Mercurial > repos > perssond > basic_illumination
comparison imagej_basic_ashlar_filepattern.py @ 0:cad3339b566b draft default tip
"planemo upload for repository https://github.com/ohsu-comp-bio/basic-illumination commit d06e0682d1847fae0d5a464d7aa9e47e40d31fe7-dirty"
author | perssond |
---|---|
date | Tue, 08 Dec 2020 20:57:09 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cad3339b566b |
---|---|
1 # @String(label="Enter a filename pattern describing the TIFFs to process") pattern | |
2 # @File(label="Select the output location", style="directory") output_dir | |
3 # @String(label="Experiment name (base name for output files)") experiment_name | |
4 # @Float(label="Flat field smoothing parameter (0 for automatic)", value=0.1) lambda_flat | |
5 # @Float(label="Dark field smoothing parameter (0 for automatic)", value=0.01) lambda_dark | |
6 | |
7 import sys | |
8 import os | |
9 import re | |
10 import collections | |
11 from ij import IJ, WindowManager, ImagePlus, ImageStack | |
12 from ij.io import Opener | |
13 from ij.macro import Interpreter | |
14 import BaSiC_ as Basic | |
15 | |
16 | |
17 def enumerate_filenames(pattern): | |
18 """Return filenames matching pattern (a str.format pattern containing | |
19 {channel} and {tile} placeholders). | |
20 | |
21 Returns a list of lists, where the top level is indexed by channel number | |
22 and the bottom level is sorted filenames for that channel. | |
23 | |
24 """ | |
25 (base, pattern) = os.path.split(pattern) | |
26 regex = re.sub(r'{([^:}]+)(?:[^}]*)}', r'(?P<\1>.*?)', | |
27 pattern.replace('.', '\.')) | |
28 tiles = set() | |
29 channels = set() | |
30 num_images = 0 | |
31 # Dict[channel: int, List[filename: str]] | |
32 filenames = collections.defaultdict(list) | |
33 for f in os.listdir(base): | |
34 match = re.match(regex, f) | |
35 if match: | |
36 gd = match.groupdict() | |
37 tile = int(gd['tile']) | |
38 channel = int(gd['channel']) | |
39 tiles.add(tile) | |
40 channels.add(channel) | |
41 filenames[channel].append(os.path.join(base, f)) | |
42 num_images += 1 | |
43 if len(tiles) * len(channels) != num_images: | |
44 raise Exception("Missing some image files") | |
45 filenames = [ | |
46 sorted(filenames[channel]) | |
47 for channel in sorted(filenames.keys()) | |
48 ] | |
49 return filenames | |
50 | |
51 | |
52 def main(): | |
53 | |
54 Interpreter.batchMode = True | |
55 | |
56 if (lambda_flat == 0) ^ (lambda_dark == 0): | |
57 print ("ERROR: Both of lambda_flat and lambda_dark must be zero," | |
58 " or both non-zero.") | |
59 return | |
60 lambda_estimate = "Automatic" if lambda_flat == 0 else "Manual" | |
61 | |
62 #import pdb; pdb.set_trace() | |
63 print "Loading images..." | |
64 filenames = enumerate_filenames(pattern) | |
65 num_channels = len(filenames) | |
66 num_images = len(filenames[0]) | |
67 image = Opener().openImage(filenames[0][0]) | |
68 width = image.width | |
69 height = image.height | |
70 image.close() | |
71 | |
72 # The internal initialization of the BaSiC code fails when we invoke it via | |
73 # scripting, unless we explicitly set a the private 'noOfSlices' field. | |
74 # Since it's private, we need to use Java reflection to access it. | |
75 Basic_noOfSlices = Basic.getDeclaredField('noOfSlices') | |
76 Basic_noOfSlices.setAccessible(True) | |
77 basic = Basic() | |
78 Basic_noOfSlices.setInt(basic, num_images) | |
79 | |
80 # Pre-allocate the output profile images, since we have all the dimensions. | |
81 ff_image = IJ.createImage("Flat-field", width, height, num_channels, 32); | |
82 df_image = IJ.createImage("Dark-field", width, height, num_channels, 32); | |
83 | |
84 print("\n\n") | |
85 | |
86 # BaSiC works on one channel at a time, so we only read the images from one | |
87 # channel at a time to limit memory usage. | |
88 for channel in range(num_channels): | |
89 print "Processing channel %d/%d..." % (channel + 1, num_channels) | |
90 print "===========================" | |
91 | |
92 stack = ImageStack(width, height, num_images) | |
93 opener = Opener() | |
94 for i, filename in enumerate(filenames[channel]): | |
95 print "Loading image %d/%d" % (i + 1, num_images) | |
96 image = opener.openImage(filename) | |
97 stack.setProcessor(image.getProcessor(), i + 1) | |
98 input_image = ImagePlus("input", stack) | |
99 | |
100 # BaSiC seems to require the input image is actually the ImageJ | |
101 # "current" image, otherwise it prints an error and aborts. | |
102 WindowManager.setTempCurrentImage(input_image) | |
103 basic.exec( | |
104 input_image, None, None, | |
105 "Estimate shading profiles", "Estimate both flat-field and dark-field", | |
106 lambda_estimate, lambda_flat, lambda_dark, | |
107 "Ignore", "Compute shading only" | |
108 ) | |
109 input_image.close() | |
110 | |
111 # Copy the pixels from the BaSiC-generated profile images to the | |
112 # corresponding channel of our output images. | |
113 ff_channel = WindowManager.getImage("Flat-field:%s" % input_image.title) | |
114 ff_image.slice = channel + 1 | |
115 ff_image.getProcessor().insert(ff_channel.getProcessor(), 0, 0) | |
116 ff_channel.close() | |
117 df_channel = WindowManager.getImage("Dark-field:%s" % input_image.title) | |
118 df_image.slice = channel + 1 | |
119 df_image.getProcessor().insert(df_channel.getProcessor(), 0, 0) | |
120 df_channel.close() | |
121 | |
122 print("\n\n") | |
123 | |
124 template = '%s/%s-%%s.tif' % (output_dir, experiment_name) | |
125 ff_filename = template % 'ffp' | |
126 IJ.saveAsTiff(ff_image, ff_filename) | |
127 ff_image.close() | |
128 df_filename = template % 'dfp' | |
129 IJ.saveAsTiff(df_image, df_filename) | |
130 df_image.close() | |
131 | |
132 print "Done!" | |
133 | |
134 | |
135 main() |