Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/dichotomize.sample.clusters.R @ 7:2efa1a284546 draft
Uploaded
author | peter-waltman |
---|---|
date | Mon, 04 Mar 2013 04:11:28 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
6:3d3a8595b981 | 7:2efa1a284546 |
---|---|
1 #!/usr/bin/env Rscript | |
2 argspec <- c("tab.2.cdt.R converts a data matrix to cdt format | |
3 | |
4 Usage: | |
5 tab.2.cdt.R -d <data.file> | |
6 Optional: | |
7 -o <output_file> | |
8 \n\n") | |
9 args <- commandArgs(TRUE) | |
10 if ( length( args ) == 1 && args =="--help") { | |
11 write(argspec, stderr()) | |
12 q(); | |
13 } | |
14 | |
15 ## some helper fn's | |
16 write.2.tab <- function( mat, | |
17 fname ) { | |
18 mat <- rbind( colnames( mat ), mat ) | |
19 mat <- cbind( c( "ID", rownames( mat )[-1] ), | |
20 mat ) | |
21 write.table( mat, fname, sep="\t", row.names=FALSE, col.names=FALSE, quote=FALSE ) | |
22 } | |
23 | |
24 lib.load.quiet <- function( package ) { | |
25 package <- as.character(substitute(package)) | |
26 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) | |
27 } | |
28 | |
29 lib.load.quiet( getopt ) | |
30 lib.load.quiet( ctc ) | |
31 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { | |
32 if ( 'flashClust' %in% installed.packages() ) { | |
33 lib.load.quiet( flashClust ) | |
34 } else { | |
35 if ( 'fastcluster' %in% installed.packages() ) { | |
36 lib.load.quiet( fastcluster ) | |
37 } | |
38 } | |
39 } | |
40 | |
41 spec <- matrix( c( "dataset", "d", 1, "character", | |
42 "num.k", "k", 2, "character", | |
43 "output.fname", "o", 2, "character" | |
44 ), | |
45 nc=4, | |
46 byrow=TRUE | |
47 ) | |
48 | |
49 | |
50 opt <- getopt( spec=spec ) | |
51 if ( is.null( opt$output.fname ) ) { opt$output.fname <- file.path( opt$output.report.dir, paste( "data", opt$output.format, sep="." ) ) } | |
52 if ( is.null( opt$num.k ) ) { | |
53 opt$num.k <- -1 | |
54 } else { | |
55 num.k <- as.integer( eval( parse( text=paste( "c(",gsub( "-", ":", gsub( ", |,", ",", opt$num.k ) ), ")" ) ) ) ) | |
56 num.k <- num.k[ ! is.na( num.k ) ] | |
57 if ( length( opt$num.k ) == 0 ) stop( 'invalid input for k_range specified:', opt$num.k, "\n" ) | |
58 | |
59 num.k <- num.k[ ! num.k %in% 1 ] # strip out a k==1 since that doesn't make any sense | |
60 opt$num.k <- num.k; rm( num.k ) | |
61 } | |
62 | |
63 load( opt$dataset ) | |
64 ## if this is a clustering result w/cluster assignments ('raw' CCPLUS does not) | |
65 if ( exists( 'cl' ) ) { | |
66 k <- max( as.numeric( cl ) ) | |
67 cl <- matrix( cl, nc=1, dimnames=list( names(cl), k ) ) | |
68 if ( (length(opt$num.k)==1) && (opt$num.k == -1 ) ) opt$num.k <- k | |
69 | |
70 ## if this is a one-off to produce a phenotype for the number of clusters that the user originally proposed | |
71 if ( !opt$num.k[1] %in% c( -1, k ) ) { | |
72 | |
73 if ( exists( 'partcl.res' ) || exists( 'select.result' ) ) { | |
74 | |
75 if ( exists( 'partcl.res' ) ) { | |
76 warning( 'The k_range value(s) specified are:', | |
77 opt$num.k, | |
78 "however k_range vals can not specify alternate k values for partition clusters. Using the K value that corresponds to this result instead\n" ) | |
79 } else { | |
80 warning( 'The k_range value(s) specified are:', | |
81 opt$num.k, | |
82 "however k_range vals can not specify alternate k values for specific cluster results from CCPLUS (i.e. those from the Select K or Extract tools). To get alternate K values, re-run the dichotomizer on the 'raw' CCPLUS results. Using the K value that corresponds to this result instead\n" ) | |
83 } | |
84 | |
85 opt$num.k <- k | |
86 cl <- matrix( cl, nr=1, dimnames=list( k, names(cl) ) ) | |
87 } else { | |
88 ## handle if this is a hclust result | |
89 | |
90 opt$num.k <- opt$num.k[ opt$num.k < length( cl ) ] | |
91 cl.samps <- rownames( cl ) | |
92 cl <- sapply( opt$num.k, function(i) cutree( treecl.res, i )[ cl.samps ] ) | |
93 colnames( cl ) <- opt$num.k | |
94 } | |
95 } | |
96 } else if ( exists( 'results' ) ) { | |
97 ## handle if this is a ccplus-raw result | |
98 opt$num.k <- opt$num.k[ opt$num.k <= length( results ) ] | |
99 cl <- sapply( results[ opt$num.k ], '[[', 'consensusClass' ) | |
100 colnames( cl ) <- opt$num.k | |
101 } | |
102 | |
103 pheno.mat <- lapply( 1:ncol(cl), | |
104 function(i) { | |
105 x <- cl[,i] | |
106 cls <- ks <- sort( unique(x) ) | |
107 cls <- sapply( cls, function(y) as.numeric( x %in% y ) ) | |
108 colnames(cls) <- paste( "CLeq", ks, sep="" ) | |
109 rownames(cls) <- names(x) | |
110 return(cls) | |
111 } | |
112 ) | |
113 names( pheno.mat ) <- opt$num.k | |
114 | |
115 final.mat <- matrix( NA, nc=0, nrow=nrow(cl), dimnames=list( names(cl), NULL ) ) | |
116 for ( i in names( pheno.mat ) ) { | |
117 colnames( pheno.mat[[i]] ) <- paste( "Keq", i, "_", colnames( pheno.mat[[i]] ), sep="" ) | |
118 final.mat <- cbind( final.mat, pheno.mat[[i]] ) | |
119 } | |
120 | |
121 write.2.tab( final.mat, opt$output.fname ) |