * Columns (Samples) - **Clustering Algorithm** Specify the choice of algorithm to use. Choice of: * Hierarchical Clustering * K-Means - **Distance Metric** Specify the choice of distance metric to use. Choice of: * Cosine (AKA uncentered pearson) * Absolute Cosine (AKA uncentered pearson, absolute value) * Pearson (pearson correlation) * Absolute Pearson (pearson correlation, absolute value) * Spearman (spearman correlation) * Kendall (Kendall's Tau) * Euclidean (euclidean distance) * Maximum * Manhattan (AKA city block) * Canberra * Binary - **Final Linkage** Specify the choice linkage to use when clustering Consensus Matrix. Choice of: * Average (see documentation for R's hclust function for explanation of choices) * Single * Complete * Median * Centroid * McQuity * Ward - **Inner Linkage** Specify the choice linkage to use when using HAC as clustering method. Same choices as 'Final Linkage' - **K Max** Specify the number to use for the largest K considered - **Repititions** Specify the number of 'bootstrap' repitions to perform to generate the consensus matrix </help> </tool>