Mercurial > repos > morinlab > maftools
changeset 2:c3ed203d814d draft
Uploaded
| author | morinlab |
|---|---|
| date | Sun, 04 Dec 2016 20:47:23 -0500 |
| parents | a67d4b423594 |
| children | 7ed78705ba77 |
| files | oncodriveclust_merge.R |
| diffstat | 1 files changed, 835 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/oncodriveclust_merge.R Sun Dec 04 20:47:23 2016 -0500 @@ -0,0 +1,835 @@ +require(maftools); +library(argparse); +require(data.table); + +### + +parser <- ArgumentParser(description="Create a Gene Lollipop using Maftools"); + +parser$add_argument( + "--input_maf", "-maf", + required="True", + help="Input Variants in MAF format" + ); + +parser$add_argument( + "--gene_blacklist", "-gl", + help="Input gene list with separated by newline" + ); + +parser$add_argument( + "--min_mut", "-mm", + default=5, + help="Minimum number of mutations seen in the gene for it to be included in the calculation"); + +parser$add_argument( + "--fdr", "-f", + default=0.1, + help="FDR threshold to use in plots and returned gene list"); + +parser$add_argument( + "--aacol", "-ac", + help="Optionally provide the name of the column that contains the amino acid annotation in your MAF file"); + +parser$add_argument( + "--output_detail", "-o", + required="True", + help="Output text file for oncodriveclust detail" + ) + +parser$add_argument( + "--output_plot", "-p", + required="True", + help="Output pdf file for oncodriveclust detail" + ) + +args <- parser$parse_args(); + +### + + +aacol = 'HGVSp_Short' +if(!is.null(args$aacol)){ +aacol = args$aacol +} + +min_mut = as.integer(args$min_mut) + + +#--------------------- based on binaomial distribution, estimate threshhold. +get_threshold = function(gene_muts, gene_length){ + th = which(unlist(lapply(X = 2:gene_muts, FUN = function(x) dbinom(x = x, size = gene_muts, prob = 1/gene_length) )) < 0.01)[1] + return(th+1) + } + #-------------------- end of function. + +parse_prot_fix = function(dat, AACol, gl, m, calBg = FALSE, nBg){ + + if(is.null(AACol)){ + if(! 'AAChange' %in% colnames(dat)){ + message('Available fields:') + print(colnames(dat)) + stop('AAChange field not found in MAF. Use argument AACol to manually specifiy field name containing protein changes.') + } + }else{ + colnames(dat)[which(colnames(dat) == AACol)] = 'AAChange' + } + + all.prot.dat = dat[,.(Hugo_Symbol, Variant_Classification, AAChange)] + all.prot.dat = all.prot.dat[Variant_Classification != 'Splice_Site'] + #parse AAchanges to get postion + prot.spl = strsplit(x = as.character(all.prot.dat$AAChange), split = '.', fixed = TRUE) + prot.conv = sapply(prot.spl, function(x) x[length(x)]) + + all.prot.dat[,conv := prot.conv] + all.prot.dat = all.prot.dat[!conv == 'NULL'] + + #If conversions are in HGVSp_long (default HGVSp) format, we will remove strings Ter followed by anything (e.g; p.Asn1986GlnfsTer13) + pos = gsub(pattern = 'Ter.*', replacement = '',x = all.prot.dat$conv) + + #Following parsing takes care of most of HGVSp_short and HGVSp_long format + pos = gsub(pattern = '[[:alpha:]]', replacement = '', x = pos) + pos = gsub(pattern = '\\*$', replacement = '', x = pos) #Remove * if nonsense mutation ends with * + pos = gsub(pattern = '^\\*', replacement = '', x = pos) #Remove * if nonsense mutation starts with * + pos = gsub(pattern = '\\*.*', replacement = '', x = pos) #Remove * followed by position e.g, p.C229Lfs*18 + + pos = suppressWarnings( as.numeric(sapply(strsplit(x = pos, split = '_', fixed = TRUE), '[', 1)) ) + all.prot.dat[,pos := pos] + + if(nrow( all.prot.dat[is.na(all.prot.dat$pos),]) > 0){ + #message(paste('Removed', nrow( all.prot.dat[is.na(all.prot.dat$pos),]), 'mutations for which AA position was not available', sep = ' ')) + #print(prot.dat[is.na(prot.dat$pos),]) + all.prot.dat = all.prot.dat[!is.na(all.prot.dat$pos),] + } + + gene.sum = summarizeMaf_fix(maf = dat)$gene.summary + #gene.sum = merge.data.frame(x = gene.sum, y = gl, by = 'Hugo_Symbol', all.x = TRUE) + gene.sum = merge(x = gene.sum, y = gl, by = 'Hugo_Symbol', all.x = TRUE) + #gene.sum = gene.sum[!is.na(gene.sum$aa.length),] + gene.sum = gene.sum[!is.na(gene.sum$aa.length)] + + num_mut_colIndex = which(colnames(gene.sum) == 'total') + aalen_colIndex = which(colnames(gene.sum) == 'aa.length') + + #Get background threshold + gene.sum$th = apply(gene.sum, 1, function(x) get_threshold(gene_muts = as.numeric(x[num_mut_colIndex]), gene_length = as.numeric(x[aalen_colIndex]))) + #use only genes with atleast 2 (or m ) mutations. + gene.sum = gene.sum[total >= m] + + if(calBg){ + if(nrow(gene.sum) < nBg){ + #message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)") + return(NULL) + } else{ + syn.res = c() + pb <- txtProgressBar(min = 0, max = nrow(gene.sum), style = 3) #progress bar + + for(i in 1:nrow(gene.sum)){ + prot.dat = all.prot.dat[Hugo_Symbol == gene.sum[i, "Hugo_Symbol"]] + syn.res = rbind(syn.res, cluster_prot_fix(prot.dat = prot.dat, gene = gene.sum[i, "Hugo_Symbol"], th = gene.sum[i,"th"], protLen = gene.sum[i,"aa.length"])) + setTxtProgressBar(pb, i) + } + return(syn.res) + } + } else{ + nonsyn.res = c() + pb <- txtProgressBar(min = 0, max = nrow(gene.sum), style = 3) #progress bar + + for(i in 1:nrow(gene.sum)){ + hs = gene.sum[i, Hugo_Symbol] + #print(hs) + prot.dat = all.prot.dat[Hugo_Symbol %in% hs] + nonsyn.res = rbind(nonsyn.res, cluster_prot_fix(prot.dat = prot.dat, gene = hs, th = gene.sum[Hugo_Symbol %in% hs, th], protLen = gene.sum[Hugo_Symbol %in% hs, aa.length])) + setTxtProgressBar(pb, i) + } + return(nonsyn.res) + } + } + +cluster_prot_fix = function(prot.dat, gene, th, protLen){ + + mergeDist = 5 #hard coded inter event distance. + #prot.dat = all.prot.dat[Hugo_Symbol == gene] + + #Summarise counts per position + pos.counts = prot.dat[,.N,pos] + pos.counts = pos.counts[order(pos)] + + #classify position as meaningful if its greater than background threshhold. + pos.counts$cluster = ifelse(test = pos.counts$N >= th, yes = 'meaningful', no = 'nonMeaningful') + + #Just choose meaningful positions + clust.tbl = pos.counts[cluster %in% 'meaningful'] + nonclust.tbl = pos.counts[cluster %in% 'nonMeaningful'] + + if(nrow(clust.tbl) == 0){ + #message(paste('No meaningful positions found for', gene, sep=' ')) + return(NULL) + } + + clust.tbl$distance = c(0,diff(clust.tbl$pos)) #calculate inter event distance. + + #If more than one meaningful positions are found within a 5 aa distance, join them to form a cluster. + if(nrow(clust.tbl) > 1){ + + #initialize variables. + cstart = end = clust.tbl[1,pos] + n = clust.tbl[1,N] + cdf = c() + cluster = 1 + + #Go through entire table and update variables. + for(i in 2:nrow(clust.tbl)){ + pos = clust.tbl[i,pos] + + d = clust.tbl[i,distance] + + if(d < mergeDist){ + end = pos + n = n + clust.tbl[i,N] + }else{ + tempdf = data.frame(cluster = paste('cluster', cluster, sep='_'), start = cstart, end = end ,N = n) + cdf = rbind(cdf, tempdf) + cstart = end = pos + n = clust.tbl[i,N] + cluster = cluster + 1 + } + } + cdf = rbind(cdf, data.frame(cluster = paste('cluster', cluster, sep='_'), start = cstart, end = end ,N = n)) + } else { + cdf = data.frame(cluster = 'cluster_1', start = clust.tbl$pos, end = clust.tbl$pos ,N = clust.tbl$N) + } + + #merge adjacent variants to clusters. + for(i in 1:nrow(cdf)){ + tempcdf = cdf[i,] + nonclust.tbl$startDist = nonclust.tbl$pos - tempcdf$start + nonclust.tbl$endDist = nonclust.tbl$pos - tempcdf$end + + merge.adj.to.start = nonclust.tbl[startDist >= -5 & startDist <= 0] + if(nrow(merge.adj.to.start) > 0){ + tempcdf$start = merge.adj.to.start[which(merge.adj.to.start$startDist == min(merge.adj.to.start$startDist)),pos] + tempcdf$N = tempcdf$N + sum(merge.adj.to.start$N) + } + + merge.adj.to.end = nonclust.tbl[endDist <= 5 & endDist >= 0] + if(nrow(merge.adj.to.end) > 0){ + tempcdf$end = merge.adj.to.end[which(merge.adj.to.end$endDist == max(merge.adj.to.end$endDist)),pos] + tempcdf$N = tempcdf$N + sum(merge.adj.to.end$N) + } + cdf[i,] = tempcdf + } + cdf$Hugo_Symbol = gene + + #Calcluate cluster score. + + total.muts = nrow(prot.dat) #total variants for this gene. + clusterScores = c() + + for(i in 1:nrow(cdf)){ + temp.prot.dat = prot.dat[pos >= as.numeric(cdf$start[i]) & pos <= as.numeric(cdf$end[i])] + temp.prot.dat.summary = temp.prot.dat[,.N, pos] + temp.prot.dat.summary[,fraction:= N/total.muts] + + peak = temp.prot.dat.summary[N == max(N), pos] + + posVector = as.numeric(temp.prot.dat.summary[,pos]) + fractionMutVector = unlist(lapply(posVector, FUN = function(x) temp.prot.dat.summary[pos == x, fraction])) + distanceVector = suppressWarnings(abs(posVector - peak)) + + clusterScores = c(clusterScores, sum( fractionMutVector / (sqrt(2)^ distanceVector))) + + } + + cdf$clusterScore = clusterScores + + gene.clust.res = data.frame(Hugo_Symbol = gene, clusters = nrow(cdf), muts_in_clusters = sum(cdf$N), clusterScores = sum(cdf$clusterScore), protLen = protLen) + return(gene.clust.res) + } + + + + + +createOncoMatrix<- function(maf){ + + message('Creating oncomatrix (this might take a while)..') + + oncomat = data.table::dcast(data = maf[,.(Hugo_Symbol, Variant_Classification, Tumor_Sample_Barcode)], formula = Hugo_Symbol ~ Tumor_Sample_Barcode, + fun.aggregate = function(x) {ifelse(test = length(as.character(x))>1 , + no = as.character(x), yes = vcr(x, gis = FALSE)) + }, value.var = 'Variant_Classification', fill = '') + + #If maf contains only one sample converting to matrix is not trivial. + if(ncol(oncomat) == 2){ + genes = oncomat[,Hugo_Symbol] + sampleId = colnames(oncomat)[2] + oncomat = as.matrix(data.frame(row.names = genes, sample = oncomat[,2, with =FALSE])) + }else if(nrow(oncomat) == 1){ + #If MAF has only one gene + gene = oncomat[,Hugo_Symbol] + oncomat[,Hugo_Symbol:= NULL] + oncomat = as.matrix(oncomat) + rownames(oncomat) = gene + sampleID = colnames(oncomat) + }else{ + oncomat = as.matrix(oncomat) + rownames(oncomat) = oncomat[,1] + oncomat = oncomat[,-1] + } + + variant.classes = as.character(unique(maf[,Variant_Classification])) + variant.classes = c('',variant.classes, 'Multi_Hit') + names(variant.classes) = 0:(length(variant.classes)-1) + + #Complex variant classes will be assigned a single integer. + vc.onc = unique(unlist(apply(oncomat, 2, unique))) + vc.onc = vc.onc[!vc.onc %in% names(variant.classes)] + names(vc.onc) = rep(as.character(as.numeric(names(variant.classes)[length(variant.classes)])+1), length(vc.onc)) + variant.classes2 = c(variant.classes, vc.onc) + + oncomat.copy <- oncomat + #Make a numeric coded matrix + for(i in 1:length(variant.classes2)){ + oncomat[oncomat == variant.classes2[i]] = names(variant.classes2)[i] + } + + #If maf has only one gene + if(nrow(oncomat) == 1){ + mdf = t(matrix(as.numeric(oncomat))) + rownames(mdf) = gene + colnames(mdf) = sampleID + return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes)) + } + + #convert from character to numeric + mdf = as.matrix(apply(oncomat, 2, function(x) as.numeric(as.character(x)))) + rownames(mdf) = rownames(oncomat.copy) + + message('Sorting..') + + #If MAF file contains a single sample, simple sorting is enuf. + if(ncol(mdf) == 1){ + mdf = as.matrix(mdf[order(mdf, decreasing = TRUE),]) + colnames(mdf) = sampleId + + oncomat.copy = as.matrix(oncomat.copy[rownames(mdf),]) + colnames(oncomat.copy) = sampleId + + return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes)) + } else{ + #Sort by rows as well columns if >1 samples present in MAF + #Add total variants per gene + mdf = cbind(mdf, variants = apply(mdf, 1, function(x) { + length(x[x != "0"]) + })) + #Sort by total variants + mdf = mdf[order(mdf[, ncol(mdf)], decreasing = TRUE), ] + colnames(mdf) = gsub(pattern = "^X", replacement = "", colnames(mdf)) + nMut = mdf[, ncol(mdf)] + + mdf = mdf[, -ncol(mdf)] + + mdf.temp.copy = mdf #temp copy of original unsorted numeric coded matrix + + mdf[mdf != 0] = 1 #replacing all non-zero integers with 1 improves sorting (& grouping) + tmdf = t(mdf) #transposematrix + mdf = t(tmdf[do.call(order, c(as.list(as.data.frame(tmdf)), decreasing = TRUE)), ]) #sort + + mdf.temp.copy = mdf.temp.copy[rownames(mdf),] #organise original matrix into sorted matrix + mdf.temp.copy = mdf.temp.copy[,colnames(mdf)] + mdf = mdf.temp.copy + + #organise original character matrix into sorted matrix + oncomat.copy <- oncomat.copy[,colnames(mdf)] + oncomat.copy <- oncomat.copy[rownames(mdf),] + + return(list(oncomat = oncomat.copy, nummat = mdf, vc = variant.classes)) + } + } + +validateMaf<-function(maf, rdup = TRUE, isTCGA = isTCGA){ + + #necessary fields. + required.fields = c('Hugo_Symbol', 'Chromosome', 'Start_Position', 'End_Position', 'Reference_Allele', 'Tumor_Seq_Allele2', + 'Variant_Classification', 'Variant_Type', 'Tumor_Sample_Barcode') + + #Change column names to standard names; i.e, camel case + for(i in 1:length(required.fields)){ + colId = suppressWarnings(grep(pattern = required.fields[i], x = colnames(maf), ignore.case = TRUE)) + if(length(colId) > 0){ + colnames(maf)[colId] = required.fields[i] + } + } + + missing.fileds = required.fields[!required.fields %in% colnames(maf)] #check if any of them are missing + + if(length(missing.fileds) > 0){ + missing.fileds = paste(missing.fileds[1], sep = ',', collapse = ', ') + stop(paste('missing required fields from MAF:', missing.fileds)) #stop if any of required.fields are missing + } + + #convert "-" to "." in "Tumor_Sample_Barcode" to avoid complexity in naming + maf$Tumor_Sample_Barcode = gsub(pattern = '-', replacement = '.', x = as.character(maf$Tumor_Sample_Barcode)) + + if(rdup){ + maf = maf[, variantId := paste(Chromosome, Start_Position, Tumor_Sample_Barcode, sep = ':')] + if(nrow(maf[duplicated(variantId)]) > 0){ + message("NOTE: Removed ", nrow(maf[duplicated(variantId)]) ," duplicated variants") + maf = maf[!duplicated(variantId)] + } + maf[,variantId := NULL] + } + + if(nrow(maf[Hugo_Symbol %in% ""]) > 0){ + message('NOTE: Found ', nrow(maf[Hugo_Symbol %in% ""]), ' variants with no Gene Symbols.') + print(maf[Hugo_Symbol %in% "", required.fields, with = FALSE]) + message("Annotating them as 'UnknownGene' for convenience") + maf$Hugo_Symbol = ifelse(test = maf$Hugo_Symbol == "", yes = 'UnknownGene', no = maf$Hugo_Symbol) + } + + if(nrow(maf[is.na(Hugo_Symbol)]) > 0){ + message('NOTE: Found ', nrow(maf[is.na(Hugo_Symbol) > 0]), ' variants with no Gene Symbols.') + print(maf[is.na(Hugo_Symbol), required.fields, with =FALSE]) + message("Annotating them as 'UnknownGene' for convenience") + maf$Hugo_Symbol = ifelse(test = is.na(maf$Hugo_Symbol), yes = 'UnknownGene', no = maf$Hugo_Symbol) + } + + if(isTCGA){ + maf$Tumor_Sample_Barcode = substr(x = maf$Tumor_Sample_Barcode, start = 1, stop = 12) + } + + return(maf) + } + +read.maf_fix = function(maf, removeSilent = TRUE, useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, + gisticDelGenesFile = NULL, cnTable = NULL, removeDuplicatedVariants = TRUE, isTCGA = FALSE){ + + message('reading maf..') + + if(as.logical(length(grep(pattern = 'gz$', x = maf, fixed = FALSE)))){ + #If system is Linux use fread, else use gz connection to read gz file. + if(Sys.info()[['sysname']] == 'Windows'){ + maf.gz = gzfile(description = maf, open = 'r') + suppressWarnings(maf <- data.table(read.csv(file = maf.gz, header = TRUE, sep = '\t', stringsAsFactors = FALSE))) + close(maf.gz) + } else{ + maf = suppressWarnings(data.table::fread(input = paste('zcat <', maf), sep = '\t', stringsAsFactors = FALSE, verbose = FALSE, data.table = TRUE, showProgress = TRUE, header = TRUE)) + } + } else{ + suppressWarnings(maf <- data.table::fread(input = maf, sep = "\t", stringsAsFactors = FALSE, verbose = FALSE, data.table = TRUE, showProgress = TRUE, header = TRUE)) + } + + #validate MAF file + maf = validateMaf(maf = maf, isTCGA = isTCGA, rdup = removeDuplicatedVariants) + + #validation check for variants classified as Somatic in Mutation_Status field. + if(length(colnames(maf)[colnames(x = maf) %in% 'Mutation_Status']) > 0){ + if(!useAll){ + message('Using only Somatic variants from Mutation_Status. Switch on useAll to include everything.') + maf = maf[Mutation_Status %in% "Somatic"] + + if(nrow(maf) == 0){ + stop('No more Somatic mutations left after filtering for Mutation_Status! Maybe set useAll to TRUE ?') + } + + #maf = subset(maf, Mutation_Status == 'Somatic') + }else { + message('Using all variants.') + } + }else{ + message('Mutation_Status not found. Assuming all variants are Somatic and validated.') + } + #Variant Classification with Low/Modifier variant consequences. http://asia.ensembl.org/Help/Glossary?id=535 + silent = c("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron", + "RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA") + #Variant Classification with High/Moderate variant consequences. http://asia.ensembl.org/Help/Glossary?id=535 + vc.nonSilent = c("Frame_Shift_Del", "Frame_Shift_Ins", "Splice_Site", "Translation_Start_Site", + "Nonsense_Mutation", "Nonstop_Mutation", "In_Frame_Del", + "In_Frame_Ins", "Missense_Mutation") + + maf.silent = maf[Variant_Classification %in% silent] + + if(removeSilent){ + + if(nrow(maf.silent) > 0){ + maf.silent.vc = maf.silent[,.N, .(Tumor_Sample_Barcode, Variant_Classification)] + maf.silent.vc.cast = data.table::dcast(data = maf.silent.vc, formula = Tumor_Sample_Barcode ~ Variant_Classification, fill = 0, value.var = 'N') #why dcast is not returning it as data.table ? + summary.silent = data.table(ID = c('Samples',colnames(maf.silent.vc.cast)[2:ncol(maf.silent.vc.cast)]), + N = c(nrow(maf.silent.vc.cast), colSums(maf.silent.vc.cast[,2:ncol(maf.silent.vc.cast), with = FALSE]))) + + maf = maf[!Variant_Classification %in% silent] #Remove silent variants from main table + message(paste('Excluding',nrow(maf.silent), 'silent variants.')) + print(summary.silent) + } else{ + message(message(paste('Excluding',nrow(maf.silent), 'silent variants.'))) + } + }else{ + message('Silent variants are being kept!') + } + + if(!is.null(gisticAllLesionsFile)){ + gisticIp = readGistic(gisticAllLesionsFile = gisticAllLesionsFile, gisticAmpGenesFile = gisticAmpGenesFile, + gisticDelGenesFile = gisticDelGenesFile, isTCGA = isTCGA) + gisticIp = gisticIp@data + + gisticIp[, id := paste(Hugo_Symbol, Tumor_Sample_Barcode, sep=':')] + gisticIp = gisticIp[!duplicated(id)] + gisticIp[,id := NULL] + + maf = rbind(maf, gisticIp, fill =TRUE) + oncomat = createOncoMatrix(maf) + }else if(!is.null(cnTable)){ + message('Processing copy number data..') + cnDat = data.table::fread(input = cnTable, sep = '\t', stringsAsFactors = FALSE, header = TRUE, colClasses = 'character') + colnames(cnDat) = c('Hugo_Symbol', 'Tumor_Sample_Barcode', 'Variant_Classification') + cnDat$Variant_Type = 'CNV' + suppressWarnings(cnDat[, id := paste(Hugo_Symbol, Tumor_Sample_Barcode, sep=':')]) + cnDat = cnDat[!duplicated(id)] + cnDat[,id := NULL] + maf = rbind(maf, cnDat, fill =TRUE) + oncomat = createOncoMatrix(maf) + }else{ + oncomat = createOncoMatrix(maf) + } + + #convert to factors + maf$Variant_Type = as.factor(as.character(maf$Variant_Type)) + maf$Variant_Classification = as.factor(as.character(maf$Variant_Classification)) + maf$Tumor_Sample_Barcode = as.factor(as.character(maf$Tumor_Sample_Barcode)) + + message('Summarizing..') + mafSummary = summarizeMaf_fix(maf = maf) + + #Create MAF object + m = MAF(data = maf, variants.per.sample = mafSummary$variants.per.sample, variant.type.summary = mafSummary$variant.type.summary, + variant.classification.summary = mafSummary$variant.classification.summary,gene.summary = mafSummary$gene.summary, + oncoMatrix = oncomat$oncomat, numericMatrix = oncomat$nummat, summary = mafSummary$summary, + classCode = oncomat$vc, maf.silent = maf.silent) + + + message('Done !') + return(m) +} + + +#' Class MAF +#' @description S4 class for storing summarized MAF. +#' @slot data data.table of original MAF file. +#' @slot variants.per.sample table containing variants per sample +#' @slot variant.type.summary table containing variant types per sample +#' @slot variant.classification.summary table containing variant classification per sample +#' @slot gene.summary table containing variant classification per gene +#' @slot oncoMatrix character matrix of dimension n*m where n is number of genes and m is number of variants +#' @slot numericMatrix numeric matrix of dimension n*m where n is number of genes and m is number of variants +#' @slot summary table with basic MAF summary stats +#' @slot classCode mapping between numeric values in numericMatrix and Variant Classification +#' @slot maf.silent subset of main MAF containing only silent variants +#' @exportClass MAF +#' @import methods +#' @seealso \code{\link{getGeneSummary}} \code{\link{getSampleSummary}} \code{\link{getFields}} + +## MAF object +MAF <- setClass(Class = 'MAF', slots = c(data = 'data.table', variants.per.sample = 'data.table', variant.type.summary = 'data.table', + variant.classification.summary = 'data.table', gene.summary = 'data.table', oncoMatrix = 'matrix', + numericMatrix = 'matrix', summary = 'data.table', classCode = 'character', + maf.silent = 'data.table')) + +setMethod(f = 'show', signature = 'MAF', definition = function(object){ + cat(paste('An object of class ', class(object), "\n")) + print(object@summary) + }) + + +summarizeMaf_fix = function(maf){ + + if('NCBI_Build' %in% colnames(maf)){ + NCBI_Build = unique(maf[!Variant_Type %in% 'CNV', NCBI_Build]) + NCBI_Build = NCBI_Build[!is.na(NCBI_Build)] + + if(length(NCBI_Build) > 1){ + message('NOTE: Mutiple reference builds found!') + NCBI_Build = do.call(paste, c(as.list(NCBI_Build), sep=";")) + message(NCBI_Build) + } + }else{ + NCBI_Build = NA + } + + if('Center' %in% colnames(maf)){ + Center = unique(maf[!Variant_Type %in% 'CNV', Center]) + #Center = Center[is.na(Center)] + if(length(Center) > 1){ + message('Mutiple centers found.') + Center = do.call(paste, c(as.list(Center), sep=";")) + print(Center) + } + }else{ + Center = NA + } + + #nGenes + nGenes = length(unique(maf[,Hugo_Symbol])) + + + + #Top 20 FLAGS - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267152/ + flags = c("TTN", "MUC16", "OBSCN", "AHNAK2", "SYNE1", "FLG", "MUC5B", + "DNAH17", "PLEC", "DST", "SYNE2", "NEB", "HSPG2", "LAMA5", "AHNAK", + "HMCN1", "USH2A", "DNAH11", "MACF1", "MUC17") + + #Variants per TSB + tsb = maf[,.N, Tumor_Sample_Barcode] + colnames(tsb)[2] = 'Variants' + tsb = tsb[order(tsb$Variants, decreasing = TRUE),] + + #summarise and casting by 'Variant_Classification' + vc = maf[,.N, .(Tumor_Sample_Barcode, Variant_Classification )] + vc.cast = data.table::dcast(data = vc, formula = Tumor_Sample_Barcode ~ Variant_Classification, fill = 0, value.var = 'N') + + if(any(colnames(vc.cast) %in% c('Amp', 'Del'))){ + vc.cast.cnv = vc.cast[,colnames(vc.cast)[colnames(vc.cast) %in% c('Amp', 'Del')], with =FALSE] + vc.cast.cnv$CNV_total = rowSums(x = vc.cast.cnv) + + vc.cast = vc.cast[,!colnames(vc.cast)[colnames(vc.cast) %in% c('Amp', 'Del')], with =FALSE] + vc.cast[,total:=rowSums(vc.cast[,2:ncol(vc.cast), with = FALSE])] + + vc.cast = cbind(vc.cast, vc.cast.cnv) + vc.cast = vc.cast[order(total, CNV_total, decreasing = TRUE)] + + vc.mean = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, mean)))) + vc.median = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, median)))) + }else{ + vc.cast[,total:=rowSums(vc.cast[,2:ncol(vc.cast), with = FALSE])] + vc.cast = vc.cast[order(total, decreasing = TRUE)] + + vc.mean = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, mean)))) + vc.median = as.numeric(as.character(c(NA, NA, NA, NA, apply(vc.cast[,2:ncol(vc.cast), with = FALSE], 2, median)))) + } + + #summarise and casting by 'Variant_Type' + vt = maf[,.N, .(Tumor_Sample_Barcode, Variant_Type )] + vt.cast = data.table::dcast(data = vt, formula = Tumor_Sample_Barcode ~ Variant_Type, value.var = 'N', fill = 0) + if(any(colnames(vt.cast) %in% c('CNV'))){ + vt.cast.cnv = vt.cast[,colnames(vt.cast)[colnames(vt.cast) %in% c('CNV')], with =FALSE] + + vt.cast = vt.cast[,!colnames(vt.cast)[colnames(vt.cast) %in% c('CNV')], with =FALSE] + vt.cast[,total:=rowSums(vt.cast[,2:ncol(vt.cast), with = FALSE])] + vt.cast = vt.cast[order(total, decreasing = TRUE)] + + vt.cast = cbind(vt.cast, vt.cast.cnv) + vt.cast[order(total, CNV, decreasing = TRUE)] + }else{ + vt.cast[,total:=rowSums(vt.cast[,2:ncol(vt.cast), with = FALSE])] + vt.cast = vt.cast[order(total, decreasing = TRUE)] + } + + #summarise and casting by 'Hugo_Symbol' + hs = maf[,.N, .(Hugo_Symbol, Variant_Classification)] + hs.cast = data.table::dcast(data = hs, formula = Hugo_Symbol ~Variant_Classification, fill = 0, value.var = 'N') + #---- + if(any(colnames(hs.cast) %in% c('Amp', 'Del'))){ + hs.cast.cnv = hs.cast[,colnames(hs.cast)[colnames(hs.cast) %in% c('Amp', 'Del')], with =FALSE] + hs.cast.cnv$CNV_total = rowSums(x = hs.cast.cnv) + + hs.cast = hs.cast[,!colnames(hs.cast)[colnames(hs.cast) %in% c('Amp', 'Del')], with =FALSE] + hs.cast[,total:=rowSums(hs.cast[,2:ncol(hs.cast), with = FALSE])] + + hs.cast = cbind(hs.cast, hs.cast.cnv) + hs.cast = hs.cast[order(total, CNV_total, decreasing = TRUE)] + + }else{ + hs.cast[,total:=rowSums(hs.cast[,2:ncol(hs.cast), with = FALSE])] + hs.cast = hs.cast[order(total, decreasing = TRUE)] + + } + #Get in how many samples a gene ismutated + numMutatedSamples = maf[!Variant_Type %in% 'CNV', .(MutatedSamples = length(unique(Tumor_Sample_Barcode))), by = Hugo_Symbol] + #Merge and sort + hs.cast = merge(hs.cast, numMutatedSamples, by = 'Hugo_Symbol', all = TRUE) + hs.cast = hs.cast[order(MutatedSamples, total, decreasing = TRUE)] + #Make a summarized table + summary = data.table::data.table(ID = c('NCBI_Build', 'Center','Samples', 'nGenes',colnames(vc.cast)[2:ncol(vc.cast)]), + summary = c(NCBI_Build, Center, nrow(vc.cast), nGenes, colSums(vc.cast[,2:ncol(vc.cast), with =FALSE]))) + summary[,Mean := vc.mean] + summary[,Median := vc.median] + + print(summary) + + message("Frequently mutated genes..") + print(hs.cast) + + #Check for flags. + if(nrow(hs.cast) > 10){ + topten = hs.cast[1:10, Hugo_Symbol] + topten = topten[topten %in% flags] + if(length(topten) > 0){ + message('NOTE: Possible FLAGS among top ten genes:') + print(topten) + } + } + + return(list(variants.per.sample = tsb, variant.type.summary = vt.cast, variant.classification.summary = vc.cast, + gene.summary = hs.cast, summary = summary)) +} + +oncodrive_fix = function(maf, AACol = NULL, minMut = 5, pvalMethod = 'zscore', nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL){ + + #Proetin Length source + gl = system.file('extdata', 'prot_len.txt.gz', package = 'maftools') + + if(Sys.info()[['sysname']] == 'Windows'){ + gl.gz = gzfile(description = gl, open = 'r') + gl <- suppressWarnings( data.table(read.csv( file = gl.gz, header = TRUE, sep = '\t', stringsAsFactors = FALSE)) ) + close(gl.gz) + } else{ + gl = data.table::fread(input = paste('zcat <', gl), sep = '\t', stringsAsFactors = FALSE) + } + + pval.options = c('zscore', 'poisson', 'combined') + + if(!pvalMethod %in% pval.options){ + stop('pvalMethod can only be either zscore, poisson or combined') + } + + if(length(pvalMethod) > 1){ + stop('pvalMethod can only be either zscore, poisson or combined') + } + + + #syn variants for background + syn.maf = maf@maf.silent + #number of samples in maf + numSamples = as.numeric(maf@summary[3,summary]) + #Perform clustering and calculate background scores. + if(bgEstimate){ + if(nrow(syn.maf) == 0){ + message('No syn mutations found! Skipping background estimation. Using predefined values. (Mean = 0.279; SD = 0.13)') + bg.mean = 0.279 + bg.sd = 0.13 + }else{ + message('Estimating background scores from synonymous variants..') + syn.bg.scores = parse_prot_fix(dat = syn.maf, AACol = AACol, gl, m = minMut, calBg = TRUE, nBg = nBgGenes) + + #If number of genes to calculate background scores is not enough, use predefined scores. + if(is.null(syn.bg.scores)){ + message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)") + bg.mean = 0.279 + bg.sd = 0.13 + }else { + if(nrow(syn.bg.scores) < nBgGenes){ + message("Not enough genes to build background. Using predefined values. (Mean = 0.279; SD = 0.13)") + bg.mean = 0.279 + bg.sd = 0.13 + }else{ + bg.mean = mean(syn.bg.scores$clusterScores) + bg.sd = sd(syn.bg.scores$clusterScores) + message(paste('Estimated background mean: ', bg.mean)) + message(paste('Estimated background SD: ', bg.sd)) + } + } + } + }else{ + message("Using predefined values for background. (Mean = 0.279; SD = 0.13)") + bg.mean = 0.279 + bg.sd = 0.13 + } + + + + #non-syn variants + non.syn.maf = maf@data + #Variant Classification with Low/Modifier variant consequences. http://asia.ensembl.org/Help/Glossary?id=535 + silent = c("3'UTR", "5'UTR", "3'Flank", "Targeted_Region", "Silent", "Intron", + "RNA", "IGR", "Splice_Region", "5'Flank", "lincRNA", "Amp", "Del") + non.syn.maf = non.syn.maf[!Variant_Classification %in% silent] #Remove silent variants from main table + + #Remove genes to ignore + if(!is.null(ignoreGenes)){ + ignoreGenes.count = nrow(non.syn.maf[Hugo_Symbol %in% ignoreGenes]) + message(paste('Removed', ignoreGenes.count, 'variants belonging to', paste(ignoreGenes, collapse = ', ', sep=','))) + non.syn.maf = non.syn.maf[!Hugo_Symbol %in% ignoreGenes] + } + + #Perform clustering and calculate cluster scores for nonsyn variants. + message('Estimating cluster scores from non-syn variants..') + nonsyn.scores = parse_prot_fix(dat = non.syn.maf, AACol = AACol, gl = gl, m = minMut, calBg = FALSE, nBg = nBgGenes) + + if(pvalMethod == 'combined'){ + message('Comapring with background model and estimating p-values..') + nonsyn.scores$zscore = (nonsyn.scores$clusterScores - bg.mean) / bg.sd + nonsyn.scores$tPval = 1- pnorm(nonsyn.scores$zscore) + nonsyn.scores$tFdr = p.adjust(nonsyn.scores$tPval, method = 'fdr') + + nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol') + nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total] + + counts.glm = glm(formula = total ~ protLen+clusters, family = poisson(link = identity), data = nonsyn.scores) #Poisson model + nonsyn.scores$Expected = counts.glm$fitted.values #Get expected number of events (mutations) from the model + + observed_mut_colIndex = which(colnames(nonsyn.scores) == 'total') + expected_mut_colIndex = which(colnames(nonsyn.scores) == 'Expected') + + #Poisson test to caluclate difference (p-value) + nonsyn.scores$poissonPval = apply(nonsyn.scores, 1, function(x) { + poisson.test(as.numeric(x[observed_mut_colIndex]), as.numeric(x[expected_mut_colIndex]))$p.value + }) + + nonsyn.scores$poissonFdr = p.adjust(nonsyn.scores$poissonPval) + nonsyn.scores = nonsyn.scores[order(poissonFdr)] + + nonsyn.scores$fdr = apply(nonsyn.scores[,.(tFdr, poissonFdr)], MARGIN = 1, FUN = min) + + } else if(pvalMethod == 'zscore'){ + #Oncodrive clust way of caluclating pvalues + #Calculate z scores; compare it to bg scores and estimate z-score, pvalues, corrected pvalues (fdr) (assumes normal distribution) + message('Comapring with background model and estimating p-values..') + nonsyn.scores$zscore = (nonsyn.scores$clusterScores - bg.mean) / bg.sd + nonsyn.scores$pval = 1- pnorm(nonsyn.scores$zscore) + nonsyn.scores$fdr = p.adjust(nonsyn.scores$pval, method = 'fdr') + + nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol') + nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total] + #nonsyn.scores[,fract_MutatedSamples := MutatedSamples/numSamples] + nonsyn.scores = nonsyn.scores[order(fdr)] + }else{ + #Assuming poisson distribution of mutation counts + #Now model observed number of mutations as a function of number of clusters and protein length. Calculate expected number of events based on poisson distribution. + nonsyn.scores = merge(getGeneSummary(maf), nonsyn.scores, by = 'Hugo_Symbol') + nonsyn.scores[,fract_muts_in_clusters := muts_in_clusters/total] + + counts.glm = glm(formula = total ~ protLen+clusters, family = poisson(link = identity), data = nonsyn.scores) #Poisson model + nonsyn.scores$Expected = counts.glm$fitted.values #Get expected number of events (mutations) from the model + + observed_mut_colIndex = which(colnames(nonsyn.scores) == 'total') + expected_mut_colIndex = which(colnames(nonsyn.scores) == 'Expected') + + #Poisson test to caluclate difference (p-value) + nonsyn.scores$pval = apply(nonsyn.scores, 1, function(x) { + poisson.test(as.numeric(x[observed_mut_colIndex]), as.numeric(x[expected_mut_colIndex]))$p.value + }) + + nonsyn.scores$fdr = p.adjust(nonsyn.scores$pval) + nonsyn.scores = nonsyn.scores[order(fdr)] + } + message('Done !') + return(nonsyn.scores) + } + + +laml = read.maf(maf = args$input_maf, removeSilent = F, useAll = T) + +if(is.null(args$gene_blacklist)){ + laml.sig = oncodrive(maf =laml, AACol = aacol, pvalMethod = 'zscore',minMut = min_mut) + write.table(laml.sig,file=args$output_detail, quote=FALSE,row.names=FALSE,sep="\t") + pdf(args$output_plot) + plotOncodrive(res=laml.sig,fdrCutOff=as.numeric(args$fdr),useFraction=TRUE) + dev.off() + }else{ + all_genes <- read.table(args$gene_blacklist, stringsAsFactors=FALSE)[,1] + laml.sig = oncodrive(maf =laml, AACol = aacol, pvalMethod = 'zscore',minMut = min_mut,ignoreGenes=all_genes) + write.table(laml.sig,file=args$output_detail, quote=FALSE,row.names=FALSE,sep="\t") + pdf(args$output_plot) + plotOncodrive(res=laml.sig,fdrCutOff=as.numeric(args$fdr),useFraction=TRUE) + dev.off() +} \ No newline at end of file
