Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/extract.TCGA.survival.data.R @ 3:563832f48c08 draft
Uploaded
author | peter-waltman |
---|---|
date | Fri, 01 Mar 2013 19:51:25 -0500 |
parents | dddfeedb85af |
children |
line wrap: on
line source
#!/usr/bin/env Rscript ## ## formats raw clinical data from TCGA to contain a single status & time colums ## ## Input (required): ## - clinical data ## Input (optional): ## - status & time columns: (NOT USED IN THIS SCRIPT - see comment below) ## ideally, a better design would allow a user to specify 1 or more columns ## to check for the status & time columns - however, due to the necessities ## required to pre-process the TCGA clinical data, the script would not be ## generalizeable - and for this reason, the TCGA columns are hard-coded. ## ## Output: a re-formatted clinical file containing 3 columns: sample-ID, status & time ## ## Date: August 21, 2012 ## Author: Peter Waltman ## ##usage, options and doc goes here argspec <- c("format.raw.TCGA.clinical.data.R takes a clustering from ConsensusClusterPlus and clinical survival data and generates a KM-plot, along with the log-rank p-values Usage: format.raw.TCGA.clinical.data.R -c <clinical.file> Options: -o <output file> (tab-delimited (3 col: sample_id <tab> status <tab> time)) ") args <- commandArgs(TRUE) if ( length( args ) == 1 && args =="--help") { write(argspec, stderr()) q(); } ## some helper fn's write.2.tab <- function( mat, fname ) { mat <- rbind( colnames( mat ), mat ) mat <- cbind( c( "ID", rownames( mat )[-1] ), mat ) write.table( mat, fname, sep="\t", row.names=FALSE, col.names=FALSE, quote=FALSE ) } lib.load.quiet <- function( package ) { package <- as.character(substitute(package)) suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) } lib.load.quiet(getopt) spec <- matrix( c( "clinical.fname", "d", 1, "character", "output.fname", "o", 2, "character" ), ncol=4, byrow=TRUE ) opt <- getopt( spec=spec ) ##set some reasonable defaults for the options that are needed, ##but were not specified. if ( is.null(opt$output.fname ) ) { opt$output.fname <-file.path( getwd(), "formated.TCGA.clinical.data" ) } ##orig.clinical.data <- read.delim( opt$clinical.fname, as.is=TRUE, row.names=1 ) orig.clinical.data <- read.delim( opt$clinical.fname, as.is=TRUE ) orig.clinical.data <- unique( orig.clinical.data ) rownames( orig.clinical.data ) <- orig.clinical.data[,1] orig.clinical.data <- orig.clinical.data[, -1 ] ## ugh, some TCGA data sets have all NAs in the "days_to_..." columns if ( "days_to_last_known_alive" %in% colnames( orig.clinical.data ) ) { time.cols <- c( "days_to_death", "days_to_last_followup", "days_to_last_known_alive" ) } else { time.cols <- c( "days_to_death", "days_to_last_followup" ) } good.samps <- ! apply( orig.clinical.data[, time.cols ], 1, function(x) all( is.na(x) ) | all( x <= 0, na.rm=T ) ) orig.clinical.data <- orig.clinical.data[ good.samps, ] if ( is.null(opt$status.column ) ) { status.colname <- "vital_status" if ( status.colname %in% colnames( orig.clinical.data ) ) { opt$status.column <- which( colnames( orig.clinical.data ) %in% status.colname ) clinical.data <- orig.clinical.data[ , opt$status.column ] } else { status.colname <- "days_to_death" if ( status.colname %in% colnames( orig.clinical.data ) ) { opt$status.column <- which( colnames( orig.clinical.data ) %in% status.colname ) clinical.data <- orig.clinical.data[ , opt$status.column ] } else { stop( "can't find a valid entry with status info - have tried vital_status & days_to_death\n" ) } } clinical.data <- as.numeric( ! grepl( "(LIVING|Not)", clinical.data ) ) } if ( is.null(opt$time.column ) ) { time.colname <- "CDE.clinical_time" if ( time.colname %in% colnames( orig.clinical.data ) ) { opt$time.column <- which( colnames( orig.clinical.data ) %in% time.colname ) clinical.data <- cbind( clinical.data, as.numeric( orig.clinical.data[, opt$time.column ] ) ) } else { dec.mat <- matrix( NA, nc=length( time.cols ), nr=nrow( orig.clinical.data ), dimnames=list( rownames( orig.clinical.data ), time.cols ) ) for ( cname in colnames( dec.mat ) ) { if ( cname %in% colnames( orig.clinical.data ) ) { dec.mat[, cname ] <- as.numeric( orig.clinical.data[, cname ] ) } } if ( "days_to_last_known_alive" %in% colnames( orig.clinical.data ) ) { opt$time.column <- sapply( 1:length( clinical.data ), function(i) { if ( clinical.data[i] ) { ## this is a deceased sample return( ifelse( ( !is.na( dec.mat[ i, "days_to_death" ] ) ), dec.mat[ i, "days_to_death" ], ifelse( ( !is.na( dec.mat[ i, "days_to_last_known_alive" ] ) ), dec.mat[ i, "days_to_last_known_alive" ], dec.mat[ i, "days_to_last_followup" ] ) ) ) } else { return( max( dec.mat[ i, c( "days_to_last_followup","days_to_last_known_alive") ], na.rm=T ) ) } } ) } else { opt$time.column <- sapply( 1:length( clinical.data ), function(i) { if ( clinical.data[i] ) { ## this is a deceased sample return( ifelse( ( !is.na( dec.mat[ i, "days_to_death" ] ) ), dec.mat[ i, "days_to_death" ], dec.mat[ i, "days_to_last_followup" ] ) ) } else { return( max( dec.mat[ i, c( "days_to_last_followup") ], na.rm=T ) ) } } ) } clinical.data <- cbind( clinical.data, as.numeric( opt$time.column ) ) } } clinical.data <- as.data.frame( clinical.data ) colnames( clinical.data ) <- c( "status", "time" ) rownames( clinical.data ) <- rownames( orig.clinical.data ) ## check to make sure that the id's are sync'd correctly ## the default format is to use hyphens to separate the elt's of the name ## and to only use the 1st 3 elements of the name ## so we check to see if they're using something else as separators and/or using more than 3 elts reformat.ids <- function( ids ) { if ( grepl( "TCGA\\.", ids[1] ) ) { ids <- sapply( strsplit( ids, "\\." ), function(x) paste( x[1:3], collapse="-" ) ) } else { ## do this just in case there's more than 3 elements to the names if ( grepl( "TCGA-", ids[1] ) ) { ids <- sapply( strsplit( ids, "-" ), function(x) paste( x[1:min( c(3,length(x) ) )], collapse="-" ) ) } } return( ids ) } new.samp.ids <- reformat.ids( rownames( clinical.data ) ) if ( any( duplicated( new.samp.ids ) ) ) { ## in some cases, we have duplicate sample ids in the raw data after we truncate to ## the 1st 3 elts in the barcode, so just simplify the data uniqs <- ! duplicated( new.samp.ids ) clinical.data <- clinical.data[ uniqs, ] new.samp.ids <- new.samp.ids[ uniqs ] } rownames( clinical.data ) <- new.samp.ids write.2.tab( clinical.data, opt$output.fname ) ##write.table( clinical.data, opt$output.fname, sep="\t", quote=FALSE, col.names=NA )