Mercurial > repos > peter-waltman > ucsc_cluster_tools2
diff cluster.tools/dichotomize.sample.clusters.R @ 7:2efa1a284546 draft
Uploaded
author | peter-waltman |
---|---|
date | Mon, 04 Mar 2013 04:11:28 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cluster.tools/dichotomize.sample.clusters.R Mon Mar 04 04:11:28 2013 -0500 @@ -0,0 +1,121 @@ +#!/usr/bin/env Rscript +argspec <- c("tab.2.cdt.R converts a data matrix to cdt format + + Usage: + tab.2.cdt.R -d <data.file> + Optional: + -o <output_file> + \n\n") +args <- commandArgs(TRUE) +if ( length( args ) == 1 && args =="--help") { + write(argspec, stderr()) + q(); +} + +## some helper fn's +write.2.tab <- function( mat, + fname ) { + mat <- rbind( colnames( mat ), mat ) + mat <- cbind( c( "ID", rownames( mat )[-1] ), + mat ) + write.table( mat, fname, sep="\t", row.names=FALSE, col.names=FALSE, quote=FALSE ) +} + +lib.load.quiet <- function( package ) { + package <- as.character(substitute(package)) + suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) +} + +lib.load.quiet( getopt ) +lib.load.quiet( ctc ) +if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { + if ( 'flashClust' %in% installed.packages() ) { + lib.load.quiet( flashClust ) + } else { + if ( 'fastcluster' %in% installed.packages() ) { + lib.load.quiet( fastcluster ) + } + } +} + +spec <- matrix( c( "dataset", "d", 1, "character", + "num.k", "k", 2, "character", + "output.fname", "o", 2, "character" + ), + nc=4, + byrow=TRUE + ) + + +opt <- getopt( spec=spec ) +if ( is.null( opt$output.fname ) ) { opt$output.fname <- file.path( opt$output.report.dir, paste( "data", opt$output.format, sep="." ) ) } +if ( is.null( opt$num.k ) ) { + opt$num.k <- -1 +} else { + num.k <- as.integer( eval( parse( text=paste( "c(",gsub( "-", ":", gsub( ", |,", ",", opt$num.k ) ), ")" ) ) ) ) + num.k <- num.k[ ! is.na( num.k ) ] + if ( length( opt$num.k ) == 0 ) stop( 'invalid input for k_range specified:', opt$num.k, "\n" ) + + num.k <- num.k[ ! num.k %in% 1 ] # strip out a k==1 since that doesn't make any sense + opt$num.k <- num.k; rm( num.k ) +} + +load( opt$dataset ) +## if this is a clustering result w/cluster assignments ('raw' CCPLUS does not) +if ( exists( 'cl' ) ) { + k <- max( as.numeric( cl ) ) + cl <- matrix( cl, nc=1, dimnames=list( names(cl), k ) ) + if ( (length(opt$num.k)==1) && (opt$num.k == -1 ) ) opt$num.k <- k + + ## if this is a one-off to produce a phenotype for the number of clusters that the user originally proposed + if ( !opt$num.k[1] %in% c( -1, k ) ) { + + if ( exists( 'partcl.res' ) || exists( 'select.result' ) ) { + + if ( exists( 'partcl.res' ) ) { + warning( 'The k_range value(s) specified are:', + opt$num.k, + "however k_range vals can not specify alternate k values for partition clusters. Using the K value that corresponds to this result instead\n" ) + } else { + warning( 'The k_range value(s) specified are:', + opt$num.k, + "however k_range vals can not specify alternate k values for specific cluster results from CCPLUS (i.e. those from the Select K or Extract tools). To get alternate K values, re-run the dichotomizer on the 'raw' CCPLUS results. Using the K value that corresponds to this result instead\n" ) + } + + opt$num.k <- k + cl <- matrix( cl, nr=1, dimnames=list( k, names(cl) ) ) + } else { + ## handle if this is a hclust result + + opt$num.k <- opt$num.k[ opt$num.k < length( cl ) ] + cl.samps <- rownames( cl ) + cl <- sapply( opt$num.k, function(i) cutree( treecl.res, i )[ cl.samps ] ) + colnames( cl ) <- opt$num.k + } + } +} else if ( exists( 'results' ) ) { + ## handle if this is a ccplus-raw result + opt$num.k <- opt$num.k[ opt$num.k <= length( results ) ] + cl <- sapply( results[ opt$num.k ], '[[', 'consensusClass' ) + colnames( cl ) <- opt$num.k +} + +pheno.mat <- lapply( 1:ncol(cl), + function(i) { + x <- cl[,i] + cls <- ks <- sort( unique(x) ) + cls <- sapply( cls, function(y) as.numeric( x %in% y ) ) + colnames(cls) <- paste( "CLeq", ks, sep="" ) + rownames(cls) <- names(x) + return(cls) + } + ) +names( pheno.mat ) <- opt$num.k + +final.mat <- matrix( NA, nc=0, nrow=nrow(cl), dimnames=list( names(cl), NULL ) ) +for ( i in names( pheno.mat ) ) { + colnames( pheno.mat[[i]] ) <- paste( "Keq", i, "_", colnames( pheno.mat[[i]] ), sep="" ) + final.mat <- cbind( final.mat, pheno.mat[[i]] ) +} + +write.2.tab( final.mat, opt$output.fname )