0
|
1 # $Id: SeqStats.pm,v 1.16.2.1 2003/02/28 13:17:06 heikki Exp $
|
|
2 #
|
|
3 # BioPerl module for Bio::Tools::SeqStats
|
|
4 #
|
|
5 # Cared for by
|
|
6 #
|
|
7 # Copyright Peter Schattner
|
|
8 #
|
|
9 # You may distribute this module under the same terms as perl itself
|
|
10
|
|
11 # POD documentation - main docs before the code
|
|
12
|
|
13 =head1 NAME
|
|
14
|
|
15 Bio::Tools::SeqStats - Object holding statistics for one particular sequence
|
|
16
|
|
17 =head1 SYNOPSIS
|
|
18
|
|
19 # build a primary nucleic acid or protein sequence object somehow
|
|
20 # then build a statistics object from the sequence object
|
|
21
|
|
22 $seqobj = Bio::PrimarySeq->new(-seq=>'ACTGTGGCGTCAACTG',
|
|
23 -alphabet=>'dna',
|
|
24 -id=>'test');
|
|
25 $seq_stats = Bio::Tools::SeqStats->new(-seq=>$seqobj);
|
|
26
|
|
27 # obtain a hash of counts of each type of monomer
|
|
28 # (ie amino or nucleic acid)
|
|
29 print "\nMonomer counts using statistics object\n";
|
|
30 $seq_stats = Bio::Tools::SeqStats->new(-seq=>$seqobj);
|
|
31 $hash_ref = $seq_stats->count_monomers(); # eg for DNA sequence
|
|
32 foreach $base (sort keys %$hash_ref) {
|
|
33 print "Number of bases of type ", $base, "= ", %$hash_ref->{$base},"\n";
|
|
34 }
|
|
35
|
|
36 # or obtain the count directly without creating a new statistics object
|
|
37 print "\nMonomer counts without statistics object\n";
|
|
38 $hash_ref = Bio::Tools::SeqStats->count_monomers($seqobj);
|
|
39 foreach $base (sort keys %$hash_ref) {
|
|
40 print "Number of bases of type ", $base, "= ", %$hash_ref->{$base},"\n";
|
|
41 }
|
|
42
|
|
43
|
|
44 # obtain hash of counts of each type of codon in a nucleic acid sequence
|
|
45 print "\nCodon counts using statistics object\n";
|
|
46 $hash_ref = $seq_stats-> count_codons(); # for nucleic acid sequence
|
|
47 foreach $base (sort keys %$hash_ref) {
|
|
48 print "Number of codons of type ", $base, "= ", %$hash_ref->{$base},"\n";
|
|
49 }
|
|
50
|
|
51 # or
|
|
52 print "\nCodon counts without statistics object\n";
|
|
53 $hash_ref = Bio::Tools::SeqStats->count_codons($seqobj);
|
|
54 foreach $base (sort keys %$hash_ref) {
|
|
55 print "Number of codons of type ", $base, "= ", %$hash_ref->{$base},"\n";
|
|
56 }
|
|
57
|
|
58 # Obtain the molecular weight of a sequence. Since the sequence may contain
|
|
59 # ambiguous monomers, the molecular weight is returned as a (reference to) a
|
|
60 # two element array containing greatest lower bound (GLB) and least upper bound
|
|
61 # (LUB) of the molecular weight
|
|
62 $weight = $seq_stats->get_mol_wt();
|
|
63 print "\nMolecular weight (using statistics object) of sequence ", $seqobj->id(),
|
|
64 " is between ", $$weight[0], " and " ,
|
|
65 $$weight[1], "\n";
|
|
66
|
|
67 # or
|
|
68 $weight = Bio::Tools::SeqStats->get_mol_wt($seqobj);
|
|
69 print "\nMolecular weight (without statistics object) of sequence ", $seqobj->id(),
|
|
70 " is between ", $$weight[0], " and " ,
|
|
71 $$weight[1], "\n";
|
|
72
|
|
73
|
|
74 =head1 DESCRIPTION
|
|
75
|
|
76 Bio::Tools::SeqStats is a lightweight object for the calculation of
|
|
77 simple statistical and numerical properties of a sequence. By
|
|
78 "lightweight" I mean that only "primary" sequences are handled by the
|
|
79 object. The calling script needs to create the appropriate primary
|
|
80 sequence to be passed to SeqStats if statistics on a sequence feature
|
|
81 are required. Similarly if a codon count is desired for a
|
|
82 frame-shifted sequence and/or a negative strand sequence, the calling
|
|
83 script needs to create that sequence and pass it to the SeqStats
|
|
84 object.
|
|
85
|
|
86 Nota that nucleotide sequences in bioperl do not strictly separate RNA
|
|
87 and DNA sequences. By convension, sequences from RNA molecules are
|
|
88 shown as is they were DNA. Objects are supposed to make the
|
|
89 distinction when needed. This class is one of the few where this
|
|
90 distinctions needs to be made. Internally, it changes all Ts into Us
|
|
91 before weight and monomer count.
|
|
92
|
|
93
|
|
94 SeqStats can be called in two distinct manners. If only a single
|
|
95 computation is required on a given sequence object, the method can be
|
|
96 called easily using the SeqStats object directly:
|
|
97
|
|
98 $weight = Bio::Tools::SeqStats->get_mol_wt($seqobj);
|
|
99
|
|
100 Alternately, if several computations will be required on a given
|
|
101 sequence object, an "instance" statistics object can be constructed
|
|
102 and used for the method calls:
|
|
103
|
|
104 $seq_stats = Bio::Tools::SeqStats->new($seqobj);
|
|
105 $monomers = $seq_stats->count_monomers();
|
|
106 $codons = $seq_stats->count_codons();
|
|
107 $weight = $seq_stats->get_mol_wt();
|
|
108
|
|
109 As currently implemented the object can return the following values
|
|
110 from a sequence:
|
|
111
|
|
112 =over 3
|
|
113
|
|
114 =item *
|
|
115
|
|
116 The molecular weight of the sequence: get_mol_wt()
|
|
117
|
|
118 =item *
|
|
119
|
|
120 The number of each type of monomer present: count_monomers()
|
|
121
|
|
122 =item *
|
|
123
|
|
124 The number of each codon present in a nucleic acid sequence:
|
|
125 count_codons()
|
|
126
|
|
127 =back
|
|
128
|
|
129 For dna (and rna) sequences, single-stranded weights are returned. The
|
|
130 molecular weights are calculated for neutral - ie not ionized -
|
|
131 nucleic acids. The returned weight is the sum of the
|
|
132 base-sugar-phosphate residues of the chain plus one weight of water to
|
|
133 to account for the additional OH on the phosphate of the 5' residue
|
|
134 and the additional H on the sugar ring of the 3' residue. Note that
|
|
135 this leads to a difference of 18 in calculated molecular weights
|
|
136 compared to some other available programs (eg Informax VectorNTI).
|
|
137
|
|
138 Note that since sequences may contain ambiguous monomers (eg "M"
|
|
139 meaning "A" or "C" in a nucleic acid sequence), the method get_mol_wt
|
|
140 returns a two-element array containing the greatest lower bound and
|
|
141 least upper bound of the molecule. (For a sequence with no ambiguous
|
|
142 monomers, the two elements of the returned array will be equal.) The
|
|
143 method count_codons() handles ambiguous bases by simply counting all
|
|
144 ambiguous codons together and issuing a warning to that effect.
|
|
145
|
|
146
|
|
147 =head1 DEVELOPERS NOTES
|
|
148
|
|
149 Ewan moved it from Bio::SeqStats to Bio::Tools::SeqStats
|
|
150
|
|
151 =head1 FEEDBACK
|
|
152
|
|
153 =head2 Mailing Lists
|
|
154
|
|
155 User feedback is an integral part of the evolution of this and other
|
|
156 Bioperl modules. Send your comments and suggestions preferably to one
|
|
157 of the Bioperl mailing lists. Your participation is much appreciated.
|
|
158
|
|
159 bioperl-l@bioperl.org - General discussion
|
|
160 http://bio.perl.org/MailList.html - About the mailing lists
|
|
161
|
|
162 =head2 Reporting Bugs
|
|
163
|
|
164 Report bugs to the Bioperl bug tracking system to help us keep track
|
|
165 the bugs and their resolution.
|
|
166 Bug reports can be submitted via email or the web:
|
|
167
|
|
168 bioperl-bugs@bio.perl.org
|
|
169 http://bugzilla.bioperl.org/
|
|
170
|
|
171 =head1 AUTHOR - Peter Schattner
|
|
172
|
|
173 Email schattner@alum.mit.edu
|
|
174
|
|
175 =head1 APPENDIX
|
|
176
|
|
177 The rest of the documentation details each of the object
|
|
178 methods. Internal methods are usually preceded with a _
|
|
179
|
|
180 =cut
|
|
181
|
|
182
|
|
183 package Bio::Tools::SeqStats;
|
|
184 use strict;
|
|
185 use vars qw(@ISA %Alphabets %Alphabets_strict $amino_weights
|
|
186 $rna_weights $dna_weights %Weights );
|
|
187 use Bio::Seq;
|
|
188 use Bio::Root::Root;
|
|
189 @ISA = qw(Bio::Root::Root);
|
|
190
|
|
191 BEGIN {
|
|
192 %Alphabets = (
|
|
193 'dna' => [ qw(A C G T R Y M K S W H B V D X N) ],
|
|
194 'rna' => [ qw(A C G U R Y M K S W H B V D X N) ],
|
|
195 'protein' => [ qw(A R N D C Q E G H I L K M F
|
|
196 P S T W X Y V B Z *) ], # sac: added B, Z
|
|
197 );
|
|
198
|
|
199 # SAC: new strict alphabet: doesn't allow any ambiguity characters.
|
|
200 %Alphabets_strict = (
|
|
201 'dna' => [ qw( A C G T ) ],
|
|
202 'rna' => [ qw( A C G U ) ],
|
|
203 'protein' => [ qw(A R N D C Q E G H I L K M F
|
|
204 P S T W Y V) ],
|
|
205 );
|
|
206
|
|
207
|
|
208 # IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE:
|
|
209 # Cornish-Bowden (1985) Nucl. Acids Res. 13: 3021-3030.
|
|
210
|
|
211 # Amino Acid alphabet
|
|
212
|
|
213 # ------------------------------------------
|
|
214 # Symbol Meaning
|
|
215 # ------------------------------------------
|
|
216
|
|
217 my $amino_A_wt = 89.09;
|
|
218 my $amino_C_wt = 121.15;
|
|
219 my $amino_D_wt = 133.1;
|
|
220 my $amino_E_wt = 147.13;
|
|
221 my $amino_F_wt = 165.19;
|
|
222 my $amino_G_wt = 75.07;
|
|
223 my $amino_H_wt = 155.16;
|
|
224 my $amino_I_wt = 131.18;
|
|
225 my $amino_K_wt = 146.19;
|
|
226 my $amino_L_wt = 131.18;
|
|
227 my $amino_M_wt = 149.22;
|
|
228 my $amino_N_wt = 132.12;
|
|
229 my $amino_P_wt = 115.13;
|
|
230 my $amino_Q_wt = 146.15;
|
|
231 my $amino_R_wt = 174.21;
|
|
232 my $amino_S_wt = 105.09;
|
|
233 my $amino_T_wt = 119.12;
|
|
234 my $amino_V_wt = 117.15;
|
|
235 my $amino_W_wt = 204.22;
|
|
236 my $amino_Y_wt = 181.19;
|
|
237
|
|
238 $amino_weights = {
|
|
239 'A' => [$amino_A_wt, $amino_A_wt], # Alanine
|
|
240 'B' => [$amino_N_wt, $amino_D_wt], # Aspartic Acid, Asparagine
|
|
241 'C' => [$amino_C_wt, $amino_C_wt], # Cystine
|
|
242 'D' => [$amino_D_wt, $amino_D_wt], # Aspartic Acid
|
|
243 'E' => [$amino_E_wt, $amino_E_wt], # Glutamic Acid
|
|
244 'F' => [$amino_F_wt, $amino_F_wt], # Phenylalanine
|
|
245 'G' => [$amino_G_wt, $amino_G_wt], # Glycine
|
|
246 'H' => [$amino_H_wt, $amino_H_wt], # Histidine
|
|
247 'I' => [$amino_I_wt, $amino_I_wt], # Isoleucine
|
|
248 'K' => [$amino_K_wt, $amino_K_wt], # Lysine
|
|
249 'L' => [$amino_L_wt, $amino_L_wt], # Leucine
|
|
250 'M' => [$amino_M_wt, $amino_M_wt], # Methionine
|
|
251 'N' => [$amino_N_wt, $amino_N_wt], # Asparagine
|
|
252 'P' => [$amino_P_wt, $amino_P_wt], # Proline
|
|
253 'Q' => [$amino_Q_wt, $amino_Q_wt], # Glutamine
|
|
254 'R' => [$amino_R_wt, $amino_R_wt], # Arginine
|
|
255 'S' => [$amino_S_wt, $amino_S_wt], # Serine
|
|
256 'T' => [$amino_T_wt, $amino_T_wt], # Threonine
|
|
257 'V' => [$amino_V_wt, $amino_V_wt], # Valine
|
|
258 'W' => [$amino_W_wt, $amino_W_wt], # Tryptophan
|
|
259 'X' => [$amino_G_wt, $amino_W_wt], # Unknown
|
|
260 'Y' => [$amino_Y_wt, $amino_Y_wt], # Tyrosine
|
|
261 'Z' => [$amino_Q_wt, $amino_E_wt], # Glutamic Acid, Glutamine
|
|
262 };
|
|
263
|
|
264 # Extended Dna / Rna alphabet
|
|
265 use vars ( qw($C $O $N $H $P $water) );
|
|
266 use vars ( qw($adenine $guanine $cytosine $thymine $uracil));
|
|
267 use vars ( qw($ribose_phosphate $deoxyribose_phosphate $ppi));
|
|
268 use vars ( qw($dna_A_wt $dna_C_wt $dna_G_wt $dna_T_wt
|
|
269 $rna_A_wt $rna_C_wt $rna_G_wt $rna_U_wt));
|
|
270 use vars ( qw($dna_weights $rna_weights %Weights));
|
|
271
|
|
272 $C = 12.01;
|
|
273 $O = 16.00;
|
|
274 $N = 14.01;
|
|
275 $H = 1.01;
|
|
276 $P = 30.97;
|
|
277 $water = 18.015;
|
|
278
|
|
279 $adenine = 5 * $C + 5 * $N + 5 * $H;
|
|
280 $guanine = 5 * $C + 5 * $N + 1 * $O + 5 * $H;
|
|
281 $cytosine = 4 * $C + 3 * $N + 1 * $O + 5 * $H;
|
|
282 $thymine = 5 * $C + 2 * $N + 2 * $O + 6 * $H;
|
|
283 $uracil = 4 * $C + 2 * $N + 2 * $O + 4 * $H;
|
|
284
|
|
285 $ribose_phosphate = 5 * $C + 7 * $O + 9 * $H + 1 * $P; #neutral (unionized) form
|
|
286 $deoxyribose_phosphate = 5 * $C + 6 * $O + 9 * $H + 1 * $P;
|
|
287
|
|
288 # the following are single strand molecular weights / base
|
|
289 $dna_A_wt = $adenine + $deoxyribose_phosphate - $water;
|
|
290 $dna_C_wt = $cytosine + $deoxyribose_phosphate - $water;
|
|
291 $dna_G_wt = $guanine + $deoxyribose_phosphate - $water;
|
|
292 $dna_T_wt = $thymine + $deoxyribose_phosphate - $water;
|
|
293
|
|
294 $rna_A_wt = $adenine + $ribose_phosphate - $water;
|
|
295 $rna_C_wt = $cytosine + $ribose_phosphate - $water;
|
|
296 $rna_G_wt = $guanine + $ribose_phosphate - $water;
|
|
297 $rna_U_wt = $uracil + $ribose_phosphate - $water;
|
|
298
|
|
299 $dna_weights = {
|
|
300 'A' => [$dna_A_wt,$dna_A_wt], # Adenine
|
|
301 'C' => [$dna_C_wt,$dna_C_wt], # Cytosine
|
|
302 'G' => [$dna_G_wt,$dna_G_wt], # Guanine
|
|
303 'T' => [$dna_T_wt,$dna_T_wt], # Thymine
|
|
304 'M' => [$dna_C_wt,$dna_A_wt], # A or C
|
|
305 'R' => [$dna_A_wt,$dna_G_wt], # A or G
|
|
306 'W' => [$dna_T_wt,$dna_A_wt], # A or T
|
|
307 'S' => [$dna_C_wt,$dna_G_wt], # C or G
|
|
308 'Y' => [$dna_C_wt,$dna_T_wt], # C or T
|
|
309 'K' => [$dna_T_wt,$dna_G_wt], # G or T
|
|
310 'V' => [$dna_C_wt,$dna_G_wt], # A or C or G
|
|
311 'H' => [$dna_C_wt,$dna_A_wt], # A or C or T
|
|
312 'D' => [$dna_T_wt,$dna_G_wt], # A or G or T
|
|
313 'B' => [$dna_C_wt,$dna_G_wt], # C or G or T
|
|
314 'X' => [$dna_C_wt,$dna_G_wt], # G or A or T or C
|
|
315 'N' => [$dna_C_wt,$dna_G_wt], # G or A or T or C
|
|
316 };
|
|
317
|
|
318 $rna_weights = {
|
|
319 'A' => [$rna_A_wt,$rna_A_wt], # Adenine
|
|
320 'C' => [$rna_C_wt,$rna_C_wt], # Cytosine
|
|
321 'G' => [$rna_G_wt,$rna_G_wt], # Guanine
|
|
322 'U' => [$rna_U_wt,$rna_U_wt], # Uracil
|
|
323 'M' => [$rna_C_wt,$rna_A_wt], # A or C
|
|
324 'R' => [$rna_A_wt,$rna_G_wt], # A or G
|
|
325 'W' => [$rna_U_wt,$rna_A_wt], # A or U
|
|
326 'S' => [$rna_C_wt,$rna_G_wt], # C or G
|
|
327 'Y' => [$rna_C_wt,$rna_U_wt], # C or U
|
|
328 'K' => [$rna_U_wt,$rna_G_wt], # G or U
|
|
329 'V' => [$rna_C_wt,$rna_G_wt], # A or C or G
|
|
330 'H' => [$rna_C_wt,$rna_A_wt], # A or C or U
|
|
331 'D' => [$rna_U_wt,$rna_G_wt], # A or G or U
|
|
332 'B' => [$rna_C_wt,$rna_G_wt], # C or G or U
|
|
333 'X' => [$rna_C_wt,$rna_G_wt], # G or A or U or C
|
|
334 'N' => [$rna_C_wt,$rna_G_wt], # G or A or U or C
|
|
335 };
|
|
336
|
|
337 %Weights = (
|
|
338 'dna' => $dna_weights,
|
|
339 'rna' => $rna_weights,
|
|
340 'protein' => $amino_weights,
|
|
341 );
|
|
342 }
|
|
343
|
|
344 sub new {
|
|
345 my($class,@args) = @_;
|
|
346 my $self = $class->SUPER::new(@args);
|
|
347
|
|
348 my ($seqobj) = $self->_rearrange([qw(SEQ)],@args);
|
|
349 unless ($seqobj->isa("Bio::PrimarySeqI")) {
|
|
350 $self->throw(" SeqStats works only on PrimarySeqI objects \n");
|
|
351 }
|
|
352 if ( !defined $seqobj->alphabet || ! defined $Alphabets{$seqobj->alphabet}) {
|
|
353 $self->throw("Must have a valid alphabet defined for seq (".
|
|
354 join(",",keys %Alphabets));
|
|
355 }
|
|
356 $self->{'_seqref'} = $seqobj;
|
|
357 # check the letters in the sequence
|
|
358 $self->{'_is_strict'} = _is_alphabet_strict($seqobj);
|
|
359 return $self;
|
|
360 }
|
|
361
|
|
362 =head2 count_monomers
|
|
363
|
|
364 Title : count_monomers
|
|
365 Usage : $rcount = $seq_stats->count_monomers();
|
|
366 or $rcount = $seq_stats->Bio::Tools::SeqStats->($seqobj);
|
|
367 Function: Counts the number of each type of monomer (amino acid or
|
|
368 base) in the sequence.
|
|
369 Ts are counted as Us in RNA sequences.
|
|
370 Example :
|
|
371 Returns : Reference to a hash in which keys are letters of the
|
|
372 genetic alphabet used and values are number of occurrences
|
|
373 of the letter in the sequence.
|
|
374 Args : None or reference to sequence object
|
|
375 Throws : Throws an exception if type of sequence is unknown (ie amino
|
|
376 or nucleic)or if unknown letter in alphabet. Ambiguous
|
|
377 elements are allowed.
|
|
378
|
|
379 =cut
|
|
380
|
|
381 sub count_monomers{
|
|
382 my %count = ();
|
|
383 my $seqobj;
|
|
384 my $_is_strict;
|
|
385 my $element = '';
|
|
386 my $_is_instance = 1 ;
|
|
387 my $self = shift @_;
|
|
388 my $object_argument = shift @_;
|
|
389
|
|
390 # First we need to determine if the present object is an instance
|
|
391 # object or if the sequence object has been passed as an argument
|
|
392
|
|
393 if (defined $object_argument) {
|
|
394 $_is_instance = 0;
|
|
395 }
|
|
396
|
|
397 # If we are using an instance object...
|
|
398 if ($_is_instance) {
|
|
399 if ($self->{'_monomer_count'}) {
|
|
400 return $self->{'_monomer_count'}; # return count if previously calculated
|
|
401 }
|
|
402 $_is_strict = $self->{'_is_strict'}; # retrieve "strictness"
|
|
403 $seqobj = $self->{'_seqref'};
|
|
404 } else {
|
|
405 # otherwise...
|
|
406 $seqobj = $object_argument;
|
|
407
|
|
408 # Following two lines lead to error in "throw" routine
|
|
409 $seqobj->isa("Bio::PrimarySeqI") ||
|
|
410 $self->throw(" SeqStats works only on PrimarySeqI objects \n");
|
|
411 # is alphabet OK? Is it strict?
|
|
412 $_is_strict = _is_alphabet_strict($seqobj);
|
|
413 }
|
|
414
|
|
415 my $alphabet = $_is_strict ? $Alphabets_strict{$seqobj->alphabet} :
|
|
416 $Alphabets{$seqobj->alphabet} ; # get array of allowed letters
|
|
417
|
|
418 # convert everything to upper case to be safe
|
|
419 my $seqstring = uc $seqobj->seq();
|
|
420
|
|
421 # Since T is used in RichSeq RNA sequences, do conversion locally
|
|
422 $seqstring =~ s/T/U/g if $seqobj->alphabet eq 'rna';
|
|
423
|
|
424 # For each letter, count the number of times it appears in
|
|
425 # the sequence
|
|
426 LETTER:
|
|
427 foreach $element (@$alphabet) {
|
|
428 # skip terminator symbol which may confuse regex
|
|
429 next LETTER if $element eq '*';
|
|
430 $count{$element} = ( $seqstring =~ s/$element/$element/g);
|
|
431 }
|
|
432
|
|
433 if ($_is_instance) {
|
|
434 $self->{'_monomer_count'} = \%count; # Save in case called again later
|
|
435 }
|
|
436
|
|
437 return \%count;
|
|
438 }
|
|
439
|
|
440 =head2 get_mol_wt
|
|
441
|
|
442 Title : get_mol_wt
|
|
443 Usage : $wt = $seqobj->get_mol_wt() or
|
|
444 $wt = Bio::Tools::SeqStats ->get_mol_wt($seqobj);
|
|
445 Function: Calculate molecular weight of sequence
|
|
446 Ts are counted as Us in RNA sequences.
|
|
447 Example :
|
|
448
|
|
449 Returns : Reference to two element array containing lower and upper
|
|
450 bounds of molecule molecular weight. (For dna (and rna)
|
|
451 sequences, single-stranded weights are returned.) If
|
|
452 sequence contains no ambiguous elements, both entries in
|
|
453 array are equal to molecular weight of molecule.
|
|
454 Args : None or reference to sequence object
|
|
455 Throws : Exception if type of sequence is unknown (ie not amino or
|
|
456 nucleic) or if unknown letter in alphabet. Ambiguous
|
|
457 elements are allowed.
|
|
458
|
|
459 =cut
|
|
460
|
|
461 sub get_mol_wt {
|
|
462
|
|
463 my $seqobj;
|
|
464 my $_is_strict;
|
|
465 my $element = '';
|
|
466 my $_is_instance = 1 ;
|
|
467 my $self = shift @_;
|
|
468 my $object_argument = shift @_;
|
|
469 my ($weight_array, $rcount);
|
|
470
|
|
471 if (defined $object_argument) {
|
|
472 $_is_instance = 0;
|
|
473 }
|
|
474
|
|
475 if ($_is_instance) {
|
|
476 if ($weight_array = $self->{'_mol_wt'}) {
|
|
477 # return mol. weight if previously calculated
|
|
478 return $weight_array;
|
|
479 }
|
|
480 $seqobj = $self->{'_seqref'};
|
|
481 $rcount = $self->count_monomers();
|
|
482 } else {
|
|
483 $seqobj = $object_argument;
|
|
484 $seqobj->isa("Bio::PrimarySeqI") ||
|
|
485 die("Error: SeqStats works only on PrimarySeqI objects \n");
|
|
486 $_is_strict = _is_alphabet_strict($seqobj); # is alphabet OK?
|
|
487 $rcount = $self->count_monomers($seqobj);
|
|
488 }
|
|
489
|
|
490 # We will also need to know what type of monomer we are dealing with
|
|
491 my $moltype = $seqobj->alphabet();
|
|
492
|
|
493 # In general,the molecular weight is bounded below by the sum of the
|
|
494 # weights of lower bounds of each alphabet symbol times the number of
|
|
495 # occurrences of the symbol in the sequence. A similar upper bound on
|
|
496 # the weight is also calculated.
|
|
497
|
|
498 # Note that for "strict" (ie unambiguous) sequences there is an
|
|
499 # inefficiency since the upper bound = the lower bound (and is
|
|
500 # calculated twice). However, this decrease in performance will be
|
|
501 # minor and leads to (IMO) significantly more readable code.
|
|
502
|
|
503 my $weight_lower_bound = 0;
|
|
504 my $weight_upper_bound = 0;
|
|
505 my $weight_table = $Weights{$moltype};
|
|
506
|
|
507
|
|
508 # compute weight of all the residues
|
|
509 foreach $element (keys %$rcount) {
|
|
510 $weight_lower_bound += $$rcount{$element} * $$weight_table{$element}->[0];
|
|
511 $weight_upper_bound += $$rcount{$element} * $$weight_table{$element}->[1];
|
|
512 }
|
|
513 if ($moltype =~ /protein/) {
|
|
514 # remove of H2O during peptide bond formation.
|
|
515 $weight_lower_bound -= $water * ($seqobj->length - 1);
|
|
516 $weight_upper_bound -= $water * ($seqobj->length - 1);
|
|
517 } else {
|
|
518 # Correction because phosphate of 5' residue has additional OH and
|
|
519 # sugar ring of 3' residue has additional H
|
|
520 $weight_lower_bound += $water;
|
|
521 $weight_upper_bound += $water;
|
|
522 }
|
|
523
|
|
524 $weight_lower_bound = sprintf("%.0f", $weight_lower_bound);
|
|
525 $weight_upper_bound = sprintf("%.0f", $weight_upper_bound);
|
|
526
|
|
527 $weight_array = [$weight_lower_bound, $weight_upper_bound];
|
|
528
|
|
529 if ($_is_instance) {
|
|
530 $self->{'_mol_wt'} = $weight_array; # Save in case called again later
|
|
531 }
|
|
532 return $weight_array;
|
|
533 }
|
|
534
|
|
535
|
|
536 =head2 count_codons
|
|
537
|
|
538 Title : count_codons
|
|
539 Usage : $rcount = $seqstats->count_codons (); or
|
|
540 $rcount = Bio::Tools::SeqStats->count_codons($seqobj);
|
|
541
|
|
542 Function: Counts the number of each type of codons in a given frame
|
|
543 for a dna or rna sequence.
|
|
544 Example :
|
|
545 Returns : Reference to a hash in which keys are codons of the genetic
|
|
546 alphabet used and values are number of occurrences of the
|
|
547 codons in the sequence. All codons with "ambiguous" bases
|
|
548 are counted together.
|
|
549 Args : None or reference to sequence object
|
|
550
|
|
551 Throws : an exception if type of sequence is unknown or protein.
|
|
552
|
|
553 =cut
|
|
554
|
|
555 sub count_codons {
|
|
556 my $rcount = {};
|
|
557 my $codon ;
|
|
558 my $seqobj;
|
|
559 my $_is_strict;
|
|
560 my $element = '';
|
|
561 my $_is_instance = 1 ;
|
|
562 my $self = shift @_;
|
|
563 my $object_argument = shift @_;
|
|
564
|
|
565 if (defined $object_argument) {
|
|
566 $_is_instance = 0;
|
|
567 }
|
|
568
|
|
569 if ($_is_instance) {
|
|
570 if ($rcount = $self->{'_codon_count'}) {
|
|
571 return $rcount; # return count if previously calculated
|
|
572 }
|
|
573 $_is_strict = $self->{'_is_strict'}; # retrieve "strictness"
|
|
574 $seqobj = $self->{'_seqref'};
|
|
575 } else {
|
|
576 $seqobj = $object_argument;
|
|
577 $seqobj->isa("Bio::PrimarySeqI") ||
|
|
578 die(" Error: SeqStats works only on PrimarySeqI objects \n");
|
|
579 $_is_strict = _is_alphabet_strict($seqobj);
|
|
580 }
|
|
581
|
|
582 # Codon counts only make sense for nucleic acid sequences
|
|
583 my $alphabet = $seqobj->alphabet();
|
|
584
|
|
585 unless ($alphabet =~ /[dr]na/) {
|
|
586 $seqobj->throw(" Codon counts only meaningful for dna or rna, ".
|
|
587 "not for $alphabet sequences. \n");
|
|
588 }
|
|
589
|
|
590 # If sequence contains ambiguous bases, warn that codons
|
|
591 # containing them will all be lumped together in the count.
|
|
592
|
|
593 if (!$_is_strict ) {
|
|
594 $seqobj->warn(" Sequence $seqobj contains ambiguous bases. \n".
|
|
595 " All codons with ambiguous bases will be added together in count. \n");
|
|
596 }
|
|
597
|
|
598 my $seq = $seqobj->seq();
|
|
599
|
|
600 # Now step through the string by threes and count the codons
|
|
601
|
|
602 CODON:
|
|
603 while (length($seq) > 2) {
|
|
604 $codon = substr($seq,0,3);
|
|
605 $seq = substr($seq,3);
|
|
606 if ($codon =~ /[^ACTGU]/) {
|
|
607 $$rcount{'ambiguous'}++; #lump together ambiguous codons
|
|
608 next CODON;
|
|
609 }
|
|
610 if (!defined $$rcount{$codon}) {
|
|
611 $$rcount{$codon}= 1 ;
|
|
612 next CODON;
|
|
613 }
|
|
614 $$rcount{$codon}++; # default
|
|
615 }
|
|
616
|
|
617
|
|
618 if ($_is_instance) {
|
|
619 $self->{'_codon_count'} = $rcount; # Save in case called again later
|
|
620 }
|
|
621
|
|
622 return $rcount;
|
|
623 }
|
|
624
|
|
625
|
|
626 =head2 _is_alphabet_strict
|
|
627
|
|
628 Title : _is_alphabet_strict
|
|
629 Usage :
|
|
630 Function: internal function to determine whether there are
|
|
631 any ambiguous elements in the current sequence
|
|
632 Example :
|
|
633 Returns : 1 if strict alphabet is being used,
|
|
634 0 if ambiguous elements are present
|
|
635 Args :
|
|
636
|
|
637 Throws : an exception if type of sequence is unknown (ie amino or
|
|
638 nucleic) or if unknown letter in alphabet. Ambiguous
|
|
639 monomers are allowed.
|
|
640
|
|
641 =cut
|
|
642
|
|
643 sub _is_alphabet_strict {
|
|
644
|
|
645 my ($seqobj) = @_;
|
|
646 my $moltype = $seqobj->alphabet();
|
|
647
|
|
648 # convert everything to upper case to be safe
|
|
649 my $seqstring = uc $seqobj->seq();
|
|
650
|
|
651 # Since T is used in RichSeq RNA sequences, do conversion locally
|
|
652 $seqstring =~ s/T/U/g if $seqobj->alphabet eq 'rna';
|
|
653
|
|
654 # First we check if only the 'strict' letters are present in the
|
|
655 # sequence string If not, we check whether the remaining letters
|
|
656 # are ambiguous monomers or whether there are illegal letters in
|
|
657 # the string
|
|
658
|
|
659 # $alpha_array is a ref to an array of the 'strictly' allowed letters
|
|
660 my $alpha_array = $Alphabets_strict{$moltype} ;
|
|
661
|
|
662 # $alphabet contains the allowed letters in string form
|
|
663 my $alphabet = join ('', @$alpha_array) ;
|
|
664 unless ($seqstring =~ /[^$alphabet]/) {
|
|
665 return 1 ;
|
|
666 }
|
|
667
|
|
668 # Next try to match with the alphabet's ambiguous letters
|
|
669 $alpha_array = $Alphabets{$moltype} ;
|
|
670 $alphabet = join ('', @$alpha_array) ;
|
|
671
|
|
672 unless ($seqstring =~ /[^$alphabet]/) {
|
|
673 return 0 ;
|
|
674 }
|
|
675
|
|
676 # If we got here there is an illegal letter in the sequence
|
|
677 $seqobj->throw(" Alphabet not OK for $seqobj \n");
|
|
678
|
|
679 }
|
|
680
|
|
681 =head2 _print_data
|
|
682
|
|
683 Title : _print_data
|
|
684 Usage : $seqobj->_print_data() or Bio::Tools::SeqStats->_print_data();
|
|
685 Function: Displays dna / rna parameters (used for debugging)
|
|
686 Returns : 1
|
|
687 Args : None
|
|
688
|
|
689 Used for debugging.
|
|
690
|
|
691 =cut
|
|
692
|
|
693 sub _print_data {
|
|
694
|
|
695 print "\n adenine = : $adenine \n";
|
|
696 print "\n guanine = : $guanine \n";
|
|
697 print "\n cytosine = : $cytosine \n";
|
|
698 print "\n thymine = : $thymine \n";
|
|
699 print "\n uracil = : $uracil \n";
|
|
700
|
|
701 print "\n dna_A_wt = : $dna_A_wt \n";
|
|
702 print "\n dna_C_wt = : $dna_C_wt \n";
|
|
703 print "\n dna_G_wt = : $dna_G_wt \n";
|
|
704 print "\n dna_T_wt = : $dna_T_wt \n";
|
|
705
|
|
706 print "\n rna_A_wt = : $rna_A_wt \n";
|
|
707 print "\n rna_C_wt = : $rna_C_wt \n";
|
|
708 print "\n rna_G_wt = : $rna_G_wt \n";
|
|
709 print "\n rna_U_wt = : $rna_U_wt \n";
|
|
710
|
|
711 return 1;
|
|
712 }
|