Mercurial > repos > peter-waltman > ucsc_cluster_tools2
view cluster.tools/gen.survival.curves.R @ 0:0decf3fd54bc draft
Uploaded
author | peter-waltman |
---|---|
date | Thu, 28 Feb 2013 01:45:39 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript ## ## Calculates the log-rank test for a given clustering, in the output format from ConsensusClusterPlus ## ## Input (required): ## - consensus cluster file (consensusClass.csv file) ## - survival data ## Input (optional): ## Output: a KM plot, with the most significant p-value. Output to stdout can be captured by re-direction ## ## Uses: survival library ## Date: August 21, 2012 ## Author: Peter Waltman ## ##usage, options and doc goes here argspec <- c("gen.survival.curves.R takes a clustering from ConsensusClusterPlus and clinical survival data and generates a KM-plot, along with the log-rank p-values Usage: gen.survival.curves.R -c <cluster.file> -s <clinical.file> Options: -o <output file> (postscript) -m <mode> (all, one, both) \"all\" - perform all-vs-all log-rank test \"one\" - perform one-vs-others log-rank test (returns min) \"both\" - perform both \"all\" and \"one\" tests -t <title> -p <pval.only> ( only return the p-value for this given mode - no plotting at all (to screen or postscript)) -v <verbose> ") lib.load.quiet <- function( package ) { package <- as.character(substitute(package)) suppressPackageStartupMessages( do.call( "library", list( package=package ) ) ) } lib.load.quiet(getopt) lib.load.quiet( survival ) args <- commandArgs(TRUE) if ( length( args ) == 1 && args =="--help") { write(argspec, stderr()) q(); } spec <- matrix( c( "cluster.fname", "C", 1, "character", "survival.fname", "S", 1, "character", "mode", "M", 2, "character", "title", "T", 2, "character", "myplots.rda", "R", 2, "character", "image.format", "I", 2, "character", "output.fname", "O", 2, "character", "pval.only", "P", 0, "logical", "verbose", "V", 0, "logical" ), ncol=4, byrow=TRUE ) opt <- getopt( spec=spec ) #set some reasonable defaults for the options that are needed, #but were not specified. if ( is.null(opt$mode ) ) { opt$mode <- "all" } else { if ( ! opt$mode %in% c( 'all', 'one', 'both' ) ) { stop( "invalid mode specified,' -m", opt$mode, "'. must be either {all, one, both}\n" ) } } if ( is.null( opt$title ) ) { opt$title <- opt$cluster.fname opt$title <- strsplit( opt$title, "\\/" )[[1]] opt$title <- opt$title[ length( opt$title ) ] } if ( is.null( opt$image.format ) ){ opt$image.format <- "png" } else { if ( ! opt$image.format %in% c( "pdf", "png", "none" ) ) stop( 'invalid image format specified\n' ) } if ( is.null(opt$output.fname ) ) { opt$output.fname <- paste( opt$mode, "survival.curve", opt$image.format, sep="." ) } if ( is.null(opt$cluster.header ) ) { opt$cluster.header = FALSE } if ( is.null(opt$pval.only ) ) { opt$pval.only = FALSE } if ( is.null(opt$verbose ) ) { opt$verbose = FALSE } ##print some progress messages to stderr, if requested. if ( opt$verbose ) { write("writing...",stderr()); } load( opt$cluster.fname ) cluster.data <- cbind( names( cl ), as.numeric( cl ) ) colnames( cluster.data ) <- c( "id", "group_num" ) rownames( cluster.data ) <- names( cl ) survival.data <- read.delim( opt$survival.fname, as.is=TRUE, row.names=1 ) survival.data <- cbind( rownames( survival.data ), survival.data ) ## add in the ids, so we can merge on them if ( length( colnames( survival.data ) ) == 3 ) { ## we have to left-shift the current colanmes to drop the 1st one ## b/c cbind will add one for the column we just added colnames( survival.data ) <- c( "id", colnames( survival.data )[-1] ) } if ( length( colnames( survival.data ) ) == 2 ) { ## added just in case there's a change to cbind as R is prone to doing colnames( survival.data ) <- c( "id", colnames( survival.data ) ) } survival.data$id <- as.character( survival.data$id ) ## Now, filter so we only contain the same samples n.clust.data.samps <- nrow( cluster.data ) n.surv.data.samps <- nrow( survival.data ) if ( n.clust.data.samps > n.surv.data.samps ) { ovp.samples <- rownames( cluster.data ) ovp.samples <- ovp.samples[ ovp.samples %in% survival.data$id ] } else { ovp.samples <- survival.data$id ovp.samples <- ovp.samples[ ovp.samples %in% rownames( cluster.data ) ] } cluster.data <- cluster.data[ ovp.samples, , drop=FALSE] survival.data <- survival.data[ ovp.samples, ] survival.data <- merge( survival.data, cluster.data ) calc.all.pval <- function( survival.data ) { survdiff( Surv( time, status )~group_num, data=survival.data ) surv.res <- survdiff( Surv( time, status )~group_num, data=survival.data ) pval <- surv.res$chisq df <- length( surv.res$n ) - 1 pval <- pchisq( pval, df=df, lower=F ) return( pval ) } calc.one.v.others.pval <- function( survival.data ) { grps <- sort( unique( as.numeric( survival.data$group_num ) ) ) retval <- numeric() for ( g in grps ) { one.v.all.survival.data <- survival.data tmp <- as.numeric( one.v.all.survival.data$group_num ) tmp[ ! tmp %in% g ] <- -1 tmp[ tmp %in% g ] <- 1 tmp[ tmp %in% -1 ] <- 2 one.v.all.survival.data$group_num <- tmp surv.res <- survdiff( Surv( time, status )~group_num, data=one.v.all.survival.data ) pval <- surv.res$chisq df <- length( surv.res$n ) - 1 pval <- pchisq( pval, df=df, lower=F ) retval <- c( retval, pval ) } names( retval ) <- grps return( retval ) } if ( opt$mode == "all" ) { pval <- calc.all.pval( survival.data ) log.rank <- paste( "Log Rank p-value:", sprintf( "%1.2e",pval ) ) opt$title <- paste( opt$title, log.rank, sep="\n" ) } else { if ( opt$mode == "one" ) { pvals <- calc.one.v.others.pval( survival.data ) min.p <- min( pvals, na.rm=T ) if ( length( min.p ) == 0 ) { stop( 'no valid p-value returned from the one-v-others test\n' ) } cluster.num <- names( pvals )[ pvals == min.p ] pval <- pvals[ cluster.num ] log.rank <- paste( "Log Rank p-value for cluster", cluster.num,"is:", sprintf( "%1.2e",pval ) ) opt$title <- paste( opt$title, log.rank, sep="\n" ) } else { if ( opt$mode== "both" ) { ## add the all-v-all p-value bak <- pval <- calc.all.pval( survival.data ) log.rank <- paste( "Log Rank p-value:", sprintf( "%1.2e",pval ) ) opt$title <- paste( opt$title, log.rank, sep="\n" ) ## now add the one-v-all p-value pvals <- calc.one.v.others.pval( survival.data ) min.p <- min( pvals, na.rm=T ) if ( length( min.p ) == 0 ) { stop( 'no valid p-value returned from the one-v-others test\n' ) } cluster.num <- names( pvals )[ pvals == min.p ] pval <- pvals[ cluster.num ] log.rank <- paste( "Log Rank p-value for cluster", cluster.num,"is:", sprintf( "%1.2e",pval ) ) opt$title <- paste( opt$title, log.rank, sep="\n" ) if ( opt$pval.only ) { pval <- min( c( bak, pval ), na.rm=T ) } } else { stop( "invalid mode specified, mode = ", opt$mode, "\n" ) } } } if ( opt$pval.only ) { cat( paste(pval, "\n", sep="" ), file=stdout() ) } if ( ! opt$pval.only ) { ngrps <- length( unique( survival.data$group_num ) ) col.map <- rainbow( ngrps ) ##postscript( opt$output.fname, horizontal=T, paper='letter' ) if ( opt$image.format == 'png' ) { plot.dev <- png( opt$output.fname, width=11, height=8.5, units='in', res=72 ) } else if ( opt$image.format == 'pdf' ) { pdf( opt$output.fname, paper="letter" ) } else if ( opt$image.format == 'none' ) { ## do nothing - this allows other scripts to call this and hopefully plot into them ## NOPE, this doesn't work. see what I do with the myplots.rda file } plot( survfit( Surv( time, status )~group_num, data=survival.data ), main = opt$title, ##lty = 1:ngrps, lty=1, col=col.map, ylab = "Probability", xlab = "Survival Time in Days", ) ## set the legend.labels if they're still not set yet if( ! exists( "legend.labels" ) ) { grp.counts <- table( as.factor( survival.data[, "group_num" ] ) ) legend.labels <- paste( "Cluster", 1:ngrps, paste( "(n=", as.integer(grp.counts), ")", sep="" ) ) } legend( "topright", lty=1, col=col.map, bty = "n", legend=legend.labels ) if( opt$image.format != "none" ) dev.off() }