changeset 0:306127635959 draft

planemo upload for repository https://github.com/lparsons/galaxy_tools/tree/master/tools/rseqc commit aeb25d807817746dd6957f30ce2070662cc10e91
author lparsons
date Tue, 07 Jul 2015 10:39:47 -0400
parents
children cd2daa987b69
files README.txt RPKM_count.xml RPKM_saturation.xml bam2wig.xml bam_stat.xml clipping_profile.xml geneBody_coverage.xml geneBody_coverage2.xml infer_experiment.xml inner_distance.xml junction_annotation.xml junction_saturation.xml read_GC.xml read_NVC.xml read_distribution.xml read_duplication.xml read_quality.xml rseqc_macros.xml test-data/bamstats.txt test-data/hg19.chrom.sizes test-data/hg19_RefSeq_chr1_1-100000.bed test-data/output.DupRate_plot.r test-data/output.GC.xls test-data/output.GC_plot.r test-data/output.NVC.xls test-data/output.NVC_plot.r test-data/output.clipping_profile.pdf test-data/output.clipping_profile.r test-data/output.clipping_profile.xls test-data/output.eRPKM.xls test-data/output.geneBodyCoverage.curves.pdf test-data/output.geneBodyCoverage.r test-data/output.geneBodyCoverage.txt test-data/output.infer_experiment.txt test-data/output.inner_distance.txt test-data/output.inner_distance_freq.txt test-data/output.inner_distance_plot.pdf test-data/output.inner_distance_plot.r test-data/output.junction.xls test-data/output.junctionSaturation_plot.r test-data/output.junction_plot.r test-data/output.pos.DupRate.xls test-data/output.qual.r test-data/output.rawCount.xls test-data/output.read_distribution.txt test-data/output.saturation.r test-data/output.seq.DupRate.xls test-data/output.splice_events.pdf test-data/output.splice_junction.pdf test-data/output2.geneBodyCoverage.curves.pdf test-data/output2.geneBodyCoverage.heatMap.pdf test-data/output2.geneBodyCoverage.r test-data/output2.geneBodyCoverage.txt test-data/output_read_count.xls test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bam test-data/testwig.Forward.wig test-data/testwig.Reverse.wig test-data/testwig.wig tool_dependencies.xml
diffstat 59 files changed, 6314 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,24 @@
+== RSeQC Galaxy Wrapper ==
+
+This is a Galaxy wrapper for the RSeQC RNA-Seq QC package.
+
+** Installation **
+
+Installation from a tool shed provides the necessary tool dependencies, R, numpy, and RSeQC.
+
+Otherwise, make sure that R and the RSeQC scripts are in the path and run under the Galaxy environment.
+Move the xml files to a subdirectory of your tools directory and add lines in tool_conf.xml to point to them.
+Restart the Galaxy server.
+
+Requires Python 2.7
+
+** Attribution **
+
+The RSeQC package and associated documentation can be found at: http://rseqc.sourceforge.net/
+
+The galaxy wrapper code was written by 
+    Nilesh Kavthekar, School of Engineering and Applied Sciences, University of Pennsylvania, Class of 2016
+Modified by 
+    Lance Parsons, Lewis-Sigler Institute for Integrative Genomics, Princeton University,
+    Bjorn Gruning, University of Freiburg, bjoern.gruening@gmail.com
+The development of the wrapper code is housed on BitBucket at: https://bitbucket.org/lance_parsons/rseqc_galaxy_wrapper
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RPKM_count.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,158 @@
+<tool id="rseqc_RPKM_count" name="RPKM Count" version="2.4galaxy1">
+    <description>calculates raw count and RPKM values for transcript at exon, intron, and mRNA level</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[RPKM_count.py --version]]></version_command>
+
+    <command><![CDATA[
+        ln -s "${input}" "local_input.bam" &&
+        ln -s "${input.metadata.bam_index}" "local_input.bam.bai" &&
+        RPKM_count.py -i "local_input.bam" -o output -r $refgene
+
+        #if str($strand_type.strand_specific) == "pair"
+            -d
+            #if str($strand_type.pair_type) == "sd"
+                '1++,1--,2+-,2-+'
+            #else
+                '1+-,1-+,2++,2--'
+            #end if
+        #end if
+
+        #if str($strand_type.strand_specific) == "single"
+            -d
+            #if str($strand_type.single_type) == "s"
+                '++,--'
+            #else
+                '+-,-+'
+            #end if
+        #end if
+
+        #if $multihits.skipmultihits
+            --skip-multi-hits
+            --mapq=$multihits.mapq
+        #end if
+
+        $onlyexonic
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Input .bam File" format="bam" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)"/>
+        <conditional name="strand_type">
+            <param name="strand_specific" type="select" label="Strand-specific?" value="None">
+                <option value="none">None</option>
+                <option value="pair">Pair-End RNA-seq</option>
+                <option value="single">Single-End RNA-seq</option>
+            </param>
+            <when value="pair">
+                <param name="pair_type" type="select" display="radio" label="Pair-End Read Type (format: mapped --> parent)" value="sd" help="(--strand)">
+                    <option value="sd"> read1 (positive --> positive; negative --> negative), read2 (positive --> negative; negative --> positive)</option>
+                    <option value="ds">read1 (positive --> negative; negative --> positive), read2 (positive --> positive; negative --> negative)</option>
+                </param>
+            </when>
+            <when value="single">
+                <param name="single_type" type="select" display="radio" label="Single-End Read Type (format: mapped --> parent)" value="s" help="(--strand)">
+                    <option value="s">positive --> positive; negative --> negative</option>
+                    <option value="d">positive --> negative; negative --> positive</option>
+                </param>
+            </when>
+            <when value="none"></when>
+        </conditional>
+
+        <conditional name="multihits">
+            <param name="skipmultihits" type="boolean" label="Skip Multiple Hit Reads/Only Use Uniquely Mapped Reads" value="false" help="(--skip-multi-hits)" />
+            <when value="true">
+                <param name="mapq" value="30" type="integer" label="Minimum mapping quality for an alignment to be called 'uniquly mapped'" help="(--mapq)" />
+            </when>
+            <when value="false" />
+        </conditional>
+
+        <param name="onlyexonic" type="boolean" value="false" truevalue="--only-exonic" falsevalue="" label="Only use exonic (UTR exons and CDS exons) reads, otherwise use all reads" help="(--only-exonic)"/>
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output_read_count.xls"/>
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputxls" file="output_read_count.xls"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+RPKM_count.py
++++++++++++++
+
+Given a BAM file and reference gene model, this program will calculate the raw count and RPKM
+values for transcript at exon, intron and mRNA level. For strand specific RNA-seq data,
+program will assign read to its parental gene according to strand rule, if you don't know the
+strand rule, run infer_experiment.py. Please note that chromosome ID, genome cooridinates
+should be concordant between BAM and BED files.
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Strand sequencing type (default=none)
+    See Infer Experiment tool if uncertain.
+
+Options
+++++++++++++++
+
+Skip Multiple Hit Reads
+    Use Multiple hit reads or use only uniquely mapped reads.
+
+Only use exonic reads
+    Renders program only used exonic (UTR exons and CDS exons) reads, otherwise use all reads.
+
+Sample Output
+++++++++++++++
+
+=====   ========   ========   =====================    =====  ===========   =============   =============   ========  =========
+chrom   start      end        accession                score  gene strand   tag count (+)   tag count (-)   RPKM (+)  RPKM (-)
+=====   ========   ========   =====================    =====  ===========   =============   =============   ========  =========
+chr1    29213722   29313959   NM_001166007_intron_1    0      '+'             431             4329            0.086     0.863
+chr1    29314417   29319841   NM_001166007_intron_2    0      '+'             31              1               0.114     0.004
+chr1    29320054   29323726   NM_001166007_intron_3    0      '+'             32              0               0.174     0.000
+chr1    29213602   29213722   NM_001166007_exon_1      0      '+'             164             0               27.321    0.000
+chr1    29313959   29314417   NM_001166007_exon_2      0      '+'            1699            4               74.158    0.175
+chr1    29319841   29320054   NM_001166007_exon_3      0      '+'             528             1               49.554    0.094
+=====   ========   ========   =====================    =====  ===========   =============   =============   ========  =========
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RPKM_saturation.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,185 @@
+<tool id="rseqc_RPKM_saturation" name="RPKM Saturation" version="2.4galaxy1">
+    <description>calculates raw count and RPKM values for transcript at exon, intron, and mRNA level</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[RPKM_saturation.py --version]]></version_command>
+
+    <command><![CDATA[
+        RPKM_saturation.py -i $input -o output -r $refgene
+
+        #if str($strand_type.strand_specific) == "pair"
+            -d
+            #if str($strand_type.pair_type) == "sd"
+                '1++,1--,2+-,2-+'
+            #else
+                '1+-,1-+,2++,2--'
+            #end if
+        #end if
+
+        #if str($strand_type.strand_specific) == "single"
+            -d
+            #if str($strand_type.single_type) == "s"
+                '++,--'
+            #else
+                '+-,-+'
+            #end if
+        #end if
+
+        -l $percentileFloor -u $percentileCeiling -s $percentileStep -c $rpkmCutoff
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Input .bam File" format="bam" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)"/>
+        <conditional name="strand_type">
+            <param name="strand_specific" type="select" label="Strand-specific?" value="None">
+                <option value="none">None</option>
+                <option value="pair">Pair-End RNA-seq</option>
+                <option value="single">Single-End RNA-seq</option>
+            </param>
+            <when value="pair">
+                <param name="pair_type" type="select" display="radio" label="Pair-End Read Type (format: mapped --> parent)" value="sd" help="(--strand)">
+                    <option value="sd"> read1 (positive --> positive; negative --> negative), read2 (positive --> negative; negative --> positive)</option>
+                    <option value="ds">read1 (positive --> negative; negative --> positive), read2 (positive --> positive; negative --> negative)</option>
+                </param>
+            </when>
+            <when value="single">
+                <param name="single_type" type="select" display="radio" label="Single-End Read Type (format: mapped --> parent)" value="s" help="(--strand)">
+                    <option value="s">positive --> positive; negative --> negative</option>
+                    <option value="d">positive --> negative; negative --> positive</option>
+                </param>
+            </when>
+            <when value="none"></when>
+        </conditional>
+        <param name="percentileFloor" type="integer" value="5" label="Begin sampling from this percentile (default=5)" help="(--percentile-floor)"/>
+        <param name="percentileCeiling" type="integer" value="100" label="End sampling at this percentile (default=100)" help="(--percentile-ceiling)" />
+        <param name="percentileStep" type="integer" value="5" label="Sampling step size (default=5)" help="(--percentile-step)" />
+        <param name="rpkmCutoff" type="text" value="0.01" label="Ignore transcripts with RPKM smaller than this number (default=0.01)" help="(--rpkm-cutoff)" />
+        <param name="mapq" value="30" type="integer" label="Minimum mapping quality for an alignment to be called 'uniquly mapped'" help="(--mapq)" />
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output.eRPKM.xls" label="${tool.name} on ${on_string} (RPKM XLS)"/>
+        <data format="xls" name="outputrawxls" from_work_dir="output.rawCount.xls" label="${tool.name} on ${on_string} (Raw Count XLS)"/>
+        <data format="txt" name="outputr" from_work_dir="output.saturation.r" label="${tool.name} on ${on_string} (R Script)"/>
+        <data format="pdf" name="outputpdf" from_work_dir="output.saturation.pdf" label="${tool.name} on ${on_string} (PDF)"/>
+    </outputs>
+
+    <!-- Unable to succefully run this script with test data
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputxls" file="output.eRPKM.xls"/>
+            <output name="outputrawxls" file="output.rawCount.xls"/>
+            <output name="outputr" file="output.saturation.r"/>
+        </test>
+    </tests>
+    -->
+
+    <help><![CDATA[
+RPKM_saturation.py
+++++++++++++++++++
+
+The precision of any sample statitics (RPKM) is affected by sample size (sequencing depth);
+\'resampling\' or \'jackknifing\' is a method to estimate the precision of sample statistics by
+using subsets of available data. This module will resample a series of subsets from total RNA
+reads and then calculate RPKM value using each subset. By doing this we are able to check if
+the current sequencing depth was saturated or not (or if the RPKM values were stable or not)
+in terms of genes' expression estimation. If sequencing depth was saturated, the estimated
+RPKM value will be stationary or reproducible. By default, this module will calculate 20
+RPKM values (using 5%, 10%, ... , 95%,100% of total reads) for each transcripts.
+
+In the output figure, Y axis is "Percent Relative Error" or "Percent Error" which is used
+to measures how the RPKM estimated from subset of reads (i.e. RPKMobs) deviates from real
+expression level (i.e. RPKMreal). However, in practice one cannot know the RPKMreal. As a
+proxy, we use the RPKM estimated from total reads to approximate RPKMreal.
+
+.. image:: http://rseqc.sourceforge.net/_images/RelativeError.png
+   :height: 80 px
+   :width: 400 px
+   :scale: 100 %
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Strand sequencing type (default=none)
+    See Infer Experiment tool if uncertain.
+
+Options
+++++++++++++++
+
+Skip Multiple Hit Reads
+    Use Multiple hit reads or use only uniquely mapped reads.
+
+Only use exonic reads
+    Renders program only used exonic (UTR exons and CDS exons) reads, otherwise use all reads.
+
+Output
+++++++++++++++
+
+1. output..eRPKM.xls: RPKM values for each transcript
+2. output.rawCount.xls: Raw count for each transcript
+3. output.saturation.r: R script to generate plot
+4. output.saturation.pdf:
+
+.. image:: http://rseqc.sourceforge.net/_images/saturation.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+- All transcripts were sorted in ascending order according to expression level (RPKM). Then they are divided into 4 groups:
+    1. Q1 (0-25%): Transcripts with expression level ranked below 25 percentile.
+    2. Q2 (25-50%): Transcripts with expression level ranked between 25 percentile and 50 percentile.
+    3. Q3 (50-75%): Transcripts with expression level ranked between 50 percentile and 75 percentile.
+    4. Q4 (75-100%): Transcripts with expression level ranked above 75 percentile.
+- BAM/SAM file containing more than 100 million alignments will make module very slow.
+- Follow example below to visualize a particular transcript (using R console)::
+
+    pdf("xxx.pdf")     #starts the graphics device driver for producing PDF graphics
+    x &lt;- seq(5,100,5)  #resampling percentage (5,10,15,...,100)
+    rpkm &lt;- c(32.95,35.43,35.15,36.04,36.41,37.76,38.96,38.62,37.81,38.14,37.97,38.58,38.59,38.54,38.67, 38.67,38.87,38.68,  38.42,  38.23)  #Paste RPKM values calculated from each subsets
+    scatter.smooth(x,100*abs(rpkm-rpkm[length(rpkm)])/(rpkm[length(rpkm)]),type="p",ylab="Precent Relative Error",xlab="Resampling Percentage")
+    dev.off()          #close graphical device
+
+.. image:: http://rseqc.sourceforge.net/_images/saturation_eg.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bam2wig.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,192 @@
+<tool id="rseqc_bam2wig" name="BAM to Wiggle" version="2.4galaxy1">
+    <description>
+        converts all types of RNA-seq data from .bam to .wig
+    </description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[bam2wig.py --version]]></version_command>
+
+    <command><![CDATA[
+        ln -sfn '${input}' 'input.bam' &&
+        ln -sfn '${input.metadata.bam_index}' 'input.bam.bai' &&
+        bam2wig.py -i input.bam -s $chromsize -o outfile
+
+        #if str($strand_type.strand_specific) == "pair"
+            -d
+            #if str($strand_type.pair_type) == "sd"
+                '1++,1--,2+-,2-+'
+            #else
+                '1+-,1-+,2++,2--'
+            #end if
+        #end if
+
+        #if str($strand_type.strand_specific) == "single"
+            -d
+            #if str($strand_type.single_type) == "s"
+                '++,--'
+            #else
+                '+-,-+'
+            #end if
+        #end if
+
+        #if $wigsum.wigsum_type
+            -t $wigsum.totalwig
+        #end if
+        #if $multihits.skipmultihits
+            --skip-multi-hits
+            --mapq=$multihits.mapq
+        #end if
+        2>&1
+        ]]>
+    </command>
+    <inputs>
+        <param name="input" type="data" label="Input .bam File" format="bam" help="(--input-file)"/>
+        <param name="chromsize" type="data" label="Chromosome size file (tab or space separated)" format="txt,tabular" help="(--chromSize)"/>
+
+        <conditional name="multihits">
+            <param name="skipmultihits" type="boolean" label="Skip Multiple Hit Reads/Only Use Uniquely Mapped Reads" value="false" help="(--skip-multi-hits)" />
+            <when value="true">
+                <param name="mapq" value="30" type="integer" label="Minimum mapping quality for an alignment to be called 'uniquly mapped'" help="(--mapq)" />
+            </when>
+            <when value="false" />
+        </conditional>
+
+        <conditional name="wigsum">
+            <param name="wigsum_type" type="boolean" label="Specify wigsum?" value="false">
+            </param>
+            <when value="true">
+                <param name="totalwig" value="0" type="integer" label="specified wigsum" help="(--wigsum)"/>
+            </when>
+            <when value="false"/>
+        </conditional>
+
+        <conditional name="strand_type">
+            <param name="strand_specific" type="select" label="Strand-specific?" value="none">
+                <option value="none">none</option>
+                <option value="pair">Pair-End RNA-seq</option>
+                <option value="single">Single-End RNA-seq</option>
+            </param>
+            <when value="pair">
+                <param name="pair_type" type="select" display="radio" label="Pair-End Read Type (format: mapped --> parent)" value="sd" help="(--strand)">
+                    <option value="sd"> read1 (positive --> positive; negative --> negative), read2 (positive --> negative; negative --> positive)</option>
+                    <option value="ds">read1 (positive --> negative; negative --> positive), read2 (positive --> positive; negative --> negative)</option>
+                </param>
+            </when>
+            <when value="single">
+                <param name="single_type" type="select" display="radio" label="Single-End Read Type (format: mapped --> parent)" value="s" help="(--strand)">
+                    <option value="s">positive --> positive; negative --> negative</option>
+                    <option value="d">positive --> negative; negative --> positive</option>
+                </param>
+            </when>
+            <when value="none"></when>
+        </conditional>
+    </inputs>
+
+    <outputs>
+        <data format="wig" name="output" from_work_dir="outfile.wig">
+            <filter>strand_type['strand_specific'] == 'none'</filter>
+        </data>
+        <data format="wig" name="outputfwd" from_work_dir="outfile.Forward.wig" label="${tool.name} on ${on_string} (Forward Reads)">
+            <filter>strand_type['strand_specific'] != 'none'</filter>
+        </data>
+        <data format="wig" name="outputrv" from_work_dir="outfile.Reverse.wig" label="${tool.name} on ${on_string} (Reverse Reads)">
+            <filter>strand_type['strand_specific'] != 'none'</filter>
+        </data>
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="chromsize" value="hg19.chrom.sizes"/>
+            <output name="output" file="testwig.wig"/>
+        </test>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="chromsize" value="hg19.chrom.sizes"/>
+            <param name="skipmultihits" value="True"/>
+            <param name="mapq" value="20"/>
+            <output name="output" file="testwig.wig"/>
+        </test>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="chromsize" value="hg19.chrom.sizes"/>
+            <param name="strand_specific" value="pair"/>
+            <param name="pair_type" value="sd"/>
+            <output name="outputfwd" file="testwig.Forward.wig"/>
+            <output name="outputrv" file="testwig.Reverse.wig"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+bam2wig.py
+++++++++++
+
+Visualization is the most straightforward and effective way to QC your RNA-seq
+data. For example, change of expression or new splicing can be easily checked
+by visually comparing two RNA-seq tracks using genome browser such as UCSC_,
+IGB_ and IGV_.  `bam2wig.py` converts all types of RNA-seq data from BAM_
+format into wiggle_ format in one-stop.  wiggle_ files can then be easily
+converted into bigwig_.  Bigwig is indexed, binary format of wiggle file, and
+it's particular useful to display large, continuous dataset on genome
+browser.
+
+Inputs
+++++++++++++++
+
+Input BAM file
+    Alignment file in BAM format (SAM is not supported). BAM file will be sorted and indexed using samTools.
+
+Chromosome size file
+    Tab or space separated text file with 2 columns: first column is chromosome name, second column is size of the chromosome. Chromosome names (such as "chr1") should be consistent between this file and BAM file.
+
+Specified wigsum (default=none)
+    Specified wigsum. Wigsum of 100000000 equals to coverage achieved by 1 million 100nt reads. Ignore this option to disable normalization.
+
+Skip multiple Hit reads
+    skips multiple hit reads or only use uniquely mapped reads
+
+Strand-specific (default=none)
+    How read(s) were stranded during sequencing. If you are not sure about the strand rule, run infer_experiment.py
+
+Outputs
+++++++++++++++
+
+If RNA-seq is not strand specific, one wig file will be generated, if RNA-seq
+is strand specific, two wig files corresponding to Forward and Reverse will be generated.
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+.. _UCSC: http://genome.ucsc.edu/index.html
+.. _IGB: http://bioviz.org/igb/
+.. _IGV: http://www.broadinstitute.org/igv/home
+.. _BAM: http://genome.ucsc.edu/goldenPath/help/bam.html
+.. _wiggle: http://genome.ucsc.edu/goldenPath/help/wiggle.html
+.. _bigwig: http://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bam_stat.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,85 @@
+<tool id="rseqc_bam_stat" name="BAM/SAM Mapping Stats" version="2.4galaxy1">
+    <description>
+        reads mapping statistics for a provided BAM or SAM file.
+    </description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[bam_stat.py --version]]></version_command>
+
+    <command><![CDATA[
+        bam_stat.py -i $input -q $mapqual 2> $output
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Input .bam/.sam File" format="bam,sam" />
+        <param label="Minimum mapping quality (default=30" type="integer" value="30" name="mapqual" />
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="output" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <output name="output" file="bamstats.txt"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+bam_stat.py
++++++++++++
+
+This program is used to calculate reads mapping statistics from provided BAM
+file.  This script determines "uniquely mapped reads" from `mapping quality`_,
+which quality the probability that a read is misplaced (Do NOT confused with
+sequence quality, sequence quality measures the probability that a base-calling
+was wrong) .
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+	Alignment file in BAM/SAM format.
+
+Minimum mapping quality
+	Minimum mapping quality for an alignment to be called “uniquely mapped” (default=30)
+
+Output
+++++++++++++++
+
+- Total Reads (Total records) = {Multiple mapped reads} + {Uniquely mapped}
+- Uniquely mapped Reads = {read-1} + {read-2} (if paired end)
+- Uniquely mapped Reads = {Reads map to '+'} + {Reads map to '-'}
+- Uniquely mapped Reads = {Splice reads} + {Non-splice reads}
+
+-----
+
+About RSeQC
++++++++++++
+
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+]]>
+    </help>
+
+    <expand macro="citations" />
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/clipping_profile.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,84 @@
+<tool id="rseqc_clipping_profile" name="Clipping Profile" version="2.4galaxy1">
+    <description>
+     estimates clipping profile of RNA-seq reads from BAM or SAM file
+    </description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[clipping_profile.py --version]]></version_command>
+
+    <command><![CDATA[
+        clipping_profile.py -i $input -o output
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Input .bam/.sam File" format="bam,sam" />
+    </inputs>
+
+    <outputs>
+        <data format="pdf" name="outputpdf" from_work_dir="output.clipping_profile.pdf" />
+        <data format="xls" name="outputxls" from_work_dir="output.clipping_profile.xls" />
+        <data format="txt" name="outputr" from_work_dir="output.clipping_profile.r" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <output name="outputpdf" file="output.clipping_profile.pdf"/>
+            <output name="outputxls" file="output.clipping_profile.xls"/>
+            <output name="outputr" file="output.clipping_profile.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+clipping_profile.py
++++++++++++++++++++
+
+This program is used to estimate clipping profile of RNA-seq reads from BAM or SAM file.
+Note that to use this funciton, CIGAR strings within SAM/BAM file should have 'S' operation
+(This means your reads aligner should support clipped mapping).
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+	Alignment file in BAM/SAM format.
+
+
+Sample Output
+++++++++++++++
+
+.. image:: http://rseqc.sourceforge.net/_images/clipping_good.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/geneBody_coverage.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,144 @@
+<tool id="rseqc_geneBody_coverage" name="Gene Body Converage (BAM)" version="2.4galaxy1">
+    <description>
+        Read coverage over gene body.
+    </description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[geneBody_coverage.py --version]]></version_command>
+
+    <command><![CDATA[
+        #set $safename = ''.join(c in '_0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' and c or '_' for c in $input.display_name)
+        #set $fname = "d1_" + str($safename) + ".bam"
+        ln -s '${input}' '${fname}' &&
+        ln -s '${input.metadata.bam_index}' '${fname}.bai' &&
+        echo '${fname}' > input_list.txt &&
+        #for $i, $additional_input in enumerate($additionalinputs):
+            #set $index = $i+2
+            #set $safename = ''.join(c in '_0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' and c or '_' for c in $additional_input.file.display_name)
+            #set $fname = 'd' + str($index) + '_' + str($safename) + ".bam"
+            ln -s '$additional_input.file' '${fname}' &&
+            ln -s '$additional_input.file.metadata.bam_index' '${fname}.bai' &&
+            echo '${fname}' >> input_list.txt &&
+        #end for
+        geneBody_coverage.py -i input_list.txt -r $refgene --minimum_length $minimum_length -o output
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Additional input .bam files" format="bam" />
+        <repeat name="additionalinputs" title="Input .bam file">
+            <param name="file" type="data" label="Input .bam file" format="bam" />
+        </repeat>
+        <param name="refgene" type="data" label="Reference Genome" format="bed" />
+        <param name="minimum_length" type="integer" value="100" label="Minimum mRNA length" help="Minimum mRNA length (bp). mRNA that are shorter than this value will be skipped (default is 100)." />
+    </inputs>
+
+    <outputs>
+        <data name="outputcurvespdf" format="pdf" from_work_dir="output.geneBodyCoverage.curves.pdf" label="${tool.name} on ${on_string} (Curves PDF)" />
+        <data name="outputheatmappdf" format="pdf" from_work_dir="output.geneBodyCoverage.heatMap.pdf" label="${tool.name} on ${on_string} (HeatMap PDF)">
+            <filter>len(additionalinputs) >= 2</filter>
+        </data>
+        <data name="outputr" format="txt" from_work_dir="output.geneBodyCoverage.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data name="outputtxt" format="txt" from_work_dir="output.geneBodyCoverage.txt" label="${tool.name} on ${on_string} (Text)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputcurvespdf" file="output.geneBodyCoverage.curves.pdf"/>
+            <output name="outputr" file="output.geneBodyCoverage.r"/>
+            <output name="outputtxt" file="output.geneBodyCoverage.txt"/>
+        </test>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="file_0" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="file_1" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputcurvespdf" file="output2.geneBodyCoverage.curves.pdf"/>
+            <output name="outputcurvespdf" file="output2.geneBodyCoverage.heatMap.pdf"/>
+            <output name="outputr" file="output2.geneBodycoverage.r"/>
+            <output name="outputtxt" file="output2.geneBodyCoverage.txt"/>
+        </test>
+
+    </tests>
+
+    <help><![CDATA[
+geneBody_coverage.py
+++++++++++++++++++++
+
+Read coverage over gene body. This module is used to check if read coverage is uniform and if there is any 5\'/3\' bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates plots illustrating the coverage profile along the gene body.
+
+If 3 or more BAM files were provided. This program generates a lineGraph and a heatmap. If fewer than 3 BAM files were provided, only lineGraph is generated. See below for examples.
+
+When heatmap is generated, samples are ranked by the "skewness" of the coverage: Sample with best (worst) coverage will be displayed at the top (bottom) of the heatmap.
+Coverage skewness was measured by `Pearson’s skewness coefficients <http://en.wikipedia.org/wiki/Skewness#Pearson.27s_skewness_coefficients>`_
+
+    .. image:: http://rseqc.sourceforge.net/_images/geneBody_workflow.png
+        :width: 800 px
+        :scale: 80 %
+
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+	Alignment file in BAM/SAM format.
+
+Reference gene model
+	Gene Model in BED format.
+
+Minimum mRNA length
+    Minimum mRNA length (bp). mRNA that are shorter than this value will be skipped (default is 100).
+
+Outputs
+++++++++++++++
+Text
+    Table that includes the data used to generate the plots
+
+R Script
+    R script file that reads the data and generates the plot
+
+PDF
+    The final plot, in PDF format
+
+Example plots:
+    .. image:: http://rseqc.sourceforge.net/_images/Aug_26.geneBodyCoverage.curves.png
+        :height: 600 px
+        :width: 600 px
+        :scale: 80 %
+
+    .. image:: http://rseqc.sourceforge.net/_images/Aug_26.geneBodyCoverage.heatMap.png
+        :height: 600 px
+        :width: 600 px
+        :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/geneBody_coverage2.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,95 @@
+<tool id="rseqc_geneBody_coverage2" name="Gene Body Converage (Bigwig)" version="2.4galaxy1">
+    <description>
+        Read coverage over gene body
+    </description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[geneBody_coverage2.py --version]]></version_command>
+
+    <command><![CDATA[
+        geneBody_coverage2.py -i $input -r $refgene -o output
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" label="Input bigwig file" format="bigwig" />
+        <param name="refgene" type="data" label="Reference Genome" format="bed" />
+    </inputs>
+
+    <outputs>
+        <data name="outputpdf" format="pdf" from_work_dir="output.geneBodyCoverage.pdf" label="${tool.name} on ${on_string} (PDF)" />
+        <data name="outputr" format="txt" from_work_dir="output.geneBodyCoverage_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data name="outputtxt" format="txt" from_work_dir="output.geneBodyCoverage.txt" label="${tool.name} on ${on_string} (Text)" />
+    </outputs>
+
+    <!-- Unable to succefully run this script, it seems deprecated and should probably be dropped
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bigwig"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputcurvespdf" file="output.geneBodyCoverage.curves.pdf"/>
+            <output name="outputr" file="output.geneBodyCoverage.r"/>
+            <output name="outputtxt" file="output.geneBodyCoverage.txt"/>
+        </test>
+    </tests>
+    -->
+
+    <help><![CDATA[
+geneBody_coverage2.py
++++++++++++++++++++++
+
+Similar to geneBody_coverage.py. This module takes bigwig instead of BAM as input, and thus
+requires much less memory. The BigWig file could be arbitrarily large.
+
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene Model in BED format.
+
+
+Outputs
+++++++++++++++
+
+Read coverage over gene body. This module is used to check if reads coverage is uniform and if there is any 5’/3’ bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates a plot illustrating the coverage profile along the gene body. NOTE: this module requires lots of memory for large BAM files, because it load the entire BAM file into memory. We add another script "geneBody_coverage2.py" into v2.3.1 which takes bigwig (instead of BAM) as input. It only use 200M RAM, but users need to convert BAM into WIG, and then WIG into BigWig.
+
+Example output:
+    .. image:: http://dldcc-web.brc.bcm.edu/lilab/liguow/RSeQC/figure/geneBody_coverage.png
+        :height: 600 px
+        :width: 600 px
+        :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/infer_experiment.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,156 @@
+<tool id="rseqc_infer_experiment" name="Infer Experiment" version="2.4galaxy1">
+    <description>speculates how RNA-seq were configured</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[infer_experiment.py --version]]></version_command>
+
+    <command><![CDATA[
+        infer_experiment.py -i $input -r $refgene
+            --sample-size $sample_size
+            --mapq $mapq
+            > $output
+            ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="Input BAM/SAM file" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="Reference gene model in bed format" help="(--refgene)" />
+        <param name="sample_size" type="integer" label="Number of reads sampled from SAM/BAM file (default = 200000)" value="200000" help="(--sample-size)"/>
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="output" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="output" file="output.infer_experiment.txt"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+infer_experiment.py
++++++++++++++++++++
+
+This program is used to speculate how RNA-seq sequencing were configured, especially how
+reads were stranded for strand-specific RNA-seq data, through comparing reads' mapping
+information to the underneath gene model.
+
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Number of usable sampled reads (default=200000)
+    Number of usable reads sampled from SAM/BAM file. More reads will give more accurate estimation, but make program little slower.
+
+Outputs
++++++++
+
+For pair-end RNA-seq, there are two different
+ways to strand reads (such as Illumina ScriptSeq protocol):
+
+1. 1++,1--,2+-,2-+
+
+* read1 mapped to '+' strand indicates parental gene on '+' strand
+* read1 mapped to '-' strand indicates parental gene on '-' strand
+* read2 mapped to '+' strand indicates parental gene on '-' strand
+* read2 mapped to '-' strand indicates parental gene on '+' strand
+
+2. 1+-,1-+,2++,2--
+
+* read1 mapped to '+' strand indicates parental gene on '-' strand
+* read1 mapped to '-' strand indicates parental gene on '+' strand
+* read2 mapped to '+' strand indicates parental gene on '+' strand
+* read2 mapped to '-' strand indicates parental gene on '-' strand
+
+For single-end RNA-seq, there are also two different ways to strand reads:
+
+1. ++,--
+
+* read mapped to '+' strand indicates parental gene on '+' strand
+* read mapped to '-' strand indicates parental gene on '-' strand
+
+2. +-,-+
+
+* read mapped to '+' strand indicates parental gene on '-' strand
+* read mapped to '-' strand indicates parental gene on '+' strand
+
+
+Example Output
+++++++++++++++
+
+**Example1** ::
+
+    =========================================================
+    This is PairEnd Data ::
+
+    Fraction of reads explained by "1++,1--,2+-,2-+": 0.4992
+    Fraction of reads explained by "1+-,1-+,2++,2--": 0.5008
+    Fraction of reads explained by other combinations: 0.0000
+    =========================================================
+
+*Conclusion*: We can infer that this is NOT a strand specific because 50% of reads can be explained by "1++,1--,2+-,2-+", while the other 50% can be explained by "1+-,1-+,2++,2--".
+
+**Example2** ::
+
+    ============================================================
+    This is PairEnd Data
+
+    Fraction of reads explained by "1++,1--,2+-,2-+": 0.9644 ::
+    Fraction of reads explained by "1+-,1-+,2++,2--": 0.0356
+    Fraction of reads explained by other combinations: 0.0000
+    ============================================================
+
+*Conclusion*: We can infer that this is a strand-specific RNA-seq data. strandness of read1 is consistent with that of gene model, while strandness of read2 is opposite to the strand of reference gene model.
+
+**Example3** ::
+
+    =========================================================
+    This is SingleEnd Data ::
+
+    Fraction of reads explained by "++,--": 0.9840 ::
+    Fraction of reads explained by "+-,-+": 0.0160
+    Fraction of reads explained by other combinations: 0.0000
+    =========================================================
+
+*Conclusion*: This is single-end, strand specific RNA-seq data. Strandness of reads are concordant with strandness of reference gene.
+
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/inner_distance.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,127 @@
+<tool id="rseqc_inner_distance" name="Inner Distance" version="2.4galaxy1">
+    <description>calculate the inner distance (or insert size) between two paired RNA reads</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[inner_distance.py --version]]></version_command>
+
+    <command><![CDATA[
+        inner_distance.py -i $input -o output -r $refgene
+            --sample-size $sample_size
+            --lower-bound $lowerBound
+            --upper-bound $upperBound
+            --step $step
+            --mapq $mapq
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)" />
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)" />
+        <param name="sample_size" type="integer" label="Number of read-pairs used to estimate inner distance (default = 1000000)" value="1000000" help="(--sample-size)"/>
+        <param name="lowerBound" type="integer" value="-250" label="Lower bound (bp, default=-250)" help="Used for plotting histogram (--lower-bound)"/>
+        <param name="upperBound" type="integer" value="250" label="Upper bound (bp, default=250)" help="Used for plotting histogram (--upper-bound)"/>
+        <param name="step" type="integer" value="5" label="Step size of histogram (bp, default=5)" help="(--step)"/>
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="outputtxt" from_work_dir="output.inner_distance.txt" label="${tool.name} on ${on_string} (Text)"/>
+        <data format="txt" name="outputfreqtxt" from_work_dir="output.inner_distance_freq.txt" label="${tool.name} on ${on_string} (Freq Text)" />
+        <data format="pdf" name="outputpdf" from_work_dir="output.inner_distance_plot.pdf" label="${tool.name} on ${on_string} (PDF)" />
+        <data format="txt" name="outputr" from_work_dir="output.inner_distance_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputtxt" file="output.inner_distance.txt"/>
+            <output name="outputfreqtxt" file="output.inner_distance_freq.txt"/>
+            <output name="outputpdf" file="output.inner_distance_plot.pdf"/>
+            <output name="outputr" file="output.inner_distance_plot.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+inner_distance.py
++++++++++++++++++
+
+This module is used to calculate the inner distance (or insert size) between two paired RNA
+reads. The distance is the mRNA length between two paired fragments. We first determine the
+genomic (DNA) size between two paired reads: D_size = read2_start - read1_end, then
+
+* if two paired reads map to the same exon: inner distance = D_size
+* if two paired reads map to different exons:inner distance = D_size - intron_size
+* if two paired reads map non-exonic region (such as intron and intergenic region): inner distance = D_size
+* The inner_distance might be a negative value if two fragments were overlapped.
+
+NOTE: Not all read pairs were used to estimate the inner distance distribution. Those low
+quality, PCR duplication, multiple mapped reads were skipped.
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Estimated Upper/Lower Bounds (defaults=250 and -250)
+    Estimated upper/lower bounds of inner distance (bp).
+
+Step size (default=5)
+    Step size of histogram
+
+
+Output
+++++++++++++++
+
+1. output.inner_distance.txt:
+    - first column is read ID
+    -second column is inner distance. Could be negative value if PE reads were overlapped or mapping error (e.g. Read1_start &lt; Read2_start, while Read1_end >> Read2_end due to spliced mapping of read1)
+    - third column indicates how paired reads were mapped: PE_within_same_exon, PE_within_diff_exon,PE_reads_overlap
+2. output..inner_distance_freq.txt:
+    - inner distance starts
+    - inner distance ends
+    - number of read pairs
+    - note the first 2 columns are left side half open interval
+3. output.inner_distance_plot.r: R script to generate histogram
+4. output.inner_distance_plot.pdf: histogram plot
+
+.. image:: http://rseqc.sourceforge.net/_images/inner_distance.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/junction_annotation.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,119 @@
+<tool id="rseqc_junction_annotation" name="Junction Annotation" version="2.4galaxy1">
+    <description>compares detected splice junctions to reference gene model</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[junction_annotation.py --version]]></version_command>
+
+    <command><![CDATA[
+        junction_annotation.py
+            --input-file $input
+            --refgene $refgene
+            --out-prefix output
+            --min-intron $min_intron
+            --mapq $mapq
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)"/>
+        <param name="min_intron" type="integer" value="50" label="Minimum intron length (bp, default=50)" help="(--min-intron)" />
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output.junction.xls" label="${tool.name} on ${on_string} (XLS)"/>
+        <data format="txt" name="outputr" from_work_dir="output.junction_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data format="pdf" name="outputpdf" from_work_dir="output.splice_events.pdf" label="${tool.name} on ${on_string} (Splice Events PDF)"/>
+        <data format="pdf" name="outputjpdf" from_work_dir="output.splice_junction.pdf" label="${tool.name} on ${on_string} (Splice Junction PDF)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputxls" file="output.junction.xls"/>
+            <output name="outputr" file="output.junction_plot.r"/>
+            <output name="outputpdf" file="output.splice_events.pdf"/>
+            <output name="outputjpdf" file="output.splice_junction.pdf"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+junction_annotation.py
+++++++++++++++++++++++
+
+For a given alignment file (-i) in BAM or SAM format and a reference gene model (-r) in BED
+format, this program will compare detected splice junctions to reference gene model. splicing
+annotation is performed in two levels: splice event level and splice junction level.
+
+* splice event: An RNA read, especially long read, can be spliced 2 or more times, each time is called a splicing event; In this sense, 100 spliced reads can produce >= 100 splicing events.
+* splice junction: multiple splicing events spanning the same intron can be consolidated into one splicing junction.
+
+All detected junctions can be grouped to 3 exclusive categories:
+
+1. Annotated: The junction is part of the gene model. Both splice sites, 5' splice site
+   (5'SS) and 3'splice site (3'SS) can be annotated by reference gene model.
+2. complete_novel: Complete new junction. Neither of the two splice sites cannot be annotated by gene model
+3. partial_novel: One of the splice site (5'SS or 3'SS) is new, while the other splice site is annotated (known)
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Minimum intron length (default=50)
+    Minimum intron length (bp).
+
+
+Output
+++++++++++++++
+
+1. output.junc.anno.junction.xls:
+    - chrom ID
+    - start position of junction (coordinate is 0 based)
+    - end position of junction (coordinate is 1 based)
+    - number of splice events supporting this junction
+    - 'annotated', 'complete_novel' or 'partial_novel'.
+2. output.anno.junction_plot.r: R script to generate pie chart
+3. output.splice_junction.pdf: plot of splice junctions
+4. output.splice_events.pdf: plot of splice events
+
+.. image:: http://rseqc.sourceforge.net/_images/junction.png
+   :height: 400 px
+   :width: 850 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/junction_saturation.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,132 @@
+<tool id="rseqc_junction_saturation" name="Junction Saturation" version="2.4galaxy1">
+    <description>detects splice junctions from each subset and compares them to reference gene model</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[junction_saturation.py --version]]></version_command>
+
+    <command><![CDATA[
+        junction_saturation.py
+            --input-file $input
+            --refgene $refgene
+            --out-prefix output
+            --min-intron $min_intron
+            --min-coverage $min_coverage
+            --mapq $mapq
+        #if $percentiles.specifyPercentiles
+            --percentile-floor $percentiles.lowBound
+            --percentile-ceiling $percentiles.upBound
+            --percentile-step $percentiles.percentileStep
+        #end if
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)"/>
+        <param name="min_intron" type="integer" value="50" label="Minimum intron length (bp, default=50)" help="(--min-intron)" />
+        <param name="min_coverage" type="integer" label="Minimum number of supporting reads to call a junction (default=1)" value="1" help="(--min-coverage)" />
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+        <conditional name="percentiles">
+            <param name="specifyPercentiles" type="boolean" label="Specify sampling bounds and frequency" value="false"/>
+            <when value="true">
+                <param name="lowBound" type="integer" value="5" label="Lower Bound Sampling Frequency (bp, default=5)" help="(--percentile-floor)">
+                    <validator type="in_range" min="0" max="100" />
+                </param>
+                <param name="upBound" type="integer" value="100" label="Upper Bound Sampling Frequency (bp, default=100)" help="(--percentile-ceiling)">
+                    <validator type="in_range" min="0" max="100" />
+                </param>
+                <param name="percentileStep" type="integer" value="5" label="Sampling increment (default=5)" help="(--percentile-step)">
+                    <validator type="in_range" min="0" max="100" />
+                </param>
+            </when>
+        </conditional>
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="outputr" from_work_dir="output.junctionSaturation_plot.r" label="${tool.name} on ${on_string} (R Script)"/>
+        <data format="pdf" name="outputpdf" from_work_dir="output.junctionSaturation_plot.pdf" label="${tool.name} on ${on_string} (PDF)"/>
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="outputr" file="output.junctionSaturation_plot.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+junction_saturation.py
+++++++++++++++++++++++
+
+It's very important to check if current sequencing depth is deep enough to perform
+alternative splicing analyses. For a well annotated organism, the number of expressed genes
+in particular tissue is almost fixed so the number of splice junctions is also fixed. The fixed
+splice junctions can be predetermined from reference gene model. All (annotated) splice
+junctions should be rediscovered from a saturated RNA-seq data, otherwise, downstream
+alternative splicing analysis is problematic because low abundance splice junctions are
+missing. This module checks for saturation by resampling 5%, 10%, 15%, ..., 95% of total
+alignments from BAM or SAM file, and then detects splice junctions from each subset and
+compares them to reference gene model.
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Sampling Percentiles - Upper Bound, Lower Bound, Sampling Increment (defaults= 100, 5, and 5)
+    Sampling starts from the Lower Bound and increments to the Upper Bound at the rate of the Sampling Increment.
+
+Minimum intron length (default=50)
+    Minimum intron length (bp).
+
+Minimum coverage (default=1)
+    Minimum number of supportting reads to call a junction.
+
+Output
+++++++++++++++
+
+1. output.junctionSaturation_plot.r: R script to generate plot
+2. output.junctionSaturation_plot.pdf
+
+.. image:: http://rseqc.sourceforge.net/_images/junction_saturation.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+In this example, current sequencing depth is almost saturated for "known junction" (red line) detection because the number of "known junction" reaches a plateau. In other words, nearly all "known junctions" (expressed in this particular tissue) have already been detected, and continue sequencing will not detect additional "known junction" and will only increase junction coverage (i.e. junction covered by more reads). While current sequencing depth is not saturated for novel junctions (green).
+
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_GC.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,85 @@
+<tool id="rseqc_read_GC" name="Read GC" version="2.4galaxy1">
+    <description>determines GC% and read count</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[read_GC.py --version]]></version_command>
+
+    <command><![CDATA[
+        read_GC.py
+            --input-file $input
+            --out-prefix output
+            --mapq $mapq
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output.GC.xls" label="${tool.name} on ${on_string} (XLS)"/>
+        <data format="txt" name="outputr" from_work_dir="output.GC_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data format="pdf" name="outputpdf" from_work_dir="output.GC_plot.pdf" label="${tool.name} on ${on_string} (PDF)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <output name="outputxls" file="output.GC.xls"/>
+            <output name="outputr" file="output.GC_plot.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+read_GC.py
+++++++++++
+
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Output
+++++++++++++++
+
+1. output.GC.xls: Two column, plain text file, first column is GC%, second column is read count
+2. output.GC_plot.r: R script to generate pdf file.
+3. output.GC_plot.pdf: graphical output generated from R script.
+
+.. image:: http://rseqc.sourceforge.net/_images/read_gc.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_NVC.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,101 @@
+<tool id="rseqc_read_NVC" name="Read NVC" version="2.4galaxy1">
+    <description>to check the nucleotide composition bias</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[read_NVC.py --version]]></version_command>
+
+    <command>
+        read_NVC.py
+            --input-file $input
+            --out-prefix output
+            $nx
+            --mapq $mapq
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="nx" type="boolean" value="false" truevalue="--nx" falsevalue="" label="Include N,X in NVC plot" help="(--nx)"/>
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output.NVC.xls" label="${tool.name} on ${on_string} (XLS)" />
+        <data format="txt" name="outputr" from_work_dir="output.NVC_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data format="pdf" name="outputpdf" from_work_dir="output.NVC_plot.pdf" label="${tool.name} on ${on_string} (PDF)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <output name="outputxls" file="output.NVC.xls"/>
+            <output name="outputr" file="output.NVC_plot.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+read_NVC.py
++++++++++++
+
+This module is used to check the nucleotide composition bias. Due to random priming, certain
+patterns are over represented at the beginning (5'end) of reads. This bias could be easily
+examined by NVC (Nucleotide versus cycle) plot. NVC plot is generated by overlaying all
+reads together, then calculating nucleotide composition for each position of read
+(or each sequencing cycle). In ideal condition (genome is random and RNA-seq reads is
+randomly sampled from genome), we expect A%=C%=G%=T%=25% at each position of reads.
+
+NOTE: this program expect a fixed read length
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Include N,X in NVC plot
+    Plots N and X alongside A, T, C, and G in plot.
+
+Output
+++++++++++++++
+
+This module is used to check the nucleotide composition bias. Due to random priming, certain patterns are over represented at the beginning (5'end) of reads. This bias could be easily examined by NVC (Nucleotide versus cycle) plot. NVC plot is generated by overlaying all reads together, then calculating nucleotide composition for each position of read (or each sequencing cycle). In ideal condition (genome is random and RNA-seq reads is randomly sampled from genome), we expect A%=C%=G%=T%=25% at each position of reads.
+
+
+1. output.NVC.xls: plain text file, each row is position of read (or sequencing cycle), each column is nucleotide (A,C,G,T,N,X)
+2. output.NVC_plot.r: R script to generate NVC plot.
+3. output.NVC_plot.pdf: NVC plot.
+
+
+.. image:: http://rseqc.sourceforge.net/_images/NVC_plot.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_distribution.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,109 @@
+<tool id="rseqc_read_distribution" name="Read Distribution" version="2.4galaxy1">
+    <description>calculates how mapped reads were distributed over genome feature</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[read_distribution.py --version]]></version_command>
+
+    <command><![CDATA[
+        read_distribution.py -i $input -r $refgene > $output
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="refgene" type="data" format="bed" label="reference gene model" help="(--refgene)"/>
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="output" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed"/>
+            <output name="output" file="output.read_distribution.txt"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+read_distribution.py
+++++++++++++++++++++
+
+Provided a BAM/SAM file and reference gene model, this module will calculate how mapped
+reads were distributed over genome feature (like CDS exon, 5'UTR exon, 3' UTR exon, Intron,
+Intergenic regions). When genome features are overlapped (e.g. a region could be annotated
+as both exon and intron by two different transcripts) , they are prioritize as:
+CDS exons > UTR exons > Introns > Intergenic regions, for example, if a read was mapped to
+both CDS exon and intron, it will be assigned to CDS exons.
+
+* "Total Reads": This does NOT include those QC fail,duplicate and non-primary hit reads
+* "Total Tags": reads spliced once will be counted as 2 tags, reads spliced twice will be counted as 3 tags, etc. And because of this, "Total Tags" >= "Total Reads"
+* "Total Assigned Tags": number of tags that can be unambiguously assigned the 10 groups (see below table).
+* Tags assigned to "TSS_up_1kb" were also assigned to "TSS_up_5kb" and "TSS_up_10kb", tags assigned to "TSS_up_5kb" were also assigned to "TSS_up_10kb". Therefore, "Total Assigned Tags" = CDS_Exons + 5'UTR_Exons + 3'UTR_Exons + Introns + TSS_up_10kb + TES_down_10kb.
+* When assign tags to genome features, each tag is represented by its middle point.
+
+RSeQC cannot assign those reads that:
+
+* hit to intergenic regions that beyond region starting from TSS upstream 10Kb to TES downstream 10Kb.
+* hit to regions covered by both 5'UTR and 3' UTR. This is possible when two head-to-tail transcripts are overlapped in UTR regions.
+* hit to regions covered by both TSS upstream 10Kb and TES downstream 10Kb.
+
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Reference gene model
+    Gene model in BED format.
+
+Sample Output
+++++++++++++++
+
+Output:
+
+===============     ============        ===========         ===========
+Group               Total_bases         Tag_count           Tags/Kb
+===============     ============        ===========         ===========
+CDS_Exons           33302033            20002271            600.63
+5'UTR_Exons         21717577            4408991             203.01
+3'UTR_Exons         15347845            3643326             237.38
+Introns             1132597354          6325392             5.58
+TSS_up_1kb          17957047            215331              11.99
+TSS_up_5kb          81621382            392296              4.81
+TSS_up_10kb         149730983           769231              5.14
+TES_down_1kb        18298543            266161              14.55
+TES_down_5kb        78900674            729997              9.25
+TES_down_10kb       140361190           896882              6.39
+===============     ============        ===========         ===========
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_duplication.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,92 @@
+<tool id="rseqc_read_duplication" name="Read Duplication" version="2.4galaxy1">
+    <description>determines reads duplication rate with sequence-based and mapping-based strategies</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[read_duplication.py --version]]></version_command>
+
+    <command><![CDATA[
+        read_duplication.py -i $input -o output -u $upLimit
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="upLimit" type="integer" label="Upper Limit of Plotted Duplicated Times (default=500)" value="500" help="(--up-limit)"/>
+    </inputs>
+
+    <outputs>
+        <data format="xls" name="outputxls" from_work_dir="output.pos.DupRate.xls" label="${tool.name} on ${on_string} (Position XLS)"/>
+        <data format="xls" name="outputseqxls" from_work_dir="output.seq.DupRate.xls" label="${tool.name} on ${on_string} (Sequence XLS)"/>
+        <data format="txt" name="outputr" from_work_dir="output.DupRate_plot.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data format="pdf" name="outputpdf" from_work_dir="output.DupRate_plot.pdf" label="${tool.name} on ${on_string} (PDF)" />
+    </outputs>
+
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam"/>
+            <output name="outputxls" file="output.pos.DupRate.xls"/>
+            <output name="outputseqxls" file="output.seq.DupRate.xls"/>
+            <output name="outputr" file="output.DupRate_plot.r"/>
+        </test>
+    </tests>
+
+    <help><![CDATA[
+read_duplication.py
++++++++++++++++++++
+
+Two strategies were used to determine reads duplication rate:
+
+* Sequence based: reads with exactly the same sequence content are regarded as duplicated reads.
+* Mapping based: reads mapped to the same genomic location are regarded as duplicated reads. For splice reads, reads mapped to the same starting position and splice the same way are regarded as duplicated reads.
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Upper Limit of Plotted Duplicated Times (default=500)
+    Only used for plotting.
+
+Output
+++++++++++++++
+
+1. output.dup.pos.DupRate.xls: Read duplication rate determined from mapping position of read. First column is "occurrence" or duplication times, second column is number of uniquely mapped reads.
+2. output.dup.seq.DupRate.xls: Read duplication rate determined from sequence of read. First column is "occurrence" or duplication times, second column is number of uniquely mapped reads.
+3. output.DupRate_plot.r: R script to generate pdf file
+4. output.DupRate_plot.pdf: graphical output generated from R script
+
+.. image:: http://rseqc.sourceforge.net/_images/duplicate.png
+   :height: 600 px
+   :width: 600 px
+   :scale: 80 %
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/read_quality.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,106 @@
+<tool id="rseqc_read_quality" name="Read Quality" version="2.4galaxy1">
+    <description>determines Phred quality score</description>
+
+    <macros>
+        <import>rseqc_macros.xml</import>
+    </macros>
+
+    <requirements>
+        <expand macro="requirement_package_r" />
+        <expand macro="requirement_package_numpy" />
+        <expand macro="requirement_package_rseqc" />
+    </requirements>
+
+    <expand macro="stdio" />
+
+    <version_command><![CDATA[read_quality.py --version]]></version_command>
+
+    <command><![CDATA[
+        read_quality.py
+            --input-file $input
+            --out-prefix output
+            -r $reduce
+            --mapq $mapq
+        ]]>
+    </command>
+
+    <inputs>
+        <param name="input" type="data" format="bam,sam" label="input bam/sam file" help="(--input-file)"/>
+        <param name="reduce" type="integer" label="Ignore Phred scores less than this amount (only applies to 'boxplot', default=1000)" value="1000" help="(--reduce)"/>
+        <param name="mapq" type="integer" label="Minimum mapping quality (default=30)" help="Minimum phred scale mapping quality to consider a read 'uniquely mapped' (--mapq)" value="30" />
+    </inputs>
+
+    <outputs>
+        <data format="txt" name="outputr" from_work_dir="output.qual.r" label="${tool.name} on ${on_string} (R Script)" />
+        <data format="pdf" name="outputheatpdf" from_work_dir="output.qual.heatmap.pdf" label="${tool.name} on ${on_string} (Heatmap PDF)" />
+        <data format="pdf" name="outputboxpdf" from_work_dir="output.qual.boxplot.pdf" label="${tool.name} on ${on_string} (Boxplot PDF)" />
+    </outputs>
+
+    <!-- Unable to succefully run this script with test data
+    <tests>
+        <test>
+            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bigwig"/>
+            <output name="outputr" file="output.qual.r"/>
+            <output name="outputheatpdf" file="output.qual.heatmap.pdf"/>
+            <output name="outputboxpdf" file="output.qual.boxplot.pdf"/>
+        </test>
+    </tests>
+    -->
+
+    <help><![CDATA[
+read_quality.py
++++++++++++++++
+
+According to SAM specification, if Q is the character to represent "base calling quality"
+in SAM file, then Phred Quality Score = ord(Q) - 33. Here ord() is python function that
+returns an integer representing the Unicode code point of the character when the argument
+is a unicode object, for example, ord('a') returns 97. Phred quality score is widely used
+to measure "reliability" of base-calling, for example, phred quality score of 20 means
+there is 1/100 chance that the base-calling is wrong, phred quality score of 30 means there
+is 1/1000 chance that the base-calling is wrong. In general: Phred quality score = -10xlog(10)P,
+here P is probability that base-calling is wrong.
+
+Inputs
+++++++++++++++
+
+Input BAM/SAM file
+    Alignment file in BAM/SAM format.
+
+Ignore phred scores less than this number (default=1000)
+    To avoid making huge vector in R, nucleotide with certain phred score represented less than this number will be ignored. Increase this number save more memory while reduce precision. This option only applies to the 'boxplot'.
+
+Output
+++++++++++++++
+
+1. output.qual.r
+2. output.qual.boxplot.pdf
+    .. image:: http://rseqc.sourceforge.net/_images/36mer.qual.plot.png
+        :height: 600 px
+        :width: 600 px
+        :scale: 80 %
+3. output.qual.heatmap.pdf
+    .. image:: http://rseqc.sourceforge.net/_images/36mer.qual.heatmap.png
+        :height: 600 px
+        :width: 600 px
+        :scale: 80 %
+
+Heatmap: use different color to represent nucleotide density ("blue"=low density,"orange"=median density,"red"=high density")
+
+-----
+
+About RSeQC
++++++++++++
+
+The RSeQC_ package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. "Basic modules" quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while "RNA-seq specific modules" investigate sequencing saturation status of both splicing junction detection and expression estimation, mapped reads clipping profile, mapped reads distribution, coverage uniformity over gene body, reproducibility, strand specificity and splice junction annotation.
+
+The RSeQC package is licensed under the GNU GPL v3 license.
+
+.. image:: http://rseqc.sourceforge.net/_static/logo.png
+
+.. _RSeQC: http://rseqc.sourceforge.net/
+]]>
+    </help>
+
+    <expand macro="citations" />
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rseqc_macros.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,42 @@
+<macros>
+
+    <xml name="requirement_package_r"><requirement type="package" version="3.0.3">R</requirement></xml>
+    <xml name="requirement_package_numpy"><requirement type="package" version="1.7.1">numpy</requirement></xml>
+    <xml name="requirement_package_rseqc"><requirement type="package" version="2.4">rseqc</requirement></xml>
+
+    <xml name="stdio">
+        <stdio>
+            <exit_code range="1:" level="fatal" description="An error occured during execution, see stderr and stdout for more information" />
+            <regex match="[Ee]rror" source="both" description="An error occured during execution, see stderr and stdout for more information" />
+        </stdio>
+    </xml>
+
+    <xml name="citations">
+        <citations>
+            <citation type="bibtex">
+    @article{wang_rseqc:_2012,
+        title = {{RSeQC}: quality control of {RNA}-seq experiments},
+        volume = {28},
+        issn = {1367-4803, 1460-2059},
+        shorttitle = {{RSeQC}},
+        url = {http://bioinformatics.oxfordjournals.org/content/28/16/2184},
+        doi = {10.1093/bioinformatics/bts356},
+        abstract = {Motivation: RNA-seq has been extensively used for transcriptome study. Quality control (QC) is critical to ensure that RNA-seq data are of high quality and suitable for subsequent analyses. However, QC is a time-consuming and complex task, due to the massive size and versatile nature of RNA-seq data. Therefore, a convenient and comprehensive QC tool to assess RNA-seq quality is sorely needed.
+    Results: We developed the RSeQC package to comprehensively evaluate different aspects of RNA-seq experiments, such as sequence quality, GC bias, polymerase chain reaction bias, nucleotide composition bias, sequencing depth, strand specificity, coverage uniformity and read distribution over the genome structure. RSeQC takes both SAM and BAM files as input, which can be produced by most RNA-seq mapping tools as well as BED files, which are widely used for gene models. Most modules in RSeQC take advantage of R scripts for visualization, and they are notably efficient in dealing with large BAM/SAM files containing hundreds of millions of alignments.
+    Availability and implementation: RSeQC is written in Python and C. Source code and a comprehensive user's manual are freely available at: http://code.google.com/p/rseqc/.
+    Contact: WL1\{at\}bcm.edu
+    Supplementary Information: Supplementary data are available at Bioinformatics online.},
+        language = {en},
+        number = {16},
+        urldate = {2015-06-30},
+        journal = {Bioinformatics},
+        author = {Wang, Liguo and Wang, Shengqin and Li, Wei},
+        month = aug,
+        year = {2012},
+        pmid = {22743226},
+        pages = {2184--2185},
+    }
+            </citation>
+        </citations>
+    </xml>
+</macros>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/bamstats.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,23 @@
+Load BAM file ...  Done
+
+#==================================================
+#All numbers are READ count
+#==================================================
+
+Total records:                          40
+
+QC failed:                              0
+Optical/PCR duplicate:                  0
+Non primary hits                        0
+Unmapped reads:                         0
+mapq < mapq_cut (non-unique):           0
+
+mapq >= mapq_cut (unique):              40
+Read-1:                                 20
+Read-2:                                 20
+Reads map to '+':                       20
+Reads map to '-':                       20
+Non-splice reads:                       36
+Splice reads:                           4
+Reads mapped in proper pairs:           39
+Proper-paired reads map to different chrom:0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hg19.chrom.sizes	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,93 @@
+chr1	249250621
+chr2	243199373
+chr3	198022430
+chr4	191154276
+chr5	180915260
+chr6	171115067
+chr7	159138663
+chrX	155270560
+chr8	146364022
+chr9	141213431
+chr10	135534747
+chr11	135006516
+chr12	133851895
+chr13	115169878
+chr14	107349540
+chr15	102531392
+chr16	90354753
+chr17	81195210
+chr18	78077248
+chr20	63025520
+chrY	59373566
+chr19	59128983
+chr22	51304566
+chr21	48129895
+chr6_ssto_hap7	4928567
+chr6_mcf_hap5	4833398
+chr6_cox_hap2	4795371
+chr6_mann_hap4	4683263
+chr6_apd_hap1	4622290
+chr6_qbl_hap6	4611984
+chr6_dbb_hap3	4610396
+chr17_ctg5_hap1	1680828
+chr4_ctg9_hap1	590426
+chr1_gl000192_random	547496
+chrUn_gl000225	211173
+chr4_gl000194_random	191469
+chr4_gl000193_random	189789
+chr9_gl000200_random	187035
+chrUn_gl000222	186861
+chrUn_gl000212	186858
+chr7_gl000195_random	182896
+chrUn_gl000223	180455
+chrUn_gl000224	179693
+chrUn_gl000219	179198
+chr17_gl000205_random	174588
+chrUn_gl000215	172545
+chrUn_gl000216	172294
+chrUn_gl000217	172149
+chr9_gl000199_random	169874
+chrUn_gl000211	166566
+chrUn_gl000213	164239
+chrUn_gl000220	161802
+chrUn_gl000218	161147
+chr19_gl000209_random	159169
+chrUn_gl000221	155397
+chrUn_gl000214	137718
+chrUn_gl000228	129120
+chrUn_gl000227	128374
+chr1_gl000191_random	106433
+chr19_gl000208_random	92689
+chr9_gl000198_random	90085
+chr17_gl000204_random	81310
+chrUn_gl000233	45941
+chrUn_gl000237	45867
+chrUn_gl000230	43691
+chrUn_gl000242	43523
+chrUn_gl000243	43341
+chrUn_gl000241	42152
+chrUn_gl000236	41934
+chrUn_gl000240	41933
+chr17_gl000206_random	41001
+chrUn_gl000232	40652
+chrUn_gl000234	40531
+chr11_gl000202_random	40103
+chrUn_gl000238	39939
+chrUn_gl000244	39929
+chrUn_gl000248	39786
+chr8_gl000196_random	38914
+chrUn_gl000249	38502
+chrUn_gl000246	38154
+chr17_gl000203_random	37498
+chr8_gl000197_random	37175
+chrUn_gl000245	36651
+chrUn_gl000247	36422
+chr9_gl000201_random	36148
+chrUn_gl000235	34474
+chrUn_gl000239	33824
+chr21_gl000210_random	27682
+chrUn_gl000231	27386
+chrUn_gl000229	19913
+chrM	16571
+chrUn_gl000226	15008
+chr18_gl000207_random	4262
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/hg19_RefSeq_chr1_1-100000.bed	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,7 @@
+chr1	11873	14409	NR_046018	0	+	14409	14409	0	3	354,109,1189,	0,739,1347,
+chr1	14361	29370	NR_024540	0	-	29370	29370	0	11	468,69,152,159,198,136,137,147,99,154,50,	0,608,1434,2245,2496,2871,3244,3553,3906,10376,14959,
+chr1	17368	17436	NR_106918	0	-	17436	17436	0	1	68,	0,
+chr1	17368	17436	NR_107062	0	-	17436	17436	0	1	68,	0,
+chr1	34610	36081	NR_026818	0	-	36081	36081	0	3	564,205,361,	0,666,1110,
+chr1	34610	36081	NR_026820	0	-	36081	36081	0	3	564,205,361,	0,666,1110,
+chr1	69090	70008	NM_001005484	0	+	69090	70008	0	1	918,	0,
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.DupRate_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,14 @@
+pdf('output.DupRate_plot.pdf')
+par(mar=c(5,4,4,5),las=0)
+seq_occ=c(1)
+seq_uniqRead=c(40)
+pos_occ=c(1)
+pos_uniqRead=c(40)
+plot(pos_occ,log10(pos_uniqRead),ylab='Number of Reads (log10)',xlab='Frequency',pch=4,cex=0.8,col='blue',xlim=c(1,500),yaxt='n')
+points(seq_occ,log10(seq_uniqRead),pch=20,cex=0.8,col='red')
+ym=floor(max(log10(pos_uniqRead)))
+legend(300,ym,legend=c('Sequence-base','Mapping-base'),col=c('blue','red'),pch=c(4,20))
+axis(side=2,at=0:ym,labels=0:ym)
+axis(side=4,at=c(log10(pos_uniqRead[1]),log10(pos_uniqRead[2]),log10(pos_uniqRead[3]),log10(pos_uniqRead[4])), labels=c(round(pos_uniqRead[1]*100/sum(pos_uniqRead)),round(pos_uniqRead[2]*100/sum(pos_uniqRead)),round(pos_uniqRead[3]*100/sum(pos_uniqRead)),round(pos_uniqRead[4]*100/sum(pos_uniqRead))))
+mtext(4, text = "Reads %", line = 2)
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.GC.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,19 @@
+GC%	read_count
+60.78	3
+41.18	3
+47.06	5
+56.86	7
+29.41	1
+27.45	2
+37.25	2
+78.43	1
+58.82	1
+50.98	3
+49.02	2
+62.75	1
+68.63	1
+54.90	1
+52.94	3
+35.29	1
+43.14	2
+39.22	1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.GC_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,4 @@
+pdf("output.GC_plot.pdf")
+gc=rep(c(60.78,41.18,47.06,56.86,29.41,27.45,37.25,78.43,58.82,50.98,49.02,62.75,68.63,54.90,52.94,35.29,43.14,39.22),times=c(3,3,5,7,1,2,2,1,1,3,2,1,1,1,3,1,2,1))
+hist(gc,probability=T,breaks=100,xlab="GC content (%)",ylab="Density of Reads",border="blue",main="")
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.NVC.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,52 @@
+Position	A	C	G	T	N	X
+0	5	7	18	10	0	0	
+1	6	7	15	8	4	0	
+2	5	9	18	5	3	0	
+3	11	9	14	4	2	0	
+4	5	9	12	14	0	0	
+5	4	11	19	6	0	0	
+6	11	7	12	10	0	0	
+7	9	8	12	9	2	0	
+8	12	9	11	8	0	0	
+9	8	9	8	10	5	0	
+10	9	8	9	14	0	0	
+11	9	6	11	14	0	0	
+12	14	8	12	6	0	0	
+13	10	6	9	15	0	0	
+14	9	9	7	15	0	0	
+15	10	10	9	9	2	0	
+16	8	4	6	14	8	0	
+17	9	9	10	9	3	0	
+18	7	5	11	12	5	0	
+19	12	8	4	10	6	0	
+20	10	6	9	15	0	0	
+21	9	9	15	7	0	0	
+22	14	6	11	9	0	0	
+23	13	11	11	5	0	0	
+24	12	8	7	10	3	0	
+25	9	13	4	8	6	0	
+26	11	16	7	6	0	0	
+27	11	8	13	8	0	0	
+28	13	6	9	12	0	0	
+29	9	9	12	10	0	0	
+30	8	6	15	11	0	0	
+31	7	9	11	13	0	0	
+32	7	8	14	11	0	0	
+33	11	11	10	8	0	0	
+34	6	12	13	9	0	0	
+35	8	17	11	4	0	0	
+36	9	8	7	16	0	0	
+37	11	9	12	8	0	0	
+38	8	9	10	13	0	0	
+39	8	12	11	9	0	0	
+40	12	9	10	9	0	0	
+41	9	13	11	7	0	0	
+42	10	12	9	9	0	0	
+43	7	13	11	9	0	0	
+44	10	12	6	12	0	0	
+45	10	10	9	11	0	0	
+46	7	10	10	13	0	0	
+47	9	9	12	10	0	0	
+48	10	6	14	10	0	0	
+49	8	10	13	9	0	0	
+50	7	8	9	16	0	0	
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.NVC_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,17 @@
+position=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)
+A_count=c(5,6,5,11,5,4,11,9,12,8,9,9,14,10,9,10,8,9,7,12,10,9,14,13,12,9,11,11,13,9,8,7,7,11,6,8,9,11,8,8,12,9,10,7,10,10,7,9,10,8,7)
+C_count=c(7,7,9,9,9,11,7,8,9,9,8,6,8,6,9,10,4,9,5,8,6,9,6,11,8,13,16,8,6,9,6,9,8,11,12,17,8,9,9,12,9,13,12,13,12,10,10,9,6,10,8)
+G_count=c(18,15,18,14,12,19,12,12,11,8,9,11,12,9,7,9,6,10,11,4,9,15,11,11,7,4,7,13,9,12,15,11,14,10,13,11,7,12,10,11,10,11,9,11,6,9,10,12,14,13,9)
+T_count=c(10,8,5,4,14,6,10,9,8,10,14,14,6,15,15,9,14,9,12,10,15,7,9,5,10,8,6,8,12,10,11,13,11,8,9,4,16,8,13,9,9,7,9,9,12,11,13,10,10,9,16)
+N_count=c(0,4,3,2,0,0,0,2,0,5,0,0,0,0,0,2,8,3,5,6,0,0,0,0,3,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+X_count=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
+total= A_count + C_count + G_count + T_count
+ym=max(A_count/total,C_count/total,G_count/total,T_count/total) + 0.05
+yn=min(A_count/total,C_count/total,G_count/total,T_count/total)
+pdf("output.NVC_plot.pdf")
+plot(position,A_count/total,type="o",pch=20,ylim=c(yn,ym),col="dark green",xlab="Position of Read",ylab="Nucleotide Frequency")
+lines(position,T_count/total,type="o",pch=20,col="red")
+lines(position,G_count/total,type="o",pch=20,col="blue")
+lines(position,C_count/total,type="o",pch=20,col="cyan")
+legend(41,ym,legend=c("A","T","G","C"),col=c("dark green","red","blue","cyan"),lwd=2,pch=20,text.col=c("dark green","red","blue","cyan"))
+dev.off()
Binary file test-data/output.clipping_profile.pdf has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.clipping_profile.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,5 @@
+pdf("output.clipping_profile.pdf")
+read_pos=c(0,1,2,3,4,5,6,7,8,9,44,45,46,47,48,49,50)
+count=c(16,12,11,8,6,5,1,1,1,1,1,2,2,2,3,4,4)
+plot(read_pos,1-(count/40),col="blue",main="clipping profile",xlab="Position of reads",ylab="Mappability",type="b")
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.clipping_profile.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,18 @@
+Position	Read_Total	Read_clipped
+0	40	16
+1	40	12
+2	40	11
+3	40	8
+4	40	6
+5	40	5
+6	40	1
+7	40	1
+8	40	1
+9	40	1
+44	40	1
+45	40	2
+46	40	2
+47	40	2
+48	40	3
+49	40	4
+50	40	4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.eRPKM.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,8 @@
+#chr	start	end	name	score	strand	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
+chr1	17368	17436	NR_106918	0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+chr1	17368	17436	NR_107062	0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+chr1	34610	36081	NR_026818	0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+chr1	69090	70008	NM_001005484	0	+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+chr1	14361	29370	NR_024540	0	-	256950.511332	128475.255666	85650.1704438	128475.255666	102780.204533	85650.1704438	73414.431809	64237.6278329	57100.1136292	51390.1022663	46718.2747875	64237.6278329	59296.2718457	55060.8238568	51390.1022663	48178.2208747	45344.207882	57100.1136292	54094.8444908	51390.1022663
+chr1	34610	36081	NR_026820	0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+chr1	11873	14409	NR_046018	0	+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30572.0644704	27514.8580233	25013.5072939	22929.0483528	42330.5508051	39306.9400333	36686.4773644	34393.5725292	32370.4212039	45858.0967056	43444.5126684	41272.287035
Binary file test-data/output.geneBodyCoverage.curves.pdf has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,8 @@
+d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+
+
+pdf("output.geneBodyCoverage.curves.pdf")
+x=1:100
+icolor = colorRampPalette(c("#7fc97f","#beaed4","#fdc086","#ffff99","#386cb0","#f0027f"))(1)
+plot(x,d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam,type='l',xlab="Gene body percentile (5'->3')", ylab="Coverage",lwd=0.8,col=icolor[1])
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.geneBodyCoverage.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,2 @@
+Percentile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
+d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.infer_experiment.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,6 @@
+
+
+This is PairEnd Data
+Fraction of reads explained by "1++,1--,2+-,2-+": 1.0000
+Fraction of reads explained by "1+-,1-+,2++,2--": 0.0000
+Fraction of reads explained by other combinations: 0.0000
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,20 @@
+seq.11990047	235	sameTranscript=No,dist=genomic
+seq.14614493	31	sameTranscript=Yes,sameExon=Yes,dist=mRNA
+seq.24018133	2	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.10608403	158	sameTranscript=Yes,sameExon=No,dist=mRNA
+seq.10820209	146	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.1537155	33	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.25274725	17	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.26326595	211	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.28833653	55	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.25049090	61	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.23476912	69	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.28059536	225	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.13270875	200	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.2214586	132	sameTranscript=Yes,nonExonic=Yes,dist=genomic
+seq.31061198	-31	readPairOverlap
+seq.13539256	208	sameTranscript=No,dist=genomic
+seq.13835843	-7	sameTranscript=No,dist=genomic
+seq.5556605	88	sameTranscript=No,dist=genomic
+seq.20367385	17	sameTranscript=No,dist=genomic
+seq.17373919	146394	sameTranscript=No,dist=genomic
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance_freq.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,100 @@
+-250	-245	0
+-245	-240	0
+-240	-235	0
+-235	-230	0
+-230	-225	0
+-225	-220	0
+-220	-215	0
+-215	-210	0
+-210	-205	0
+-205	-200	0
+-200	-195	0
+-195	-190	0
+-190	-185	0
+-185	-180	0
+-180	-175	0
+-175	-170	0
+-170	-165	0
+-165	-160	0
+-160	-155	0
+-155	-150	0
+-150	-145	0
+-145	-140	0
+-140	-135	0
+-135	-130	0
+-130	-125	0
+-125	-120	0
+-120	-115	0
+-115	-110	0
+-110	-105	0
+-105	-100	0
+-100	-95	0
+-95	-90	0
+-90	-85	0
+-85	-80	0
+-80	-75	0
+-75	-70	0
+-70	-65	0
+-65	-60	0
+-60	-55	0
+-55	-50	0
+-50	-45	0
+-45	-40	0
+-40	-35	0
+-35	-30	1
+-30	-25	0
+-25	-20	0
+-20	-15	0
+-15	-10	0
+-10	-5	1
+-5	0	0
+0	5	1
+5	10	0
+10	15	0
+15	20	2
+20	25	0
+25	30	0
+30	35	2
+35	40	0
+40	45	0
+45	50	0
+50	55	1
+55	60	0
+60	65	1
+65	70	1
+70	75	0
+75	80	0
+80	85	0
+85	90	1
+90	95	0
+95	100	0
+100	105	0
+105	110	0
+110	115	0
+115	120	0
+120	125	0
+125	130	0
+130	135	1
+135	140	0
+140	145	0
+145	150	1
+150	155	0
+155	160	1
+160	165	0
+165	170	0
+170	175	0
+175	180	0
+180	185	0
+185	190	0
+190	195	0
+195	200	1
+200	205	0
+205	210	1
+210	215	1
+215	220	0
+220	225	1
+225	230	0
+230	235	1
+235	240	0
+240	245	0
+245	250	0
Binary file test-data/output.inner_distance_plot.pdf has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.inner_distance_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,11 @@
+pdf('output.inner_distance_plot.pdf')
+fragsize=rep(c(-248,-243,-238,-233,-228,-223,-218,-213,-208,-203,-198,-193,-188,-183,-178,-173,-168,-163,-158,-153,-148,-143,-138,-133,-128,-123,-118,-113,-108,-103,-98,-93,-88,-83,-78,-73,-68,-63,-58,-53,-48,-43,-38,-33,-28,-23,-18,-13,-8,-3,2,7,12,17,22,27,32,37,42,47,52,57,62,67,72,77,82,87,92,97,102,107,112,117,122,127,132,137,142,147,152,157,162,167,172,177,182,187,192,197,202,207,212,217,222,227,232,237,242,247),times=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,2,0,0,2,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,0,0,0))
+frag_sd = sd(fragsize)
+frag_mean = mean(fragsize)
+frag_median = median(fragsize)
+write(c("Mean insert size",frag_mean), stdout())
+write(c("Median insert size",frag_median), stdout())
+write(c("Standard deviation",frag_sd), stdout())
+hist(fragsize,probability=T,breaks=100,xlab="mRNA insert size (bp)",main=paste(c("Mean=",frag_mean,";","SD=",frag_sd),collapse=""),border="blue")
+lines(density(fragsize,bw=10),col='red')
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junction.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,4 @@
+chrom	intron_st(0-based)	intron_end(1-based)	read_count	annotation
+chr1	17055	17232	1	annotated
+chr1	21768	22000	1	complete_novel
+chr1	12697	13220	1	partial_novel
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junctionSaturation_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,12 @@
+pdf('output.junctionSaturation_plot.pdf')
+x=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100)
+y=c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1)
+z=c(0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,3)
+w=c(0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2)
+m=max(0,0,0)
+n=min(0,0,0)
+plot(x,z/1000,xlab='percent of total reads',ylab='Number of splicing junctions (x1000)',type='o',col='blue',ylim=c(n,m))
+points(x,y/1000,type='o',col='red')
+points(x,w/1000,type='o',col='green')
+legend(5,0, legend=c("All junctions","known junctions", "novel junctions"),col=c("blue","red","green"),lwd=1,pch=1)
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.junction_plot.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,8 @@
+pdf("output.splice_events.pdf")
+events=c(25.0,25.0,25.0)
+pie(events,col=c(2,3,4),init.angle=30,angle=c(60,120,150),density=c(70,70,70),main="splicing events",labels=c("partial_novel 25%","complete_novel 25%","known 25%"))
+dev.off()
+pdf("output.splice_junction.pdf")
+junction=c(33.3333333333,33.3333333333,33.3333333333)
+pie(junction,col=c(2,3,4),init.angle=30,angle=c(60,120,150),density=c(70,70,70),main="splicing junctions",labels=c("partial_novel 33%","complete_novel 33%","known 33%"))
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.pos.DupRate.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,2 @@
+Occurrence	UniqReadNumber
+1	40
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.qual.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,62 @@
+pdf('output.qual.boxplot.pdf')
+p0<-rep(c(33,43,45,51,54,58,59,60,61,62,63,64,66,67,69,70,71),times=c(1,2,1,3,1,1,1,1,1,3,1,1,1,2,5,5,10)/1000)
+p1<-rep(c(43,45,51,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,2,1,1,2,1,3,3,1,8,5,6)/1000)
+p2<-rep(c(43,49,51,53,54,56,58,59,60,61,64,65,66,67,69,70,71),times=c(1,1,1,1,2,1,1,1,2,1,1,2,2,2,7,6,8)/1000)
+p3<-rep(c(33,39,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,1,1,1,2,1,1,1,4,4,1,5,5,6)/1000)
+p4<-rep(c(33,55,58,59,60,61,62,64,65,66,67,68,69,70,71),times=c(1,1,1,1,5,1,1,4,1,2,5,2,3,3,9)/1000)
+p5<-rep(c(33,53,58,60,61,62,64,65,67,68,69,70,71),times=c(1,1,1,2,1,4,3,2,2,3,5,4,11)/1000)
+p6<-rep(c(33,40,54,56,58,60,64,66,67,68,69,70,71),times=c(3,2,1,1,1,1,2,2,4,4,4,2,13)/1000)
+p7<-rep(c(41,42,43,49,50,51,57,58,62,64,65,66,67,68,69,70,71),times=c(1,1,1,1,2,1,1,1,2,1,1,2,7,1,2,3,12)/1000)
+p8<-rep(c(33,39,53,56,58,59,60,62,63,66,67,68,69,70,71),times=c(1,1,1,1,1,1,2,1,2,4,3,2,3,5,12)/1000)
+p9<-rep(c(33,40,50,52,53,57,58,60,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,3,1,4,1,1,3,2,5,4,10)/1000)
+p10<-rep(c(33,40,53,54,55,58,60,63,64,66,67,68,69,70,71),times=c(2,1,1,2,1,1,2,1,4,1,1,1,7,6,9)/1000)
+p11<-rep(c(45,50,51,52,53,56,57,58,60,62,63,64,65,66,67,68,69,70,71),times=c(1,2,1,1,1,1,1,1,3,2,1,1,1,3,1,1,3,5,10)/1000)
+p12<-rep(c(33,41,52,53,54,58,59,60,64,65,66,67,69,70,71),times=c(3,1,1,2,1,1,1,3,1,2,3,2,5,6,8)/1000)
+p13<-rep(c(33,40,51,53,55,56,58,59,60,63,64,65,66,67,68,69,70,71),times=c(4,1,1,1,1,1,1,1,1,1,3,1,2,2,2,3,5,9)/1000)
+p14<-rep(c(33,39,54,56,57,59,60,61,62,63,65,66,67,68,69,70,71),times=c(4,1,3,1,1,1,1,2,1,1,1,2,2,1,7,2,9)/1000)
+p15<-rep(c(33,39,40,42,45,50,52,53,57,58,59,60,61,64,66,68,69,70,71),times=c(2,2,1,1,1,1,1,1,1,3,1,1,1,3,1,1,4,5,9)/1000)
+p16<-rep(c(33,47,51,52,53,58,59,60,61,64,67,69,70,71),times=c(4,1,1,1,2,3,1,1,2,3,3,7,2,9)/1000)
+p17<-rep(c(33,48,50,51,53,54,55,56,58,60,61,63,64,65,66,67,69,70,71),times=c(1,1,1,1,2,1,1,1,2,2,3,2,2,1,2,1,7,2,7)/1000)
+p18<-rep(c(33,43,48,51,53,58,59,60,61,63,64,66,67,68,69,70,71),times=c(2,1,1,1,2,2,1,2,2,3,1,1,3,1,7,2,8)/1000)
+p19<-rep(c(33,44,47,50,51,52,54,58,59,61,62,64,65,67,69,70,71),times=c(2,1,1,2,1,1,2,1,1,1,1,3,1,1,8,4,9)/1000)
+p20<-rep(c(33,46,47,51,54,56,58,59,61,62,63,64,66,67,69,70,71),times=c(1,1,1,1,2,1,1,2,1,2,1,5,5,3,5,2,6)/1000)
+p21<-rep(c(33,43,54,55,57,58,62,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,5,2,3,1,3,2,4,5,4,6)/1000)
+p22<-rep(c(33,47,51,53,54,57,58,60,62,63,64,65,66,68,69,70,71),times=c(1,1,1,1,1,1,1,1,2,1,5,1,4,3,5,5,6)/1000)
+p23<-rep(c(33,42,53,54,55,57,58,62,63,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,2,1,1,5,2,2,3,2,9,3,4)/1000)
+p24<-rep(c(33,42,52,54,57,60,61,63,64,65,66,67,69,70,71),times=c(1,1,1,1,1,2,1,1,5,1,6,4,5,4,6)/1000)
+p25<-rep(c(33,53,54,57,61,62,63,64,66,67,68,69,70,71),times=c(1,1,1,2,1,1,1,2,4,5,2,9,5,5)/1000)
+p26<-rep(c(46,53,54,57,58,60,61,62,64,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,2,5,8,4,1,5,3,5)/1000)
+p27<-rep(c(42,43,48,54,56,57,60,61,62,66,67,68,69,70,71),times=c(1,1,1,2,1,1,4,1,2,1,4,1,5,6,9)/1000)
+p28<-rep(c(51,55,56,57,60,62,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,2,4,2,2,2,4,10,1,8)/1000)
+p29<-rep(c(49,52,56,57,58,60,63,64,65,66,67,69,70,71),times=c(2,1,1,1,2,1,1,3,1,3,6,8,2,8)/1000)
+p30<-rep(c(45,47,50,57,61,62,64,66,67,68,69,70,71),times=c(1,1,1,1,1,1,2,6,3,2,8,5,8)/1000)
+p31<-rep(c(48,52,53,54,57,58,59,60,61,62,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,1,2,1,4,1,2,3,3,7,3,6)/1000)
+p32<-rep(c(43,47,48,54,56,62,64,66,67,68,69,70,71),times=c(1,1,1,1,2,1,2,1,5,3,10,5,7)/1000)
+p33<-rep(c(52,55,58,60,61,63,64,68,69,70,71),times=c(1,1,2,1,1,1,5,4,11,5,8)/1000)
+p34<-rep(c(42,43,50,56,59,60,63,64,67,68,69,70,71),times=c(1,1,1,1,1,1,1,3,1,4,9,5,11)/1000)
+p35<-rep(c(42,53,57,58,60,64,66,68,69,70,71),times=c(1,1,1,2,1,3,2,2,12,7,8)/1000)
+p36<-rep(c(48,53,56,61,63,64,66,67,69,70,71),times=c(2,1,1,2,1,1,2,6,7,3,14)/1000)
+p37<-rep(c(53,56,60,63,64,66,68,69,70,71),times=c(2,2,1,1,3,2,6,7,8,8)/1000)
+p38<-rep(c(41,48,53,57,59,61,62,63,64,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,1,3,3,4,1,4,6,11)/1000)
+p39<-rep(c(38,42,51,53,56,58,61,63,64,65,66,67,68,69,70,71),times=c(1,1,1,1,1,1,1,1,2,1,4,2,2,7,3,11)/1000)
+p40<-rep(c(53,58,61,62,63,64,66,67,68,69,70,71),times=c(1,1,3,1,2,2,1,2,2,9,4,12)/1000)
+p41<-rep(c(48,53,54,57,58,59,60,61,63,64,66,67,68,69,70,71),times=c(1,1,1,1,1,1,2,1,1,1,3,3,1,5,7,9)/1000)
+p42<-rep(c(38,49,54,58,59,64,65,66,67,68,69,70,71),times=c(1,1,3,1,1,3,1,2,1,1,7,7,9)/1000)
+p43<-rep(c(50,51,62,63,64,65,66,67,69,70,71),times=c(2,1,1,1,3,1,2,4,3,8,12)/1000)
+p44<-rep(c(48,54,63,64,65,66,67,68,69,70,71),times=c(1,2,4,1,1,2,2,1,7,8,8)/1000)
+p45<-rep(c(50,57,58,59,60,62,64,67,69,70,71),times=c(1,1,1,1,1,1,1,1,10,8,7)/1000)
+p46<-rep(c(43,48,54,59,60,64,65,66,67,68,69,70,71),times=c(2,1,1,2,1,2,1,1,4,2,1,6,8)/1000)
+p47<-rep(c(49,53,56,61,64,66,67,69,70,71),times=c(1,1,1,1,2,2,2,3,10,7)/1000)
+p48<-rep(c(61,64,66,67,68,69,70,71),times=c(2,1,2,2,2,6,5,7)/1000)
+p49<-rep(c(33,56,60,64,66,68,69,70,71),times=c(1,1,2,1,1,2,2,5,10)/1000)
+p50<-rep(c(33,66,67,68,69,70,71),times=c(1,1,1,2,4,5,7)/1000)
+boxplot(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36,p37,p38,p39,p40,p41,p42,p43,p44,p45,p46,p47,p48,p49,p50,xlab="Position of Read(5'->3')",ylab="Phred Quality Score",outline=F)
+dev.off()
+
+
+pdf('output.qual.heatmap.pdf')
+qual=c(1,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,3,0,0,1,0,0,0,1,1,1,1,3,1,1,0,1,2,0,5,5,10,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,2,1,1,2,1,3,3,1,8,5,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,2,0,1,0,1,1,2,1,0,0,1,2,2,2,0,7,6,8,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,2,1,1,1,4,4,1,5,5,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,5,1,1,0,4,1,2,5,2,3,3,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,2,1,4,0,3,2,0,2,3,5,4,11,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,2,0,2,4,4,4,2,13,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,2,1,0,0,0,0,0,1,1,0,0,0,2,0,1,1,2,7,1,2,3,12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,2,0,1,2,0,0,4,3,2,3,5,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,3,0,1,0,0,0,4,1,1,3,2,5,4,10,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,1,0,2,0,0,1,4,0,1,1,1,7,6,9,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,1,1,1,0,0,1,1,1,0,3,0,2,1,1,1,3,1,1,3,5,10,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,1,1,3,0,0,0,1,2,3,2,0,5,6,8,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,1,3,1,2,2,2,3,5,9,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,1,0,1,1,2,1,1,0,1,2,2,1,7,2,9,2,0,0,0,0,0,2,1,0,1,0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,3,1,1,1,0,0,3,0,1,0,1,4,5,9,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,2,0,0,0,0,3,1,1,2,0,0,3,0,0,3,0,7,2,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,2,1,1,1,0,2,0,2,3,0,2,2,1,2,1,0,7,2,7,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,2,0,0,0,0,2,1,2,2,0,3,1,0,1,3,1,7,2,8,2,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,1,1,0,2,0,0,0,1,1,0,1,1,0,3,1,0,1,0,8,4,9,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,2,0,1,0,1,2,0,1,2,1,5,0,5,3,0,5,2,6,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,1,5,0,0,0,2,0,3,1,3,2,4,5,4,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1,1,0,1,0,2,1,5,1,4,0,3,5,5,6,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,2,0,0,0,1,1,5,2,2,3,2,9,3,4,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,2,1,0,1,5,1,6,4,0,5,4,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,2,0,0,0,1,1,1,2,0,4,5,2,9,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,2,0,5,0,8,4,1,5,3,5,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,2,0,1,1,0,0,4,1,2,0,0,0,1,4,1,5,6,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,1,0,2,0,4,2,2,2,4,10,1,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,1,1,2,0,1,0,0,1,3,1,3,6,0,8,2,8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,2,0,6,3,2,8,5,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,1,1,1,1,2,1,0,4,1,2,3,3,7,3,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,2,0,0,0,0,0,1,0,2,0,1,5,3,10,5,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,0,1,1,0,1,5,0,0,0,4,11,5,8,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,1,3,0,0,1,4,9,5,11,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,0,1,0,0,0,3,0,2,0,2,12,7,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,1,0,0,0,0,2,0,1,1,0,2,6,0,7,3,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,1,0,0,1,3,0,2,0,6,7,8,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,1,3,0,3,4,1,4,6,11,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,2,1,4,2,2,7,3,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,3,1,2,2,0,1,2,2,9,4,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,1,1,1,2,1,0,1,1,0,3,3,1,5,7,9,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,1,1,0,0,0,0,3,1,2,1,1,7,7,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,1,1,3,1,2,4,0,3,8,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,1,1,2,2,1,7,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0,1,0,0,1,0,10,8,7,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,2,1,0,0,0,2,1,1,4,2,1,6,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,2,0,2,2,0,3,10,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,2,2,2,6,5,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,1,0,1,0,2,2,5,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,4,5,7)
+mat=matrix(qual,ncol=51,byrow=F)
+Lab.palette <- colorRampPalette(c("blue", "orange", "red3","red2","red1","red"), space = "rgb",interpolate=c('spline'))
+heatmap(mat,Rowv=NA,Colv=NA,xlab="Position of Read",ylab="Phred Quality Score",labRow=seq(from=33,to=71),col = Lab.palette(256),scale="none" )
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.rawCount.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,8 @@
+#chr	start	end	name	score	strand	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
+chr1	17368	17436	NR_106918	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+chr1	17368	17436	NR_107062	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+chr1	34610	36081	NR_026818	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+chr1	69090	70008	NM_001005484	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+chr1	14361	29370	NR_024540	0	-	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4
+chr1	34610	36081	NR_026820	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+chr1	11873	14409	NR_046018	0	+	0	0	0	0	0	0	0	0	1	1	1	1	2	2	2	2	2	3	3	3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.read_distribution.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,16 @@
+Total Reads                   40
+Total Tags                    44
+Total Assigned Tags           38
+=====================================================================
+Group               Total_bases         Tag_count           Tags/Kb             
+CDS_Exons           918                 0                   0.00              
+5'UTR_Exons         1652                3                   1.81              
+3'UTR_Exons         2967                4                   1.35              
+Introns             14397               27                  1.88              
+TSS_up_1kb          4000                0                   0.00              
+TSS_up_5kb          20000               4                   0.20              
+TSS_up_10kb         35240               4                   0.11              
+TES_down_1kb        2000                0                   0.00              
+TES_down_5kb        12512               0                   0.00              
+TES_down_10kb       22752               0                   0.00              
+=====================================================================
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.saturation.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,87 @@
+pdf('output.saturation.pdf')
+par(mfrow=c(2,2))
+name=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95)
+S5=c()
+S10=c()
+S15=c()
+S20=c()
+S25=c()
+S30=c()
+S35=c()
+S40=c()
+S45=c()
+S50=c()
+S55=c()
+S60=c()
+S65=c()
+S70=c()
+S75=c()
+S80=c()
+S85=c()
+S90=c()
+S95=c()
+boxplot(100*S5,100*S10,100*S15,100*S20,100*S25,100*S30,100*S35,100*S40,100*S45,100*S50,100*S55,100*S60,100*S65,100*S70,100*S75,100*S80,100*S85,100*S90,100*S95,names=name,outline=F,ylab='Percent Relative Error',main='Q1',xlab='Resampling percentage')
+name=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95)
+S5=c(1.0)
+S10=c(1.0)
+S15=c(1.0)
+S20=c(1.0)
+S25=c(1.0)
+S30=c(1.0)
+S35=c(1.0)
+S40=c(1.0)
+S45=c(0.259259259259)
+S50=c(0.333333333334)
+S55=c(0.39393939394)
+S60=c(0.444444444444)
+S65=c(0.0256410256403)
+S70=c(0.0476190476199)
+S75=c(0.111111111112)
+S80=c(0.166666666666)
+S85=c(0.21568627451)
+S90=c(0.111111111112)
+S95=c(0.0526315789469)
+boxplot(100*S5,100*S10,100*S15,100*S20,100*S25,100*S30,100*S35,100*S40,100*S45,100*S50,100*S55,100*S60,100*S65,100*S70,100*S75,100*S80,100*S85,100*S90,100*S95,names=name,outline=F,ylab='Percent Relative Error',main='Q2',xlab='Resampling percentage')
+name=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95)
+S5=c()
+S10=c()
+S15=c()
+S20=c()
+S25=c()
+S30=c()
+S35=c()
+S40=c()
+S45=c()
+S50=c()
+S55=c()
+S60=c()
+S65=c()
+S70=c()
+S75=c()
+S80=c()
+S85=c()
+S90=c()
+S95=c()
+boxplot(100*S5,100*S10,100*S15,100*S20,100*S25,100*S30,100*S35,100*S40,100*S45,100*S50,100*S55,100*S60,100*S65,100*S70,100*S75,100*S80,100*S85,100*S90,100*S95,names=name,outline=F,ylab='Percent Relative Error',main='Q3',xlab='Resampling percentage')
+name=c(5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95)
+S5=c(4.00000000001)
+S10=c(1.5)
+S15=c(0.666666666666)
+S20=c(1.5)
+S25=c(1.00000000001)
+S30=c(0.666666666666)
+S35=c(0.428571428571)
+S40=c(0.25)
+S45=c(0.111111111111)
+S50=c(0.0)
+S55=c(0.09090909091)
+S60=c(0.25)
+S65=c(0.153846153846)
+S70=c(0.0714285714295)
+S75=c(0.0)
+S80=c(0.0624999999991)
+S85=c(0.117647058824)
+S90=c(0.111111111111)
+S95=c(0.0526315789465)
+boxplot(100*S5,100*S10,100*S15,100*S20,100*S25,100*S30,100*S35,100*S40,100*S45,100*S50,100*S55,100*S60,100*S65,100*S70,100*S75,100*S80,100*S85,100*S90,100*S95,names=name,outline=F,ylab='Percent Relative Error',main='Q4',xlab='Resampling percentage')
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output.seq.DupRate.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,2 @@
+Occurrence	UniqReadNumber
+1	40
Binary file test-data/output.splice_events.pdf has changed
Binary file test-data/output.splice_junction.pdf has changed
Binary file test-data/output2.geneBodyCoverage.curves.pdf has changed
Binary file test-data/output2.geneBodyCoverage.heatMap.pdf has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output2.geneBodyCoverage.r	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,8 @@
+d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam <- c(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
+
+
+pdf("output.geneBodyCoverage.curves.pdf")
+x=1:100
+icolor = colorRampPalette(c("#7fc97f","#beaed4","#fdc086","#ffff99","#386cb0","#f0027f"))(1)
+plot(x,d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam,type='l',xlab="Gene body percentile (5'->3')", ylab="Coverage",lwd=0.8,col=icolor[1])
+dev.off()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output2.geneBodyCoverage.txt	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,2 @@
+Percentile	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
+d1_pairend_strandspecific_51mer_hg19_chr1_1_100000_bam	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/output_read_count.xls	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,47 @@
+#chrom	st	end	accession	score	gene_strand	tag_count	RPKM
+chr1	12227	12612	NR_046018_intron_1	0	+	0	0.000
+chr1	12721	13220	NR_046018_intron_2	0	+	0	0.000
+chr1	11873	12227	NR_046018_exon_1	0	+	0	0.000
+chr1	12612	12721	NR_046018_exon_2	0	+	1	208507.089
+chr1	13220	14409	NR_046018_exon_3	0	+	2	38229.222
+chr1	11873	14409	NR_046018_mRNA	0	+	3	41272.287
+chr1	14829	14969	NR_024540_intron_10	0	-	0	0.000
+chr1	15038	15795	NR_024540_intron_9	0	-	0	0.000
+chr1	15947	16606	NR_024540_intron_8	0	-	2	68975.031
+chr1	16765	16857	NR_024540_intron_7	0	-	0	0.000
+chr1	17055	17232	NR_024540_intron_6	0	-	0	0.000
+chr1	17368	17605	NR_024540_intron_5	0	-	1	95895.666
+chr1	17742	17914	NR_024540_intron_4	0	-	0	0.000
+chr1	18061	18267	NR_024540_intron_3	0	-	0	0.000
+chr1	18366	24737	NR_024540_intron_2	0	-	22	78480.615
+chr1	24891	29320	NR_024540_intron_1	0	-	2	10262.936
+chr1	14361	14829	NR_024540_exon_11	0	-	2	97125.097
+chr1	14969	15038	NR_024540_exon_10	0	-	0	0.000
+chr1	15795	15947	NR_024540_exon_9	0	-	0	0.000
+chr1	16606	16765	NR_024540_exon_8	0	-	0	0.000
+chr1	16857	17055	NR_024540_exon_7	0	-	1	114784.206
+chr1	17232	17368	NR_024540_exon_6	0	-	1	167112.299
+chr1	17605	17742	NR_024540_exon_5	0	-	0	0.000
+chr1	17914	18061	NR_024540_exon_4	0	-	0	0.000
+chr1	18267	18366	NR_024540_exon_3	0	-	0	0.000
+chr1	24737	24891	NR_024540_exon_2	0	-	0	0.000
+chr1	29320	29370	NR_024540_exon_1	0	-	0	0.000
+chr1	14361	29370	NR_024540_mRNA	0	-	4	51390.102
+chr1	17368	17436	NR_106918_exon_1	0	-	0	0.000
+chr1	17368	17436	NR_106918_mRNA	0	-	0	0.000
+chr1	17368	17436	NR_107062_exon_1	0	-	0	0.000
+chr1	17368	17436	NR_107062_mRNA	0	-	0	0.000
+chr1	35174	35276	NR_026818_intron_2	0	-	0	0.000
+chr1	35481	35720	NR_026818_intron_1	0	-	0	0.000
+chr1	34610	35174	NR_026818_exon_3	0	-	0	0.000
+chr1	35276	35481	NR_026818_exon_2	0	-	0	0.000
+chr1	35720	36081	NR_026818_exon_1	0	-	0	0.000
+chr1	34610	36081	NR_026818_mRNA	0	-	0	0.000
+chr1	35174	35276	NR_026820_intron_2	0	-	0	0.000
+chr1	35481	35720	NR_026820_intron_1	0	-	0	0.000
+chr1	34610	35174	NR_026820_exon_3	0	-	0	0.000
+chr1	35276	35481	NR_026820_exon_2	0	-	0	0.000
+chr1	35720	36081	NR_026820_exon_1	0	-	0	0.000
+chr1	34610	36081	NR_026820_mRNA	0	-	0	0.000
+chr1	69090	70008	NM_001005484_exon_1	0	+	0	0.000
+chr1	69090	70008	NM_001005484_mRNA	0	+	0	0.000
Binary file test-data/pairend_strandspecific_51mer_hg19_chr1_1-100000.bam has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.Forward.wig	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,127 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+12674	1.00
+12675	1.00
+12676	1.00
+12677	1.00
+12678	1.00
+12679	1.00
+12680	1.00
+12681	1.00
+12682	1.00
+12683	1.00
+12684	1.00
+12685	1.00
+12686	1.00
+12687	1.00
+12688	1.00
+12689	1.00
+12690	1.00
+12691	1.00
+12692	1.00
+12693	1.00
+12694	1.00
+12695	1.00
+12696	1.00
+12697	1.00
+13221	1.00
+13222	1.00
+13223	1.00
+13224	1.00
+13225	1.00
+13226	1.00
+13227	1.00
+13228	1.00
+13229	1.00
+13230	1.00
+13231	1.00
+13232	1.00
+13233	1.00
+13234	1.00
+13235	1.00
+13236	1.00
+13237	1.00
+13238	1.00
+13239	1.00
+13240	1.00
+13241	1.00
+13242	1.00
+13243	1.00
+13244	1.00
+13245	1.00
+13246	1.00
+13247	1.00
+13483	1.00
+13484	1.00
+13485	1.00
+13486	1.00
+13487	1.00
+13488	1.00
+13489	1.00
+13490	1.00
+13491	1.00
+13492	1.00
+13493	1.00
+13494	1.00
+13495	1.00
+13496	1.00
+13497	1.00
+13498	1.00
+13499	1.00
+13500	1.00
+13501	1.00
+13502	1.00
+13503	1.00
+13504	1.00
+13505	1.00
+13506	1.00
+13507	1.00
+13508	1.00
+13509	1.00
+13510	1.00
+13511	1.00
+13512	1.00
+13513	1.00
+13514	1.00
+13515	1.00
+13516	1.00
+13517	1.00
+13518	1.00
+13519	1.00
+13520	1.00
+13521	1.00
+13522	1.00
+13523	1.00
+13524	1.00
+13525	1.00
+13526	1.00
+13527	1.00
+13528	1.00
+13529	1.00
+13530	1.00
+13531	1.00
+13532	1.00
+13533	1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.Reverse.wig	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,1686 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+14596	-1.00
+14597	-1.00
+14598	-1.00
+14599	-1.00
+14600	-1.00
+14601	-1.00
+14602	-1.00
+14603	-1.00
+14604	-1.00
+14605	-1.00
+14606	-1.00
+14607	-1.00
+14608	-1.00
+14609	-1.00
+14610	-1.00
+14611	-1.00
+14612	-1.00
+14613	-1.00
+14614	-1.00
+14615	-1.00
+14616	-1.00
+14617	-1.00
+14618	-1.00
+14619	-1.00
+14620	-1.00
+14621	-1.00
+14622	-1.00
+14623	-1.00
+14624	-1.00
+14625	-1.00
+14626	-1.00
+14627	-1.00
+14628	-1.00
+14629	-1.00
+14630	-1.00
+14631	-1.00
+14632	-1.00
+14633	-1.00
+14634	-1.00
+14635	-1.00
+14636	-1.00
+14637	-1.00
+14638	-1.00
+14639	-1.00
+14640	-1.00
+14641	-1.00
+14642	-1.00
+14643	-1.00
+14644	-1.00
+14645	-1.00
+14676	-1.00
+14677	-1.00
+14678	-1.00
+14679	-1.00
+14680	-1.00
+14681	-1.00
+14682	-1.00
+14683	-1.00
+14684	-1.00
+14685	-1.00
+14686	-1.00
+14687	-1.00
+14688	-1.00
+14689	-1.00
+14690	-1.00
+14691	-1.00
+14692	-1.00
+14693	-1.00
+14694	-1.00
+14695	-1.00
+14696	-1.00
+14697	-1.00
+14698	-1.00
+14699	-1.00
+14700	-1.00
+14701	-1.00
+14702	-1.00
+14703	-1.00
+14704	-1.00
+14705	-1.00
+14706	-1.00
+14707	-1.00
+14708	-1.00
+14709	-1.00
+14710	-1.00
+14711	-1.00
+14712	-1.00
+14713	-1.00
+14714	-1.00
+14715	-1.00
+14716	-1.00
+14717	-1.00
+14718	-1.00
+14719	-1.00
+14720	-1.00
+14721	-1.00
+14722	-1.00
+14723	-1.00
+14724	-1.00
+14725	-1.00
+14726	-1.00
+16455	-1.00
+16456	-1.00
+16457	-1.00
+16458	-1.00
+16459	-1.00
+16460	-1.00
+16461	-1.00
+16462	-1.00
+16463	-1.00
+16464	-1.00
+16465	-1.00
+16466	-1.00
+16467	-1.00
+16468	-1.00
+16469	-1.00
+16470	-1.00
+16471	-1.00
+16472	-1.00
+16473	-1.00
+16474	-1.00
+16475	-1.00
+16476	-1.00
+16477	-1.00
+16478	-1.00
+16479	-1.00
+16480	-1.00
+16481	-1.00
+16482	-1.00
+16483	-1.00
+16484	-1.00
+16485	-1.00
+16486	-1.00
+16487	-1.00
+16488	-1.00
+16489	-1.00
+16490	-1.00
+16491	-1.00
+16492	-1.00
+16493	-1.00
+16494	-1.00
+16495	-1.00
+16496	-1.00
+16497	-1.00
+16498	-1.00
+16499	-1.00
+16500	-1.00
+16501	-1.00
+16502	-1.00
+16503	-1.00
+16504	-1.00
+16506	-1.00
+16507	-1.00
+16508	-1.00
+16509	-1.00
+16510	-1.00
+16511	-1.00
+16512	-1.00
+16513	-1.00
+16514	-1.00
+16515	-1.00
+16516	-1.00
+16517	-1.00
+16518	-1.00
+16519	-1.00
+16520	-1.00
+16521	-1.00
+16522	-1.00
+16523	-1.00
+16524	-1.00
+16525	-1.00
+16526	-1.00
+16527	-1.00
+16528	-1.00
+16529	-1.00
+16530	-1.00
+16531	-1.00
+16532	-1.00
+16533	-1.00
+16534	-1.00
+16535	-1.00
+16536	-1.00
+16537	-1.00
+16538	-1.00
+16539	-1.00
+16540	-1.00
+16541	-1.00
+16542	-1.00
+16543	-1.00
+16544	-1.00
+16545	-1.00
+16546	-1.00
+16547	-1.00
+16548	-1.00
+16549	-1.00
+16550	-1.00
+16551	-1.00
+16552	-1.00
+16553	-1.00
+16554	-1.00
+16555	-1.00
+16556	-1.00
+17051	-1.00
+17052	-1.00
+17053	-1.00
+17054	-1.00
+17055	-1.00
+17233	-1.00
+17234	-1.00
+17235	-1.00
+17236	-1.00
+17237	-1.00
+17238	-1.00
+17239	-1.00
+17240	-1.00
+17241	-1.00
+17242	-1.00
+17243	-1.00
+17244	-1.00
+17245	-1.00
+17246	-1.00
+17247	-1.00
+17248	-1.00
+17249	-1.00
+17250	-1.00
+17251	-1.00
+17252	-1.00
+17253	-1.00
+17254	-1.00
+17255	-1.00
+17256	-1.00
+17257	-1.00
+17258	-1.00
+17259	-1.00
+17260	-1.00
+17261	-1.00
+17262	-1.00
+17263	-1.00
+17264	-1.00
+17265	-1.00
+17266	-1.00
+17267	-1.00
+17268	-1.00
+17269	-1.00
+17270	-1.00
+17271	-1.00
+17272	-1.00
+17273	-1.00
+17274	-1.00
+17275	-1.00
+17276	-1.00
+17277	-1.00
+17278	-1.00
+17555	-1.00
+17556	-1.00
+17557	-1.00
+17558	-1.00
+17559	-1.00
+17560	-1.00
+17561	-1.00
+17562	-1.00
+17563	-1.00
+17564	-1.00
+17565	-1.00
+17566	-1.00
+17567	-1.00
+17568	-1.00
+17569	-1.00
+17570	-1.00
+17571	-1.00
+17572	-1.00
+17573	-1.00
+17574	-1.00
+17575	-1.00
+17576	-1.00
+17577	-1.00
+17578	-1.00
+17579	-1.00
+17580	-1.00
+17581	-1.00
+17582	-1.00
+17583	-1.00
+17584	-1.00
+17585	-1.00
+17586	-1.00
+17587	-1.00
+17588	-1.00
+17589	-1.00
+17590	-1.00
+17591	-1.00
+17592	-1.00
+17593	-1.00
+17594	-1.00
+17595	-1.00
+17596	-1.00
+17597	-1.00
+17598	-1.00
+17599	-1.00
+17600	-1.00
+17601	-1.00
+17602	-1.00
+17603	-1.00
+17604	-1.00
+17605	-1.00
+20203	-1.00
+20204	-1.00
+20205	-1.00
+20206	-1.00
+20207	-1.00
+20208	-1.00
+20209	-1.00
+20210	-1.00
+20211	-1.00
+20212	-1.00
+20213	-1.00
+20214	-1.00
+20215	-1.00
+20216	-1.00
+20217	-1.00
+20218	-1.00
+20219	-1.00
+20220	-1.00
+20221	-1.00
+20222	-1.00
+20223	-1.00
+20224	-1.00
+20225	-1.00
+20226	-1.00
+20227	-1.00
+20228	-1.00
+20229	-1.00
+20230	-1.00
+20231	-1.00
+20232	-1.00
+20233	-1.00
+20234	-1.00
+20235	-1.00
+20236	-1.00
+20237	-1.00
+20238	-1.00
+20239	-1.00
+20240	-1.00
+20241	-1.00
+20242	-1.00
+20243	-1.00
+20244	-1.00
+20245	-1.00
+20246	-1.00
+20247	-1.00
+20248	-1.00
+20249	-1.00
+20250	-1.00
+20251	-1.00
+20252	-1.00
+20253	-1.00
+20400	-1.00
+20401	-1.00
+20402	-1.00
+20403	-1.00
+20404	-1.00
+20405	-1.00
+20406	-1.00
+20407	-1.00
+20408	-1.00
+20409	-1.00
+20410	-1.00
+20411	-1.00
+20412	-1.00
+20413	-1.00
+20414	-1.00
+20415	-1.00
+20416	-1.00
+20417	-1.00
+20418	-1.00
+20419	-1.00
+20420	-1.00
+20421	-1.00
+20422	-1.00
+20423	-1.00
+20424	-1.00
+20425	-1.00
+20426	-1.00
+20427	-1.00
+20428	-1.00
+20429	-1.00
+20430	-1.00
+20431	-1.00
+20432	-1.00
+20433	-1.00
+20434	-1.00
+20435	-1.00
+20436	-1.00
+20437	-1.00
+20438	-1.00
+20439	-1.00
+20440	-1.00
+20441	-1.00
+20442	-1.00
+20443	-1.00
+20444	-1.00
+20445	-1.00
+20446	-1.00
+20447	-1.00
+20448	-1.00
+20449	-1.00
+20450	-1.00
+20773	-1.00
+20774	-1.00
+20775	-1.00
+20776	-1.00
+20777	-1.00
+20778	-1.00
+20779	-1.00
+20780	-1.00
+20781	-1.00
+20782	-1.00
+20783	-1.00
+20784	-1.00
+20785	-1.00
+20786	-1.00
+20787	-1.00
+20788	-1.00
+20789	-1.00
+20790	-1.00
+20791	-1.00
+20792	-1.00
+20793	-1.00
+20794	-1.00
+20795	-1.00
+20796	-1.00
+20797	-1.00
+20798	-1.00
+20799	-1.00
+20800	-1.00
+20801	-1.00
+20802	-1.00
+20803	-1.00
+20804	-1.00
+20805	-1.00
+20806	-1.00
+20807	-1.00
+20808	-1.00
+20809	-1.00
+20810	-1.00
+20811	-1.00
+20812	-1.00
+20813	-1.00
+20814	-1.00
+20815	-1.00
+20816	-1.00
+20817	-1.00
+20818	-1.00
+20819	-1.00
+20849	-1.00
+20850	-1.00
+20851	-1.00
+20852	-1.00
+20853	-1.00
+20854	-1.00
+20855	-1.00
+20856	-1.00
+20857	-1.00
+20858	-1.00
+20859	-1.00
+20860	-1.00
+20861	-1.00
+20862	-1.00
+20863	-1.00
+20864	-1.00
+20865	-1.00
+20866	-1.00
+20867	-1.00
+20868	-1.00
+20869	-1.00
+20870	-1.00
+20871	-1.00
+20872	-1.00
+20873	-1.00
+20874	-1.00
+20875	-1.00
+20876	-1.00
+20877	-1.00
+20878	-1.00
+20879	-1.00
+20880	-1.00
+20881	-1.00
+20882	-1.00
+20883	-1.00
+20884	-1.00
+20885	-1.00
+20886	-1.00
+20887	-1.00
+20888	-1.00
+20889	-1.00
+20890	-1.00
+20891	-1.00
+20892	-1.00
+20893	-1.00
+20894	-1.00
+20895	-1.00
+20896	-1.00
+20897	-1.00
+20898	-1.00
+20899	-1.00
+21469	-1.00
+21470	-1.00
+21471	-1.00
+21472	-1.00
+21473	-2.00
+21474	-2.00
+21475	-2.00
+21476	-2.00
+21477	-2.00
+21478	-2.00
+21479	-2.00
+21480	-2.00
+21481	-2.00
+21482	-2.00
+21483	-2.00
+21484	-2.00
+21485	-2.00
+21486	-2.00
+21487	-2.00
+21488	-2.00
+21489	-2.00
+21490	-2.00
+21491	-2.00
+21492	-2.00
+21493	-2.00
+21494	-2.00
+21495	-2.00
+21496	-2.00
+21497	-2.00
+21498	-2.00
+21499	-2.00
+21500	-2.00
+21501	-2.00
+21502	-2.00
+21503	-2.00
+21504	-2.00
+21505	-2.00
+21506	-2.00
+21507	-2.00
+21508	-1.00
+21509	-1.00
+21510	-1.00
+21511	-1.00
+21512	-1.00
+21513	-1.00
+21514	-1.00
+21515	-1.00
+21516	-1.00
+21517	-1.00
+21526	-1.00
+21527	-1.00
+21528	-1.00
+21529	-1.00
+21530	-1.00
+21531	-1.00
+21543	-1.00
+21544	-1.00
+21545	-1.00
+21546	-1.00
+21547	-1.00
+21548	-1.00
+21549	-1.00
+21550	-1.00
+21551	-1.00
+21552	-1.00
+21553	-1.00
+21554	-1.00
+21555	-1.00
+21556	-1.00
+21557	-1.00
+21558	-1.00
+21559	-1.00
+21560	-1.00
+21561	-1.00
+21562	-1.00
+21563	-1.00
+21564	-1.00
+21565	-1.00
+21566	-1.00
+21567	-1.00
+21568	-1.00
+21569	-1.00
+21570	-1.00
+21571	-1.00
+21572	-1.00
+21573	-1.00
+21574	-1.00
+21575	-1.00
+21576	-1.00
+21577	-1.00
+21578	-1.00
+21579	-1.00
+21580	-1.00
+21581	-1.00
+21582	-1.00
+21583	-1.00
+21584	-1.00
+21585	-1.00
+21586	-1.00
+21587	-1.00
+21588	-1.00
+21589	-1.00
+21590	-1.00
+21591	-1.00
+21592	-1.00
+21593	-1.00
+21723	-1.00
+21724	-1.00
+21725	-1.00
+21726	-1.00
+21727	-1.00
+21728	-1.00
+21729	-1.00
+21730	-1.00
+21731	-1.00
+21732	-1.00
+21733	-1.00
+21734	-1.00
+21735	-1.00
+21736	-1.00
+21737	-1.00
+21738	-1.00
+21739	-1.00
+21740	-1.00
+21741	-1.00
+21742	-1.00
+21743	-1.00
+21744	-1.00
+21745	-1.00
+21746	-1.00
+21747	-1.00
+21748	-1.00
+21749	-1.00
+21750	-1.00
+21751	-1.00
+21752	-1.00
+21753	-1.00
+21754	-1.00
+21755	-1.00
+21756	-1.00
+21757	-1.00
+21758	-1.00
+21759	-1.00
+21760	-1.00
+21761	-1.00
+21762	-1.00
+21763	-1.00
+21764	-1.00
+21765	-1.00
+21766	-1.00
+21767	-1.00
+21768	-1.00
+21963	-1.00
+21964	-1.00
+21965	-1.00
+21966	-1.00
+21967	-1.00
+21968	-1.00
+21969	-1.00
+21970	-1.00
+21971	-1.00
+21972	-1.00
+21973	-1.00
+21974	-1.00
+21975	-1.00
+21976	-1.00
+21977	-1.00
+21978	-1.00
+21979	-1.00
+21980	-1.00
+21981	-1.00
+21982	-1.00
+21983	-1.00
+21984	-1.00
+21985	-1.00
+21986	-1.00
+21987	-1.00
+21988	-1.00
+21989	-1.00
+21990	-1.00
+21991	-1.00
+21992	-1.00
+21993	-1.00
+21994	-1.00
+21995	-1.00
+21996	-1.00
+21997	-1.00
+21998	-1.00
+21999	-1.00
+22000	-1.00
+22001	-2.00
+22002	-2.00
+22003	-2.00
+22004	-2.00
+22005	-2.00
+22006	-1.00
+22062	-1.00
+22063	-1.00
+22064	-1.00
+22065	-1.00
+22066	-1.00
+22067	-1.00
+22068	-1.00
+22069	-1.00
+22070	-1.00
+22071	-1.00
+22072	-1.00
+22073	-1.00
+22074	-1.00
+22075	-1.00
+22076	-1.00
+22077	-1.00
+22078	-1.00
+22079	-1.00
+22080	-1.00
+22081	-1.00
+22082	-1.00
+22083	-1.00
+22084	-1.00
+22085	-1.00
+22086	-1.00
+22087	-1.00
+22088	-1.00
+22089	-1.00
+22090	-1.00
+22091	-1.00
+22092	-1.00
+22093	-1.00
+22094	-1.00
+22095	-1.00
+22096	-1.00
+22097	-1.00
+22098	-1.00
+22099	-1.00
+22100	-1.00
+22101	-1.00
+22102	-1.00
+22103	-1.00
+22104	-1.00
+22105	-1.00
+22106	-1.00
+22107	-1.00
+22108	-1.00
+22109	-1.00
+22110	-1.00
+22111	-1.00
+22112	-1.00
+22343	-1.00
+22344	-1.00
+22345	-1.00
+22346	-1.00
+22347	-1.00
+22348	-1.00
+22349	-1.00
+22350	-1.00
+22351	-1.00
+22352	-1.00
+22353	-1.00
+22354	-1.00
+22355	-1.00
+22356	-1.00
+22357	-1.00
+22358	-1.00
+22359	-1.00
+22360	-1.00
+22361	-1.00
+22362	-1.00
+22363	-1.00
+22364	-1.00
+22365	-1.00
+22366	-1.00
+22367	-1.00
+22368	-1.00
+22369	-1.00
+22370	-1.00
+22371	-1.00
+22372	-1.00
+22373	-1.00
+22374	-1.00
+22375	-1.00
+22376	-1.00
+22377	-1.00
+22378	-1.00
+22379	-1.00
+22380	-1.00
+22381	-1.00
+22382	-1.00
+22383	-1.00
+22384	-1.00
+22385	-1.00
+22386	-1.00
+22387	-1.00
+22388	-1.00
+22389	-1.00
+22390	-1.00
+22434	-1.00
+22435	-1.00
+22436	-1.00
+22437	-1.00
+22438	-1.00
+22439	-1.00
+22440	-1.00
+22441	-1.00
+22442	-1.00
+22443	-1.00
+22444	-1.00
+22445	-1.00
+22446	-2.00
+22447	-2.00
+22448	-2.00
+22449	-3.00
+22450	-3.00
+22451	-3.00
+22452	-3.00
+22453	-3.00
+22454	-3.00
+22455	-3.00
+22456	-3.00
+22457	-3.00
+22458	-3.00
+22459	-3.00
+22460	-3.00
+22461	-3.00
+22462	-3.00
+22463	-3.00
+22464	-3.00
+22465	-3.00
+22466	-3.00
+22467	-3.00
+22468	-3.00
+22469	-3.00
+22470	-3.00
+22471	-3.00
+22472	-3.00
+22473	-3.00
+22474	-3.00
+22475	-3.00
+22476	-3.00
+22477	-3.00
+22478	-3.00
+22479	-3.00
+22480	-2.00
+22481	-2.00
+22482	-2.00
+22483	-2.00
+22484	-2.00
+22485	-2.00
+22486	-2.00
+22487	-2.00
+22488	-2.00
+22489	-2.00
+22490	-2.00
+22491	-1.00
+22492	-1.00
+22493	-1.00
+22494	-1.00
+22495	-1.00
+22496	-1.00
+22497	-1.00
+22498	-1.00
+22499	-1.00
+22544	-1.00
+22545	-1.00
+22546	-1.00
+22547	-1.00
+22548	-1.00
+22549	-1.00
+22550	-1.00
+22551	-1.00
+22552	-1.00
+22553	-1.00
+22554	-1.00
+22555	-1.00
+22556	-1.00
+22557	-1.00
+22558	-1.00
+22559	-1.00
+22560	-1.00
+22561	-1.00
+22562	-1.00
+22563	-1.00
+22564	-1.00
+22565	-1.00
+22566	-1.00
+22567	-1.00
+22568	-1.00
+22569	-1.00
+22570	-1.00
+22571	-1.00
+22572	-1.00
+22573	-1.00
+22574	-1.00
+22575	-1.00
+22576	-1.00
+22577	-1.00
+22578	-1.00
+22579	-1.00
+22580	-1.00
+22581	-1.00
+22582	-1.00
+22583	-1.00
+22584	-1.00
+22585	-1.00
+22586	-1.00
+22587	-1.00
+22588	-1.00
+22589	-1.00
+22590	-1.00
+22591	-1.00
+22710	-1.00
+22711	-1.00
+22712	-1.00
+22713	-1.00
+22714	-1.00
+22715	-1.00
+22716	-1.00
+22717	-1.00
+22718	-1.00
+22719	-1.00
+22720	-1.00
+22721	-1.00
+22722	-1.00
+22723	-1.00
+22724	-1.00
+22725	-1.00
+22726	-1.00
+22727	-1.00
+22728	-1.00
+22729	-1.00
+22730	-1.00
+22731	-1.00
+22732	-1.00
+22733	-1.00
+22734	-1.00
+22735	-1.00
+22736	-1.00
+22737	-1.00
+22738	-1.00
+22739	-1.00
+22740	-1.00
+22741	-1.00
+22742	-1.00
+22743	-1.00
+22744	-1.00
+22745	-1.00
+22746	-1.00
+22747	-1.00
+22748	-1.00
+22749	-1.00
+22750	-1.00
+22751	-1.00
+22752	-1.00
+22753	-1.00
+22754	-1.00
+22755	-1.00
+22756	-1.00
+22757	-1.00
+22758	-1.00
+22759	-1.00
+22760	-1.00
+23105	-1.00
+23106	-1.00
+23107	-1.00
+23108	-1.00
+23109	-1.00
+23110	-1.00
+23111	-1.00
+23112	-1.00
+23113	-1.00
+23114	-1.00
+23115	-1.00
+23116	-1.00
+23117	-1.00
+23118	-1.00
+23119	-1.00
+23120	-1.00
+23121	-1.00
+23122	-1.00
+23123	-1.00
+23124	-1.00
+23125	-1.00
+23126	-1.00
+23127	-1.00
+23128	-1.00
+23129	-1.00
+23130	-1.00
+23131	-1.00
+23132	-1.00
+23133	-1.00
+23134	-1.00
+23135	-1.00
+23136	-1.00
+23137	-1.00
+23138	-1.00
+23139	-1.00
+23140	-1.00
+23141	-1.00
+23142	-1.00
+23143	-1.00
+23144	-1.00
+23145	-1.00
+23146	-1.00
+23147	-1.00
+23148	-1.00
+23149	-1.00
+23150	-1.00
+23151	-1.00
+23152	-1.00
+23153	-1.00
+23154	-1.00
+23354	-1.00
+23355	-1.00
+23356	-1.00
+23357	-1.00
+23358	-1.00
+23359	-1.00
+23360	-1.00
+23361	-1.00
+23362	-1.00
+23363	-1.00
+23364	-1.00
+23365	-1.00
+23366	-1.00
+23367	-1.00
+23368	-1.00
+23369	-1.00
+23370	-1.00
+23371	-1.00
+23372	-1.00
+23373	-1.00
+23374	-1.00
+23375	-1.00
+23376	-1.00
+23377	-1.00
+23378	-1.00
+23379	-1.00
+23380	-1.00
+23381	-1.00
+23382	-1.00
+23383	-1.00
+23384	-1.00
+23385	-1.00
+23386	-1.00
+23387	-1.00
+23388	-1.00
+23389	-1.00
+23390	-1.00
+23391	-1.00
+23392	-1.00
+23393	-1.00
+23394	-1.00
+23395	-1.00
+23396	-1.00
+23397	-1.00
+23398	-1.00
+23399	-1.00
+23400	-1.00
+23401	-1.00
+23402	-1.00
+23403	-1.00
+23404	-1.00
+24395	-1.00
+24396	-1.00
+24397	-1.00
+24398	-1.00
+24399	-1.00
+24400	-1.00
+24401	-1.00
+24402	-1.00
+24403	-1.00
+24404	-1.00
+24405	-1.00
+24406	-1.00
+24407	-1.00
+24408	-1.00
+24409	-1.00
+24410	-1.00
+24411	-1.00
+24412	-1.00
+24413	-1.00
+24414	-1.00
+24415	-1.00
+24416	-1.00
+24417	-1.00
+24418	-1.00
+24419	-1.00
+24420	-1.00
+24421	-1.00
+24422	-1.00
+24423	-1.00
+24424	-1.00
+24425	-1.00
+24426	-1.00
+24427	-1.00
+24428	-1.00
+24429	-1.00
+24430	-1.00
+24431	-1.00
+24432	-1.00
+24433	-1.00
+24434	-1.00
+24435	-1.00
+24558	-1.00
+24559	-1.00
+24560	-1.00
+24561	-1.00
+24562	-1.00
+24563	-1.00
+24564	-1.00
+24565	-1.00
+24566	-1.00
+24567	-1.00
+24568	-1.00
+24569	-1.00
+24570	-1.00
+24571	-1.00
+24572	-1.00
+24573	-1.00
+24574	-1.00
+24575	-1.00
+24576	-1.00
+24577	-1.00
+24578	-1.00
+24579	-1.00
+24580	-1.00
+24581	-1.00
+24582	-1.00
+24583	-1.00
+24584	-1.00
+24585	-1.00
+24586	-1.00
+24587	-1.00
+24588	-1.00
+24589	-1.00
+24590	-1.00
+24591	-1.00
+24592	-1.00
+24593	-1.00
+24594	-1.00
+24595	-1.00
+24596	-1.00
+24597	-1.00
+24598	-1.00
+24599	-1.00
+24600	-1.00
+24601	-1.00
+24602	-1.00
+24603	-1.00
+24604	-1.00
+24605	-1.00
+24606	-1.00
+24607	-1.00
+24608	-1.00
+28411	-1.00
+28412	-1.00
+28413	-1.00
+28414	-1.00
+28415	-1.00
+28416	-1.00
+28417	-1.00
+28418	-1.00
+28419	-1.00
+28420	-1.00
+28421	-1.00
+28422	-1.00
+28423	-1.00
+28424	-1.00
+28425	-1.00
+28426	-1.00
+28427	-1.00
+28428	-1.00
+28429	-1.00
+28430	-1.00
+28431	-2.00
+28432	-2.00
+28433	-2.00
+28434	-2.00
+28435	-2.00
+28436	-2.00
+28437	-2.00
+28438	-2.00
+28439	-2.00
+28440	-2.00
+28441	-2.00
+28442	-2.00
+28443	-2.00
+28444	-2.00
+28445	-2.00
+28446	-2.00
+28447	-2.00
+28448	-2.00
+28449	-2.00
+28450	-2.00
+28451	-2.00
+28452	-2.00
+28453	-2.00
+28454	-2.00
+28455	-2.00
+28456	-2.00
+28457	-2.00
+28458	-2.00
+28459	-2.00
+28460	-1.00
+28461	-1.00
+28462	-1.00
+28463	-1.00
+28464	-1.00
+28465	-1.00
+28466	-1.00
+28467	-1.00
+28468	-1.00
+28469	-1.00
+28470	-1.00
+28471	-1.00
+28472	-1.00
+28473	-1.00
+28474	-1.00
+28475	-1.00
+28476	-1.00
+28477	-1.00
+40638	-1.00
+40639	-1.00
+40640	-1.00
+40641	-1.00
+40642	-1.00
+40643	-1.00
+40644	-1.00
+40645	-1.00
+40646	-1.00
+40647	-1.00
+40648	-2.00
+40649	-2.00
+40650	-2.00
+40651	-2.00
+40652	-2.00
+40653	-2.00
+40654	-2.00
+40655	-2.00
+40656	-2.00
+40657	-2.00
+40658	-2.00
+40659	-2.00
+40660	-2.00
+40661	-2.00
+40662	-2.00
+40663	-2.00
+40664	-2.00
+40665	-2.00
+40666	-2.00
+40667	-2.00
+40668	-2.00
+40669	-2.00
+40670	-2.00
+40671	-2.00
+40672	-2.00
+40673	-2.00
+40674	-2.00
+40675	-2.00
+40676	-2.00
+40677	-2.00
+40678	-2.00
+40679	-2.00
+40680	-3.00
+40681	-3.00
+40682	-3.00
+40683	-3.00
+40684	-3.00
+40685	-3.00
+40686	-3.00
+40687	-2.00
+40688	-2.00
+40689	-2.00
+40690	-2.00
+40691	-2.00
+40692	-2.00
+40693	-1.00
+40694	-1.00
+40695	-1.00
+40696	-1.00
+40697	-1.00
+40698	-1.00
+40699	-1.00
+40700	-1.00
+40701	-1.00
+40702	-1.00
+40703	-1.00
+40704	-1.00
+40705	-1.00
+40706	-1.00
+40707	-1.00
+40708	-1.00
+40709	-1.00
+40710	-1.00
+40711	-1.00
+40712	-1.00
+40713	-1.00
+40714	-1.00
+40715	-1.00
+40716	-1.00
+40717	-1.00
+40718	-1.00
+40719	-1.00
+40720	-1.00
+40721	-1.00
+40722	-1.00
+40723	-1.00
+40724	-1.00
+40725	-1.00
+40726	-1.00
+40727	-1.00
+40728	-1.00
+40729	-1.00
+40730	-1.00
+40895	-1.00
+40896	-1.00
+40897	-1.00
+40898	-1.00
+40899	-1.00
+40900	-1.00
+40901	-1.00
+40902	-1.00
+40903	-1.00
+40904	-1.00
+40905	-1.00
+40906	-1.00
+40907	-1.00
+40908	-1.00
+40909	-1.00
+40910	-1.00
+40911	-1.00
+40912	-1.00
+40913	-1.00
+40914	-1.00
+40915	-1.00
+40916	-1.00
+40917	-1.00
+40918	-1.00
+40919	-1.00
+40920	-1.00
+40921	-1.00
+40922	-1.00
+40923	-1.00
+40924	-1.00
+40925	-1.00
+40926	-1.00
+40927	-1.00
+40928	-1.00
+40929	-1.00
+40930	-1.00
+40931	-1.00
+40932	-1.00
+40933	-1.00
+40934	-1.00
+40935	-1.00
+40936	-1.00
+40937	-1.00
+40938	-1.00
+40939	-1.00
+40940	-1.00
+40941	-1.00
+40942	-1.00
+40943	-1.00
+40944	-1.00
+40945	-1.00
+57998	-1.00
+57999	-1.00
+58000	-1.00
+58001	-1.00
+58002	-1.00
+58003	-1.00
+58004	-1.00
+58005	-1.00
+58006	-1.00
+58007	-1.00
+58008	-1.00
+58009	-1.00
+58010	-1.00
+58011	-1.00
+58012	-1.00
+58013	-1.00
+58014	-1.00
+58015	-1.00
+58016	-1.00
+58017	-1.00
+58018	-1.00
+58019	-1.00
+58020	-1.00
+58021	-1.00
+58022	-1.00
+58023	-1.00
+58024	-1.00
+58025	-1.00
+58026	-1.00
+58027	-1.00
+58028	-1.00
+58029	-1.00
+58030	-1.00
+58031	-1.00
+58032	-1.00
+58033	-1.00
+58034	-1.00
+58035	-1.00
+58036	-1.00
+58037	-1.00
+58038	-1.00
+58039	-1.00
+58040	-1.00
+58041	-1.00
+58042	-1.00
+58043	-1.00
+58044	-1.00
+58045	-1.00
+58046	-1.00
+58047	-1.00
+58135	-1.00
+58136	-1.00
+58137	-1.00
+58138	-1.00
+58139	-1.00
+58140	-1.00
+58141	-1.00
+58142	-1.00
+58143	-1.00
+58144	-1.00
+58145	-1.00
+58146	-1.00
+58147	-1.00
+58148	-1.00
+58149	-1.00
+58150	-1.00
+58151	-1.00
+58152	-1.00
+58153	-1.00
+58154	-1.00
+58155	-1.00
+58156	-1.00
+58157	-1.00
+58158	-1.00
+58159	-1.00
+58160	-1.00
+58161	-1.00
+58162	-1.00
+58163	-1.00
+58164	-1.00
+58165	-1.00
+58166	-1.00
+58167	-1.00
+58168	-1.00
+58169	-1.00
+58170	-1.00
+58171	-1.00
+58172	-1.00
+58173	-1.00
+58174	-1.00
+58175	-1.00
+58176	-1.00
+58177	-1.00
+58178	-1.00
+58179	-1.00
+58180	-1.00
+58181	-1.00
+58182	-1.00
+58183	-1.00
+58184	-1.00
+58185	-1.00
+80866	-1.00
+80867	-1.00
+80868	-1.00
+80869	-1.00
+80870	-1.00
+80871	-1.00
+80872	-1.00
+80873	-1.00
+80874	-1.00
+80875	-1.00
+80876	-1.00
+80877	-1.00
+80878	-1.00
+80879	-1.00
+80880	-1.00
+80881	-1.00
+80882	-1.00
+80883	-1.00
+80884	-1.00
+80885	-1.00
+80886	-1.00
+80887	-1.00
+80888	-1.00
+80889	-1.00
+80890	-1.00
+80891	-1.00
+80892	-1.00
+80893	-1.00
+80894	-1.00
+80895	-1.00
+80896	-1.00
+80897	-1.00
+80898	-1.00
+80899	-1.00
+80900	-1.00
+80901	-1.00
+80902	-1.00
+80903	-1.00
+80904	-1.00
+80905	-1.00
+80906	-1.00
+80907	-1.00
+80908	-1.00
+80909	-1.00
+80910	-1.00
+80911	-1.00
+80912	-1.00
+80913	-1.00
+80914	-1.00
+80915	-1.00
+80916	-1.00
+87735	-1.00
+87736	-1.00
+87737	-1.00
+87738	-1.00
+87739	-1.00
+87740	-1.00
+87741	-1.00
+87742	-1.00
+87743	-1.00
+87744	-1.00
+87745	-1.00
+87746	-1.00
+87747	-1.00
+87748	-1.00
+87749	-1.00
+87750	-1.00
+87751	-1.00
+87752	-1.00
+87753	-1.00
+87754	-1.00
+87755	-1.00
+87756	-1.00
+87757	-1.00
+87758	-1.00
+87759	-1.00
+87760	-1.00
+87761	-1.00
+87762	-1.00
+87763	-1.00
+87764	-1.00
+87765	-1.00
+87766	-1.00
+87767	-1.00
+87768	-1.00
+87769	-1.00
+87770	-1.00
+87771	-1.00
+87772	-1.00
+87773	-1.00
+87774	-1.00
+87775	-1.00
+87776	-1.00
+87777	-1.00
+87778	-1.00
+87779	-1.00
+87780	-1.00
+87781	-1.00
+87782	-1.00
+87800	-1.00
+87801	-1.00
+87802	-1.00
+87803	-1.00
+87804	-1.00
+87805	-1.00
+87806	-1.00
+87807	-1.00
+87808	-1.00
+87809	-1.00
+87810	-1.00
+87811	-1.00
+87812	-1.00
+87813	-1.00
+87814	-1.00
+87815	-1.00
+87816	-1.00
+87817	-1.00
+87818	-1.00
+87819	-1.00
+87820	-1.00
+87821	-1.00
+87822	-1.00
+87823	-1.00
+87824	-1.00
+87825	-1.00
+87826	-1.00
+87827	-1.00
+87828	-1.00
+87829	-1.00
+87830	-1.00
+87831	-1.00
+87832	-1.00
+87833	-1.00
+87834	-1.00
+87835	-1.00
+87836	-1.00
+87837	-1.00
+87838	-1.00
+87839	-1.00
+87840	-1.00
+87841	-1.00
+94827	-1.00
+94828	-1.00
+94829	-1.00
+94830	-1.00
+94831	-1.00
+94832	-1.00
+94833	-1.00
+94834	-1.00
+94835	-1.00
+94836	-1.00
+94837	-1.00
+94838	-1.00
+94839	-1.00
+94840	-1.00
+94841	-1.00
+94842	-1.00
+94843	-1.00
+94844	-1.00
+94845	-1.00
+94846	-1.00
+94847	-1.00
+94848	-1.00
+94849	-1.00
+94850	-1.00
+94851	-1.00
+94852	-1.00
+94853	-1.00
+94854	-1.00
+94855	-1.00
+94856	-1.00
+94857	-1.00
+94858	-1.00
+94859	-1.00
+94860	-1.00
+94861	-1.00
+94862	-1.00
+94863	-1.00
+94864	-1.00
+94865	-1.00
+94866	-1.00
+94867	-1.00
+94868	-1.00
+94869	-1.00
+94870	-1.00
+94871	-1.00
+94872	-1.00
+94873	-1.00
+94874	-1.00
+94875	-1.00
+94876	-1.00
+94877	-1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testwig.wig	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,1788 @@
+variableStep chrom=chr13
+variableStep chrom=chr12
+variableStep chrom=chr11
+variableStep chrom=chr10
+variableStep chrom=chr17
+variableStep chrom=chr16
+variableStep chrom=chr15
+variableStep chrom=chr14
+variableStep chrom=chr19
+variableStep chrom=chr18
+variableStep chrom=chr8
+variableStep chrom=chr3
+variableStep chrom=chr1
+12674	1.00
+12675	1.00
+12676	1.00
+12677	1.00
+12678	1.00
+12679	1.00
+12680	1.00
+12681	1.00
+12682	1.00
+12683	1.00
+12684	1.00
+12685	1.00
+12686	1.00
+12687	1.00
+12688	1.00
+12689	1.00
+12690	1.00
+12691	1.00
+12692	1.00
+12693	1.00
+12694	1.00
+12695	1.00
+12696	1.00
+12697	1.00
+13221	1.00
+13222	1.00
+13223	1.00
+13224	1.00
+13225	1.00
+13226	1.00
+13227	1.00
+13228	1.00
+13229	1.00
+13230	1.00
+13231	1.00
+13232	1.00
+13233	1.00
+13234	1.00
+13235	1.00
+13236	1.00
+13237	1.00
+13238	1.00
+13239	1.00
+13240	1.00
+13241	1.00
+13242	1.00
+13243	1.00
+13244	1.00
+13245	1.00
+13246	1.00
+13247	1.00
+13483	1.00
+13484	1.00
+13485	1.00
+13486	1.00
+13487	1.00
+13488	1.00
+13489	1.00
+13490	1.00
+13491	1.00
+13492	1.00
+13493	1.00
+13494	1.00
+13495	1.00
+13496	1.00
+13497	1.00
+13498	1.00
+13499	1.00
+13500	1.00
+13501	1.00
+13502	1.00
+13503	1.00
+13504	1.00
+13505	1.00
+13506	1.00
+13507	1.00
+13508	1.00
+13509	1.00
+13510	1.00
+13511	1.00
+13512	1.00
+13513	1.00
+13514	1.00
+13515	1.00
+13516	1.00
+13517	1.00
+13518	1.00
+13519	1.00
+13520	1.00
+13521	1.00
+13522	1.00
+13523	1.00
+13524	1.00
+13525	1.00
+13526	1.00
+13527	1.00
+13528	1.00
+13529	1.00
+13530	1.00
+13531	1.00
+13532	1.00
+13533	1.00
+14596	1.00
+14597	1.00
+14598	1.00
+14599	1.00
+14600	1.00
+14601	1.00
+14602	1.00
+14603	1.00
+14604	1.00
+14605	1.00
+14606	1.00
+14607	1.00
+14608	1.00
+14609	1.00
+14610	1.00
+14611	1.00
+14612	1.00
+14613	1.00
+14614	1.00
+14615	1.00
+14616	1.00
+14617	1.00
+14618	1.00
+14619	1.00
+14620	1.00
+14621	1.00
+14622	1.00
+14623	1.00
+14624	1.00
+14625	1.00
+14626	1.00
+14627	1.00
+14628	1.00
+14629	1.00
+14630	1.00
+14631	1.00
+14632	1.00
+14633	1.00
+14634	1.00
+14635	1.00
+14636	1.00
+14637	1.00
+14638	1.00
+14639	1.00
+14640	1.00
+14641	1.00
+14642	1.00
+14643	1.00
+14644	1.00
+14645	1.00
+14676	1.00
+14677	1.00
+14678	1.00
+14679	1.00
+14680	1.00
+14681	1.00
+14682	1.00
+14683	1.00
+14684	1.00
+14685	1.00
+14686	1.00
+14687	1.00
+14688	1.00
+14689	1.00
+14690	1.00
+14691	1.00
+14692	1.00
+14693	1.00
+14694	1.00
+14695	1.00
+14696	1.00
+14697	1.00
+14698	1.00
+14699	1.00
+14700	1.00
+14701	1.00
+14702	1.00
+14703	1.00
+14704	1.00
+14705	1.00
+14706	1.00
+14707	1.00
+14708	1.00
+14709	1.00
+14710	1.00
+14711	1.00
+14712	1.00
+14713	1.00
+14714	1.00
+14715	1.00
+14716	1.00
+14717	1.00
+14718	1.00
+14719	1.00
+14720	1.00
+14721	1.00
+14722	1.00
+14723	1.00
+14724	1.00
+14725	1.00
+14726	1.00
+16455	1.00
+16456	1.00
+16457	1.00
+16458	1.00
+16459	1.00
+16460	1.00
+16461	1.00
+16462	1.00
+16463	1.00
+16464	1.00
+16465	1.00
+16466	1.00
+16467	1.00
+16468	1.00
+16469	1.00
+16470	1.00
+16471	1.00
+16472	1.00
+16473	1.00
+16474	1.00
+16475	1.00
+16476	1.00
+16477	1.00
+16478	1.00
+16479	1.00
+16480	1.00
+16481	1.00
+16482	1.00
+16483	1.00
+16484	1.00
+16485	1.00
+16486	1.00
+16487	1.00
+16488	1.00
+16489	1.00
+16490	1.00
+16491	1.00
+16492	1.00
+16493	1.00
+16494	1.00
+16495	1.00
+16496	1.00
+16497	1.00
+16498	1.00
+16499	1.00
+16500	1.00
+16501	1.00
+16502	1.00
+16503	1.00
+16504	1.00
+16506	1.00
+16507	1.00
+16508	1.00
+16509	1.00
+16510	1.00
+16511	1.00
+16512	1.00
+16513	1.00
+16514	1.00
+16515	1.00
+16516	1.00
+16517	1.00
+16518	1.00
+16519	1.00
+16520	1.00
+16521	1.00
+16522	1.00
+16523	1.00
+16524	1.00
+16525	1.00
+16526	1.00
+16527	1.00
+16528	1.00
+16529	1.00
+16530	1.00
+16531	1.00
+16532	1.00
+16533	1.00
+16534	1.00
+16535	1.00
+16536	1.00
+16537	1.00
+16538	1.00
+16539	1.00
+16540	1.00
+16541	1.00
+16542	1.00
+16543	1.00
+16544	1.00
+16545	1.00
+16546	1.00
+16547	1.00
+16548	1.00
+16549	1.00
+16550	1.00
+16551	1.00
+16552	1.00
+16553	1.00
+16554	1.00
+16555	1.00
+16556	1.00
+17051	1.00
+17052	1.00
+17053	1.00
+17054	1.00
+17055	1.00
+17233	1.00
+17234	1.00
+17235	1.00
+17236	1.00
+17237	1.00
+17238	1.00
+17239	1.00
+17240	1.00
+17241	1.00
+17242	1.00
+17243	1.00
+17244	1.00
+17245	1.00
+17246	1.00
+17247	1.00
+17248	1.00
+17249	1.00
+17250	1.00
+17251	1.00
+17252	1.00
+17253	1.00
+17254	1.00
+17255	1.00
+17256	1.00
+17257	1.00
+17258	1.00
+17259	1.00
+17260	1.00
+17261	1.00
+17262	1.00
+17263	1.00
+17264	1.00
+17265	1.00
+17266	1.00
+17267	1.00
+17268	1.00
+17269	1.00
+17270	1.00
+17271	1.00
+17272	1.00
+17273	1.00
+17274	1.00
+17275	1.00
+17276	1.00
+17277	1.00
+17278	1.00
+17555	1.00
+17556	1.00
+17557	1.00
+17558	1.00
+17559	1.00
+17560	1.00
+17561	1.00
+17562	1.00
+17563	1.00
+17564	1.00
+17565	1.00
+17566	1.00
+17567	1.00
+17568	1.00
+17569	1.00
+17570	1.00
+17571	1.00
+17572	1.00
+17573	1.00
+17574	1.00
+17575	1.00
+17576	1.00
+17577	1.00
+17578	1.00
+17579	1.00
+17580	1.00
+17581	1.00
+17582	1.00
+17583	1.00
+17584	1.00
+17585	1.00
+17586	1.00
+17587	1.00
+17588	1.00
+17589	1.00
+17590	1.00
+17591	1.00
+17592	1.00
+17593	1.00
+17594	1.00
+17595	1.00
+17596	1.00
+17597	1.00
+17598	1.00
+17599	1.00
+17600	1.00
+17601	1.00
+17602	1.00
+17603	1.00
+17604	1.00
+17605	1.00
+20203	1.00
+20204	1.00
+20205	1.00
+20206	1.00
+20207	1.00
+20208	1.00
+20209	1.00
+20210	1.00
+20211	1.00
+20212	1.00
+20213	1.00
+20214	1.00
+20215	1.00
+20216	1.00
+20217	1.00
+20218	1.00
+20219	1.00
+20220	1.00
+20221	1.00
+20222	1.00
+20223	1.00
+20224	1.00
+20225	1.00
+20226	1.00
+20227	1.00
+20228	1.00
+20229	1.00
+20230	1.00
+20231	1.00
+20232	1.00
+20233	1.00
+20234	1.00
+20235	1.00
+20236	1.00
+20237	1.00
+20238	1.00
+20239	1.00
+20240	1.00
+20241	1.00
+20242	1.00
+20243	1.00
+20244	1.00
+20245	1.00
+20246	1.00
+20247	1.00
+20248	1.00
+20249	1.00
+20250	1.00
+20251	1.00
+20252	1.00
+20253	1.00
+20400	1.00
+20401	1.00
+20402	1.00
+20403	1.00
+20404	1.00
+20405	1.00
+20406	1.00
+20407	1.00
+20408	1.00
+20409	1.00
+20410	1.00
+20411	1.00
+20412	1.00
+20413	1.00
+20414	1.00
+20415	1.00
+20416	1.00
+20417	1.00
+20418	1.00
+20419	1.00
+20420	1.00
+20421	1.00
+20422	1.00
+20423	1.00
+20424	1.00
+20425	1.00
+20426	1.00
+20427	1.00
+20428	1.00
+20429	1.00
+20430	1.00
+20431	1.00
+20432	1.00
+20433	1.00
+20434	1.00
+20435	1.00
+20436	1.00
+20437	1.00
+20438	1.00
+20439	1.00
+20440	1.00
+20441	1.00
+20442	1.00
+20443	1.00
+20444	1.00
+20445	1.00
+20446	1.00
+20447	1.00
+20448	1.00
+20449	1.00
+20450	1.00
+20773	1.00
+20774	1.00
+20775	1.00
+20776	1.00
+20777	1.00
+20778	1.00
+20779	1.00
+20780	1.00
+20781	1.00
+20782	1.00
+20783	1.00
+20784	1.00
+20785	1.00
+20786	1.00
+20787	1.00
+20788	1.00
+20789	1.00
+20790	1.00
+20791	1.00
+20792	1.00
+20793	1.00
+20794	1.00
+20795	1.00
+20796	1.00
+20797	1.00
+20798	1.00
+20799	1.00
+20800	1.00
+20801	1.00
+20802	1.00
+20803	1.00
+20804	1.00
+20805	1.00
+20806	1.00
+20807	1.00
+20808	1.00
+20809	1.00
+20810	1.00
+20811	1.00
+20812	1.00
+20813	1.00
+20814	1.00
+20815	1.00
+20816	1.00
+20817	1.00
+20818	1.00
+20819	1.00
+20849	1.00
+20850	1.00
+20851	1.00
+20852	1.00
+20853	1.00
+20854	1.00
+20855	1.00
+20856	1.00
+20857	1.00
+20858	1.00
+20859	1.00
+20860	1.00
+20861	1.00
+20862	1.00
+20863	1.00
+20864	1.00
+20865	1.00
+20866	1.00
+20867	1.00
+20868	1.00
+20869	1.00
+20870	1.00
+20871	1.00
+20872	1.00
+20873	1.00
+20874	1.00
+20875	1.00
+20876	1.00
+20877	1.00
+20878	1.00
+20879	1.00
+20880	1.00
+20881	1.00
+20882	1.00
+20883	1.00
+20884	1.00
+20885	1.00
+20886	1.00
+20887	1.00
+20888	1.00
+20889	1.00
+20890	1.00
+20891	1.00
+20892	1.00
+20893	1.00
+20894	1.00
+20895	1.00
+20896	1.00
+20897	1.00
+20898	1.00
+20899	1.00
+21469	1.00
+21470	1.00
+21471	1.00
+21472	1.00
+21473	2.00
+21474	2.00
+21475	2.00
+21476	2.00
+21477	2.00
+21478	2.00
+21479	2.00
+21480	2.00
+21481	2.00
+21482	2.00
+21483	2.00
+21484	2.00
+21485	2.00
+21486	2.00
+21487	2.00
+21488	2.00
+21489	2.00
+21490	2.00
+21491	2.00
+21492	2.00
+21493	2.00
+21494	2.00
+21495	2.00
+21496	2.00
+21497	2.00
+21498	2.00
+21499	2.00
+21500	2.00
+21501	2.00
+21502	2.00
+21503	2.00
+21504	2.00
+21505	2.00
+21506	2.00
+21507	2.00
+21508	1.00
+21509	1.00
+21510	1.00
+21511	1.00
+21512	1.00
+21513	1.00
+21514	1.00
+21515	1.00
+21516	1.00
+21517	1.00
+21526	1.00
+21527	1.00
+21528	1.00
+21529	1.00
+21530	1.00
+21531	1.00
+21543	1.00
+21544	1.00
+21545	1.00
+21546	1.00
+21547	1.00
+21548	1.00
+21549	1.00
+21550	1.00
+21551	1.00
+21552	1.00
+21553	1.00
+21554	1.00
+21555	1.00
+21556	1.00
+21557	1.00
+21558	1.00
+21559	1.00
+21560	1.00
+21561	1.00
+21562	1.00
+21563	1.00
+21564	1.00
+21565	1.00
+21566	1.00
+21567	1.00
+21568	1.00
+21569	1.00
+21570	1.00
+21571	1.00
+21572	1.00
+21573	1.00
+21574	1.00
+21575	1.00
+21576	1.00
+21577	1.00
+21578	1.00
+21579	1.00
+21580	1.00
+21581	1.00
+21582	1.00
+21583	1.00
+21584	1.00
+21585	1.00
+21586	1.00
+21587	1.00
+21588	1.00
+21589	1.00
+21590	1.00
+21591	1.00
+21592	1.00
+21593	1.00
+21723	1.00
+21724	1.00
+21725	1.00
+21726	1.00
+21727	1.00
+21728	1.00
+21729	1.00
+21730	1.00
+21731	1.00
+21732	1.00
+21733	1.00
+21734	1.00
+21735	1.00
+21736	1.00
+21737	1.00
+21738	1.00
+21739	1.00
+21740	1.00
+21741	1.00
+21742	1.00
+21743	1.00
+21744	1.00
+21745	1.00
+21746	1.00
+21747	1.00
+21748	1.00
+21749	1.00
+21750	1.00
+21751	1.00
+21752	1.00
+21753	1.00
+21754	1.00
+21755	1.00
+21756	1.00
+21757	1.00
+21758	1.00
+21759	1.00
+21760	1.00
+21761	1.00
+21762	1.00
+21763	1.00
+21764	1.00
+21765	1.00
+21766	1.00
+21767	1.00
+21768	1.00
+21963	1.00
+21964	1.00
+21965	1.00
+21966	1.00
+21967	1.00
+21968	1.00
+21969	1.00
+21970	1.00
+21971	1.00
+21972	1.00
+21973	1.00
+21974	1.00
+21975	1.00
+21976	1.00
+21977	1.00
+21978	1.00
+21979	1.00
+21980	1.00
+21981	1.00
+21982	1.00
+21983	1.00
+21984	1.00
+21985	1.00
+21986	1.00
+21987	1.00
+21988	1.00
+21989	1.00
+21990	1.00
+21991	1.00
+21992	1.00
+21993	1.00
+21994	1.00
+21995	1.00
+21996	1.00
+21997	1.00
+21998	1.00
+21999	1.00
+22000	1.00
+22001	2.00
+22002	2.00
+22003	2.00
+22004	2.00
+22005	2.00
+22006	1.00
+22062	1.00
+22063	1.00
+22064	1.00
+22065	1.00
+22066	1.00
+22067	1.00
+22068	1.00
+22069	1.00
+22070	1.00
+22071	1.00
+22072	1.00
+22073	1.00
+22074	1.00
+22075	1.00
+22076	1.00
+22077	1.00
+22078	1.00
+22079	1.00
+22080	1.00
+22081	1.00
+22082	1.00
+22083	1.00
+22084	1.00
+22085	1.00
+22086	1.00
+22087	1.00
+22088	1.00
+22089	1.00
+22090	1.00
+22091	1.00
+22092	1.00
+22093	1.00
+22094	1.00
+22095	1.00
+22096	1.00
+22097	1.00
+22098	1.00
+22099	1.00
+22100	1.00
+22101	1.00
+22102	1.00
+22103	1.00
+22104	1.00
+22105	1.00
+22106	1.00
+22107	1.00
+22108	1.00
+22109	1.00
+22110	1.00
+22111	1.00
+22112	1.00
+22343	1.00
+22344	1.00
+22345	1.00
+22346	1.00
+22347	1.00
+22348	1.00
+22349	1.00
+22350	1.00
+22351	1.00
+22352	1.00
+22353	1.00
+22354	1.00
+22355	1.00
+22356	1.00
+22357	1.00
+22358	1.00
+22359	1.00
+22360	1.00
+22361	1.00
+22362	1.00
+22363	1.00
+22364	1.00
+22365	1.00
+22366	1.00
+22367	1.00
+22368	1.00
+22369	1.00
+22370	1.00
+22371	1.00
+22372	1.00
+22373	1.00
+22374	1.00
+22375	1.00
+22376	1.00
+22377	1.00
+22378	1.00
+22379	1.00
+22380	1.00
+22381	1.00
+22382	1.00
+22383	1.00
+22384	1.00
+22385	1.00
+22386	1.00
+22387	1.00
+22388	1.00
+22389	1.00
+22390	1.00
+22434	1.00
+22435	1.00
+22436	1.00
+22437	1.00
+22438	1.00
+22439	1.00
+22440	1.00
+22441	1.00
+22442	1.00
+22443	1.00
+22444	1.00
+22445	1.00
+22446	2.00
+22447	2.00
+22448	2.00
+22449	3.00
+22450	3.00
+22451	3.00
+22452	3.00
+22453	3.00
+22454	3.00
+22455	3.00
+22456	3.00
+22457	3.00
+22458	3.00
+22459	3.00
+22460	3.00
+22461	3.00
+22462	3.00
+22463	3.00
+22464	3.00
+22465	3.00
+22466	3.00
+22467	3.00
+22468	3.00
+22469	3.00
+22470	3.00
+22471	3.00
+22472	3.00
+22473	3.00
+22474	3.00
+22475	3.00
+22476	3.00
+22477	3.00
+22478	3.00
+22479	3.00
+22480	2.00
+22481	2.00
+22482	2.00
+22483	2.00
+22484	2.00
+22485	2.00
+22486	2.00
+22487	2.00
+22488	2.00
+22489	2.00
+22490	2.00
+22491	1.00
+22492	1.00
+22493	1.00
+22494	1.00
+22495	1.00
+22496	1.00
+22497	1.00
+22498	1.00
+22499	1.00
+22544	1.00
+22545	1.00
+22546	1.00
+22547	1.00
+22548	1.00
+22549	1.00
+22550	1.00
+22551	1.00
+22552	1.00
+22553	1.00
+22554	1.00
+22555	1.00
+22556	1.00
+22557	1.00
+22558	1.00
+22559	1.00
+22560	1.00
+22561	1.00
+22562	1.00
+22563	1.00
+22564	1.00
+22565	1.00
+22566	1.00
+22567	1.00
+22568	1.00
+22569	1.00
+22570	1.00
+22571	1.00
+22572	1.00
+22573	1.00
+22574	1.00
+22575	1.00
+22576	1.00
+22577	1.00
+22578	1.00
+22579	1.00
+22580	1.00
+22581	1.00
+22582	1.00
+22583	1.00
+22584	1.00
+22585	1.00
+22586	1.00
+22587	1.00
+22588	1.00
+22589	1.00
+22590	1.00
+22591	1.00
+22710	1.00
+22711	1.00
+22712	1.00
+22713	1.00
+22714	1.00
+22715	1.00
+22716	1.00
+22717	1.00
+22718	1.00
+22719	1.00
+22720	1.00
+22721	1.00
+22722	1.00
+22723	1.00
+22724	1.00
+22725	1.00
+22726	1.00
+22727	1.00
+22728	1.00
+22729	1.00
+22730	1.00
+22731	1.00
+22732	1.00
+22733	1.00
+22734	1.00
+22735	1.00
+22736	1.00
+22737	1.00
+22738	1.00
+22739	1.00
+22740	1.00
+22741	1.00
+22742	1.00
+22743	1.00
+22744	1.00
+22745	1.00
+22746	1.00
+22747	1.00
+22748	1.00
+22749	1.00
+22750	1.00
+22751	1.00
+22752	1.00
+22753	1.00
+22754	1.00
+22755	1.00
+22756	1.00
+22757	1.00
+22758	1.00
+22759	1.00
+22760	1.00
+23105	1.00
+23106	1.00
+23107	1.00
+23108	1.00
+23109	1.00
+23110	1.00
+23111	1.00
+23112	1.00
+23113	1.00
+23114	1.00
+23115	1.00
+23116	1.00
+23117	1.00
+23118	1.00
+23119	1.00
+23120	1.00
+23121	1.00
+23122	1.00
+23123	1.00
+23124	1.00
+23125	1.00
+23126	1.00
+23127	1.00
+23128	1.00
+23129	1.00
+23130	1.00
+23131	1.00
+23132	1.00
+23133	1.00
+23134	1.00
+23135	1.00
+23136	1.00
+23137	1.00
+23138	1.00
+23139	1.00
+23140	1.00
+23141	1.00
+23142	1.00
+23143	1.00
+23144	1.00
+23145	1.00
+23146	1.00
+23147	1.00
+23148	1.00
+23149	1.00
+23150	1.00
+23151	1.00
+23152	1.00
+23153	1.00
+23154	1.00
+23354	1.00
+23355	1.00
+23356	1.00
+23357	1.00
+23358	1.00
+23359	1.00
+23360	1.00
+23361	1.00
+23362	1.00
+23363	1.00
+23364	1.00
+23365	1.00
+23366	1.00
+23367	1.00
+23368	1.00
+23369	1.00
+23370	1.00
+23371	1.00
+23372	1.00
+23373	1.00
+23374	1.00
+23375	1.00
+23376	1.00
+23377	1.00
+23378	1.00
+23379	1.00
+23380	1.00
+23381	1.00
+23382	1.00
+23383	1.00
+23384	1.00
+23385	1.00
+23386	1.00
+23387	1.00
+23388	1.00
+23389	1.00
+23390	1.00
+23391	1.00
+23392	1.00
+23393	1.00
+23394	1.00
+23395	1.00
+23396	1.00
+23397	1.00
+23398	1.00
+23399	1.00
+23400	1.00
+23401	1.00
+23402	1.00
+23403	1.00
+23404	1.00
+24395	1.00
+24396	1.00
+24397	1.00
+24398	1.00
+24399	1.00
+24400	1.00
+24401	1.00
+24402	1.00
+24403	1.00
+24404	1.00
+24405	1.00
+24406	1.00
+24407	1.00
+24408	1.00
+24409	1.00
+24410	1.00
+24411	1.00
+24412	1.00
+24413	1.00
+24414	1.00
+24415	1.00
+24416	1.00
+24417	1.00
+24418	1.00
+24419	1.00
+24420	1.00
+24421	1.00
+24422	1.00
+24423	1.00
+24424	1.00
+24425	1.00
+24426	1.00
+24427	1.00
+24428	1.00
+24429	1.00
+24430	1.00
+24431	1.00
+24432	1.00
+24433	1.00
+24434	1.00
+24435	1.00
+24558	1.00
+24559	1.00
+24560	1.00
+24561	1.00
+24562	1.00
+24563	1.00
+24564	1.00
+24565	1.00
+24566	1.00
+24567	1.00
+24568	1.00
+24569	1.00
+24570	1.00
+24571	1.00
+24572	1.00
+24573	1.00
+24574	1.00
+24575	1.00
+24576	1.00
+24577	1.00
+24578	1.00
+24579	1.00
+24580	1.00
+24581	1.00
+24582	1.00
+24583	1.00
+24584	1.00
+24585	1.00
+24586	1.00
+24587	1.00
+24588	1.00
+24589	1.00
+24590	1.00
+24591	1.00
+24592	1.00
+24593	1.00
+24594	1.00
+24595	1.00
+24596	1.00
+24597	1.00
+24598	1.00
+24599	1.00
+24600	1.00
+24601	1.00
+24602	1.00
+24603	1.00
+24604	1.00
+24605	1.00
+24606	1.00
+24607	1.00
+24608	1.00
+28411	1.00
+28412	1.00
+28413	1.00
+28414	1.00
+28415	1.00
+28416	1.00
+28417	1.00
+28418	1.00
+28419	1.00
+28420	1.00
+28421	1.00
+28422	1.00
+28423	1.00
+28424	1.00
+28425	1.00
+28426	1.00
+28427	1.00
+28428	1.00
+28429	1.00
+28430	1.00
+28431	2.00
+28432	2.00
+28433	2.00
+28434	2.00
+28435	2.00
+28436	2.00
+28437	2.00
+28438	2.00
+28439	2.00
+28440	2.00
+28441	2.00
+28442	2.00
+28443	2.00
+28444	2.00
+28445	2.00
+28446	2.00
+28447	2.00
+28448	2.00
+28449	2.00
+28450	2.00
+28451	2.00
+28452	2.00
+28453	2.00
+28454	2.00
+28455	2.00
+28456	2.00
+28457	2.00
+28458	2.00
+28459	2.00
+28460	1.00
+28461	1.00
+28462	1.00
+28463	1.00
+28464	1.00
+28465	1.00
+28466	1.00
+28467	1.00
+28468	1.00
+28469	1.00
+28470	1.00
+28471	1.00
+28472	1.00
+28473	1.00
+28474	1.00
+28475	1.00
+28476	1.00
+28477	1.00
+40638	1.00
+40639	1.00
+40640	1.00
+40641	1.00
+40642	1.00
+40643	1.00
+40644	1.00
+40645	1.00
+40646	1.00
+40647	1.00
+40648	2.00
+40649	2.00
+40650	2.00
+40651	2.00
+40652	2.00
+40653	2.00
+40654	2.00
+40655	2.00
+40656	2.00
+40657	2.00
+40658	2.00
+40659	2.00
+40660	2.00
+40661	2.00
+40662	2.00
+40663	2.00
+40664	2.00
+40665	2.00
+40666	2.00
+40667	2.00
+40668	2.00
+40669	2.00
+40670	2.00
+40671	2.00
+40672	2.00
+40673	2.00
+40674	2.00
+40675	2.00
+40676	2.00
+40677	2.00
+40678	2.00
+40679	2.00
+40680	3.00
+40681	3.00
+40682	3.00
+40683	3.00
+40684	3.00
+40685	3.00
+40686	3.00
+40687	2.00
+40688	2.00
+40689	2.00
+40690	2.00
+40691	2.00
+40692	2.00
+40693	1.00
+40694	1.00
+40695	1.00
+40696	1.00
+40697	1.00
+40698	1.00
+40699	1.00
+40700	1.00
+40701	1.00
+40702	1.00
+40703	1.00
+40704	1.00
+40705	1.00
+40706	1.00
+40707	1.00
+40708	1.00
+40709	1.00
+40710	1.00
+40711	1.00
+40712	1.00
+40713	1.00
+40714	1.00
+40715	1.00
+40716	1.00
+40717	1.00
+40718	1.00
+40719	1.00
+40720	1.00
+40721	1.00
+40722	1.00
+40723	1.00
+40724	1.00
+40725	1.00
+40726	1.00
+40727	1.00
+40728	1.00
+40729	1.00
+40730	1.00
+40895	1.00
+40896	1.00
+40897	1.00
+40898	1.00
+40899	1.00
+40900	1.00
+40901	1.00
+40902	1.00
+40903	1.00
+40904	1.00
+40905	1.00
+40906	1.00
+40907	1.00
+40908	1.00
+40909	1.00
+40910	1.00
+40911	1.00
+40912	1.00
+40913	1.00
+40914	1.00
+40915	1.00
+40916	1.00
+40917	1.00
+40918	1.00
+40919	1.00
+40920	1.00
+40921	1.00
+40922	1.00
+40923	1.00
+40924	1.00
+40925	1.00
+40926	1.00
+40927	1.00
+40928	1.00
+40929	1.00
+40930	1.00
+40931	1.00
+40932	1.00
+40933	1.00
+40934	1.00
+40935	1.00
+40936	1.00
+40937	1.00
+40938	1.00
+40939	1.00
+40940	1.00
+40941	1.00
+40942	1.00
+40943	1.00
+40944	1.00
+40945	1.00
+57998	1.00
+57999	1.00
+58000	1.00
+58001	1.00
+58002	1.00
+58003	1.00
+58004	1.00
+58005	1.00
+58006	1.00
+58007	1.00
+58008	1.00
+58009	1.00
+58010	1.00
+58011	1.00
+58012	1.00
+58013	1.00
+58014	1.00
+58015	1.00
+58016	1.00
+58017	1.00
+58018	1.00
+58019	1.00
+58020	1.00
+58021	1.00
+58022	1.00
+58023	1.00
+58024	1.00
+58025	1.00
+58026	1.00
+58027	1.00
+58028	1.00
+58029	1.00
+58030	1.00
+58031	1.00
+58032	1.00
+58033	1.00
+58034	1.00
+58035	1.00
+58036	1.00
+58037	1.00
+58038	1.00
+58039	1.00
+58040	1.00
+58041	1.00
+58042	1.00
+58043	1.00
+58044	1.00
+58045	1.00
+58046	1.00
+58047	1.00
+58135	1.00
+58136	1.00
+58137	1.00
+58138	1.00
+58139	1.00
+58140	1.00
+58141	1.00
+58142	1.00
+58143	1.00
+58144	1.00
+58145	1.00
+58146	1.00
+58147	1.00
+58148	1.00
+58149	1.00
+58150	1.00
+58151	1.00
+58152	1.00
+58153	1.00
+58154	1.00
+58155	1.00
+58156	1.00
+58157	1.00
+58158	1.00
+58159	1.00
+58160	1.00
+58161	1.00
+58162	1.00
+58163	1.00
+58164	1.00
+58165	1.00
+58166	1.00
+58167	1.00
+58168	1.00
+58169	1.00
+58170	1.00
+58171	1.00
+58172	1.00
+58173	1.00
+58174	1.00
+58175	1.00
+58176	1.00
+58177	1.00
+58178	1.00
+58179	1.00
+58180	1.00
+58181	1.00
+58182	1.00
+58183	1.00
+58184	1.00
+58185	1.00
+80866	1.00
+80867	1.00
+80868	1.00
+80869	1.00
+80870	1.00
+80871	1.00
+80872	1.00
+80873	1.00
+80874	1.00
+80875	1.00
+80876	1.00
+80877	1.00
+80878	1.00
+80879	1.00
+80880	1.00
+80881	1.00
+80882	1.00
+80883	1.00
+80884	1.00
+80885	1.00
+80886	1.00
+80887	1.00
+80888	1.00
+80889	1.00
+80890	1.00
+80891	1.00
+80892	1.00
+80893	1.00
+80894	1.00
+80895	1.00
+80896	1.00
+80897	1.00
+80898	1.00
+80899	1.00
+80900	1.00
+80901	1.00
+80902	1.00
+80903	1.00
+80904	1.00
+80905	1.00
+80906	1.00
+80907	1.00
+80908	1.00
+80909	1.00
+80910	1.00
+80911	1.00
+80912	1.00
+80913	1.00
+80914	1.00
+80915	1.00
+80916	1.00
+87735	1.00
+87736	1.00
+87737	1.00
+87738	1.00
+87739	1.00
+87740	1.00
+87741	1.00
+87742	1.00
+87743	1.00
+87744	1.00
+87745	1.00
+87746	1.00
+87747	1.00
+87748	1.00
+87749	1.00
+87750	1.00
+87751	1.00
+87752	1.00
+87753	1.00
+87754	1.00
+87755	1.00
+87756	1.00
+87757	1.00
+87758	1.00
+87759	1.00
+87760	1.00
+87761	1.00
+87762	1.00
+87763	1.00
+87764	1.00
+87765	1.00
+87766	1.00
+87767	1.00
+87768	1.00
+87769	1.00
+87770	1.00
+87771	1.00
+87772	1.00
+87773	1.00
+87774	1.00
+87775	1.00
+87776	1.00
+87777	1.00
+87778	1.00
+87779	1.00
+87780	1.00
+87781	1.00
+87782	1.00
+87800	1.00
+87801	1.00
+87802	1.00
+87803	1.00
+87804	1.00
+87805	1.00
+87806	1.00
+87807	1.00
+87808	1.00
+87809	1.00
+87810	1.00
+87811	1.00
+87812	1.00
+87813	1.00
+87814	1.00
+87815	1.00
+87816	1.00
+87817	1.00
+87818	1.00
+87819	1.00
+87820	1.00
+87821	1.00
+87822	1.00
+87823	1.00
+87824	1.00
+87825	1.00
+87826	1.00
+87827	1.00
+87828	1.00
+87829	1.00
+87830	1.00
+87831	1.00
+87832	1.00
+87833	1.00
+87834	1.00
+87835	1.00
+87836	1.00
+87837	1.00
+87838	1.00
+87839	1.00
+87840	1.00
+87841	1.00
+94827	1.00
+94828	1.00
+94829	1.00
+94830	1.00
+94831	1.00
+94832	1.00
+94833	1.00
+94834	1.00
+94835	1.00
+94836	1.00
+94837	1.00
+94838	1.00
+94839	1.00
+94840	1.00
+94841	1.00
+94842	1.00
+94843	1.00
+94844	1.00
+94845	1.00
+94846	1.00
+94847	1.00
+94848	1.00
+94849	1.00
+94850	1.00
+94851	1.00
+94852	1.00
+94853	1.00
+94854	1.00
+94855	1.00
+94856	1.00
+94857	1.00
+94858	1.00
+94859	1.00
+94860	1.00
+94861	1.00
+94862	1.00
+94863	1.00
+94864	1.00
+94865	1.00
+94866	1.00
+94867	1.00
+94868	1.00
+94869	1.00
+94870	1.00
+94871	1.00
+94872	1.00
+94873	1.00
+94874	1.00
+94875	1.00
+94876	1.00
+94877	1.00
+variableStep chrom=chrY
+variableStep chrom=chrX
+variableStep chrom=chr9
+variableStep chrom=chrM
+variableStep chrom=chr22
+variableStep chrom=chr20
+variableStep chrom=chr21
+variableStep chrom=chr7
+variableStep chrom=chr6
+variableStep chrom=chr5
+variableStep chrom=chr4
+variableStep chrom=chr2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml	Tue Jul 07 10:39:47 2015 -0400
@@ -0,0 +1,12 @@
+<?xml version="1.0"?>
+<tool_dependency>
+    <package name="R" version="3.0.3">
+        <repository changeset_revision="6ce19fda3a9a" name="package_r_3_0_3" owner="iuc" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+    <package name="numpy" version="1.7.1">
+        <repository changeset_revision="bbfe29f56566" name="package_numpy_1_7" owner="iuc" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+    <package name="rseqc" version="2.4">
+        <repository changeset_revision="04560daaa40f" name="package_rseqc_2_4" owner="lparsons" toolshed="https://testtoolshed.g2.bx.psu.edu" />
+    </package>
+</tool_dependency>