Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/hclust.R @ 0:0decf3fd54bc draft
Uploaded
| author | peter-waltman |
|---|---|
| date | Thu, 28 Feb 2013 01:45:39 -0500 |
| parents | |
| children | a58527c632b7 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:0decf3fd54bc |
|---|---|
| 1 #!/usr/bin/env Rscript | |
| 2 | |
| 3 argspec <- c("hclust.R help TBD | |
| 4 \n\n") | |
| 5 args <- commandArgs(TRUE) | |
| 6 if ( length( args ) == 1 && args =="--help") { | |
| 7 write(argspec, stderr()) | |
| 8 q(); | |
| 9 } | |
| 10 | |
| 11 lib.load.quiet <- function( package ) { | |
| 12 package <- as.character(substitute(package)) | |
| 13 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) | |
| 14 } | |
| 15 lib.load.quiet(getopt) | |
| 16 lib.load.quiet( amap ) | |
| 17 ## if any of the faster clustering methods are available on this system, load them | |
| 18 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { | |
| 19 if ( 'flashClust' %in% installed.packages() ) { | |
| 20 lib.load.quiet( flashClust ) | |
| 21 } else { | |
| 22 if ( 'fastcluster' %in% installed.packages() ) { | |
| 23 lib.load.quiet( fastcluster ) | |
| 24 } | |
| 25 } | |
| 26 } | |
| 27 | |
| 28 spec <- matrix( c( "data.fname", "d", 1, "character", | |
| 29 "num.k", "k", 1, "integer", | |
| 30 "distance.metric", "m", 2, "character", | |
| 31 "dist.obj", "D", 2, "logical", | |
| 32 "direction", "n", 2, "character", | |
| 33 "linkage", "l", 2, "character", | |
| 34 "output.name", "o", 2, "character" | |
| 35 ), | |
| 36 nc=4, | |
| 37 byrow=TRUE | |
| 38 ) | |
| 39 | |
| 40 opt <- getopt( spec=spec ) | |
| 41 | |
| 42 if ( is.null( opt$distance.metric ) ) { opt$distance.metric <- "euclidean" } | |
| 43 if ( is.null( opt$dist.obj ) ) { opt$dist.obj <- FALSE } | |
| 44 if ( is.null( opt$direction ) ) { opt$direction <- "cols" } | |
| 45 if ( is.null( opt$linkage ) ) { opt$linkage <- "average" } | |
| 46 if ( is.null( opt$num.k ) ) { opt$num.k <- 10 } | |
| 47 if ( is.null( opt$output.name ) ) { opt$output.name <- "hclust.result.rda" } | |
| 48 | |
| 49 data <- as.matrix( read.delim( opt$data.fname, header=T, row.names=1 , check.names=FALSE ) ) | |
| 50 if ( opt$direction == "cols" ) { | |
| 51 ## need to transpose b/c both kmeans & pam cluster the rows | |
| 52 ## this shouldn't have an effect upon a distance matrix | |
| 53 data <- t( data ) | |
| 54 } | |
| 55 if ( opt$num.k > nrow( data ) ) { | |
| 56 err.msg <- paste( "K specified is greater than the number of elements (", opt$direction, ") in data matrix to be clustereed\n", sep="" ) | |
| 57 stop( err.msg ) | |
| 58 } | |
| 59 | |
| 60 if ( opt$dist.obj ) { | |
| 61 dist.mat <- as.dist( data ) | |
| 62 } else { | |
| 63 ## we're going to use the amap Dist function, but they misname their correlation | |
| 64 ## functions, so re-name them correctly | |
| 65 amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
| 66 "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" ) | |
| 67 names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
| 68 "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" ) | |
| 69 | |
| 70 if ( ! opt$distance.metric %in% names( amap.distance ) ) stop("unsupported distance.") | |
| 71 dist.mat <- Dist( data, method=as.character( amap.distance[ opt$distance.metric ] ) ) | |
| 72 attr( dist.mat, "method" ) <- opt$distance.metric | |
| 73 } | |
| 74 | |
| 75 ## now, do the clustering | |
| 76 treecl.res <- hclust( dist.mat, method=opt$linkage ) | |
| 77 cutree.res <- cutree( treecl.res, k=opt$num.k ) | |
| 78 ##cl <- cbind( names( cutree.res ), as.numeric( cutree.res ) ) | |
| 79 ##colnames( cl ) <- c( "ID", "class" ) | |
| 80 | |
| 81 if ( opt$direction == "cols" ) { | |
| 82 ## need to re-transpose the data back to it's original dimensionality | |
| 83 data <- t( data ) | |
| 84 } | |
| 85 | |
| 86 cl <- cutree.res | |
| 87 save( file=opt$output.name, treecl.res, cl, data ) |
