changeset 2:c3ed203d814d draft

Uploaded
author morinlab
date Sun, 04 Dec 2016 20:47:23 -0500
parents a67d4b423594
children 7ed78705ba77
files oncodriveclust_merge.R
diffstat 1 files changed, 835 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/oncodriveclust_merge.R	Sun Dec 04 20:47:23 2016 -0500
@@ -0,0 +1,835 @@
+require(maftools);
+library(argparse);
+require(data.table);
+
+###
+
+parser <- ArgumentParser(description="Create a Gene Lollipop using Maftools");
+
+parser$add_argument(
+    "--input_maf", "-maf",
+    required="True",
+    help="Input Variants in MAF format"
+    );
+
+parser$add_argument(
+    "--gene_blacklist", "-gl",
+    help="Input gene list with separated by newline"
+    );
+
+parser$add_argument(
+   "--min_mut", "-mm",
+      default=5,
+         help="Minimum number of mutations seen in the gene for it to be included in the calculation");
+
+parser$add_argument(
+   "--fdr", "-f",
+         default=0.1,
+	          help="FDR threshold to use in plots and returned gene list");
+
+parser$add_argument(
+   "--aacol", "-ac",
+   help="Optionally provide the name of the column that contains the amino acid annotation in your MAF file");
+
+parser$add_argument(
+   "--output_detail", "-o",
+   required="True",
+   help="Output text file for oncodriveclust detail"
+   )
+
+parser$add_argument(
+   "--output_plot", "-p",
+      required="True",
+         help="Output pdf file for oncodriveclust detail"
+	    )
+
+args <- parser$parse_args();
+
+###
+
+
+aacol = 'HGVSp_Short'
+if(!is.null(args$aacol)){
+aacol = args$aacol
+}
+
+min_mut = as.integer(args$min_mut)
+
+
+#--------------------- based on binaomial distribution, estimate threshhold.
+get_threshold = function(gene_muts, gene_length){
+  th = which(unlist(lapply(X = 2:gene_muts, FUN = function(x) dbinom(x = x, size = gene_muts, prob = 1/gene_length) )) < 0.01)[1]
+    return(th+1)
+    }
+    #-------------------- end of function.
+
+parse_prot_fix = function(dat, AACol, gl, m, calBg = FALSE, nBg){
+
+  if(is.null(AACol)){
+      if(! 'AAChange' %in% colnames(dat)){
+            message('Available fields:')
+	          print(colnames(dat))
+		        stop('AAChange field not found in MAF. Use argument AACol to manually specifiy field name containing protein changes.')
+			    }
+			      }else{
+			          colnames(dat)[which(colnames(dat) == AACol)] = 'AAChange'
+				    }
+
+  all.prot.dat = dat[,.(Hugo_Symbol, Variant_Classification, AAChange)]
+    all.prot.dat = all.prot.dat[Variant_Classification != 'Splice_Site']
+      #parse AAchanges to get postion
+        prot.spl = strsplit(x = as.character(all.prot.dat$AAChange), split = '.', fixed = TRUE)
+	  prot.conv = sapply(prot.spl, function(x) x[length(x)])
+
+  all.prot.dat[,conv := prot.conv]
+    all.prot.dat = all.prot.dat[!conv == 'NULL']
+
+  #If conversions are in HGVSp_long (default HGVSp) format, we will remove strings Ter followed by anything (e.g; p.Asn1986GlnfsTer13)
+    pos = gsub(pattern = 'Ter.*', replacement = '',x = all.prot.dat$conv)
+
+  #Following parsing takes care of most of HGVSp_short and HGVSp_long format
+    pos = gsub(pattern = '[[:alpha:]]', replacement = '', x = pos)
+      pos = gsub(pattern = '\\*$', replacement = '', x = pos) #Remove * if nonsense mutation ends with *
+        pos = gsub(pattern = '^\\*', replacement = '', x = pos) #Remove * if nonsense mutation starts with *
+	  pos = gsub(pattern = '\\*.*', replacement = '', x = pos) #Remove * followed by position e.g, p.C229Lfs*18
+
+  pos = suppressWarnings( as.numeric(sapply(strsplit(x = pos, split = '_', fixed = TRUE), '[', 1)) )
+    all.prot.dat[,pos := pos]
+
+  if(nrow( all.prot.dat[is.na(all.prot.dat$pos),]) > 0){
+      #message(paste('Removed', nrow( all.prot.dat[is.na(all.prot.dat$pos),]), 'mutations for which AA position was not available', sep = ' '))
+          #print(prot.dat[is.na(prot.dat$pos),])
+	      all.prot.dat = all.prot.dat[!is.na(all.prot.dat$pos),]
+	        }
+
+  gene.sum = summarizeMaf_fix(maf = dat)$gene.summary
+    #gene.sum = merge.data.frame(x = gene.sum, y = gl, by = 'Hugo_Symbol', all.x = TRUE)
+      gene.sum = merge(x = gene.sum, y = gl, by = 'Hugo_Symbol', all.x = TRUE)
+        #gene.sum = gene.sum[!is.na(gene.sum$aa.length),]
+	  gene.sum = gene.sum[!is.na(gene.sum$aa.length)]
+
+  num_mut_colIndex = which(colnames(gene.sum) == 'total')
+    aalen_colIndex = which(colnames(gene.sum) == 'aa.length')
+
+  #Get background threshold
+    gene.sum$th = apply(gene.sum, 1, function(x) get_threshold(gene_muts = as.numeric(x[num_mut_colIndex]), gene_length = as.numeric(x[aalen_colIndex])))
+      #use only genes with atleast 2 (or m ) mutations.
+        gene.sum = gene.sum[total >= m]
+
+  if(calBg){
+      if(nrow(gene.sum) < nBg){
+            #message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)")
+	          return(NULL)
+		      } else{
+		            syn.res = c()
+			          pb <- txtProgressBar(min = 0, max = nrow(gene.sum), style = 3) #progress bar
+
+      for(i in 1:nrow(gene.sum)){
+              prot.dat = all.prot.dat[Hugo_Symbol == gene.sum[i, "Hugo_Symbol"]]
+	              syn.res = rbind(syn.res, cluster_prot_fix(prot.dat = prot.dat, gene = gene.sum[i, "Hugo_Symbol"], th = gene.sum[i,"th"], protLen = gene.sum[i,"aa.length"]))
+		              setTxtProgressBar(pb, i)
+			            }
+				          return(syn.res)
+					      }
+					        } else{
+						    nonsyn.res = c()
+						        pb <- txtProgressBar(min = 0, max = nrow(gene.sum), style = 3) #progress bar
+
+    for(i in 1:nrow(gene.sum)){
+          hs = gene.sum[i, Hugo_Symbol]
+	        #print(hs)
+		      prot.dat = all.prot.dat[Hugo_Symbol %in% hs]
+		            nonsyn.res = rbind(nonsyn.res, cluster_prot_fix(prot.dat = prot.dat, gene = hs, th = gene.sum[Hugo_Symbol %in% hs, th], protLen = gene.sum[Hugo_Symbol %in% hs, aa.length]))
+			          setTxtProgressBar(pb, i)
+				      }
+				          return(nonsyn.res)
+					    }
+					    }
+
+cluster_prot_fix = function(prot.dat, gene, th, protLen){
+
+  mergeDist = 5 #hard coded inter event distance.
+    #prot.dat = all.prot.dat[Hugo_Symbol == gene]
+
+  #Summarise counts per position
+    pos.counts = prot.dat[,.N,pos]
+      pos.counts = pos.counts[order(pos)]
+
+  #classify position as meaningful if its greater than background threshhold.
+    pos.counts$cluster = ifelse(test = pos.counts$N >= th, yes = 'meaningful', no = 'nonMeaningful')
+
+  #Just choose meaningful positions
+    clust.tbl = pos.counts[cluster %in% 'meaningful']
+      nonclust.tbl = pos.counts[cluster %in% 'nonMeaningful']
+
+  if(nrow(clust.tbl) == 0){
+      #message(paste('No meaningful positions found for', gene, sep=' '))
+          return(NULL)
+	    }
+
+  clust.tbl$distance = c(0,diff(clust.tbl$pos)) #calculate inter event distance.
+
+  #If more than one meaningful positions are found within a 5 aa distance, join them to form a cluster.
+    if(nrow(clust.tbl) > 1){
+
+    #initialize variables.
+        cstart = end = clust.tbl[1,pos]
+	    n = clust.tbl[1,N]
+	        cdf = c()
+		    cluster = 1
+
+    #Go through entire table and update variables.
+        for(i in 2:nrow(clust.tbl)){
+	      pos = clust.tbl[i,pos]
+
+      d = clust.tbl[i,distance]
+
+      if(d < mergeDist){
+              end = pos
+	              n = n + clust.tbl[i,N]
+		            }else{
+			            tempdf = data.frame(cluster = paste('cluster', cluster, sep='_'), start = cstart, end = end ,N = n)
+				            cdf = rbind(cdf, tempdf)
+					            cstart = end = pos
+						            n = clust.tbl[i,N]
+							            cluster = cluster + 1
+								          }
+									      }
+									          cdf = rbind(cdf, data.frame(cluster = paste('cluster', cluster, sep='_'), start = cstart, end = end ,N = n))
+										    } else {
+										        cdf = data.frame(cluster = 'cluster_1', start = clust.tbl$pos, end = clust.tbl$pos ,N = clust.tbl$N)
+											  }
+
+  #merge adjacent variants to clusters.
+    for(i in 1:nrow(cdf)){
+        tempcdf = cdf[i,]
+	    nonclust.tbl$startDist = nonclust.tbl$pos - tempcdf$start
+	        nonclust.tbl$endDist = nonclust.tbl$pos - tempcdf$end
+
+    merge.adj.to.start = nonclust.tbl[startDist >= -5 & startDist <= 0]
+        if(nrow(merge.adj.to.start) > 0){
+	      tempcdf$start = merge.adj.to.start[which(merge.adj.to.start$startDist == min(merge.adj.to.start$startDist)),pos]
+	            tempcdf$N = tempcdf$N + sum(merge.adj.to.start$N)
+		        }
+
+    merge.adj.to.end = nonclust.tbl[endDist <= 5 & endDist >= 0]
+        if(nrow(merge.adj.to.end) > 0){
+	      tempcdf$end = merge.adj.to.end[which(merge.adj.to.end$endDist == max(merge.adj.to.end$endDist)),pos]
+	            tempcdf$N = tempcdf$N + sum(merge.adj.to.end$N)
+		        }
+			    cdf[i,] = tempcdf
+			      }
+			        cdf$Hugo_Symbol = gene
+
+  #Calcluate cluster score.
+
+  total.muts = nrow(prot.dat) #total variants for this gene.
+    clusterScores = c()
+
+  for(i in 1:nrow(cdf)){
+      temp.prot.dat = prot.dat[pos >= as.numeric(cdf$start[i]) & pos <= as.numeric(cdf$end[i])]
+          temp.prot.dat.summary = temp.prot.dat[,.N, pos]
+	      temp.prot.dat.summary[,fraction:= N/total.muts]
+
+    peak = temp.prot.dat.summary[N == max(N), pos]
+
+    posVector = as.numeric(temp.prot.dat.summary[,pos])
+        fractionMutVector = unlist(lapply(posVector, FUN = function(x) temp.prot.dat.summary[pos == x, fraction]))
+	    distanceVector = suppressWarnings(abs(posVector - peak))
+
+    clusterScores = c(clusterScores,  sum( fractionMutVector / (sqrt(2)^ distanceVector)))
+
+  }
+
+  cdf$clusterScore = clusterScores
+
+  gene.clust.res = data.frame(Hugo_Symbol = gene, clusters = nrow(cdf), muts_in_clusters = sum(cdf$N), clusterScores = sum(cdf$clusterScore), protLen = protLen)
+    return(gene.clust.res)
+    }
+    
+
+
+
+
+createOncoMatrix<- function(maf){
+
+    message('Creating oncomatrix (this might take a while)..')
+
+     oncomat = data.table::dcast(data = maf[,.(Hugo_Symbol, Variant_Classification, Tumor_Sample_Barcode)], formula = Hugo_Symbol ~ Tumor_Sample_Barcode,
+                                      fun.aggregate = function(x) {ifelse(test = length(as.character(x))>1 ,
+				                                      no = as.character(x), yes = vcr(x, gis = FALSE))
+								                                       }, value.var = 'Variant_Classification', fill = '')
+
+    #If maf contains only one sample converting to matrix is not trivial.
+        if(ncol(oncomat) == 2){
+	      genes = oncomat[,Hugo_Symbol]
+	            sampleId = colnames(oncomat)[2]
+		          oncomat = as.matrix(data.frame(row.names = genes, sample = oncomat[,2, with =FALSE]))
+			      }else if(nrow(oncomat) == 1){
+			            #If MAF has only one gene
+				          gene = oncomat[,Hugo_Symbol]
+					        oncomat[,Hugo_Symbol:= NULL]
+						      oncomat = as.matrix(oncomat)
+						            rownames(oncomat) = gene
+							          sampleID = colnames(oncomat)
+								        }else{
+									      oncomat = as.matrix(oncomat)
+									            rownames(oncomat) = oncomat[,1]
+										          oncomat = oncomat[,-1]
+											        }
+
+     variant.classes = as.character(unique(maf[,Variant_Classification]))
+          variant.classes = c('',variant.classes, 'Multi_Hit')
+	       names(variant.classes) = 0:(length(variant.classes)-1)
+
+     #Complex variant classes will be assigned a single integer.
+          vc.onc = unique(unlist(apply(oncomat, 2, unique)))
+	       vc.onc = vc.onc[!vc.onc %in% names(variant.classes)]
+	            names(vc.onc) = rep(as.character(as.numeric(names(variant.classes)[length(variant.classes)])+1), length(vc.onc))
+		         variant.classes2 = c(variant.classes, vc.onc)
+
+     oncomat.copy <- oncomat
+         #Make a numeric coded matrix
+	     for(i in 1:length(variant.classes2)){
+	           oncomat[oncomat == variant.classes2[i]] = names(variant.classes2)[i]
+		       }
+
+    #If maf has only one gene
+        if(nrow(oncomat) == 1){
+	      mdf  = t(matrix(as.numeric(oncomat)))
+	            rownames(mdf) = gene
+		          colnames(mdf) = sampleID
+			        return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes))
+				    }
+
+    #convert from character to numeric
+        mdf = as.matrix(apply(oncomat, 2, function(x) as.numeric(as.character(x))))
+	    rownames(mdf) = rownames(oncomat.copy)
+
+    message('Sorting..')
+
+    #If MAF file contains a single sample, simple sorting is enuf.
+        if(ncol(mdf) == 1){
+	      mdf = as.matrix(mdf[order(mdf, decreasing = TRUE),])
+	            colnames(mdf) = sampleId
+
+      oncomat.copy = as.matrix(oncomat.copy[rownames(mdf),])
+            colnames(oncomat.copy) = sampleId
+
+      return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes))
+          } else{
+	        #Sort by rows as well columns if >1 samples present in MAF
+		      #Add total variants per gene
+		            mdf = cbind(mdf, variants = apply(mdf, 1, function(x) {
+			            length(x[x != "0"])
+				          }))
+					        #Sort by total variants
+						      mdf = mdf[order(mdf[, ncol(mdf)], decreasing = TRUE), ]
+						            colnames(mdf) = gsub(pattern = "^X", replacement = "", colnames(mdf))
+							          nMut = mdf[, ncol(mdf)]
+
+      mdf = mdf[, -ncol(mdf)]
+
+      mdf.temp.copy = mdf #temp copy of original unsorted numeric coded matrix
+
+      mdf[mdf != 0] = 1 #replacing all non-zero integers with 1 improves sorting (& grouping)
+            tmdf = t(mdf) #transposematrix
+	          mdf = t(tmdf[do.call(order, c(as.list(as.data.frame(tmdf)), decreasing = TRUE)), ]) #sort
+
+      mdf.temp.copy = mdf.temp.copy[rownames(mdf),] #organise original matrix into sorted matrix
+            mdf.temp.copy = mdf.temp.copy[,colnames(mdf)]
+	          mdf = mdf.temp.copy
+
+      #organise original character matrix into sorted matrix
+            oncomat.copy <- oncomat.copy[,colnames(mdf)]
+	          oncomat.copy <- oncomat.copy[rownames(mdf),]
+
+      return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes))
+          }
+	  }
+
+validateMaf<-function(maf, rdup = TRUE, isTCGA = isTCGA){
+
+  #necessary fields.
+    required.fields = c('Hugo_Symbol', 'Chromosome', 'Start_Position', 'End_Position', 'Reference_Allele', 'Tumor_Seq_Allele2',
+                          'Variant_Classification', 'Variant_Type', 'Tumor_Sample_Barcode')
+
+  #Change column names to standard names; i.e, camel case
+    for(i in 1:length(required.fields)){
+        colId = suppressWarnings(grep(pattern = required.fields[i], x = colnames(maf), ignore.case = TRUE))
+	    if(length(colId) > 0){
+	          colnames(maf)[colId] = required.fields[i]
+		      }
+		        }
+
+  missing.fileds = required.fields[!required.fields %in% colnames(maf)] #check if any of them are missing
+
+  if(length(missing.fileds) > 0){
+      missing.fileds = paste(missing.fileds[1], sep = ',', collapse = ', ')
+          stop(paste('missing required fields from MAF:', missing.fileds)) #stop if any of required.fields are missing
+	    }
+
+  #convert "-" to "." in "Tumor_Sample_Barcode" to avoid complexity in naming
+    maf$Tumor_Sample_Barcode = gsub(pattern = '-', replacement = '.', x = as.character(maf$Tumor_Sample_Barcode))
+
+  if(rdup){
+      maf = maf[, variantId := paste(Chromosome, Start_Position, Tumor_Sample_Barcode, sep = ':')]
+          if(nrow(maf[duplicated(variantId)]) > 0){
+	        message("NOTE: Removed ",  nrow(maf[duplicated(variantId)]) ," duplicated variants")
+		      maf = maf[!duplicated(variantId)]
+		          }
+			      maf[,variantId := NULL]
+			        }
+
+  if(nrow(maf[Hugo_Symbol %in% ""]) > 0){
+      message('NOTE: Found ', nrow(maf[Hugo_Symbol %in% ""]), ' variants with no Gene Symbols.')
+          print(maf[Hugo_Symbol %in% "", required.fields, with = FALSE])
+	      message("Annotating them as 'UnknownGene' for convenience")
+	          maf$Hugo_Symbol = ifelse(test = maf$Hugo_Symbol == "", yes = 'UnknownGene', no = maf$Hugo_Symbol)
+		    }
+
+  if(nrow(maf[is.na(Hugo_Symbol)]) > 0){
+      message('NOTE: Found ', nrow(maf[is.na(Hugo_Symbol) > 0]), ' variants with no Gene Symbols.')
+          print(maf[is.na(Hugo_Symbol), required.fields, with =FALSE])
+	      message("Annotating them as 'UnknownGene' for convenience")
+	          maf$Hugo_Symbol = ifelse(test = is.na(maf$Hugo_Symbol), yes = 'UnknownGene', no = maf$Hugo_Symbol)
+		    }
+
+  if(isTCGA){
+      maf$Tumor_Sample_Barcode = substr(x = maf$Tumor_Sample_Barcode, start = 1, stop = 12)
+        }
+
+  return(maf)
+  }
+
+read.maf_fix = function(maf, removeSilent = TRUE, useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL,
+                    gisticDelGenesFile = NULL, cnTable = NULL, removeDuplicatedVariants = TRUE, isTCGA = FALSE){
+  
+  message('reading maf..')
+  
+  if(as.logical(length(grep(pattern = 'gz$', x = maf, fixed = FALSE)))){
+    #If system is Linux use fread, else use gz connection to read gz file.
+    if(Sys.info()[['sysname']] == 'Windows'){
+      maf.gz = gzfile(description = maf, open = 'r')
+      suppressWarnings(maf <- data.table(read.csv(file = maf.gz, header = TRUE, sep = '\t', stringsAsFactors = FALSE)))
+      close(maf.gz)
+    } else{
+      maf = suppressWarnings(data.table::fread(input = paste('zcat <', maf), sep = '\t', stringsAsFactors = FALSE, verbose = FALSE, data.table = TRUE, showProgress = TRUE, header = TRUE))
+    }
+  } else{
+    suppressWarnings(maf <- data.table::fread(input = maf, sep = "\t", stringsAsFactors = FALSE, verbose = FALSE, data.table = TRUE, showProgress = TRUE, header = TRUE))
+  }
+  
+  #validate MAF file
+  maf = validateMaf(maf = maf, isTCGA = isTCGA, rdup = removeDuplicatedVariants)
+  
+  #validation check for variants classified as Somatic in Mutation_Status field.
+  if(length(colnames(maf)[colnames(x = maf) %in% 'Mutation_Status']) > 0){
+    if(!useAll){
+      message('Using only Somatic variants from Mutation_Status. Switch on useAll to include everything.')
+      maf = maf[Mutation_Status %in% "Somatic"]
+      
+      if(nrow(maf) == 0){
+        stop('No more Somatic mutations left after filtering for Mutation_Status! Maybe set useAll to TRUE ?')
+      }
+      
+      #maf = subset(maf, Mutation_Status == 'Somatic')
+    }else {
+      message('Using all variants.')
+    }
+  }else{
+    message('Mutation_Status not found. Assuming all variants are Somatic and validated.')
+  }
+  #Variant Classification with Low/Modifier variant consequences. http://asia.ensembl.org/Help/Glossary?id=535
+  silent = c("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron",
+             "RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA")
+  #Variant Classification with High/Moderate variant consequences. http://asia.ensembl.org/Help/Glossary?id=535
+  vc.nonSilent = c("Frame_Shift_Del", "Frame_Shift_Ins", "Splice_Site", "Translation_Start_Site",
+                   "Nonsense_Mutation", "Nonstop_Mutation", "In_Frame_Del",
+                   "In_Frame_Ins", "Missense_Mutation")
+  
+  maf.silent = maf[Variant_Classification %in% silent]
+  
+  if(removeSilent){
+    
+    if(nrow(maf.silent) > 0){
+      maf.silent.vc = maf.silent[,.N, .(Tumor_Sample_Barcode, Variant_Classification)]
+      maf.silent.vc.cast = data.table::dcast(data = maf.silent.vc, formula = Tumor_Sample_Barcode ~ Variant_Classification, fill = 0, value.var = 'N') #why dcast is not returning it as data.table ?
+      summary.silent = data.table(ID = c('Samples',colnames(maf.silent.vc.cast)[2:ncol(maf.silent.vc.cast)]),
+                                  N = c(nrow(maf.silent.vc.cast), colSums(maf.silent.vc.cast[,2:ncol(maf.silent.vc.cast), with = FALSE])))
+      
+      maf = maf[!Variant_Classification %in% silent] #Remove silent variants from main table
+      message(paste('Excluding',nrow(maf.silent), 'silent variants.'))
+      print(summary.silent)
+    } else{
+      message(message(paste('Excluding',nrow(maf.silent), 'silent variants.')))
+    }
+  }else{
+    message('Silent variants are being kept!')
+  }
+  
+  if(!is.null(gisticAllLesionsFile)){
+    gisticIp = readGistic(gisticAllLesionsFile = gisticAllLesionsFile, gisticAmpGenesFile = gisticAmpGenesFile,
+                          gisticDelGenesFile = gisticDelGenesFile, isTCGA = isTCGA)
+    gisticIp = gisticIp@data
+    
+    gisticIp[, id := paste(Hugo_Symbol, Tumor_Sample_Barcode, sep=':')]
+    gisticIp = gisticIp[!duplicated(id)]
+    gisticIp[,id := NULL]
+    
+    maf = rbind(maf, gisticIp, fill =TRUE)
+    oncomat = createOncoMatrix(maf)
+  }else if(!is.null(cnTable)){
+    message('Processing copy number data..')
+    cnDat = data.table::fread(input = cnTable, sep = '\t', stringsAsFactors = FALSE, header = TRUE, colClasses = 'character')
+    colnames(cnDat) = c('Hugo_Symbol', 'Tumor_Sample_Barcode', 'Variant_Classification')
+    cnDat$Variant_Type = 'CNV'
+    suppressWarnings(cnDat[, id := paste(Hugo_Symbol, Tumor_Sample_Barcode, sep=':')])
+    cnDat = cnDat[!duplicated(id)]
+    cnDat[,id := NULL]
+    maf = rbind(maf, cnDat, fill =TRUE)
+    oncomat = createOncoMatrix(maf)
+  }else{
+    oncomat = createOncoMatrix(maf)
+  }
+  
+  #convert to factors
+  maf$Variant_Type = as.factor(as.character(maf$Variant_Type))
+  maf$Variant_Classification = as.factor(as.character(maf$Variant_Classification))
+  maf$Tumor_Sample_Barcode = as.factor(as.character(maf$Tumor_Sample_Barcode))
+  
+  message('Summarizing..')
+  mafSummary = summarizeMaf_fix(maf = maf)
+  
+  #Create MAF object
+  m = MAF(data = maf, variants.per.sample = mafSummary$variants.per.sample, variant.type.summary = mafSummary$variant.type.summary,
+          variant.classification.summary = mafSummary$variant.classification.summary,gene.summary = mafSummary$gene.summary,
+          oncoMatrix = oncomat$oncomat, numericMatrix = oncomat$nummat, summary = mafSummary$summary,
+          classCode = oncomat$vc, maf.silent = maf.silent)
+  
+  
+  message('Done !')
+  return(m)
+}
+
+
+#' Class MAF
+#' @description S4 class for storing summarized MAF.
+#' @slot data data.table of original MAF file.
+#' @slot variants.per.sample table containing variants per sample
+#' @slot variant.type.summary table containing variant types per sample
+#' @slot variant.classification.summary table containing variant classification per sample
+#' @slot gene.summary table containing variant classification per gene
+#' @slot oncoMatrix character matrix of dimension n*m where n is number of genes and m is number of variants
+#' @slot numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of variants
+#' @slot summary table with basic MAF summary stats
+#' @slot classCode mapping between numeric values in numericMatrix and Variant Classification
+#' @slot maf.silent subset of main MAF containing only silent variants
+#' @exportClass MAF
+#' @import methods
+#' @seealso \code{\link{getGeneSummary}} \code{\link{getSampleSummary}} \code{\link{getFields}}
+
+## MAF object
+MAF <- setClass(Class = 'MAF', slots =  c(data = 'data.table', variants.per.sample = 'data.table', variant.type.summary = 'data.table',
+                                         variant.classification.summary = 'data.table', gene.summary = 'data.table', oncoMatrix = 'matrix',
+					                                          numericMatrix = 'matrix', summary = 'data.table', classCode = 'character',
+										                                           maf.silent = 'data.table'))
+
+setMethod(f = 'show', signature = 'MAF', definition = function(object){
+  cat(paste('An object of class ', class(object), "\n"))
+    print(object@summary)
+    })
+
+
+summarizeMaf_fix = function(maf){
+  
+  if('NCBI_Build' %in% colnames(maf)){
+    NCBI_Build = unique(maf[!Variant_Type %in% 'CNV', NCBI_Build])
+    NCBI_Build = NCBI_Build[!is.na(NCBI_Build)]
+    
+    if(length(NCBI_Build) > 1){
+      message('NOTE: Mutiple reference builds found!')
+      NCBI_Build = do.call(paste, c(as.list(NCBI_Build), sep=";"))
+      message(NCBI_Build)
+    }
+  }else{
+    NCBI_Build = NA
+  }
+  
+  if('Center' %in% colnames(maf)){
+    Center = unique(maf[!Variant_Type %in% 'CNV', Center])
+    #Center = Center[is.na(Center)]
+    if(length(Center) > 1){
+      message('Mutiple centers found.')
+      Center = do.call(paste, c(as.list(Center), sep=";"))
+      print(Center)
+    }
+  }else{
+    Center = NA
+  }
+  
+  #nGenes
+  nGenes = length(unique(maf[,Hugo_Symbol]))
+  
+  
+  
+  #Top 20 FLAGS - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267152/
+  flags = c("TTN", "MUC16", "OBSCN", "AHNAK2", "SYNE1", "FLG", "MUC5B",
+            "DNAH17", "PLEC", "DST", "SYNE2", "NEB", "HSPG2", "LAMA5", "AHNAK",
+            "HMCN1", "USH2A", "DNAH11", "MACF1", "MUC17")
+  
+  #Variants per TSB
+  tsb = maf[,.N, Tumor_Sample_Barcode]
+  colnames(tsb)[2] = 'Variants'
+  tsb = tsb[order(tsb$Variants, decreasing = TRUE),]
+  
+  #summarise and casting by 'Variant_Classification'
+  vc = maf[,.N, .(Tumor_Sample_Barcode, Variant_Classification )]
+  vc.cast = data.table::dcast(data = vc, formula = Tumor_Sample_Barcode ~ Variant_Classification, fill = 0, value.var = 'N')
+  
+  if(any(colnames(vc.cast) %in% c('Amp', 'Del'))){
+    vc.cast.cnv = vc.cast[,colnames(vc.cast)[colnames(vc.cast) %in% c('Amp', 'Del')], with =FALSE]
+    vc.cast.cnv$CNV_total = rowSums(x = vc.cast.cnv)
+    
+    vc.cast = vc.cast[,!colnames(vc.cast)[colnames(vc.cast) %in% c('Amp', 'Del')], with =FALSE]
+    vc.cast[,total:=rowSums(vc.cast[,2:ncol(vc.cast), with = FALSE])]
+    
+    vc.cast = cbind(vc.cast, vc.cast.cnv)
+    vc.cast = vc.cast[order(total, CNV_total, decreasing = TRUE)]
+    
+    vc.mean = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, mean))))
+    vc.median = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, median))))
+  }else{
+    vc.cast[,total:=rowSums(vc.cast[,2:ncol(vc.cast), with = FALSE])]
+    vc.cast = vc.cast[order(total, decreasing = TRUE)]
+    
+    vc.mean = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, mean))))
+    vc.median = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, median))))
+  }
+  
+  #summarise and casting by 'Variant_Type'
+  vt = maf[,.N, .(Tumor_Sample_Barcode, Variant_Type )]
+  vt.cast = data.table::dcast(data = vt, formula = Tumor_Sample_Barcode ~ Variant_Type, value.var = 'N', fill = 0)
+  if(any(colnames(vt.cast) %in% c('CNV'))){
+    vt.cast.cnv = vt.cast[,colnames(vt.cast)[colnames(vt.cast) %in% c('CNV')], with =FALSE]
+    
+    vt.cast = vt.cast[,!colnames(vt.cast)[colnames(vt.cast) %in% c('CNV')], with =FALSE]
+    vt.cast[,total:=rowSums(vt.cast[,2:ncol(vt.cast), with = FALSE])]
+    vt.cast = vt.cast[order(total, decreasing = TRUE)]
+    
+    vt.cast = cbind(vt.cast, vt.cast.cnv)
+    vt.cast[order(total, CNV, decreasing = TRUE)]
+  }else{
+    vt.cast[,total:=rowSums(vt.cast[,2:ncol(vt.cast), with = FALSE])]
+    vt.cast = vt.cast[order(total, decreasing = TRUE)]
+  }
+  
+  #summarise and casting by 'Hugo_Symbol'
+  hs = maf[,.N, .(Hugo_Symbol, Variant_Classification)]
+  hs.cast = data.table::dcast(data = hs, formula = Hugo_Symbol ~Variant_Classification, fill = 0, value.var = 'N')
+  #----
+  if(any(colnames(hs.cast) %in% c('Amp', 'Del'))){
+    hs.cast.cnv = hs.cast[,colnames(hs.cast)[colnames(hs.cast) %in% c('Amp', 'Del')], with =FALSE]
+    hs.cast.cnv$CNV_total = rowSums(x = hs.cast.cnv)
+    
+    hs.cast = hs.cast[,!colnames(hs.cast)[colnames(hs.cast) %in% c('Amp', 'Del')], with =FALSE]
+    hs.cast[,total:=rowSums(hs.cast[,2:ncol(hs.cast), with = FALSE])]
+    
+    hs.cast = cbind(hs.cast, hs.cast.cnv)
+    hs.cast = hs.cast[order(total, CNV_total, decreasing = TRUE)]
+    
+  }else{
+    hs.cast[,total:=rowSums(hs.cast[,2:ncol(hs.cast), with = FALSE])]
+    hs.cast = hs.cast[order(total, decreasing = TRUE)]
+    
+  }
+  #Get in how many samples a gene ismutated
+  numMutatedSamples = maf[!Variant_Type %in% 'CNV', .(MutatedSamples = length(unique(Tumor_Sample_Barcode))), by = Hugo_Symbol]
+  #Merge and sort
+  hs.cast = merge(hs.cast, numMutatedSamples, by = 'Hugo_Symbol', all = TRUE)
+  hs.cast = hs.cast[order(MutatedSamples, total, decreasing = TRUE)]
+  #Make a summarized table
+  summary = data.table::data.table(ID = c('NCBI_Build', 'Center','Samples', 'nGenes',colnames(vc.cast)[2:ncol(vc.cast)]),
+                                   summary = c(NCBI_Build, Center, nrow(vc.cast), nGenes, colSums(vc.cast[,2:ncol(vc.cast), with =FALSE])))
+  summary[,Mean := vc.mean]
+  summary[,Median := vc.median]
+  
+  print(summary)
+  
+  message("Frequently mutated genes..")
+  print(hs.cast)
+  
+  #Check for flags.
+  if(nrow(hs.cast) > 10){
+    topten = hs.cast[1:10, Hugo_Symbol]
+    topten = topten[topten %in% flags]
+    if(length(topten) > 0){
+      message('NOTE: Possible FLAGS among top ten genes:')
+      print(topten)
+    }
+  }
+  
+  return(list(variants.per.sample = tsb, variant.type.summary = vt.cast, variant.classification.summary = vc.cast,
+              gene.summary = hs.cast, summary = summary))
+}
+
+oncodrive_fix = function(maf, AACol = NULL, minMut = 5, pvalMethod = 'zscore', nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL){
+
+  #Proetin Length source
+    gl = system.file('extdata', 'prot_len.txt.gz', package = 'maftools')
+
+  if(Sys.info()[['sysname']] == 'Windows'){
+      gl.gz = gzfile(description = gl, open = 'r')
+          gl <- suppressWarnings( data.table(read.csv( file = gl.gz, header = TRUE, sep = '\t', stringsAsFactors = FALSE)) )
+	      close(gl.gz)
+	        } else{
+		    gl = data.table::fread(input = paste('zcat <', gl), sep = '\t', stringsAsFactors = FALSE)
+		      }
+
+  pval.options = c('zscore', 'poisson', 'combined')
+
+  if(!pvalMethod %in% pval.options){
+      stop('pvalMethod can only be either zscore, poisson or combined')
+        }
+
+  if(length(pvalMethod) > 1){
+      stop('pvalMethod can only be either zscore, poisson or combined')
+        }
+
+
+  #syn variants for background
+    syn.maf = maf@maf.silent
+      #number of samples in maf
+        numSamples = as.numeric(maf@summary[3,summary])
+	  #Perform clustering and calculate background scores.
+	    if(bgEstimate){
+	        if(nrow(syn.maf) == 0){
+		      message('No syn mutations found! Skipping background estimation. Using predefined values. (Mean = 0.279; SD = 0.13)')
+		            bg.mean = 0.279
+			          bg.sd = 0.13
+				      }else{
+				            message('Estimating background scores from synonymous variants..')
+					          syn.bg.scores = parse_prot_fix(dat = syn.maf, AACol = AACol, gl, m = minMut, calBg = TRUE, nBg = nBgGenes)
+
+      #If number of genes to calculate background scores is not enough, use predefined scores.
+            if(is.null(syn.bg.scores)){
+	            message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)")
+		            bg.mean = 0.279
+			            bg.sd = 0.13
+				          }else {
+					          if(nrow(syn.bg.scores) < nBgGenes){
+						            message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)")
+							              bg.mean = 0.279
+								                bg.sd = 0.13
+										        }else{
+											          bg.mean = mean(syn.bg.scores$clusterScores)
+												            bg.sd = sd(syn.bg.scores$clusterScores)
+													              message(paste('Estimated background mean: ', bg.mean))
+														                message(paste('Estimated background SD: ', bg.sd))
+																        }
+																	      }
+																	          }
+																		    }else{
+																		        message("Using predefined values for background. (Mean = 0.279; SD = 0.13)")
+																			    bg.mean = 0.279
+																			        bg.sd = 0.13
+																				  }
+
+
+
+  #non-syn variants
+    non.syn.maf = maf@data
+      #Variant Classification with Low/Modifier variant consequences. http://asia.ensembl.org/Help/Glossary?id=535
+        silent = c("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron",
+	             "RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA", "Amp", "Del")
+		       non.syn.maf = non.syn.maf[!Variant_Classification %in% silent] #Remove silent variants from main table
+
+  #Remove genes to ignore
+    if(!is.null(ignoreGenes)){
+        ignoreGenes.count = nrow(non.syn.maf[Hugo_Symbol %in% ignoreGenes])
+	    message(paste('Removed', ignoreGenes.count, 'variants belonging to', paste(ignoreGenes, collapse = ', ', sep=',')))
+	        non.syn.maf = non.syn.maf[!Hugo_Symbol %in% ignoreGenes]
+		  }
+
+  #Perform clustering and calculate cluster scores for nonsyn variants.
+    message('Estimating cluster scores from non-syn variants..')
+      nonsyn.scores = parse_prot_fix(dat = non.syn.maf, AACol = AACol, gl = gl, m = minMut, calBg = FALSE, nBg = nBgGenes)
+
+  if(pvalMethod == 'combined'){
+      message('Comapring with background model and estimating p-values..')
+          nonsyn.scores$zscore = (nonsyn.scores$clusterScores - bg.mean) / bg.sd
+	      nonsyn.scores$tPval = 1- pnorm(nonsyn.scores$zscore)
+	          nonsyn.scores$tFdr = p.adjust(nonsyn.scores$tPval, method = 'fdr')
+
+    nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol')
+        nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total]
+
+    counts.glm = glm(formula = total ~ protLen+clusters, family = poisson(link = identity), data = nonsyn.scores) #Poisson model
+        nonsyn.scores$Expected = counts.glm$fitted.values #Get expected number of events (mutations) from the model
+
+    observed_mut_colIndex = which(colnames(nonsyn.scores) == 'total')
+        expected_mut_colIndex = which(colnames(nonsyn.scores) == 'Expected')
+
+    #Poisson test to caluclate difference (p-value)
+        nonsyn.scores$poissonPval = apply(nonsyn.scores, 1, function(x) {
+	      poisson.test(as.numeric(x[observed_mut_colIndex]), as.numeric(x[expected_mut_colIndex]))$p.value
+	          })
+
+    nonsyn.scores$poissonFdr = p.adjust(nonsyn.scores$poissonPval)
+        nonsyn.scores = nonsyn.scores[order(poissonFdr)]
+
+    nonsyn.scores$fdr = apply(nonsyn.scores[,.(tFdr, poissonFdr)], MARGIN = 1, FUN = min)
+
+  } else if(pvalMethod == 'zscore'){
+      #Oncodrive clust way of caluclating pvalues
+          #Calculate z scores; compare it to bg scores and estimate z-score, pvalues, corrected pvalues (fdr) (assumes normal distribution)
+	      message('Comapring with background model and estimating p-values..')
+	          nonsyn.scores$zscore = (nonsyn.scores$clusterScores - bg.mean) / bg.sd
+		      nonsyn.scores$pval = 1- pnorm(nonsyn.scores$zscore)
+		          nonsyn.scores$fdr = p.adjust(nonsyn.scores$pval, method = 'fdr')
+
+    nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol')
+        nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total]
+	    #nonsyn.scores[,fract_MutatedSamples := MutatedSamples/numSamples]
+	        nonsyn.scores = nonsyn.scores[order(fdr)]
+		  }else{
+		      #Assuming poisson distribution of mutation counts
+		          #Now model observed number of mutations as a function of number of clusters and protein length. Calculate expected number of events based on poisson distribution.
+			      nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol')
+			          nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total]
+
+    counts.glm = glm(formula = total ~ protLen+clusters, family = poisson(link = identity), data = nonsyn.scores) #Poisson model
+        nonsyn.scores$Expected = counts.glm$fitted.values #Get expected number of events (mutations) from the model
+
+    observed_mut_colIndex = which(colnames(nonsyn.scores) == 'total')
+        expected_mut_colIndex = which(colnames(nonsyn.scores) == 'Expected')
+
+    #Poisson test to caluclate difference (p-value)
+        nonsyn.scores$pval = apply(nonsyn.scores, 1, function(x) {
+	      poisson.test(as.numeric(x[observed_mut_colIndex]), as.numeric(x[expected_mut_colIndex]))$p.value
+	          })
+
+    nonsyn.scores$fdr = p.adjust(nonsyn.scores$pval)
+        nonsyn.scores = nonsyn.scores[order(fdr)]
+	  }
+	    message('Done !')
+	      return(nonsyn.scores)
+	      }
+
+
+laml = read.maf(maf = args$input_maf, removeSilent = F, useAll = T)
+
+if(is.null(args$gene_blacklist)){
+        laml.sig = oncodrive(maf =laml, AACol = aacol, pvalMethod = 'zscore',minMut = min_mut)
+	write.table(laml.sig,file=args$output_detail, quote=FALSE,row.names=FALSE,sep="\t")
+	pdf(args$output_plot)
+	plotOncodrive(res=laml.sig,fdrCutOff=as.numeric(args$fdr),useFraction=TRUE)
+	dev.off()
+	}else{
+        all_genes <- read.table(args$gene_blacklist, stringsAsFactors=FALSE)[,1]
+        laml.sig = oncodrive(maf =laml, AACol = aacol, pvalMethod = 'zscore',minMut = min_mut,ignoreGenes=all_genes)
+	write.table(laml.sig,file=args$output_detail, quote=FALSE,row.names=FALSE,sep="\t")
+	pdf(args$output_plot)
+	plotOncodrive(res=laml.sig,fdrCutOff=as.numeric(args$fdr),useFraction=TRUE)
+	dev.off()
+}
\ No newline at end of file