Mercurial > repos > peter-waltman > ucsc_cluster_tools2
diff cluster.tools/consensus.clustering.xml @ 0:0decf3fd54bc draft
Uploaded
| author | peter-waltman |
|---|---|
| date | Thu, 28 Feb 2013 01:45:39 -0500 |
| parents | |
| children | a58527c632b7 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cluster.tools/consensus.clustering.xml Thu Feb 28 01:45:39 2013 -0500 @@ -0,0 +1,149 @@ +<tool id="consensus_clustering" name="Consensus Clustering" force_history_refresh="True"> + <command interpreter="python">consensus.clustering.py +-d $dataset +-n ${direction} +-a ${method.algorithm} +#if $method.algorithm == 'hc' # -m ${method.hc_distance_metric} +-i ${method.innerLinkage} +#end if +#if $method.algorithm == 'pam' # -m ${method.pam_distance_metric} +#end if +#if $method.algorithm == 'km' # -m euclidean +#end if +-k ${kmax} +-r ${reps} +-f ${finalLinkage} +-o ${output} +-h $report +-p ${report.files_path} + +</command> + <inputs> + <param name="dataset" type="data" format='tabular' label="Data Set" help="Specify the data matrix (tab-delimited) to be clustered"/> + <param name="direction" type="select" label="Cluster Samples or Genes?" help="Specify the matrix dimension to cluster (see help below)"> + <option value="rows">Genes (rows)</option> + <option value="cols" selected="true">Samples (columns)</option> + </param> + + <conditional name='method'> + <param name="algorithm" type="select" label="Clustering Algorithm" help="Specify the cluster method to use (see help below)"> + <option value="hc">Hierarchical Clustering</option> + <option value="pam" selected='true'>Partioning around Medioids</option> + <option value="km">K-Means Clustering</option> + </param> + <when value='hc'> + <param name="hc_distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> + <option value="cosine" selected='true'>Cosine</option> + <option value="abscosine">Absolute Cosine</option> + <option value="pearson">Pearson</option> + <option value="abspearson">Absolute Pearson</option> + <option value="spearman">Spearman</option> + <option value="kendall">Kendall</option> + <option value="euclidean">Euclidean</option> + <option value="maximum">Maximum</option> + <option value="manhattan">Manhattan (AKA city block)</option> + <option value="canberra">Canberra</option> + <option value="binary">Binary</option> + </param> + + <param name="innerLinkage" type="select" label="Linkage for inner HAC " help="Specify the linkage to use during the 'inner' hierarchcial clustering (see help below)"> + <option value="average">Average</option> + <option value="centroid">Centroid</option> + <option value="complete" selected='true'>Complete</option> + <option value="mcquitty">McQuitty</option> + <option value="median">Median</option> + <option value="single">Single</option> + <option value="ward">Ward</option> + </param> + </when> + <when value='pam'> + <param name="pam_distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)"> + <option value="cosine" selected='true'>Cosine</option> + <option value="abscosine">Absolute Cosine</option> + <option value="pearson">Pearson</option> + <option value="abspearson">Absolute Pearson</option> + <option value="spearman">Spearman</option> + <option value="kendall">Kendall</option> + <option value="euclidean">Euclidean</option> + <option value="maximum">Maximum</option> + <option value="manhattan">Manhattan (AKA city block)</option> + <option value="canberra">Canberra</option> + <option value="binary">Binary</option> + </param> + </when> + </conditional> + <param name="finalLinkage" type="select" label="Final Linkage" help="Specify the linkage to use when clustering the consensus matrix (see help below)"> + <option value="average">Average</option> + <option value="centroid">Centroid</option> + <option value="complete" selected='true'>Complete</option> + <option value="mcquitty">McQuitty</option> + <option value="median">Median</option> + <option value="single">Single</option> + <option value="ward">Ward</option> + </param> + + + <param name="kmax" type="integer" label="K Max" value="10" help="Maximum number of K to analyze" /> + <param name="reps" type="integer" label="Repetitions" value="500" help="Number of Sample Permutations to Repeat"/> + + </inputs> + <outputs> + <data format="html" name="report" label="Consensus Clustering Report (HTML)"/> + <data format="rdata" name="output" label="Consensus Clustering Data (RData)"/> + </outputs> +<help> +.. class:: infomark + +**Perform Consensus Clustering (Cluster Samples) on a specified data set** + +---- + +**Parameters** + +- **Data Set** - Specify the data matrix to be clustered. Data must be formated as follows: + + * Tab-delimited + * Use row/column headers + +- **Cluster Samples or Genes** - Specify the dimension of the matrix to cluster: + + * Rows (Genes) + * Columns (Samples) + +- **Clustering Algorithm** Specify the choice of algorithm to use. Choice of: + + * Hierarchical Clustering + * K-Means + +- **Distance Metric** Specify the choice of distance metric to use. Choice of: + + * Cosine (AKA uncentered pearson) + * Absolute Cosine (AKA uncentered pearson, absolute value) + * Pearson (pearson correlation) + * Absolute Pearson (pearson correlation, absolute value) + * Spearman (spearman correlation) + * Kendall (Kendall's Tau) + * Euclidean (euclidean distance) + * Maximum + * Manhattan (AKA city block) + * Canberra + * Binary + +- **Final Linkage** Specify the choice linkage to use when clustering Consensus Matrix. Choice of: + + * Average (see documentation for R's hclust function for explanation of choices) + * Single + * Complete + * Median + * Centroid + * McQuity + * Ward + +- **Inner Linkage** Specify the choice linkage to use when using HAC as clustering method. Same choices as 'Final Linkage' + +- **K Max** Specify the number to use for the largest K considered + +- **Repititions** Specify the number of 'bootstrap' repitions to perform to generate the consensus matrix + +</help> +</tool>
