Mercurial > repos > peter-waltman > ucsc_cluster_tools2
comparison cluster.tools/hclust.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children | a58527c632b7 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0decf3fd54bc |
---|---|
1 #!/usr/bin/env Rscript | |
2 | |
3 argspec <- c("hclust.R help TBD | |
4 \n\n") | |
5 args <- commandArgs(TRUE) | |
6 if ( length( args ) == 1 && args =="--help") { | |
7 write(argspec, stderr()) | |
8 q(); | |
9 } | |
10 | |
11 lib.load.quiet <- function( package ) { | |
12 package <- as.character(substitute(package)) | |
13 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) | |
14 } | |
15 lib.load.quiet(getopt) | |
16 lib.load.quiet( amap ) | |
17 ## if any of the faster clustering methods are available on this system, load them | |
18 if ( any( c( 'flashClust', 'fastcluster' ) %in% installed.packages() ) ) { | |
19 if ( 'flashClust' %in% installed.packages() ) { | |
20 lib.load.quiet( flashClust ) | |
21 } else { | |
22 if ( 'fastcluster' %in% installed.packages() ) { | |
23 lib.load.quiet( fastcluster ) | |
24 } | |
25 } | |
26 } | |
27 | |
28 spec <- matrix( c( "data.fname", "d", 1, "character", | |
29 "num.k", "k", 1, "integer", | |
30 "distance.metric", "m", 2, "character", | |
31 "dist.obj", "D", 2, "logical", | |
32 "direction", "n", 2, "character", | |
33 "linkage", "l", 2, "character", | |
34 "output.name", "o", 2, "character" | |
35 ), | |
36 nc=4, | |
37 byrow=TRUE | |
38 ) | |
39 | |
40 opt <- getopt( spec=spec ) | |
41 | |
42 if ( is.null( opt$distance.metric ) ) { opt$distance.metric <- "euclidean" } | |
43 if ( is.null( opt$dist.obj ) ) { opt$dist.obj <- FALSE } | |
44 if ( is.null( opt$direction ) ) { opt$direction <- "cols" } | |
45 if ( is.null( opt$linkage ) ) { opt$linkage <- "average" } | |
46 if ( is.null( opt$num.k ) ) { opt$num.k <- 10 } | |
47 if ( is.null( opt$output.name ) ) { opt$output.name <- "hclust.result.rda" } | |
48 | |
49 data <- as.matrix( read.delim( opt$data.fname, header=T, row.names=1 , check.names=FALSE ) ) | |
50 if ( opt$direction == "cols" ) { | |
51 ## need to transpose b/c both kmeans & pam cluster the rows | |
52 ## this shouldn't have an effect upon a distance matrix | |
53 data <- t( data ) | |
54 } | |
55 if ( opt$num.k > nrow( data ) ) { | |
56 err.msg <- paste( "K specified is greater than the number of elements (", opt$direction, ") in data matrix to be clustereed\n", sep="" ) | |
57 stop( err.msg ) | |
58 } | |
59 | |
60 if ( opt$dist.obj ) { | |
61 dist.mat <- as.dist( data ) | |
62 } else { | |
63 ## we're going to use the amap Dist function, but they misname their correlation | |
64 ## functions, so re-name them correctly | |
65 amap.distance <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
66 "pearson", "abspearson", "correlation", "abscorrelation", "spearman", "kendall" ) | |
67 names( amap.distance ) <- c( "euclidean", "maximum", "manhattan", "canberra", "binary", | |
68 "cosine", "abscosine", "pearson", "abspearson", "spearman", "kendall" ) | |
69 | |
70 if ( ! opt$distance.metric %in% names( amap.distance ) ) stop("unsupported distance.") | |
71 dist.mat <- Dist( data, method=as.character( amap.distance[ opt$distance.metric ] ) ) | |
72 attr( dist.mat, "method" ) <- opt$distance.metric | |
73 } | |
74 | |
75 ## now, do the clustering | |
76 treecl.res <- hclust( dist.mat, method=opt$linkage ) | |
77 cutree.res <- cutree( treecl.res, k=opt$num.k ) | |
78 ##cl <- cbind( names( cutree.res ), as.numeric( cutree.res ) ) | |
79 ##colnames( cl ) <- c( "ID", "class" ) | |
80 | |
81 if ( opt$direction == "cols" ) { | |
82 ## need to re-transpose the data back to it's original dimensionality | |
83 data <- t( data ) | |
84 } | |
85 | |
86 cl <- cutree.res | |
87 save( file=opt$output.name, treecl.res, cl, data ) |