0
|
1 <tool id="hcluster" name="Hierarchical Clustering (HAC)" force_history_refresh="True">
|
|
2 <command interpreter="python">hclust.py
|
|
3 -d $dataset
|
|
4 ${dist_obj}
|
|
5 -n ${direction}
|
|
6 -m ${distance_metric}
|
|
7 -l ${linkage}
|
|
8 -k ${numk}
|
|
9 -o ${rdata_output}
|
|
10
|
|
11 </command>
|
|
12 <inputs>
|
|
13 <param name="dataset" type="data" format='tabular' label="Data Set" help="Specify the data matrix (tab-delimited) to be clustered"/>
|
|
14 <param name="dist_obj" type="boolean" label="Distance Object (R dist object)?" truevalue="-D" falsevalue="" checked="False" help="Check if the matrix contains the pairwise distances between a set of objects"/>
|
|
15 <param name="direction" type="select" label="Cluster Samples or Genes?" help="Specify the matrix dimension to cluster (see help below)">
|
|
16 <option value="cols">Columns (Samples)</option>
|
|
17 <option value="rows" selected='true'>Rows (Genes)</option>
|
|
18 </param>
|
|
19
|
|
20 <param name="distance_metric" type="select" label="Distance Metric" help="Specify the distance metric to use (see help below)">
|
|
21 <option value="cosine" selected='true'>Cosine</option>
|
|
22 <option value="abscosine">Absolute Cosine</option>
|
|
23 <option value="pearson">Pearson</option>
|
|
24 <option value="abspearson">Absolute Pearson</option>
|
|
25 <option value="spearman">Spearman</option>
|
|
26 <option value="kendall">Kendall</option>
|
|
27 <option value="euclidean">Euclidean</option>
|
|
28 <option value="maximum">Maximum</option>
|
|
29 <option value="manhattan">Manhattan (AKA city block)</option>
|
|
30 <option value="canberra">Canberra</option>
|
|
31 <option value="binary">Binary</option>
|
|
32 </param>
|
|
33
|
|
34 <param name="linkage" type="select" label="Linkage" help="Specify the linkage to use when clustering (see help below)">
|
|
35 <option value="average">Average</option>
|
|
36 <option value="centroid">Centroid</option>
|
|
37 <option value="complete" selected='true'>Complete</option>
|
|
38 <option value="mcquitty">McQuitty</option>
|
|
39 <option value="median">Median</option>
|
|
40 <option value="single">Single</option>
|
|
41 <option value="ward">Ward</option>
|
|
42 </param>
|
|
43
|
|
44 <param name="numk" type="integer" label="Number of Clusters" value="50" help="Specify the number of clusters to use"/>
|
|
45
|
|
46 </inputs>
|
|
47 <outputs>
|
|
48 <data format="rdata" name="rdata_output" label="Hierarchical Clustering Result (RData)"/>
|
|
49 </outputs>
|
|
50 <help>
|
|
51 .. class:: infomark
|
|
52
|
|
53 **Perform Hierarchical Clustering (Cluster Samples) on a specified data set**
|
|
54
|
|
55 ----
|
|
56
|
|
57 **Parameters**
|
|
58
|
|
59 - **Data Set** - Specify the data matrix to be clustered. Data must be formated as follows:
|
|
60
|
|
61 * Tab-delimited
|
|
62 * Use row/column headers
|
|
63
|
|
64 - **Cluster Samples or Genes** - Specify the dimension of the matrix to cluster:
|
|
65
|
|
66 * Rows (Genes)
|
|
67 * Columns (Samples)
|
|
68
|
|
69 - **Distance Object** Specify whether or not the data set is a pairwise distance matrix
|
|
70
|
|
71 - **Distance Metric** Specify the distance metric to use. Choice of:
|
|
72
|
|
73 * Cosine (AKA uncentered pearson)
|
|
74 * Absolute Cosine (AKA uncentered pearson, absolute value)
|
|
75 * Pearson (pearson correlation)
|
|
76 * Absolute Pearson (pearson correlation, absolute value)
|
|
77 * Spearman (spearman correlation)
|
|
78 * Kendall (Kendall's Tau)
|
|
79 * Euclidean (euclidean distance)
|
|
80 * Maximum
|
|
81 * Manhattan (AKA city block)
|
|
82 * Canberra
|
|
83 * Binary
|
|
84
|
|
85 - **Linkage** Specify the linkage to use when clustering. Choice of:
|
|
86
|
|
87 * Average (see documentation for R's hclust function for explanation of choices)
|
|
88 * Single
|
|
89 * Complete
|
|
90 * Median
|
|
91 * Centroid
|
|
92 * McQuity
|
|
93 * Ward
|
|
94
|
|
95 - **Number of Clusters** Specify the number of clusters to use
|
|
96
|
|
97 </help>
|
|
98 </tool>
|