comparison cluster.tools/gen.survival.curves.R @ 0:0decf3fd54bc draft

Uploaded
author peter-waltman
date Thu, 28 Feb 2013 01:45:39 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0decf3fd54bc
1 #!/usr/bin/env Rscript
2 ##
3 ## Calculates the log-rank test for a given clustering, in the output format from ConsensusClusterPlus
4 ##
5 ## Input (required):
6 ## - consensus cluster file (consensusClass.csv file)
7 ## - survival data
8 ## Input (optional):
9 ## Output: a KM plot, with the most significant p-value. Output to stdout can be captured by re-direction
10 ##
11 ## Uses: survival library
12 ## Date: August 21, 2012
13 ## Author: Peter Waltman
14 ##
15
16 ##usage, options and doc goes here
17 argspec <- c("gen.survival.curves.R takes a clustering from ConsensusClusterPlus and clinical survival data
18 and generates a KM-plot, along with the log-rank p-values
19
20 Usage:
21 gen.survival.curves.R -c <cluster.file> -s <clinical.file>
22 Options:
23 -o <output file> (postscript)
24 -m <mode> (all, one, both)
25 \"all\" - perform all-vs-all log-rank test
26 \"one\" - perform one-vs-others log-rank test (returns min)
27 \"both\" - perform both \"all\" and \"one\" tests
28 -t <title>
29 -p <pval.only> ( only return the p-value for this given mode - no plotting at all (to screen or postscript))
30 -v <verbose>
31 ")
32
33 lib.load.quiet <- function( package ) {
34 package <- as.character(substitute(package))
35 suppressPackageStartupMessages( do.call( "library", list( package=package ) ) )
36 }
37 lib.load.quiet(getopt)
38 lib.load.quiet( survival )
39
40
41 args <- commandArgs(TRUE)
42 if ( length( args ) == 1 && args =="--help") {
43 write(argspec, stderr())
44 q();
45 }
46
47 spec <- matrix( c( "cluster.fname", "C", 1, "character",
48 "survival.fname", "S", 1, "character",
49 "mode", "M", 2, "character",
50 "title", "T", 2, "character",
51 "myplots.rda", "R", 2, "character",
52 "image.format", "I", 2, "character",
53 "output.fname", "O", 2, "character",
54 "pval.only", "P", 0, "logical",
55 "verbose", "V", 0, "logical"
56 ),
57 ncol=4,
58 byrow=TRUE
59 )
60 opt <- getopt( spec=spec )
61
62
63 #set some reasonable defaults for the options that are needed,
64 #but were not specified.
65 if ( is.null(opt$mode ) ) {
66 opt$mode <- "all"
67 } else {
68 if ( ! opt$mode %in% c( 'all', 'one', 'both' ) ) {
69 stop( "invalid mode specified,' -m", opt$mode, "'. must be either {all, one, both}\n" )
70 }
71 }
72 if ( is.null( opt$title ) ) {
73 opt$title <- opt$cluster.fname
74 opt$title <- strsplit( opt$title, "\\/" )[[1]]
75 opt$title <- opt$title[ length( opt$title ) ]
76 }
77 if ( is.null( opt$image.format ) ){
78 opt$image.format <- "png"
79 } else {
80 if ( ! opt$image.format %in% c( "pdf", "png", "none" ) ) stop( 'invalid image format specified\n' )
81 }
82 if ( is.null(opt$output.fname ) ) { opt$output.fname <- paste( opt$mode, "survival.curve", opt$image.format, sep="." ) }
83 if ( is.null(opt$cluster.header ) ) { opt$cluster.header = FALSE }
84 if ( is.null(opt$pval.only ) ) { opt$pval.only = FALSE }
85 if ( is.null(opt$verbose ) ) { opt$verbose = FALSE }
86
87 ##print some progress messages to stderr, if requested.
88 if ( opt$verbose ) { write("writing...",stderr()); }
89
90 load( opt$cluster.fname )
91 cluster.data <- cbind( names( cl ), as.numeric( cl ) )
92 colnames( cluster.data ) <- c( "id", "group_num" )
93 rownames( cluster.data ) <- names( cl )
94
95 survival.data <- read.delim( opt$survival.fname, as.is=TRUE, row.names=1 )
96 survival.data <- cbind( rownames( survival.data ), survival.data ) ## add in the ids, so we can merge on them
97 if ( length( colnames( survival.data ) ) == 3 ) {
98 ## we have to left-shift the current colanmes to drop the 1st one
99 ## b/c cbind will add one for the column we just added
100 colnames( survival.data ) <- c( "id", colnames( survival.data )[-1] )
101 }
102 if ( length( colnames( survival.data ) ) == 2 ) {
103 ## added just in case there's a change to cbind as R is prone to doing
104 colnames( survival.data ) <- c( "id", colnames( survival.data ) )
105 }
106 survival.data$id <- as.character( survival.data$id )
107
108
109 ## Now, filter so we only contain the same samples
110 n.clust.data.samps <- nrow( cluster.data )
111 n.surv.data.samps <- nrow( survival.data )
112 if ( n.clust.data.samps > n.surv.data.samps ) {
113 ovp.samples <- rownames( cluster.data )
114 ovp.samples <- ovp.samples[ ovp.samples %in% survival.data$id ]
115 } else {
116 ovp.samples <- survival.data$id
117 ovp.samples <- ovp.samples[ ovp.samples %in% rownames( cluster.data ) ]
118 }
119
120 cluster.data <- cluster.data[ ovp.samples, , drop=FALSE]
121 survival.data <- survival.data[ ovp.samples, ]
122 survival.data <- merge( survival.data, cluster.data )
123
124
125 calc.all.pval <- function( survival.data ) {
126 survdiff( Surv( time, status )~group_num, data=survival.data )
127 surv.res <- survdiff( Surv( time, status )~group_num, data=survival.data )
128 pval <- surv.res$chisq
129 df <- length( surv.res$n ) - 1
130 pval <- pchisq( pval, df=df, lower=F )
131 return( pval )
132 }
133
134 calc.one.v.others.pval <- function( survival.data ) {
135 grps <- sort( unique( as.numeric( survival.data$group_num ) ) )
136
137 retval <- numeric()
138 for ( g in grps ) {
139 one.v.all.survival.data <- survival.data
140 tmp <- as.numeric( one.v.all.survival.data$group_num )
141 tmp[ ! tmp %in% g ] <- -1
142 tmp[ tmp %in% g ] <- 1
143 tmp[ tmp %in% -1 ] <- 2
144 one.v.all.survival.data$group_num <- tmp
145 surv.res <- survdiff( Surv( time, status )~group_num, data=one.v.all.survival.data )
146 pval <- surv.res$chisq
147 df <- length( surv.res$n ) - 1
148 pval <- pchisq( pval, df=df, lower=F )
149 retval <- c( retval, pval )
150 }
151 names( retval ) <- grps
152 return( retval )
153 }
154
155
156 if ( opt$mode == "all" ) {
157
158 pval <- calc.all.pval( survival.data )
159 log.rank <- paste( "Log Rank p-value:", sprintf( "%1.2e",pval ) )
160 opt$title <- paste( opt$title, log.rank, sep="\n" )
161 } else {
162 if ( opt$mode == "one" ) {
163
164 pvals <- calc.one.v.others.pval( survival.data )
165 min.p <- min( pvals, na.rm=T )
166 if ( length( min.p ) == 0 ) {
167 stop( 'no valid p-value returned from the one-v-others test\n' )
168 }
169 cluster.num <- names( pvals )[ pvals == min.p ]
170 pval <- pvals[ cluster.num ]
171 log.rank <- paste( "Log Rank p-value for cluster", cluster.num,"is:", sprintf( "%1.2e",pval ) )
172 opt$title <- paste( opt$title, log.rank, sep="\n" )
173 } else {
174 if ( opt$mode== "both" ) {
175 ## add the all-v-all p-value
176 bak <- pval <- calc.all.pval( survival.data )
177 log.rank <- paste( "Log Rank p-value:", sprintf( "%1.2e",pval ) )
178 opt$title <- paste( opt$title, log.rank, sep="\n" )
179
180 ## now add the one-v-all p-value
181 pvals <- calc.one.v.others.pval( survival.data )
182 min.p <- min( pvals, na.rm=T )
183 if ( length( min.p ) == 0 ) {
184 stop( 'no valid p-value returned from the one-v-others test\n' )
185 }
186 cluster.num <- names( pvals )[ pvals == min.p ]
187 pval <- pvals[ cluster.num ]
188 log.rank <- paste( "Log Rank p-value for cluster", cluster.num,"is:", sprintf( "%1.2e",pval ) )
189 opt$title <- paste( opt$title, log.rank, sep="\n" )
190
191 if ( opt$pval.only ) {
192 pval <- min( c( bak, pval ), na.rm=T )
193 }
194 }
195 else {
196 stop( "invalid mode specified, mode = ", opt$mode, "\n" )
197 }
198 }
199 }
200
201 if ( opt$pval.only ) {
202 cat( paste(pval, "\n", sep="" ), file=stdout() )
203 }
204
205
206 if ( ! opt$pval.only ) {
207 ngrps <- length( unique( survival.data$group_num ) )
208 col.map <- rainbow( ngrps )
209
210
211
212 ##postscript( opt$output.fname, horizontal=T, paper='letter' )
213 if ( opt$image.format == 'png' ) {
214 plot.dev <- png( opt$output.fname,
215 width=11,
216 height=8.5,
217 units='in',
218 res=72 )
219 } else if ( opt$image.format == 'pdf' ) {
220 pdf( opt$output.fname,
221 paper="letter" )
222 } else if ( opt$image.format == 'none' ) {
223 ## do nothing - this allows other scripts to call this and hopefully plot into them
224 ## NOPE, this doesn't work. see what I do with the myplots.rda file
225 }
226
227 plot( survfit( Surv( time, status )~group_num, data=survival.data ),
228 main = opt$title,
229 ##lty = 1:ngrps,
230 lty=1,
231 col=col.map,
232 ylab = "Probability",
233 xlab = "Survival Time in Days",
234 )
235
236
237 ## set the legend.labels if they're still not set yet
238 if( ! exists( "legend.labels" ) ) {
239 grp.counts <- table( as.factor( survival.data[, "group_num" ] ) )
240 legend.labels <- paste( "Cluster", 1:ngrps, paste( "(n=", as.integer(grp.counts), ")", sep="" ) )
241 }
242
243 legend( "topright",
244 lty=1,
245 col=col.map,
246 bty = "n",
247 legend=legend.labels
248 )
249
250 if( opt$image.format != "none" ) dev.off()
251 }