Mercurial > repos > peter-waltman > ucsc_cluster_tools2
diff cluster.tools/hclust.xml @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children | a58527c632b7 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cluster.tools/hclust.xml Thu Feb 28 01:45:39 2013 -0500 @@ -0,0 +1,98 @@ +<tool id="hcluster" name="Hierarchical Clustering (HAC)" force_history_refresh="True"> + <command interpreter="python">hclust.py +-d $dataset +${dist_obj} +-n ${direction} +-m ${distance_metric} +-l ${linkage} +-k ${numk} +-o ${rdata_output} + +</command> + <inputs> + <param name="dataset" type="data" format='tabular' label="Data Set" help="Specify the data matrix (tab-delimited) to be clustered"/> + <param name="dist_obj" type="boolean" label="Distance Object (R dist object)?" truevalue="-D" falsevalue="" checked="False" help="Check if the matrix contains the pairwise distances between a set of objects"/> + <param name="direction" type="select" label="Cluster Samples or Genes?" help="Specify the matrix dimension to cluster (see help below)"> + <option value="cols">Columns (Samples)</option> + <option value="rows" selected='true'>Rows (Genes)</option> + </param> + + <param name="distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> + <option value="cosine" selected='true'>Cosine</option> + <option value="abscosine">Absolute Cosine</option> + <option value="pearson">Pearson</option> + <option value="abspearson">Absolute Pearson</option> + <option value="spearman">Spearman</option> + <option value="kendall">Kendall</option> + <option value="euclidean">Euclidean</option> + <option value="maximum">Maximum</option> + <option value="manhattan">Manhattan (AKA city block)</option> + <option value="canberra">Canberra</option> + <option value="binary">Binary</option> + </param> + + <param name="linkage" type="select" label="Linkage" help="Specify the linkage to use when clustering (see help below)"> + <option value="average">Average</option> + <option value="centroid">Centroid</option> + <option value="complete" selected='true'>Complete</option> + <option value="mcquitty">McQuitty</option> + <option value="median">Median</option> + <option value="single">Single</option> + <option value="ward">Ward</option> + </param> + + <param name="numk" type="integer" label="Number of Clusters" value="50" help="Specify the number of clusters to use"/> + + </inputs> + <outputs> + <data format="rdata" name="rdata_output" label="Hierarchical Clustering Result (RData)"/> + </outputs> +<help> +.. class:: infomark + +**Perform Hierarchical Clustering (Cluster Samples) on a specified data set** + +---- + +**Parameters** + +- **Data Set** - Specify the data matrix to be clustered. Data must be formated as follows: + + * Tab-delimited + * Use row/column headers + +- **Cluster Samples or Genes** - Specify the dimension of the matrix to cluster: + + * Rows (Genes) + * Columns (Samples) + +- **Distance Object** Specify whether or not the data set is a pairwise distance matrix + +- **Distance Metric** Specify the distance metric to use. Choice of: + + * Cosine (AKA uncentered pearson) + * Absolute Cosine (AKA uncentered pearson, absolute value) + * Pearson (pearson correlation) + * Absolute Pearson (pearson correlation, absolute value) + * Spearman (spearman correlation) + * Kendall (Kendall's Tau) + * Euclidean (euclidean distance) + * Maximum + * Manhattan (AKA city block) + * Canberra + * Binary + +- **Linkage** Specify the linkage to use when clustering. Choice of: + + * Average (see documentation for R's hclust function for explanation of choices) + * Single + * Complete + * Median + * Centroid + * McQuity + * Ward + +- **Number of Clusters** Specify the number of clusters to use + +</help> +</tool>