Mercurial > repos > peter-waltman > ucsc_cluster_tools2
diff cluster.tools/hclust.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children | a58527c632b7 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cluster.tools/hclust.R Thu Feb 28 01:45:39 2013 -0500 @@ -0,0 +1,87 @@ +#!/usr/bin/env Rscript + +argspec <- c("hclust.R help TBD + \n\n") +args <- commandArgs(TRUE) +if ( length( args ) == 1 && args =="--help") { + write(argspec, stderr()) + q(); +} + +lib.load.quiet <- function( package ) { + package <- as.character(substitute(package)) + suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) +} +lib.load.quiet(getopt) +lib.load.quiet( amap ) +## if any of the faster clustering methods are available on this system, load them +if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { + if ( 'flashClust' %in% installed.packages() ) { + lib.load.quiet( flashClust ) + } else { + if ( 'fastcluster' %in% installed.packages() ) { + lib.load.quiet( fastcluster ) + } + } +} + +spec <- matrix( c( "data.fname", "d", 1, "character", + "num.k", "k", 1, "integer", + "distance.metric", "m", 2, "character", + "dist.obj", "D", 2, "logical", + "direction", "n", 2, "character", + "linkage", "l", 2, "character", + "output.name", "o", 2, "character" + ), + nc=4, + byrow=TRUE + ) + +opt <- getopt( spec=spec ) + +if ( is.null( opt$distance.metric ) ) { opt$distance.metric <- "euclidean" } +if ( is.null( opt$dist.obj ) ) { opt$dist.obj <- FALSE } +if ( is.null( opt$direction ) ) { opt$direction <- "cols" } +if ( is.null( opt$linkage ) ) { opt$linkage <- "average" } +if ( is.null( opt$num.k ) ) { opt$num.k <- 10 } +if ( is.null( opt$output.name ) ) { opt$output.name <- "hclust.result.rda" } + +data <- as.matrix( read.delim( opt$data.fname, header=T, row.names=1 , check.names=FALSE ) ) +if ( opt$direction == "cols" ) { + ## need to transpose b/c both kmeans & pam cluster the rows + ## this shouldn't have an effect upon a distance matrix + data <- t( data ) +} +if ( opt$num.k > nrow( data ) ) { + err.msg <- paste( "K specified is greater than the number of elements (", opt$direction, ") in data matrix to be clustereed\n", sep="" ) + stop( err.msg ) +} + +if ( opt$dist.obj ) { + dist.mat <- as.dist( data ) +} else { + ## we're going to use the amap Dist function, but they misname their correlation + ## functions, so re-name them correctly + amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", + "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" ) + names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", + "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" ) + + if ( ! opt$distance.metric %in% names( amap.distance ) ) stop("unsupported distance.") + dist.mat <- Dist( data, method=as.character( amap.distance[ opt$distance.metric ] ) ) + attr( dist.mat, "method" ) <- opt$distance.metric +} + +## now, do the clustering +treecl.res <- hclust( dist.mat, method=opt$linkage ) +cutree.res <- cutree( treecl.res, k=opt$num.k ) +##cl <- cbind( names( cutree.res ), as.numeric( cutree.res ) ) +##colnames( cl ) <- c( "ID", "class" ) + +if ( opt$direction == "cols" ) { + ## need to re-transpose the data back to it's original dimensionality + data <- t( data ) +} + +cl <- cutree.res +save( file=opt$output.name, treecl.res, cl, data )