Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/hclust.xml @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children | a58527c632b7 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0decf3fd54bc |
---|---|
1 <tool id="hcluster" name="Hierarchical Clustering (HAC)" force_history_refresh="True"> | |
2 <command interpreter="python">hclust.py | |
3 -d $dataset | |
4 ${dist_obj} | |
5 -n ${direction} | |
6 -m ${distance_metric} | |
7 -l ${linkage} | |
8 -k ${numk} | |
9 -o ${rdata_output} | |
10 | |
11 </command> | |
12 <inputs> | |
13 <param name="dataset" type="data" format='tabular' label="Data Set" help="Specify the data matrix (tab-delimited) to be clustered"/> | |
14 <param name="dist_obj" type="boolean" label="Distance Object (R dist object)?" truevalue="-D" falsevalue="" checked="False" help="Check if the matrix contains the pairwise distances between a set of objects"/> | |
15 <param name="direction" type="select" label="Cluster Samples or Genes?" help="Specify the matrix dimension to cluster (see help below)"> | |
16 <option value="cols">Columns (Samples)</option> | |
17 <option value="rows" selected='true'>Rows (Genes)</option> | |
18 </param> | |
19 | |
20 <param name="distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> | |
21 <option value="cosine" selected='true'>Cosine</option> | |
22 <option value="abscosine">Absolute Cosine</option> | |
23 <option value="pearson">Pearson</option> | |
24 <option value="abspearson">Absolute Pearson</option> | |
25 <option value="spearman">Spearman</option> | |
26 <option value="kendall">Kendall</option> | |
27 <option value="euclidean">Euclidean</option> | |
28 <option value="maximum">Maximum</option> | |
29 <option value="manhattan">Manhattan (AKA city block)</option> | |
30 <option value="canberra">Canberra</option> | |
31 <option value="binary">Binary</option> | |
32 </param> | |
33 | |
34 <param name="linkage" type="select" label="Linkage" help="Specify the linkage to use when clustering (see help below)"> | |
35 <option value="average">Average</option> | |
36 <option value="centroid">Centroid</option> | |
37 <option value="complete" selected='true'>Complete</option> | |
38 <option value="mcquitty">McQuitty</option> | |
39 <option value="median">Median</option> | |
40 <option value="single">Single</option> | |
41 <option value="ward">Ward</option> | |
42 </param> | |
43 | |
44 <param name="numk" type="integer" label="Number of Clusters" value="50" help="Specify the number of clusters to use"/> | |
45 | |
46 </inputs> | |
47 <outputs> | |
48 <data format="rdata" name="rdata_output" label="Hierarchical Clustering Result (RData)"/> | |
49 </outputs> | |
50 <help> | |
51 .. class:: infomark | |
52 | |
53 **Perform Hierarchical Clustering (Cluster Samples) on a specified data set** | |
54 | |
55 ---- | |
56 | |
57 **Parameters** | |
58 | |
59 - **Data Set** - Specify the data matrix to be clustered. Data must be formated as follows: | |
60 | |
61 * Tab-delimited | |
62 * Use row/column headers | |
63 | |
64 - **Cluster Samples or Genes** - Specify the dimension of the matrix to cluster: | |
65 | |
66 * Rows (Genes) | |
67 * Columns (Samples) | |
68 | |
69 - **Distance Object** Specify whether or not the data set is a pairwise distance matrix | |
70 | |
71 - **Distance Metric** Specify the distance metric to use. Choice of: | |
72 | |
73 * Cosine (AKA uncentered pearson) | |
74 * Absolute Cosine (AKA uncentered pearson, absolute value) | |
75 * Pearson (pearson correlation) | |
76 * Absolute Pearson (pearson correlation, absolute value) | |
77 * Spearman (spearman correlation) | |
78 * Kendall (Kendall's Tau) | |
79 * Euclidean (euclidean distance) | |
80 * Maximum | |
81 * Manhattan (AKA city block) | |
82 * Canberra | |
83 * Binary | |
84 | |
85 - **Linkage** Specify the linkage to use when clustering. Choice of: | |
86 | |
87 * Average (see documentation for R's hclust function for explanation of choices) | |
88 * Single | |
89 * Complete | |
90 * Median | |
91 * Centroid | |
92 * McQuity | |
93 * Ward | |
94 | |
95 - **Number of Clusters** Specify the number of clusters to use | |
96 | |
97 </help> | |
98 </tool> |