Mercurial > repos > perssond > basic_illumination
view imagej_basic_ashlar_filepattern.py @ 0:cad3339b566b draft default tip
"planemo upload for repository https://github.com/ohsu-comp-bio/basic-illumination commit d06e0682d1847fae0d5a464d7aa9e47e40d31fe7-dirty"
author | perssond |
---|---|
date | Tue, 08 Dec 2020 20:57:09 +0000 |
parents | |
children |
line wrap: on
line source
# @String(label="Enter a filename pattern describing the TIFFs to process") pattern # @File(label="Select the output location", style="directory") output_dir # @String(label="Experiment name (base name for output files)") experiment_name # @Float(label="Flat field smoothing parameter (0 for automatic)", value=0.1) lambda_flat # @Float(label="Dark field smoothing parameter (0 for automatic)", value=0.01) lambda_dark import sys import os import re import collections from ij import IJ, WindowManager, ImagePlus, ImageStack from ij.io import Opener from ij.macro import Interpreter import BaSiC_ as Basic def enumerate_filenames(pattern): """Return filenames matching pattern (a str.format pattern containing {channel} and {tile} placeholders). Returns a list of lists, where the top level is indexed by channel number and the bottom level is sorted filenames for that channel. """ (base, pattern) = os.path.split(pattern) regex = re.sub(r'{([^:}]+)(?:[^}]*)}', r'(?P<\1>.*?)', pattern.replace('.', '\.')) tiles = set() channels = set() num_images = 0 # Dict[channel: int, List[filename: str]] filenames = collections.defaultdict(list) for f in os.listdir(base): match = re.match(regex, f) if match: gd = match.groupdict() tile = int(gd['tile']) channel = int(gd['channel']) tiles.add(tile) channels.add(channel) filenames[channel].append(os.path.join(base, f)) num_images += 1 if len(tiles) * len(channels) != num_images: raise Exception("Missing some image files") filenames = [ sorted(filenames[channel]) for channel in sorted(filenames.keys()) ] return filenames def main(): Interpreter.batchMode = True if (lambda_flat == 0) ^ (lambda_dark == 0): print ("ERROR: Both of lambda_flat and lambda_dark must be zero," " or both non-zero.") return lambda_estimate = "Automatic" if lambda_flat == 0 else "Manual" #import pdb; pdb.set_trace() print "Loading images..." filenames = enumerate_filenames(pattern) num_channels = len(filenames) num_images = len(filenames[0]) image = Opener().openImage(filenames[0][0]) width = image.width height = image.height image.close() # The internal initialization of the BaSiC code fails when we invoke it via # scripting, unless we explicitly set a the private 'noOfSlices' field. # Since it's private, we need to use Java reflection to access it. Basic_noOfSlices = Basic.getDeclaredField('noOfSlices') Basic_noOfSlices.setAccessible(True) basic = Basic() Basic_noOfSlices.setInt(basic, num_images) # Pre-allocate the output profile images, since we have all the dimensions. ff_image = IJ.createImage("Flat-field", width, height, num_channels, 32); df_image = IJ.createImage("Dark-field", width, height, num_channels, 32); print("\n\n") # BaSiC works on one channel at a time, so we only read the images from one # channel at a time to limit memory usage. for channel in range(num_channels): print "Processing channel %d/%d..." % (channel + 1, num_channels) print "===========================" stack = ImageStack(width, height, num_images) opener = Opener() for i, filename in enumerate(filenames[channel]): print "Loading image %d/%d" % (i + 1, num_images) image = opener.openImage(filename) stack.setProcessor(image.getProcessor(), i + 1) input_image = ImagePlus("input", stack) # BaSiC seems to require the input image is actually the ImageJ # "current" image, otherwise it prints an error and aborts. WindowManager.setTempCurrentImage(input_image) basic.exec( input_image, None, None, "Estimate shading profiles", "Estimate both flat-field and dark-field", lambda_estimate, lambda_flat, lambda_dark, "Ignore", "Compute shading only" ) input_image.close() # Copy the pixels from the BaSiC-generated profile images to the # corresponding channel of our output images. ff_channel = WindowManager.getImage("Flat-field:%s" % input_image.title) ff_image.slice = channel + 1 ff_image.getProcessor().insert(ff_channel.getProcessor(), 0, 0) ff_channel.close() df_channel = WindowManager.getImage("Dark-field:%s" % input_image.title) df_image.slice = channel + 1 df_image.getProcessor().insert(df_channel.getProcessor(), 0, 0) df_channel.close() print("\n\n") template = '%s/%s-%%s.tif' % (output_dir, experiment_name) ff_filename = template % 'ffp' IJ.saveAsTiff(ff_image, ff_filename) ff_image.close() df_filename = template % 'dfp' IJ.saveAsTiff(df_image, df_filename) df_image.close() print "Done!" main()