changeset 3:7f02fc51bddf draft

planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/spectrast commit 379705f578f9a0465f497894c7d2b5f68b6a55e6-dirty
author jjohnson
date Wed, 25 Jul 2018 10:58:17 -0400
parents e67b0cc10377
children c9bfe6adb7cd
files link_scan_datasets.py macros.xml spectrast_create.xml spectrast_filter.xml spectrast_import.xml spectrast_params.py spectrast_search.xml test-data/msgf-test.mzML test-data/msgf-test.xls test-data/msgf.ms2 test-data/msgf_filterd.ms2 test-data/sp.tgz test-data/splib.html test-data/splib/library.pepidx test-data/splib/library.spidx test-data/splib/library.splib test-data/splib/library.sptxt
diffstat 17 files changed, 989 insertions(+), 11184 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/link_scan_datasets.py	Wed Jul 25 10:58:17 2018 -0400
@@ -0,0 +1,110 @@
+#!/usr/bin/env python
+
+from __future__ import print_function
+
+import argparse
+import difflib
+from difflib import SequenceMatcher
+import os
+import os.path
+import sys
+import xml.sax
+
+
+
+def __main__():
+    parser = argparse.ArgumentParser(
+        description='link spectrum datasets to the name used' +
+                    ' in the identification dataset')
+    parser.add_argument(
+        'ident_files', nargs='+', 
+        help='Pepxml or mzIdentML')
+    parser.add_argument(
+        '-n', '--scan_name', default=[], action='append', 
+        help='Name for scan file')
+    parser.add_argument(
+        '-f', '--scan_file', default=[], action='append', 
+        help='Path for scan file')
+    args = parser.parse_args()
+
+    class MzidHandler( xml.sax.ContentHandler):
+        def __init__(self):
+            xml.sax.ContentHandler.__init__(self)
+            self.spectraDataFiles = []
+            self.spectraDataNames = []
+            self.searchDatabaseFiles = []
+            self.searchDatabaseNames = []
+        def startElement(self, tag, attrs):
+            if tag == 'SpectraData':
+                id = attrs['id']
+                path = attrs['location']
+                filename = os.path.basename(path)
+                name = attrs['name'] if 'name' in attrs else None
+                self.spectraDataFiles.append(filename)
+                self.spectraDataNames.append(name if name else id)
+                print ("SpectraData: %s  %s" % (name if name else id, path))
+            if tag == 'SearchDatabase':
+                id = attrs['id']
+                path = attrs['location']
+                filename = os.path.basename(path)
+                name = attrs['name'] if 'name' in attrs else None
+                self.searchDatabaseFiles.append(filename)
+                self.searchDatabaseNames.append(name if name else id)
+                print ("SearchDatabase: %s  %s" % (name if name else id, path))
+        def endElement( self, name):
+            pass
+        def characters( self, data):
+            pass
+
+    class PepXmlHandler( xml.sax.ContentHandler):
+        def __init__(self):
+            xml.sax.ContentHandler.__init__(self)
+            self.spectraDataFiles = []
+            self.spectraDataNames = []
+        def startElement(self, tag, attrs):
+            if tag == 'msms_run_summary':
+                basename = attrs['base_name']
+                name = os.path.basename(basename)
+                ext = attrs['raw_data']
+                path = '%s%s' % (basename,ext)
+                filename = os.path.basename(path)
+                self.spectraDataFiles.append(filename)
+                self.spectraDataNames.append(name) 
+                print ("SpectraData: %s  %s" % (name, path))
+        def endElement( self, name):
+            pass
+        def characters( self, data):
+            pass
+
+    parser = xml.sax.make_parser()
+    parser.setFeature(xml.sax.handler.feature_namespaces, 0)
+    handler = PepXmlHandler()
+    parser.setContentHandler( handler )
+    for ident in args.ident_files:
+        parser.parse(ident)
+
+    spectra_names = handler.spectraDataFiles
+
+    def best_match(name):
+        if name in spectra_names:
+            return name
+        try:
+            r = [SequenceMatcher(None, name, spectra_names[x]).ratio() for x in range(len(spectra_names))]
+            return spectra_names[r.index(max(r))]
+        except Exception, e:
+            print ("best_match: %s  %s" % (name, e))
+
+    for i,name in enumerate(args.scan_name):
+        path = args.scan_file[i] if len(args.scan_file) > i else ''
+        (root, ext) = os.path.splitext(name)
+        print ("SpectraFile: %s  %s" % (name, path))
+        iname = best_match(name)
+        print ("IdentName: %s  %s" % (name, iname))
+        if not os.path.exists(iname) and os.path.exists(path):
+            os.symlink(path, iname)
+            print ("%s -> %s" % (iname, path))
+
+
+if __name__ == "__main__":
+    __main__()
+
--- a/macros.xml	Wed Jun 20 12:58:33 2018 -0400
+++ b/macros.xml	Wed Jul 25 10:58:17 2018 -0400
@@ -6,6 +6,596 @@
             <yield/>
         </requirements>
     </xml>
+    <token name="@LIBRARY_CREATE_OPTIONS@">
+outputFileName = ${output.extra_files_path}/library.splib
+#if $library_create.removeDecoyProteins is not None:
+removeDecoyProteins = $library_create.removeDecoyProteins
+#end if
+#if str($library_create.useProbTable) != 'None':
+useProbTable = $library_create.useProbTable
+#end if
+#if str($library_create.useProteinList) != 'None':
+useProteinList = $library_create.useProteinList
+#end if
+#if str($library_create.printMRMTable) != 'None':
+printMRMTable =  
+#end if
+#if str($library_create.writeMgfFile) != 'None':
+writeMgfFile = $library_create.writeMgfFile
+#end if
+## #if str($library_create.writeDtaFiles) != 'None':
+## writeDtaFiles = $library_create.writeDtaFiles
+## #end if
+#if str($library_create.writePAIdent) != 'None':
+writePAIdent = $library_create.writePAIdent
+#end if
+    </token>
+    <xml name="library_create_outputs">
+        <data name="library_pai" format="tabular" label="library.pai" from_work_dir="outdir/library.pai">
+            <filter>library_create['writePAIdent'] == 'true'</filter>
+        </data>
+        <data name="library_mrm" format="tabular" label="library.mrm" from_work_dir="outdir/library.mrm">
+            <filter>library_create['printMRMTable'] == 'true'</filter>
+        </data>
+        <data name="library_mgf" format="mgf" label="library.mgf" from_work_dir="outdir/library.mgf">
+            <filter>library_create['writeMgfFile'] == 'true'</filter>
+        </data>
+        <!--
+        <data name="library_mgf" format="dta" label="library.mgf" from_work_dir="outdir/library.mrm">
+            <filter>library_create['writeDtaFiles'] == 'true'</filter>
+        </data>
+        -->
+    </xml>
+    <xml name="library_create_options">
+        <section name="library_create" expanded="false" title="Library Create Options">
+            <param name="removeDecoyProteins"  type="text" value="" optional="true" label="removeDecoyProteins Default: true" >
+                <help> Remove spectra of decoys, for which proteins have names starting with this prefix. Also remove decoy proteins from Protein field for peptides mapped to both target and decoy sequences.
+                </help>
+            </param>
+
+            <param name="useProbTable" type="data" format="tabular" optional="true" label="Peptide ion probability table">
+                <help><![CDATA[
+    Only those peptide ions included in the table will be imported, and their probability adjusted optionally.
+    A probability table is a text file with one peptide ion in the format AC[160]DEFGHIK/2 per line. If a probability is supplied following the peptide ion separated by a tab, it will be used to replace the original probability of that library entry. 
+                ]]></help>
+            </param>
+            <param name="useProteinList" type="data" format="tabular" optional="true" label="Protein list">
+                <help><![CDATA[
+                    Only those peptide ions associated with proteins in the list will be imported.
+                    A protein list is a text file with one protein identifier per line. 
+                    If a number X is supplied following the protein separated by a tab, 
+                    then at most X peptide ions associated with that protein will be imported. 
+                    Peptides with more replicates are favored. 
+                ]]></help>
+            </param>
+            <param name="printMRMTable"  type="select" optional="true" label="printMRMTable Default: false" >
+                <help> Write library in binary format, which enables quicker search.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="writeMgfFile"  type="select" optional="true" label="writeMgfFile Default: false" >
+                <help> Write all library spectra as one .mgf file
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <!--
+            <param name="writeDtaFiles"  type="select" optional="true" label="writeDtaFiles Default: false" >
+                <help> Write library in binary format, which enables quicker search.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            -->
+            <param name="writePAIdent"  type="select" optional="true" label="writePAIdent Default: false" >
+                <help> 
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+        </section>
+    </xml>
+    <token name="@LIBRARY_IMPORT_OPTIONS@">
+#if $library_import.minimumProbabilityToInclude is not None:
+minimumProbabilityToInclude = $library_import.minimumProbabilityToInclude
+#end if
+#if $library_import.maximumFDRToInclude is not None:
+maximumFDRToInclude = $library_import.maximumFDRToInclude
+#end if
+#if $library_import.setFragmentation is not None:
+setFragmentation = $library_import.setFragmentation
+#end if
+#if $library_import.setDeamidatedNXST is not None:
+setDeamidatedNXST = $library_import.setDeamidatedNXST
+#end if
+#if $library_import.addMzXMLFileToDatasetName is not None:
+addMzXMLFileToDatasetName = $library_import.addMzXMLFileToDatasetName
+#end if
+#if $library_import.centroidPeaks is not None:
+centroidPeaks = $library_import.centroidPeaks
+#end if
+#if $library_import.rawSpectraNoiseThreshold is not None:
+rawSpectraNoiseThreshold = $library_import.rawSpectraNoiseThreshold
+#end if
+#if $library_import.rawSpectraMaxDynamicRange is not None:
+rawSpectraMaxDynamicRange = $library_import.rawSpectraMaxDynamicRange
+#end if
+#if $library_import.minimumNumAAToInclude is not None:
+minimumNumAAToInclude = $library_import.minimumNumAAToInclude
+#end if
+#if $library_import.minimumNumPeaksToInclude is not None:
+minimumNumPeaksToInclude = $library_import.minimumNumPeaksToInclude
+#end if
+#if $library_import.skipRawAnnotation is not None:
+skipRawAnnotation = $library_import.skipRawAnnotation
+#end if
+#if $library_import.minimumDeltaCnToInclude is not None:
+minimumDeltaCnToInclude = $library_import.minimumDeltaCnToInclude
+#end if
+#if $library_import.maximumMassDiffToInclude is not None:
+maximumMassDiffToInclude = $library_import.maximumMassDiffToInclude
+#end if
+#if $library_import.bracketSpectra is not None:
+bracketSpectra = $library_import.bracketSpectra
+#end if
+#if $library_import.mergeBracket is not None:
+mergeBracket = $library_import.mergeBracket
+#end if
+#if str($library_import.normalizeRTWithLandmarks) != 'None':
+normalizeRTWithLandmarks = $library_import.normalizeRTWithLandmarks
+#end if
+#if $library_import.normalizeRTLinearRegression is not None:
+normalizeRTLinearRegression = $library_import.normalizeRTLinearRegression
+#end if
+    </token>
+    <xml name="library_import_options">
+        <section name="library_import" expanded="false" title="Library Import Options">
+            <param name="minimumProbabilityToInclude" type="float" value="" min="0.0" max="1.0" optional="true" 
+                label="minimumProbabilityToInclude" 
+                help="Include all spectra identified with probability no less than this in the library. Default is 0.9"/>
+            <param name="maximumFDRToInclude" type="float" value="" min="0.0" optional="true" 
+                label="maximumFDRToInclude for pepXML import" 
+                help="(Only for pepXML import) Include spectra with global FDR no greater than this in the library. Default is 999.0"/>
+            <param name="setFragmentation" type="select" label="Set the fragmentation type of all spectra, overriding existing information">
+                <option value="dataset" selected="true">Search Single Spectrum file and output results as a dataset</option>
+                <option value="collection">Search Multiple Spectrum files and output results as a collection</option>
+            </param>
+            <param name="setFragmentation" type="select" optional="true" label="Set the fragmentation type of all spectra, overriding existing information" >
+                <help>Default is off (determined from the data files).
+                      Examples: CID, ETD, CID-QTOF, HCD. The latter two are treated as high-mass accuracy spectra.
+                </help>
+                <option value="ETD">ETD spectra</option>
+                <option value="CID-QTOF">CID-QTOF spectra</option>
+                <option value="HCD">HCD spectra</option>
+            </param>
+            <param name="setDeamidatedNXST"  type="select" optional="true" label="setDeamidatedNXST Default: false" >
+                <help> Set all asparagines (N) in the motif NX(S/T) as deamidated (N[115]),
+                       and all asparagines not in the motif NX(S/T) as unmodified.
+                       Use for glycocaptured peptides.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="addMzXMLFileToDatasetName"  type="select" optional="true" label="addMzXMLFileToDatasetName Default: false" >
+                <help> Add the originating mzXML file name to the dataset identifier.
+                       Good for keeping track of the MS run in which the peptide is observed.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="centroidPeaks"  type="select" optional="true" label="centroidPeaks Default: false" >
+                <help> Centroid peaks as raw spectra are imported.
+                       Designed mostly for Q-TOF spectra in profile mode.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="rawSpectraNoiseThreshold" type="float" value="" min="0.0" optional="true" 
+                label="rawSpectraNoiseThreshold" 
+                help="Absolute noise filter. Remove noise peaks with intensity below this in imported spectra. Default is 0.0"/>
+            <param name="rawSpectraMaxDynamicRange" type="float" value="" min="1.0" optional="true" 
+                label="rawSpectraMaxDynamicRange" 
+                help="Relative noise filter. Filter out noise peaks with intensity below 1/range of that of the highest peak.  Default is 100000.0"/>
+            <param name="minimumNumAAToInclude" type="integer" value="" optional="true" min="1"
+                label="minimumNumAAToInclude" 
+                help="Exclude spectra of peptide IDs shorter than this number of amino acids. Default is 6"/>
+            <param name="minimumNumPeaksToInclude" type="integer" value="" optional="true" min="1"
+                label="minimumNumPeaksToInclude" 
+                help="Exclude spectra with fewer than this number of peaks. Default is 10"/>
+            <param name="skipRawAnnotation"  type="select" optional="true" label="skipRawAnnotation Default: false" >
+                <help> Skip the annotation of raw spectra as they are imported.
+                       Annotation is quite slow and might be impractical if the number of imported spectra is enormous.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="minimumDeltaCnToInclude" type="float" value="" min="0.0" optional="true" 
+                label="minimumDeltaCnToInclude" 
+                help="(Only for pepXML import) Exclude spectra with deltaCn smaller than this. Useful for excluding spectra with indiscriminate modification sites. Default is 0.0"/>
+            <param name="maximumMassDiffToInclude" type="float" value="" min="0.0" optional="true" 
+                label="maximumMassDiffToInclude" 
+                help="(Only for pepXML import) Exclude spectra with precursor mass difference (absolute value) greater than this numbers of  Daltons. Default is 9999.0"/>
+            <param name="bracketSpectra"  type="select" optional="true" label="bracketSpectra Default: false" >
+                <help> (Only for pepXML import)
+                       Bracket import: for each confident ID, also search neighboring scans for repeated scans to import.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="mergeBracket"  type="select" optional="true" label="mergeBracket Default: false" >
+                <help> (Only for pepXML import)
+                       Merge bracketed spectra: merge repeated scans of a bracket into one consensus spectrum for import.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="normalizeRTWithLandmarks" type="data" format="tabular" optional="true" 
+                label="normalizeRTWithLandmarks Use landmark peptides to normalize retention times to iRTs."
+                help="A TAB-delimited table with two columns: peptide sequence and iRT" />
+            <param name="normalizeRTLinearRegression"  type="select" optional="true" label="normalizeRTLinearRegression Default: false" >
+                <help> Regress the real RTs of landmark peptides (i.e. assume they form a straight line).
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+        </section>
+    </xml>
+
+    <token name="@LIBRARY_MANIPULATION_OPTIONS@">
+#if $library_manipulation.filterCriteria is not None:
+filterCriteria = $library_manipulation.filterCriteria
+#end if
+#if $library_manipulation.combineAction is not None:
+combineAction = $library_manipulation.combineAction
+#end if
+#if $library_manipulation.build.buildAction != 'NONE':
+buildAction = $library_manipulation.build.buildAction
+#if $library_manipulation.build.buildAction in ['BEST_REPLICATE','CONSENSUS']:
+#if $library_manipulation.build.build_bc_action.minimumNumReplicates is not None:
+minimumNumReplicates = $library_manipulation.build.build_bc_action.minimumNumReplicates
+#end if
+#if $library_manipulation.build.build_bc_action.removeDissimilarReplicates is not None:
+removeDissimilarReplicates = $library_manipulation.build.build_bc_action.removeDissimilarReplicates
+#end if
+#if $library_manipulation.build.build_bc_action.peakQuorum is not None:
+peakQuorum = $library_manipulation.build.build_bc_action.peakQuorum
+#end if
+#if $library_manipulation.build.build_bc_action.maximumNumPeaksUsed is not None:
+maximumNumPeaksUsed = $library_manipulation.build.build_bc_action.maximumNumPeaksUsed
+#end if
+#if $library_manipulation.build.build_bc_action.maximumNumReplicates is not None:
+maximumNumReplicates = $library_manipulation.build.build_bc_action.maximumNumReplicates
+#end if
+#if $library_manipulation.build.build_bc_action.maximumNumPeaksKept is not None:
+maximumNumPeaksKept = $library_manipulation.build.build_bc_action.maximumNumPeaksKept
+#end if
+#if $library_manipulation.build.build_bc_action.replicateWeight is not None:
+replicateWeight = $library_manipulation.build.build_bc_action.replicateWeight
+#end if
+#if $library_manipulation.build.build_bc_action.recordRawSpectra is not None:
+recordRawSpectra = $library_manipulation.build.build_bc_action.recordRawSpectra
+#end if
+#end if
+#if $library_manipulation.build.buildAction == 'DECOY':
+#if $library_manipulation.build.build_d_action.decoyConcatenate is not None:
+decoyConcatenate = $library_manipulation.build.build_d_action.decoyConcatenate
+#end if
+#if $library_manipulation.build.build_d_action.decoySizeRatio is not None:
+decoySizeRatio = $library_manipulation.build.build_d_action.decoySizeRatio
+#end if
+#if $library_manipulation.build.build_d_action.decoyPrecursorSwap is not None:
+decoyPrecursorSwap = $library_manipulation.build.build_d_action.decoyPrecursorSwap
+#end if
+#end if
+#if $library_manipulation.build.buildAction == 'USER_SPECIFIED_MODS':
+#if $library_manipulation.build.build_m_action.allowableModTokens is not None:
+allowableModTokens = $library_manipulation.build.build_m_action.allowableModTokens
+#end if
+#end if
+#if $library_manipulation.build.buildAction == 'QUALITY_FILTER':
+#if $library_manipulation.build.build_q_action.minimumNumReplicates is not None:
+minimumNumReplicates = $library_manipulation.build.build_q_action.minimumNumReplicates
+#end if
+#if $library_manipulation.build.build_q_action.qualityLevelRemove is not None:
+qualityLevelRemove = $library_manipulation.build.build_q_action.qualityLevelRemove
+#end if
+#if $library_manipulation.build.build_q_action.qualityLevelMark is not None:
+qualityLevelMark = $library_manipulation.build.build_q_action.qualityLevelMark
+#end if
+#if $library_manipulation.build.build_q_action.qualityPenalizeSingletons is not None:
+qualityPenalizeSingletons = $library_manipulation.build.build_q_action.qualityPenalizeSingletons
+#end if
+#if $library_manipulation.build.build_q_action.qualityImmuneProbThreshold is not None:
+qualityImmuneProbThreshold = $library_manipulation.build.build_q_action.qualityImmuneProbThreshold
+#end if
+#if $library_manipulation.build.build_q_action.qualityImmuneMultipleEngines is not None:
+qualityImmuneMultipleEngines = $library_manipulation.build.build_q_action.qualityImmuneMultipleEngines
+#end if
+#end if
+#end if
+#if $library_manipulation.reduceSpectra is not None:
+reduceSpectra = $library_manipulation.reduceSpectra
+#end if
+#if $library_manipulation.minimumNumPeaksToInclude is not None:
+minimumNumPeaksToInclude = $library_manipulation.minimumNumPeaksToInclude
+#end if
+#if $library_manipulation.minimumMRMQ3MZ is not None:
+minimumMRMQ3MZ = $library_manipulation.minimumMRMQ3MZ
+#end if
+#if $library_manipulation.maximumMRMQ3MZ is not None:
+maximumMRMQ3MZ = $library_manipulation.maximumMRMQ3MZ
+#end if
+#if $library_manipulation.db.refresh == 'yes':
+refreshDatabase = $library_manipulation.db.refreshDatabase
+#if $library_manipulation.db.refreshDeleteUnmapped is not None:
+refreshDeleteUnmapped = $library_manipulation.db.refreshDeleteUnmapped
+#end if
+#if $library_manipulation.db.refreshDeleteMultimapped is not None:
+refreshDeleteMultimapped = $library_manipulation.db.refreshDeleteMultimapped
+#end if
+#if $library_manipulation.db.refreshTrypticOnly is not None:
+refreshTrypticOnly = $library_manipulation.db.refreshTrypticOnly
+#end if
+#end if
+    </token>
+    <xml name="library_build_bc_opts">
+        <section name="build_bc_action" expanded="false" title="Consensus/Best-Replicate Library Creation Build Options">
+           <param name="minimumNumReplicates" type="integer" value="" optional="true" min="1"
+                label="minimumNumReplicates"
+                help="Minimum number of replicates required for each library entry. Peptide ions with fewer than this numer of replicates will be excluded from library when creating consensus library. Default is 1"/>
+            <param name="removeDissimilarReplicates"  type="select" optional="true" label="removeDissimilarReplicates Default: true" >
+                <help> Remove dissimilar replicates before creating consensus spectrum.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="peakQuorum" type="float" value="" min="0.0" max="1.0" optional="true" 
+                label="peakQuorum" 
+                help="Specify peak quorum: the fraction of all replicates required to contain a certain peak. Peaks not present in enough replicates will be deleted. Default is 0.6"/>
+           <param name="maximumNumPeaksUsed" type="integer" value="" optional="true" min="1"
+                label="maximumNumPeaksUsed"
+                help="Maximum number of peaks in each replicate to be considered in creating consensus. Only the most intense number of peaks by intensity will be considered.  Default is 300"/>
+           <param name="maximumNumReplicates" type="integer" value="" optional="true" min="1"
+                label="maximumNumReplicates"
+                help="Maximum number of replicates used to build consensus spectrum.  Default is 100"/>
+           <param name="maximumNumPeaksKept" type="integer" value="" optional="true" min="1"
+                label="maximumNumPeaksKept"
+                help="De-noise single spectra by keeping only this number of the most intense peaks.  Will not affect consensus spectra of more than one replicate.  Default is 150"/>
+            <param name="replicateWeight"  type="select" optional="true" label="replicateWeight  Default: signal-to-noise ratio"  >
+                <help> How to combine peptides from multiple files
+                </help>
+                <option value="NONE">NONE</option>
+                <option value="SN">Use a measure of signal-to-noise ratio as the weight.</option>
+                <option value="XCORR">Use a function of the SEQUEST xcorr score as the weight.</option>
+                <option value="PROB">Use a function of the PeptideProphet probability as the weight.</option>
+                <option value="INTP">Use the sqrt of precursor intensity</option>
+            </param>
+            <param name="recordRawSpectra"  type="select" optional="true" label="recordRawSpectra Default: false" >
+                <help> Record all raw spectra (in the format file.scan.scan) used in build the consensus in the Comment line.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+        </section>
+    </xml>
+    <xml name="library_build_d_opts">
+        <section name="build_d_action" expanded="false" title="Decoy Library Creation Build Options">
+            <param name="decoyConcatenate"  type="select" optional="true" label="decoyConcatenate Default: false" >
+                <help> Concatenate real and decoy libraries.	Default is false: library consisting of only decoy spectra is created. 
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="decoySizeRatio" type="integer" value="" optional="true" min="1"
+                label="decoySizeRatio"
+                help="Specify the (decoy / real) size ratio. Default is 1"/>
+            <param name="decoyPrecursorSwap"  type="select" optional="true" label="decoyPrecursorSwap Default: false" >
+                <help> Use a modified form of the precursor swap method for generating decoys.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+        </section>
+    </xml>
+    <xml name="library_build_m_opts">
+        <section name="build_m_action" expanded="false" title="Usr Mods Library Creation Build Options">
+            <param name="allowableModTokens" type="text" value="" optional="true" label="allowableModTokens">
+                <help><![CDATA[
+                 Specify the set(s) of modifications allowed in semi-empirical spectrum generation.
+                ]]></help>
+            </param>
+        </section>
+    </xml>
+    <xml name="quality_level_opts">
+                <option value="0">0: No filter.</option>
+                <option value="1">1: Remove/mark impure spectra.</option>
+                <option value="2">2: Also remove/mark spectra with a spectrally similar counterpart in the library that is better.</option>
+                <option value="3">3: Also remove/mark inquorate entries (defined with minimumNumReplicates) that share no peptide sub-sequences with any other entries in the library. </option>
+                <option value="4">4: Also remove/mark all singleton entries.</option>
+                <option value="5">5: Also remove/mark all inquorate entries (defined with minimumNumReplicates).</option>
+    </xml>
+    <xml name="library_build_q_opts">
+        <section name="build_q_action" expanded="false" title="Quality Filter Library Creation Build Options">
+           <param name="minimumNumReplicates" type="integer" value="" optional="true" min="1"
+                label="minimumNumReplicates"
+                help="Replicate quorum. Its value affects behavior of quality filter. Default is 1"/>
+            <param name="qualityLevelRemove"  type="select" optional="true" label="qualityLevelRemove Default: 2" >
+                <help> Specify the removal stringency of the quality filter
+                </help>
+                <expand macro="quality_level_opts"/>
+            </param>
+            <param name="qualityLevelMark"  type="select" optional="true" label="qualityLevelMark Default: 5" >
+                <help> Specify the removal stringency of the quality filter
+                </help>
+                <expand macro="quality_level_opts"/>
+            </param>
+            <param name="qualityPenalizeSingletons"  type="select" optional="true" label="qualityPenalizeSingletons Default: true" >
+                <help> Apply stricter thresholds to singleton spectra during quality filters.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="qualityImmuneProbThreshold" type="float" value="" min="0.0" max="1.0" optional="true" 
+                label="qualityImmuneProbThreshold" 
+                help="Specify a probability above which library spectra are immune to quality filters. Default is 0.999"/>
+            <param name="qualityImmuneMultipleEngines"  type="select" optional="true" label="qualityImmuneMultipleEngines Default: true" >
+                <help> Make spectra identified by multiple sequence search engines immune to quality filters.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+        </section>
+    </xml>
+    <xml name="library_manipulation_options">
+        <section name="library_manipulation" expanded="false" title="Library Manipulation Options">
+            <!-- filterCriteria -->
+
+            <param name="filterCriteria" type="text" value="" optional="true" label="filterCriteria">
+                <help><![CDATA[
+                 Filter library by criteria. Keep only those entries satisfying the predicate.
+                 The preicate should in the form "<attr> <op> <value>".
+                 <attr> can refer to any of the fields and any comment entries.
+                 <op> can be ==, !=, <, >, <=, >=, =~ and !~.
+                 Multiple predicates can be separated by either & (AND logic) or | (OR logic), but not both.
+                ]]></help>
+                <validator type="regex" message=""><![CDATA[^\S+ (==|!=|<|>|<=|>=|=~|!~) \S+(( & \S+ (==|!=|<|>|<=|>=|=~|!~) \S+)|( [|]  \S+ (==|!=|<|>|<=|>=|=~|!~) \S+ ))*$]]></validator>
+            </param>
+            <param name="combineAction"  type="select" optional="true" label="combineAction Default: Union" >
+                <help> How to combine peptides from multiple files
+                </help>
+                <option value="UNION">Union (default). Include all the peptide ions in all the files.</option>
+                <option value="INTERSECT">Intersection. Only include peptide ions that are present in all the files.</option>
+                <option value="SUBTRACT">Subtraction. Only include peptide ions in the first file that are not present in any of the other files.</option>
+                <option value="SUBTRACT_HOMOLOGS">Subtraction of homologs. Only include peptide ions in the first file that do not have any homologs with similar m/z in any of the other files.</option>
+                <option value="APPEND">Appending. Each peptide ion is added from only one library: the first one in the command line that contains that peptide ion. </option>
+            </param>
+            <conditional name="build">
+                <param name="buildAction"  type="select" label="buildAction" >
+                    <help> How to built representative spectra instead of including all.
+                    </help>
+                    <option value="NONE" selected="true">Default: no build action - all spectra will be included as is.</option>
+                    <option value="BEST_REPLICATE">Best replicate. Pick the best replicate of each peptide ion.</option>
+                    <option value="CONSENSUS">Consensus. Create the consensus spectrum of all replicate spectra of each peptide ion.</option>
+                    <option value="QUALITY_FILTER">Quality filter. Apply quality filters to library.</option>
+                    <option value="DECOY">Decoy. Generate decoy spectra.</option>
+                    <option value="SORT_BY_NREPS">Sort by descending number of replicates (tie-breaking by probability).</option>
+                    <option value="USER_SPECIFIED_MODS">User-specified modifications. Generate semi-empirical spectra. (allowableModTokens required)</option>
+                    <option value="SIMILARITY_CLUSTERING">Semi-empirical. Generate semi-empirical spectra.</option>
+                    <option value="SEMI_EMPIRICAL_SPLIB">Clustering by spectral similarity. </option>
+                </param>
+                <when value="NONE"/>
+                <when value="BEST_REPLICATE">
+                    <expand macro="library_build_bc_opts"/>
+                </when>
+                <when value="CONSENSUS">
+                    <expand macro="library_build_bc_opts"/>
+                </when>
+                <when value="QUALITY_FILTER">
+                    <expand macro="library_build_q_opts"/>
+                </when>
+                <when value="DECOY">
+                    <expand macro="library_build_d_opts"/>
+                </when>
+                <when value="SORT_BY_NREPS"/>
+                <when value="USER_SPECIFIED_MODS">
+                    <expand macro="library_build_m_opts"/>
+                </when>
+                <when value="SIMILARITY_CLUSTERING"/>
+                <when value="SEMI_EMPIRICAL_SPLIB"/>
+            </conditional>
+            <param name="reduceSpectra" type="integer" value="" optional="true" min="0"
+                label="reduceSpectra"
+                help="Produce reduced spectra of at most this number of peaks, based on rules prioritizing desirable SRM transitions.  Default is 0 (keep entire spectrum)"/>
+            <param name="reannotatePeaks"  type="select" optional="true" label="reannotatePeaks Default: false" >
+                <help> Re-annotate peaks.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="minimumNumPeaksToInclude" type="integer" value="" optional="true" min="1"
+                label="minimumNumPeaksToInclude"
+                help="Exclude spectra with fewer than this number of peaks.  Default is 10"/>
+            <param name="minimumMRMQ3MZ" type="integer" value="" optional="true" min="1"
+                label="minimumMRMQ3MZ"
+                help="Specify the lower m/z limit for Q3 in SRM table generation.  Default is 200."/>
+            <param name="maximumMRMQ3MZ" type="integer" value="" optional="true" min="1"
+                label="maximumMRMQ3MZ"
+                help="Specify the upper m/z limit for Q3 in SRM table generation.  Default is 1400."/>
+            <conditional name="db">
+                <param name="refresh"  type="select" label="Refresh protein mappings against the FASTA database">
+                    <option value="no">No</option>
+                    <option value="yes">Yes</option>
+                </param>
+                <when value="no"/>
+                <when value="yes">
+                    <param name="refreshDatabase" type="data" format="fasta" label="Protein FASTA datadase"/>
+                    <param name="refreshDeleteUnmapped"  type="select" optional="true" label="refreshDeleteUnmapped Default: false" >
+                        <help> Delete entries whose peptide sequences do not map to any protein during refreshing.
+                        </help>
+                        <option value="false">false</option>
+                        <option value="true">true</option>
+                    </param>
+                    <param name="refreshDeleteMultimapped"  type="select" optional="true" label="refreshDeleteMultimapped Default: false" >
+                        <help> Delete entries whose peptide sequences map to multiple proteins during refreshing.
+                        </help>
+                        <option value="false">false</option>
+                        <option value="true">true</option>
+                    </param>
+                    <param name="refreshTrypticOnly"  type="select" optional="true" label="refreshTrypticOnly Default: false" >
+                        <help> Only map peptide to protein when the peptide is tryptic in that protein.
+                        </help>
+                        <option value="false">false</option>
+                        <option value="true">true</option>
+                    </param>
+                </when>
+            </conditional>
+        </section>
+    </xml>
+    <token name="@LIBRARY_UNIDENTIFIED_OPTIONS@">
+#if $library_unidentified.unidentifiedClusterIndividualRun is not None:
+unidentifiedClusterIndividualRun = $library_unidentified.unidentifiedClusterIndividualRun
+#end if
+#if $library_unidentified.unidentifiedClusterMinimumDot is not None:
+unidentifiedClusterMinimumDot = $library_unidentified.unidentifiedClusterMinimumDot
+#end if
+#if $library_unidentified.unidentifiedRemoveSinglyCharged is not None:
+unidentifiedRemoveSinglyCharged = $library_unidentified.unidentifiedRemoveSinglyCharged
+#end if
+#if $library_unidentified.unidentifiedMinimumNumPeaksToInclude is not None:
+unidentifiedMinimumNumPeaksToInclude = $library_unidentified.unidentifiedMinimumNumPeaksToInclude
+#end if
+#if $library_unidentified.unidentifiedSingletonXreaThreshold is not None:
+unidentifiedSingletonXreaThreshold = $library_unidentified.unidentifiedSingletonXreaThreshold
+#end if
+    </token>
+    <xml name="library_unidentified_options">
+        <section name="library_unidentified" expanded="false" title="Library Clustering Unidentified Options">
+            <param name="unidentifiedClusterIndividualRun"  type="select" optional="true" label="unidentifiedClusterIndividualRun Default: false" >
+                <help> Merge neighboring spectra in each run as they are imported from data (mz(X)ML) files.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="unidentifiedClusterMinimumDot" type="float" value="" min="0.0" max="1.0" optional="true" 
+                label="unidentifiedClusterMinimumDot" 
+                help="Specify minimum dot products for two spectra to be clustered. Default is 0.7"/>
+
+            <param name="unidentifiedRemoveSinglyCharged"  type="select" optional="true" label="unidentifiedRemoveSinglyCharged Default: true" >
+                <help> Remove spectra that appear to be from singly charged precursors.
+                </help>
+                <option value="false">false</option>
+                <option value="true">true</option>
+            </param>
+            <param name="unidentifiedMinimumNumPeaksToInclude" type="integer" value="" optional="true" min="1"
+                label="unidentifiedMinimumNumPeaksToInclude"
+                help="Remove spectra that have fewer than this number of peaks.  Default is 35"/>
+            <param name="unidentifiedSingletonXreaThreshold" type="float" value="" min="0.0" max="1.0" optional="true" 
+                label="unidentifiedSingletonXreaThreshold" 
+                help="Apply an Xrea (quality measure) filter to singleton spectra after clustering. Only those with Xrea at least this theshold are kept.  Default is 0.6"/>
+        </section>
+    </xml>
+
     <xml name="citations">
         <citations>
             <citation type="doi">10.1002/pmic.200600625</citation>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spectrast_create.xml	Wed Jul 25 10:58:17 2018 -0400
@@ -0,0 +1,70 @@
+<tool id="specrast_create" name="SpectraST Create" version="@VERSION@.0">
+    <description>Spectral Library from Search Results</description>
+    <macros>
+        <import>macros.xml</import>
+    </macros>
+    <expand macro="requirements" />
+    <command detect_errors="exit_code"><![CDATA[
+        ## Need to symlink to data using name with extension that spectrast recognizes 
+        #import re
+        ## pepxml datasets
+        #set $input_files = []
+        #for $px in $pepxml_files:
+            #set $input_name = $re.sub('[.]?pep[.]?xml$','',$re.sub('[ ]','_',$input.display_name.split('/')[-1])) + '.pep.xml' 
+            #silent $input_files.append($input_name)
+            ln -s -f '${px}' '${input_name}' &&
+        #end for
+        #set $input_names = ' '.join($input_files)
+        python $__tool_directory__/link_scan_datasets.py
+            #for spectrum_file in spectrum_files:
+                -n '$spectrum_file.display_name' -f '$spectrum_file'
+            #end for
+            $input_names &&
+        python $__tool_directory__/spectrast_params.py 
+           --mode=create
+           #if $spectrastParams:
+               '$spectrastParams'
+           #end if
+           '$spectrast_params' -o spectrast_create.params &&
+        mkdir -p libdir &&
+        spectrast -cFspectrast_create.params -cN'libdir/library' $input_names &&
+        mkdir -p '$output.files_path' &&
+        for i in library.splib library.sptxt library.spidx library.pepidx; do if [ -e outdir/${i} ]; then cp -p outdir/${i} '$output.files_path'; fi; done
+    ]]></command>
+    <configfiles>
+        <configfile name="spectrast_params"><![CDATA[#slurp
+]]>
+@LIBRARY_CREATE_OPTIONS@
+@LIBRARY_IMPORT_OPTIONS@
+        </configfile>
+    </configfiles>
+    <inputs>
+        <param name="pepxml_files" multiple="true" type="data" format="pepxml,peptideprophet_pepxml,interprophet_pepxml" label="PepXML Files to use in library generation" help=""/>
+        <param name="spectrum_files" multiple="true" type="data" format="mzxml" label="Data files containing spectra referred to in pepxml files" help=""/>
+        <param name="spectrastParams" type="data" format="txt" optional="true" label="SpectraST param file" help=""/>
+        <expand macro="library_create_options"/>
+        <expand macro="library_import_options"/>
+    </inputs>
+    <outputs>
+        <data name="log" format="txt" label="spectrast.log" from_work_dir="spectrast.log"/>
+        <data name="params" format="txt" label="spectrast_create.params" from_work_dir="spectrast_create.params"/>
+        <expand macro="library_create_outputs"/>
+        <data name="output" format="splib" label="libary.splib" />
+    </outputs>
+    <tests>
+        <test>
+        </test>
+    </tests>
+    <help><![CDATA[
+**Create Libraries from Sequence Search Results**
+
+Note: As per TPP convention, the spectrum query must be named:
+<mzXML file name>.<start scan>.<end scan>.<charge>
+in the .pepXML file, so that SpectraST knows where to find the corresponding experimental spectrum. (If the .pepXML file is created with TPP tools, this should not be an issue.)
+
+SpectraST can create a spectral library from a .pepXML file, which contains peptide identifications from a previous shotgun proteomics experiment. For this purpose, it is preferable that the .pepXML has been processed with PeptideProphet and/or iProphet, such that all the search hits have probabilities assigned. (iProphet probabilities are used over PeptideProphet ones if both are present.)
+
+When importing from a .pepXML file, SpectraST scans through the .pepXML file for confident identifications, and attempts to extract the corresponding experimental spectra from .mzXML files. 
+    ]]></help>
+    <expand macro="citations" />
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spectrast_filter.xml	Wed Jul 25 10:58:17 2018 -0400
@@ -0,0 +1,55 @@
+<tool id="spectrast_filter" name="SpectraST Filter" version="@VERSION@.0">
+    <description>Filter and Manipulate Spectral Libraries</description>
+    <macros>
+        <import>macros.xml</import>
+    </macros>
+    <expand macro="requirements" />
+    <command detect_errors="exit_code"><![CDATA[
+        python $__tool_directory__/spectrast_params.py 
+           --mode=filter
+           #if $spectrastParams:
+               '$spectrastParams'
+           #end if
+           '$spectrast_params' -o spectrast_create.params &&
+        mkdir -p libdir &&
+        spectrast -cFspectrast_create.params -cN'libdir/library' 
+        #for $splib_file in $splib_files:
+            ${splib_file.extra_files_path}/library.splib
+        #end for
+        &&
+        mkdir -p '$output.files_path' &&
+        for i in library.splib library.sptxt library.spidx library.pepidx; do if [ -e outdir/${i} ]; then cp -p outdir/${i} '$output.files_path'; fi; done
+]]>
+    </command>
+    <configfiles>
+        <configfile name="spectrast_params"><![CDATA[#slurp
+]]>
+@LIBRARY_CREATE_OPTIONS@
+@LIBRARY_MANIPULATION_OPTIONS
+        </configfile>
+    </configfiles>
+    <inputs>
+        <param name="splib_files" multiple="true" type="data" format="splib" label="Spectral Libraries to operate on" help=""/>
+        <param name="spectrastParams" type="data" format="txt" optional="true" label="SpectraST param file" help=""/>
+        <expand macro="library_create_options"/>
+        <expand macro="library_manipulation_options"/>
+    </inputs>
+    <outputs>
+        <data name="log" format="txt" label="spectrast.log" from_work_dir="spectrast.log"/>
+        <data name="params" format="txt" label="spectrast_create.params" from_work_dir="spectrast_create.params"/>
+        <expand macro="library_create_outputs"/>
+        <data format="splib" name="output"/>
+    </outputs>
+    <tests>
+        <test>
+        </test>
+    </tests>
+    <help>
+<![CDATA[
+**What it does**
+
+Filter and Manipulate Spectral Libraries
+
+]]>
+    </help>
+</tool>
--- a/spectrast_import.xml	Wed Jun 20 12:58:33 2018 -0400
+++ b/spectrast_import.xml	Wed Jul 25 10:58:17 2018 -0400
@@ -1,5 +1,5 @@
 <tool id="spectrast_import" name="SpectraST Import" version="@VERSION@.0">
-    <description>Spectral Library</description>
+    <description>Spectral Library from ms2, msp, or hlf</description>
     <macros>
         <import>macros.xml</import>
     </macros>
@@ -10,12 +10,16 @@
         #set $ext = '.' + str($input.extension)
         #set $input_name = $re.sub('[.](ms2|msp|hlf)$','',$input.display_name.split('/')[-1]) + $ext
         ln -s '$input' '$input_name' &&
+        mkdir -p libdir &&
+        spectrast -cN'libdir/library' '$input_name' | tee '$output' &&
         mkdir -p '$output.files_path' &&
-        spectrast -cN'${output.files_path}/library' '$input_name' | tee '$output'
+        for i in library.splib library.sptxt library.spidx library.pepidx; do if [ -e outdir/${i} ]; then cp -p outdir/${i} '$output.files_path'; fi; done
     ]]></command>
     <inputs>
         <param name="input" type="data" format="ms2,msp,hlf" label="Spectral library ms2, msp, or hlf" 
              help="BiblioSpec .ms2,  NIST .msp,  or X!Hunter .hlf"/>
+        <param name="bin" type="boolean" truevalue="" falsevalue="-c_BIN!" checked="true" 
+            label="Write library in binary format, which enables quicker search."/>
     </inputs>
     <outputs>
         <data name="output" format="splib"/>
--- a/spectrast_params.py	Wed Jun 20 12:58:33 2018 -0400
+++ b/spectrast_params.py	Wed Jul 25 10:58:17 2018 -0400
@@ -6,6 +6,146 @@
 import re
 import sys
 
+create_opts = [
+    'outputFileName',
+    'useProbTable',
+    'useProteinList',
+    'printMRMTable',
+    'remark',
+    'binaryFormat',
+    'writeDtaFiles',
+    'writeMgfFiles',
+    'removeDecoyProteins',
+    'plotSpectra',
+    'minimumProbabilityToInclude',
+    'maximumFDRToInclude',
+    'datasetName',
+    'setFragmentation',
+    'setDeamidatedNXST',
+    'addMzXMLFileToDatasetName',
+    'centroidPeaks',
+    'rawSpectraNoiseThreshold',
+    'rawSpectraMaxDynamicRange',
+    'minimumNumAAToInclude',
+    'minimumNumPeaksToInclude',
+    'skipRawAnnotation',
+    'minimumDeltaCnToInclude',
+    'maximumMassDiffToInclude',
+    'bracketSpectra',
+    'mergeBracket',
+    'filterCriteria',
+    'combineAction',
+    'buildAction',
+    'refreshDatabase',
+    'reduceSpectra',
+    'refreshDeleteUnmapped',
+    'refreshDeleteMultimapped',
+    'reannotatePeaks',
+    'minimumNumPeaksToInclude',
+    'minimumMRMQ3MZ',
+    'maximumMRMQ3MZ',
+    'minimumNumPeaksToInclude',
+    'refreshTrypticOnly',
+    'minimumNumReplicates',
+    'removeDissimilarReplicates',
+    'peakQuorum',
+    'maximumNumPeaksUsed',
+    'maximumNumReplicates',
+    'maximumNumPeaksKept',
+    'replicateWeight',
+    'recordRawSpectra',
+    'minimumNumReplicates',
+    'qualityLevelRemove,',
+    'qualityPenalizeSingletons',
+    'qualityImmuneProbThreshold',
+    'qualityImmuneMultipleEngines',
+    'useBayesianDenoiser',
+    'trainBayesianDenoiser',
+    'denoiserMinimumSignalProb',
+    'denoiserParamFile',
+    'decoyConcatenate',
+    'decoySizeRatio',
+    'decoyPrecursorSwap',
+    'normalizeRTWithLandmarks',
+    'normalizeRTLinearRegression',
+    'unidentifiedClusterIndividualRun',
+    'unidentifiedClusterMinimumDot',
+    'unidentifiedRemoveSinglyCharged',
+    'unidentifiedMinimumNumPeaksToInclude',
+    'unidentifiedSingletonXreaThreshold',
+    'allowableModTokens'
+]
+
+filter_opts = [
+    'outputFileName',
+    'useProbTable',
+    'useProteinList',
+    'printMRMTable',
+    'remark',
+    'binaryFormat',
+    'writeDtaFiles',
+    'writeMgfFiles',
+    'removeDecoyProteins',
+    'plotSpectra',
+    'minimumProbabilityToInclude',
+    'maximumFDRToInclude',
+    'datasetName',
+    'setFragmentation',
+    'setDeamidatedNXST',
+    'addMzXMLFileToDatasetName',
+    'centroidPeaks',
+    'rawSpectraNoiseThreshold',
+    'rawSpectraMaxDynamicRange',
+    'minimumNumAAToInclude',
+    'minimumNumPeaksToInclude',
+    'skipRawAnnotation',
+    'minimumDeltaCnToInclude',
+    'maximumMassDiffToInclude',
+    'bracketSpectra',
+    'mergeBracket',
+    'filterCriteria',
+    'combineAction',
+    'buildAction',
+    'refreshDatabase',
+    'reduceSpectra',
+    'refreshDeleteUnmapped',
+    'refreshDeleteMultimapped',
+    'reannotatePeaks',
+    'minimumNumPeaksToInclude',
+    'minimumMRMQ3MZ',
+    'maximumMRMQ3MZ',
+    'minimumNumPeaksToInclude',
+    'refreshTrypticOnly',
+    'minimumNumReplicates',
+    'removeDissimilarReplicates',
+    'peakQuorum',
+    'maximumNumPeaksUsed',
+    'maximumNumReplicates',
+    'maximumNumPeaksKept',
+    'replicateWeight',
+    'recordRawSpectra',
+    'minimumNumReplicates',
+    'qualityLevelRemove,',
+    'qualityPenalizeSingletons',
+    'qualityImmuneProbThreshold',
+    'qualityImmuneMultipleEngines',
+    'useBayesianDenoiser',
+    'trainBayesianDenoiser',
+    'denoiserMinimumSignalProb',
+    'denoiserParamFile',
+    'decoyConcatenate',
+    'decoySizeRatio',
+    'decoyPrecursorSwap',
+    'normalizeRTWithLandmarks',
+    'normalizeRTLinearRegression',
+    'unidentifiedClusterIndividualRun',
+    'unidentifiedClusterMinimumDot',
+    'unidentifiedRemoveSinglyCharged',
+    'unidentifiedMinimumNumPeaksToInclude',
+    'unidentifiedSingletonXreaThreshold',
+    'allowableModTokens'
+]
+
 search_opts = [
     'libraryFile',
     'databaseFile',
@@ -65,6 +205,9 @@
         'param_files', nargs='*',
         help='A SpectraST search.params files')
     parser.add_argument(
+        '-m', '--mode', choices=['search','create','filter'],
+        help='')
+    parser.add_argument(
         '-o', '--output',
         help='Output file  (-) for stdout')
     args = parser.parse_args()
@@ -73,17 +216,19 @@
         if args.output and args.output != '-' else sys.stdout
 
     optpat = re.compile('^([a-z]\w+)\s*[=:]\s*([^=]+)$')
-    search_params = dict()
 
-    # Collect all search_params
-    def parse_params(param_file, fh):
+    valid_opts = search_opts if args.mode == 'search' else create_opts if args.mode == 'create' else filter_opts
+    valid_params = dict()
+
+    # Collect all valid_params
+    def parse_params(param_file, fh, valid_opts):
         for i, line in enumerate(fh):
             try:
                 m = optpat.match(line.rstrip())
                 if m:
                     k, v = m.groups()
-                    if k in search_opts:
-                        search_params[k] = v
+                    if k in valid_opts:
+                        valid_params[k] = v
             except Exception, e:
                 print('%s(%d): %s %s' % (param_file, i, line, e),
                       file=sys.stderr)
@@ -92,7 +237,7 @@
         for param_file in args.param_files:
             try:
                 with open(param_file, 'r') as fh:
-                    parse_params(param_file, fh)
+                    parse_params(param_file, fh, valid_opts)
             except Exception, e:
                 print('parse_params: %s' % e, file=sys.stderr)
     else:
@@ -101,11 +246,12 @@
         except Exception, e:
             print('parse_params: %s' % e, file=sys.stderr)
 
-    # Write search_params
-    for search_opt in search_opts:
-        if search_opt in search_params:
-            print('%s = %s' % (search_opt, search_params[search_opt]), file=output_wtr)
+    # Write valid_params
+    for valid_opt in valid_opts:
+        if valid_opt in valid_params:
+            print('%s = %s' % (valid_opt, valid_params[valid_opt]), file=output_wtr)
 
 
 if __name__ == "__main__":
     __main__()
+
--- a/spectrast_search.xml	Wed Jun 20 12:58:33 2018 -0400
+++ b/spectrast_search.xml	Wed Jul 25 10:58:17 2018 -0400
@@ -27,6 +27,7 @@
             #end for
         #end if
         python $__tool_directory__/spectrast_params.py 
+           --mode=search
            #if $spectrastParams:
                '$spectrastParams'
            #end if
@@ -57,7 +58,7 @@
 #if $candidate_selection_and_scoring.precursorMzTolerance is not None:
 precursorMzTolerance = $candidate_selection_and_scoring.precursorMzTolerance
 #end if
-#if str($candidate_selection_and_scoring.precursorMzUseAverage) != 'None':
+#eif str($candidate_selection_and_scoring.precursorMzUseAverage) != 'None':
 precursorMzUseAverage = $candidate_selection_and_scoring.precursorMzUseAverage
 #end if
 #if str($candidate_selection_and_scoring.searchAllCharges) != 'None':
--- a/test-data/msgf-test.mzML	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,480 +0,0 @@
-<?xml version="1.0" encoding="ISO-8859-1"?>
-<indexedmzML xmlns="http://psi.hupo.org/ms/mzml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://psi.hupo.org/ms/mzml http://psidev.info/files/ms/mzML/xsd/mzML1.1.1_idx.xsd">
-  <mzML xmlns="http://psi.hupo.org/ms/mzml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://psi.hupo.org/ms/mzml http://psidev.info/files/ms/mzML/xsd/mzML1.1.0.xsd" id="QC_Shew_13_02_pt1_1_2_CID_13Jan14_Leopard_13-12-14" version="1.1.0">
-    <cvList count="2">
-      <cv id="MS" fullName="Proteomics Standards Initiative Mass Spectrometry Ontology" version="3.30.0" URI="http://psidev.cvs.sourceforge.net/*checkout*/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo"/>
-      <cv id="UO" fullName="Unit Ontology" version="12:10:2011" URI="http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/phenotype/unit.obo"/>
-    </cvList>
-    <fileDescription>
-      <fileContent>
-        <cvParam cvRef="MS" accession="MS:1000579" name="MS1 spectrum" value=""/>
-        <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-      </fileContent>
-      <sourceFileList count="1">
-        <sourceFile id="RAW1" name="QC_Shew_13_02_pt1_1_2_CID_13Jan14_Leopard_13-12-14.raw" location="file:///C:/Temp">
-          <cvParam cvRef="MS" accession="MS:1000768" name="Thermo nativeID format" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000563" name="Thermo RAW file" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000569" name="SHA-1" value="28053f314821dde8da7ed73f6ea94e093cdb16c3"/>
-        </sourceFile>
-      </sourceFileList>
-    </fileDescription>
-    <referenceableParamGroupList count="1">
-      <referenceableParamGroup id="CommonInstrumentParams">
-        <cvParam cvRef="MS" accession="MS:1001742" name="LTQ Orbitrap Velos" value=""/>
-        <cvParam cvRef="MS" accession="MS:1000529" name="instrument serial number" value="SN01013B"/>
-      </referenceableParamGroup>
-    </referenceableParamGroupList>
-    <softwareList count="2">
-      <software id="Xcalibur" version="2.7.0 SP1">
-        <cvParam cvRef="MS" accession="MS:1000532" name="Xcalibur" value=""/>
-      </software>
-      <software id="pwiz" version="3.0.4098">
-        <cvParam cvRef="MS" accession="MS:1000615" name="ProteoWizard" value=""/>
-      </software>
-    </softwareList>
-    <instrumentConfigurationList count="2">
-      <instrumentConfiguration id="IC1">
-        <referenceableParamGroupRef ref="CommonInstrumentParams"/>
-        <componentList count="3">
-          <source order="1">
-            <cvParam cvRef="MS" accession="MS:1000398" name="nanoelectrospray" value=""/>
-            <cvParam cvRef="MS" accession="MS:1000485" name="nanospray inlet" value=""/>
-          </source>
-          <analyzer order="2">
-            <cvParam cvRef="MS" accession="MS:1000484" name="orbitrap" value=""/>
-          </analyzer>
-          <detector order="3">
-            <cvParam cvRef="MS" accession="MS:1000624" name="inductive detector" value=""/>
-          </detector>
-        </componentList>
-        <softwareRef ref="Xcalibur"/>
-      </instrumentConfiguration>
-      <instrumentConfiguration id="IC2">
-        <referenceableParamGroupRef ref="CommonInstrumentParams"/>
-        <componentList count="3">
-          <source order="1">
-            <cvParam cvRef="MS" accession="MS:1000398" name="nanoelectrospray" value=""/>
-            <cvParam cvRef="MS" accession="MS:1000485" name="nanospray inlet" value=""/>
-          </source>
-          <analyzer order="2">
-            <cvParam cvRef="MS" accession="MS:1000083" name="radial ejection linear ion trap" value=""/>
-          </analyzer>
-          <detector order="3">
-            <cvParam cvRef="MS" accession="MS:1000253" name="electron multiplier" value=""/>
-          </detector>
-        </componentList>
-        <softwareRef ref="Xcalibur"/>
-      </instrumentConfiguration>
-    </instrumentConfigurationList>
-    <dataProcessingList count="1">
-      <dataProcessing id="pwiz_Reader_Thermo_conversion">
-        <processingMethod order="0" softwareRef="pwiz">
-          <cvParam cvRef="MS" accession="MS:1000544" name="Conversion to mzML" value=""/>
-        </processingMethod>
-      </dataProcessing>
-    </dataProcessingList>
-    <run id="QC_Shew_13_02_pt1_1_2_CID_13Jan14_Leopard_13-12-14" defaultInstrumentConfigurationRef="IC1" startTimeStamp="2014-01-13T16:55:09Z" defaultSourceFileRef="RAW1">
-      <spectrumList count="6" defaultDataProcessingRef="pwiz_Reader_Thermo_conversion">
-        <spectrum index="0" id="controllerType=0 controllerNumber=1 scan=10071" defaultArrayLength="613">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="1103.60205078125" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="23720.712890625" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="5.90962125e05"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="187.1376953125" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="1288.97509765625" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.900438333333" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 709.31@cid35.00 [185.00-1430.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="4"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="5.294204235077" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="709.3134765625" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="185" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="1430" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="709.31" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="709.3134765625" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000041" name="charge state" value="2"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="7.892569375e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="6540">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAAAGhkZ0AAAACglgRpQAAAAODUAmpAAAAAAAIlakAAAACgQGVqQAAAAIB5gmpAAAAAwEe3akAAAABAQ+ZqQAAAAACg+mpAAAAAwA5Ca0AAAACgLMVrQAAAACCN5WtAAAAAIMBGbEAAAABAGWtsQAAAAEBDgGxAAAAAwFbBbEAAAABAxSNtQAAAAIAbXW1AAAAAgGSmbUAAAABAouhtQAAAAKAygm5AAAAAAKnGbkAAAADAwgRvQAAAAMAwRm9AAAAAwA+Jb0AAAABgxrVvQAAAAODOFHBAAAAAIEkjcEAAAACgJzFwQAAAAKAWTHBAAAAAIMlkcEAAAACgwsFwQAAAAEAp1HBAAAAAYCnjcEAAAAAgXPRwQAAAAIAeBHFAAAAAYDMTcUAAAADAHzVxQAAAAIC1Q3FAAAAAwAuDcUAAAADAv6JxQAAAAEDLwnFAAAAAIPThcUAAAAAAVANyQAAAAABjRHJAAAAAgPJqckAAAADA/YJyQAAAACD0onJAAAAAwKKzckAAAADAC9NyQAAAAMC25XJAAAAAQNjyckAAAADAdgRzQAAAAACZM3NAAAAAANlHc0AAAABAzmVzQAAAAEBbdHNAAAAAoM2Cc0AAAADgl5NzQAAAAEAMs3NAAAAAAOi/c0AAAADAkRV0QAAAAMAwM3RAAAAA4PVSdEAAAABAI2V0QAAAAABYdHRAAAAAABqkdEAAAADAyrJ0QAAAAECNwnRAAAAAoNjkdEAAAACgQwV1QAAAAMDSInVAAAAA4OswdUAAAABg7EN1QAAAAEB5VHVAAAAAAAZndUAAAABgL3V1QAAAAACWk3VAAAAAQGCjdUAAAAAAIrR1QAAAAICw1HVAAAAAAOTidUAAAACA4O51QAAAAMDGA3ZAAAAAIGwXdkAAAADgTCR2QAAAAMB9MnZAAAAAQL9CdkAAAACAMVV2QAAAAIDPZHZAAAAAQFl3dkAAAADAooZ2QAAAAEC7snZAAAAAgB7DdkAAAAAA0dV2QAAAACCU5XZAAAAAgN7ydkAAAADAZwd3QAAAAEA6JHdAAAAAwH43d0AAAADAFkZ3QAAAACA0k3dAAAAAgKi1d0AAAAAgPNR3QAAAACCZ5HdAAAAAADX3d0AAAABgJAV4QAAAAEAtFXhAAAAAgCgmeEAAAACAGTd4QAAAAMDYUnhAAAAAIJ91eEAAAADA1Jh4QAAAAIA4s3hAAAAAANHFeEAAAABgjtV4QAAAAACo5XhAAAAAQND3eEAAAACAwgV5QAAAAEC1N3lAAAAAoJtpeUAAAAAgeHV5QAAAAMBFh3lAAAAAYPGVeUAAAABAiKV5QAAAAICX9nlAAAAAwOoEekAAAACALxN6QAAAAACLJXpAAAAAAHA0ekAAAABAdmR6QAAAAEAzdHpAAAAAQNqEekAAAADAs5Z6QAAAAEAgpXpAAAAAQPCyekAAAABgGsN6QAAAAACy1npAAAAAQOPsekAAAAAAg/Z6QAAAACDPBXtAAAAAIDA1e0AAAACAS2p7QAAAAMBUdHtAAAAAQEmEe0AAAAAgyJV7QAAAACAqqXtAAAAAoMm2e0AAAACgmMN7QAAAAACO03tAAAAAwMLle0AAAABg1vZ7QAAAAIC6FHxAAAAAABAkfEAAAAAARkZ8QAAAAMC+Z3xAAAAA4Kp0fEAAAAAA24Z8QAAAAABVlXxAAAAAoF+ifEAAAACA+MV8QAAAAODZ5HxAAAAAoDT3fEAAAACg4gR9QAAAAOBqKn1AAAAAYOBGfUAAAADgZVZ9QAAAAIA2Z31AAAAAYFGUfUAAAACAwKV9QAAAAMDisn1AAAAAQKvFfUAAAABgg+19QAAAACCg+X1AAAAA4PYDfkAAAABgeRR+QAAAAEAVNX5AAAAAwLRFfkAAAADgbFR+QAAAACCAaX5AAAAAQF+VfkAAAADgdap+QAAAAMA3tn5AAAAAQFjHfkAAAACA3eh+QAAAAEAc9H5AAAAAQCEXf0AAAACgTyR/QAAAAOBgN39AAAAAgJVGf0AAAAAA/FR/QAAAAGB3YX9AAAAAwFB3f0AAAABAQYd/QAAAAMCEmH9AAAAAwMWqf0AAAAAgGbd/QAAAACBY139AAAAAAE3qf0AAAACAtfl/QAAAAIBoA4BAAAAAANQKgEAAAABANxOAQAAAAMACIoBAAAAAYPErgEAAAAAAVzqAQAAAACC0RIBAAAAAwIJLgEAAAADAcFOAQAAAAIApXoBAAAAAQCxlgEAAAACAunKAQAAAAED3eoBAAAAAAGiDgEAAAAAA+4qAQAAAAEAik4BAAAAAQHqjgEAAAAAAV6yAQAAAAIB8s4BAAAAAAL67gEAAAAAA0cOAQAAAAMDIzIBAAAAAwNPRgEAAAAAgJNuAQAAAAODz4oBAAAAAgC3rgEAAAADgivOAQAAAAIDB+4BAAAAAgJACgUAAAABgbAuBQAAAACCYE4FAAAAAAAMlgUAAAAAAyyuBQAAAAMB/M4FAAAAAwD4+gUAAAABA20OBQAAAAIDLTIFAAAAAANhRgUAAAAAgZVqBQAAAAIC7YoFAAAAAwClrgUAAAABAwXeBQAAAAMD/goFAAAAAQH+NgUAAAAAg35OBQAAAAEBVm4FAAAAAwOGlgUAAAADgDKuBQAAAAGCDuYFAAAAAACK/gUAAAACA/syBQAAAAICn1IFAAAAAYEnagUAAAADAu+GBQAAAAIAC6oFAAAAAwJrxgUAAAAAAmvqBQAAAAAAaBIJAAAAAALoLgkAAAAAAfxeCQAAAAACOK4JAAAAAQNQwgkAAAABA3D+CQAAAAODHRoJAAAAAwKFLgkAAAACA9FOCQAAAAMBKYYJAAAAAwONqgkAAAAAAyHaCQAAAAMATfYJAAAAAoFSFgkAAAABAapKCQAAAACD6nIJAAAAA4CGjgkAAAADgkquCQAAAAKCzs4JAAAAAYLa7gkAAAABgBMOCQAAAAAByzIJAAAAA4GTUgkAAAACgdt6CQAAAAOD85IJAAAAAAAIDg0AAAACAQhSDQAAAAAAPG4NAAAAAoOUjg0AAAACAADWDQAAAAAAjPINAAAAAQGtEg0AAAAAARkuDQAAAAMCBUoNAAAAAgK5kg0AAAADAdW+DQAAAAIDheoNAAAAAwGiLg0AAAAAgTJmDQAAAAEDeqINAAAAAgNqtg0AAAACAWbyDQAAAAGAmxoNAAAAAgEbMg0AAAABgMuGDQAAAAGC66INAAAAAgKrzg0AAAACA/vuDQAAAAIDKA4RAAAAA4C8LhEAAAACAYhKEQAAAACAaHIRAAAAAwKcihEAAAADAECiEQAAAAABdNYRAAAAAwG48hEAAAABAVkWEQAAAAKBYS4RAAAAAoLFUhEAAAADAp1yEQAAAAAC4ZIRAAAAAwKR2hEAAAACgeoGEQAAAAECEkYRAAAAAgKCWhEAAAAAA/5uEQAAAAEA0pIRAAAAAgKKrhEAAAACAUbOEQAAAAADVu4RAAAAAQF7GhEAAAABAGc2EQAAAAGBB1IRAAAAAgDHchEAAAACA2OuEQAAAAIC9+YRAAAAAwBsChUAAAAAAtguFQAAAAMD4E4VAAAAAIHwbhUAAAAAAZSWFQAAAAADIMoVAAAAAwMU4hUAAAACAnz6FQAAAAMA9RIVAAAAA4FNLhUAAAAAA1lSFQAAAAACrXIVAAAAA4BRlhUAAAABAu22FQAAAAABVeoVAAAAAQCWBhUAAAACAZ4uFQAAAAOAUlIVAAAAAwD2chUAAAABgBKSFQAAAAIDTr4VAAAAAoES8hUAAAADAqsmFQAAAAMA+4oVAAAAAQCnnhUAAAAAA5+yFQAAAAEAA8oVAAAAAgMg6hkAAAABA7FOGQAAAAACihoZAAAAAANKLhkAAAABA76OGQAAAAIDCq4ZAAAAAQCW0hkAAAADA7MCGQAAAAMARzIZAAAAAgC/ahkAAAAAAQOSGQAAAAEBj9IZAAAAAwFz9hkAAAABA+gSHQAAAAECLDIdAAAAAgAMrh0AAAACAezKHQAAAAED7OodAAAAAAJJEh0AAAACAF02HQAAAAADxXIdAAAAAgK9ph0AAAABAQZSHQAAAAMCoo4dAAAAAQFLDh0AAAABAoMqHQAAAAIAc6YdAAAAAAKYUiEAAAABAyxyIQAAAAIABI4hAAAAAQFwziEAAAACApkOIQAAAAMCBS4hAAAAAQCVjiEAAAACA92yIQAAAAMDIcohAAAAAgO6EiEAAAABAbIyIQAAAAMC8u4hAAAAAQI38iEAAAACA0ASJQAAAAMD4C4lAAAAAQK8TiUAAAACAfzCJQAAAAMAQN4lAAAAAgM1CiUAAAABA80+JQAAAAEA8XIlAAAAAAL5kiUAAAADAQ36JQAAAAIDvhYlAAAAAAH+UiUAAAAAATZ2JQAAAAABNqolAAAAAQKC3iUAAAACACcKJQAAAAMD3y4lAAAAAgHrTiUAAAACA7d2JQAAAAADe5IlAAAAAgO3qiUAAAACAvvuJQAAAAEBgDIpAAAAAAJITikAAAABAQCKKQAAAAEAZK4pAAAAAQC8+ikAAAACAQUSKQAAAAADwTopAAAAAAFdcikAAAABApGGKQAAAAABSZ4pAAAAAALRzikAAAAAAIY6KQAAAAMD2lYpAAAAAAF6qikAAAACA07uKQAAAAMCywopAAAAAACvVikAAAAAAx9yKQAAAAIAzC4tAAAAAgF4fi0AAAADAAzKLQAAAAIDzO4tAAAAAAHBFi0AAAACANkyLQAAAAEDkU4tAAAAAALhci0AAAADA3HGLQAAAAEB0hItAAAAAgFSPi0AAAACAFqWLQAAAAMCHrotAAAAAgBm1i0AAAAAA/cOLQAAAAABKy4tAAAAAwFjQi0AAAACA/NqLQAAAAAAB+ItAAAAAgGgDjEAAAADANw6MQAAAAICILIxAAAAAwCBMjEAAAABA4lSMQAAAAMCRdIxAAAAAgG18jEAAAADA7YaMQAAAAIBdjIxAAAAAANiVjEAAAACAP6WMQAAAAIAjtYxAAAAAAGHBjEAAAABAwuaMQAAAAEBD94xAAAAAQD4AjUAAAADAGhWNQAAAAAC2HY1AAAAAANBLjUAAAAAAZ2qNQAAAAIDib41AAAAAwDx2jUAAAACALX2NQAAAAID3ho1AAAAAQPiTjUAAAAAAUZyNQAAAAADx5I1AAAAAAJbtjUAAAAAARPWNQAAAAACP/Y1AAAAAgHkMjkAAAADAlROOQAAAAADfHY5AAAAAgFMkjkAAAABA7imOQAAAAACHRo5AAAAAgCFNjkAAAABA0laOQAAAAABpX45AAAAAwBVujkAAAADAXXWOQAAAAEBnfI5AAAAAgMGBjkAAAAAAXtWOQAAAAMBl3Y5AAAAAgBnujkAAAACAnfaOQAAAAIBeBo9AAAAAwLMrj0AAAACAWDWPQAAAAMA+TY9AAAAAwEFcj0AAAADAyWyPQAAAAACohI9AAAAAgK6Vj0AAAADAALaPQAAAAIBcvo9AAAAAQCvNj0AAAAAA+NyPQAAAAAAb5o9AAAAAQH7sj0AAAABAYvyPQAAAAIBwB5BAAAAAgOMKkEAAAABA8w6QQAAAAGChEpBAAAAAgCMXkEAAAAAgZCaQQAAAAMD2KpBAAAAAYGgwkEAAAADAnj6QQAAAAOCXVpBAAAAA4GJbkEAAAAAAQF+QQAAAAIDLapBAAAAAgLNukEAAAABAo3KQQAAAAODfhpBAAAAAgLmKkEAAAAAgz42QQAAAAKCokZBAAAAAALuikEAAAACgYq6QQAAAAABUspBAAAAAoCu3kEAAAACgPrqQQAAAAEA+vZBAAAAAgOXFkEAAAAAA3NKQQAAAAMAo1pBAAAAAwFr2kEAAAACAfvqQQAAAAAAC/5BAAAAAYJkBkUAAAACAZDKRQAAAACCqNpFAAAAAgGg+kUAAAAAg+kGRQAAAAACdRJFAAAAA4EdTkUAAAACApVaRQAAAAEDuW5FAAAAAoMdrkUAAAADAmm6RQAAAAIC5fpFAAAAAgPWXkUAAAAAgVZuRQAAAAIDvn5FAAAAA4LqikUAAAABgu7ORQAAAAMBBt5FAAAAAwIXSkUAAAABAm9qRQAAAAIBh35FAAAAAQJzjkUAAAABADeeRQAAAAEAM65FAAAAAYLDukUAAAAAAPfORQAAAAGDO95FAAAAAwLv+kUAAAABASgiSQAAAACABE5JAAAAAABAXkkAAAAAg6BuSQAAAAGCiIZJAAAAAgNw+kkAAAACgpVaSQAAAAOCkWpJAAAAA4L9fkkAAAACAb3KSQAAAAAA7epJAAAAAgLmekkAAAAAgbbaSQAAAAKCAvJJAAAAAYP3HkkAAAAAANs+SQAAAAMBc05JAAAAA4JbXkkAAAABgQdySQAAAAAAR45JAAAAAQGb3kkAAAACgyvqSQAAAAKA5S5NAAAAAQOZSk0AAAACA+nOTQAAAAEBmkZNAAAAAAEWbk0AAAABgnNaTQAAAAIAo35NAAAAAQEbjk0AAAADgNeiTQAAAAMC7GpRAAAAAgOYjlEA=</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="3272">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>p1nrQjqhrUNvYUNCtZoXQ+TiYUOn5KZDqe17Q6Eou0QnWb1C+bmWQpibEEPN+KlCn1WkRC7uKUPDwptD+08GQ3C2/EL5KpVCajSyQ+WueEPZuDpE1IdKQzLeUEISXSdDycOPQ1qM/UK0eF5Ex9E7Q+CpCEOEdSRDb+KrQ8TEiEPxRhhEb2XeQ9At+0JFOlJE9LZVQ5DejUTuJI1DhkorQ8GKY0PNmaVEtbE3RTFR7kLohwNDPgAcQ4xKq0O1YjZEwYKRQ7wkakNvYBRExR2tQx+dpUOd2nxDc9jjQ3SIp0NMjENDlXUBQxniDkTiYYtGHMiMQh3hNUNMCKVDbWePQ7QKCUSf+SBDGG53Q3kXMkTsvBxEsmISQoUmUkM3NLhDgHRNRK26iUMAO65Dp8dBQ+HJCkTh381DQv4xRBDghUQwymRECmXzQ0OqCUPYsEpDotMSQz5A00Ks8RZEunSLQ7EiIENR2g1EpokdRPLUhkMisDBECuvbQyFI8EPt4yVEZkotQxRaukPtfIBDROSzRPm1sERI3sRDRvb3Q42ok0MiwF9DoRdDQ9jEVETHaA9EBfOMQ+wNukNGiYhEGwkPQ2SynEPpgTxDtDtaRMJILkOnX7hESODGQ/RP00PM8Y1EC8NGQ9Bs1kOYHB1EcPjuRA3wgESvYIhDpMmPQ5JWdUM1coFD4mE5Q0bHDkSKi+tDRBsVQ9Wfm0ThuuJFCviBQy5KjUQ/T9BDAumOQ9/JskMIBnBDTFhjRPOutENRlVlCikNKRIx4SUN0ColEM5/MRAlgzkQfmC5Dbi9gQ5ko4EOIlR1EwRnpQkrihkSRrwhE7EXEQ6mSU0QFnQZFLXjOQhfnNkQoVcpDykJxRPynPERp26NDTYaBQxuE90K9C6dD46+hQmxWlEPzhMJDkMOJQ96UnkTfG69D5lbvQ5KMQETv0RxEbuAHQ7QS8kJfSRpDgdz+Q6ZSgEPsmxxEYpbdQ2NIiES1ej9D3BZdQ8h2zkMYzphD/boeRIRfqkK2chBFtD/aQwg9EkTzIVVDh63GQ9Rf5EJ0fwlFaxP/RJymfEN/KB9ELnweQ9Bkd0Oz35RERy+7Q/BOekRpuSdEeO3FQ+dutEOA8flDmw9yQ7G3p0TfpQZEqasNRP/xi0RXXLlFf3a5RMUgtUSXdZdEqFvyRBMEYEMgDt1DddqXQ3fkTUMugSVES7SzQyhRQUNaqU1D9Dx6RN6fPUQsdzlFVJqEQ+9VLkTTHP5CK42SQ98Nm0R+mgNEBN/nQrpsIUNlqztEsA2XRAT1oERWKVNEzPyURGcIS0Qi07tEKv2eRJg6CEONWwBGBbYZQxya/kTYzilD4Qj+QsK5NkSgsRlErrD6QskIIUWupYxE9EI0RaqeX0W9af1DJFXLQg0Xa0Luj4lDdAP0RNgolUTQTR9EqmUERJu5i0Q6nJZD4GqZRGojAEVSpJxEhzuXREGQ8EJlYpVDmObqQyBIDET+5Q5Fln6iRrhNHEWzQMFD8J9KQ8oLK0SCeVxEhabdRSyWFkNXVz9EtkMaQ9KtjkSD3nVEV/VBRDFVTkMyA5hDxEzOQvUAAkRsj19EuQNOQ5BqVENl2ZFDqnDYQyRJ5kRmoZtEzUTFQ0Vo50M8hlJDdX1QRC47k0NeRgBEHO6pQ1L3OUTei09EnjivRF0R2EOb+btDbMvsQ8oeHkO9kMRE2HKpRIgd7kU8iulF5JdKRO33X0RpMLpCli8aRC37U0SCDmhD3+UWRQL63UQ1vO1ENNJBRFugVUOxbSBF96/bRH696ERC0p1FNlq+RCZa60O6slREox+pQ5CK80OkTNlDTx4CRMQr2kOQCXNDPEsFRI7Ni0Sv5wdFIQKgRA10F0X/vxBFBhmMRotfAUZDcktDwIfVQiMN5UTBq6BG0DW6RbLMAEVptPhD+qDKQ3irVEPWeWFDfZiIQ2KG40PMwJVDHtEgQyrbjEQmUFhF7i5PQ14UGUNvZV1FCj0dRZ+19kN6/w9EtDcaQ6khAETyxBhFznynQw9qHkSbNSlDdkBhQ4pdt0LbOOtCEtGbRUt7b0J+pxpEhMKLQ8DFxEPlbXBCiLE9RNBYhEMglQtDlICLQrOguUMOhqpCiOQyRHgmKUQ39MNDGetGRIMAtES9+RVE5DZ9Q14ryUOlaMlDZB7LRKkejEQMaq1Dnt4nRAx7sULnxchDDCdhQ+IvokPCjSlF3EGyQ2pTQUQrlxxEThLJQ/T/YkIewNJE0bM2Q+S2oUM3HWNFeyMGRBCTukNYAi5Dt4duRLxSaUPUikZEDK0GRrqYMEOwrwxEE3uNRNfD50IXD8BDK09UQx3Ln0S4o+BDyhIVRGlGt0PoZ8tDNRs0Q22YAUX7DSpFfzzQQ4kMi0Sr4oVEPvJ4Q1mYF0UgDwZEl9M3Q7QivUKEpNRE0lVXRMUvEEZHz3ZE3la9Q8x0pUMq6RZEmFvjQzkKEkS4MK9CyxKeQteTnEPorqtDLFWhQ6I1uUPORCBE8VQ6Q7STe0MmN7FDGJ1+QxQnPkPOwhlDkEUsRKhhCkTqH59DzkYJQ9XYaUQeINFC8ST6Q/UaBUTqkAtEQJaqQlFWhUOhnxVEiEAYRaCgzEQ1xthDapk5RNIk7UT2yxlEvaxORAj/zkKl45lDpNNNREVnKUSyYnpDZjY2RGj96EX5YeVEfWqyQ9qCrEIJmRVDBsbLRAFXLkQw4JJD385VRI8rwUIzBzJEMUYQRIxu+kKgwHRDwE42Q89/JEOmMY9DjMTYQ7tuYUbQnpdFxgz/Q6mRV0MWdOdC9iSPQymGUUTCy0dELvyKQ2fDb0OEchxE08TDQ6x/JkNFK7tD/E3XQ/rdi0OhEx5D3Gj5Qz+cgkPzNAZD4uOqRFOIQkOFbINDom4jQ8qK/UNc6sFEBpdnQ5xBLUO35sdD/MD0Q7uNAUT7F7FD6GNkRTaOn0VHkCFF0sWMQuod/kMiPoNCbVG5RpAHqENkNNRCA4PGQyLdikNhNXpD7NsKQ6e8AEQTt+FCf3IqREQa2EPt6kxEUSd0RGdaGEWoxKBEE4vWQ8sJsEKuAJhDa8pNRJqC3USB4IBEMGKzQ9JteEMu26FChtiAQ3gAnkPCWYlEOEuJRK2eUUN+EUdDRFLCQjIUVkMUL1pEiB79Q/BZmUNmXp1CoYygQ12WF0SOYLZCgvqMQ4F0EEVJsspEy2bHQ/JxV0Pwzj1DoBtSQwwEI0QmHYVCbGYGQ7C0YUMw+MRDvKuOQzn38EJ8C51ExtvcQ0+fd0Nt2qRD6FcPQw==</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-        <spectrum index="1" id="controllerType=0 controllerNumber=1 scan=10072" defaultArrayLength="355">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="394.351776123047" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="3.89341875e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="1.87007225e06"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="110.116394042969" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="814.990295410156" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.902475" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 403.73@cid35.00 [100.00-820.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="5"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="2.022128582001" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="0" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="100" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="820" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="403.73" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="403.73" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000041" name="charge state" value="2"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="1.586254625e06" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="3788">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAAAHOHW0AAAAAAiA5cQAAAAKDLyl9AAAAAoBELYEAAAACAFiRgQAAAAADTQmBAAAAAIFQDYUAAAABAkUJhQAAAACBE4WFAAAAAwE0hYkAAAABA3WNiQAAAAMCbh2JAAAAAQFUtY0AAAAAgPUVjQAAAAKD4n2NAAAAAwHfFY0AAAACAEeRjQAAAAED9A2RAAAAAQHviZEAAAAAgjyBlQAAAAMAWSWVAAAAAAHlpZUAAAAAgNoZlQAAAAGAVpGVAAAAAQCHjZUAAAABAHyZmQAAAAIAtQmZAAAAAgE6DZkAAAACA2qNmQAAAAEC3zWZAAAAAgDXlZkAAAADgJyZnQAAAAGDLRmdAAAAAQEhmZ0AAAADA14JnQAAAAADx5mdAAAAA4EQlaEAAAABAa3BoQAAAAABG42hAAAAAwLUDaUAAAAAA0CRpQAAAAID9QWlAAAAAALVkaUAAAADA+IRpQAAAAMCyAWpAAAAAgJwlakAAAADAOmVqQAAAAOAapWpAAAAAIGLLakAAAAAgweJqQAAAAED2BGtAAAAAQFUha0AAAACAxERrQAAAAMB/ZmtAAAAAQOioa0AAAAAAIMJrQAAAAGCC72tAAAAAAMZAbEAAAADAmWRsQAAAAMAmp2xAAAAAwCDHbEAAAADAYuZsQAAAAAASAW1AAAAAAOAibUAAAAAAA0ZtQAAAAMD3Z21AAAAAwNuFbUAAAACABcZtQAAAAMB65W1AAAAAAMEEbkAAAADAPyRuQAAAAIALO25AAAAAwJ+GbkAAAACACqZuQAAAAMAR0W5AAAAAwK/vbkAAAACAQwlvQAAAAMDPJ29AAAAAgOVGb0AAAABAP6hvQAAAAEANx29AAAAAAEEDcEAAAAAgdBRwQAAAACBEJnBAAAAAII8xcEAAAABg8kJwQAAAACAFVHBAAAAAwA5icEAAAACAn49wQAAAAOAYmnBAAAAAoCeycEAAAABg2tJwQAAAAAAJ5XBAAAAA4LLzcEAAAAAALRRxQAAAAKBwJHFAAAAA4FlDcUAAAABAHVNxQAAAAABeg3FAAAAAoHudcUAAAACAqrNxQAAAACAWxHFAAAAAQPXNcUAAAABAdeRxQAAAAEAWA3JAAAAAgFMTckAAAABAtiJyQAAAAGB6L3JAAAAAAG1LckAAAACgQWJyQAAAAAAfhXJAAAAAwDOUckAAAADgkqRyQAAAACC643JAAAAAYP7zckAAAADAbQVzQAAAAOAsE3NAAAAAYAwic0AAAADgTENzQAAAAGDVUnNAAAAAwIlec0AAAABgB3NzQAAAACCIlHNAAAAAoOaic0AAAABAT7VzQAAAAACXzHNAAAAAgPbac0AAAABgjupzQAAAAEDl9HNAAAAAQC0DdEAAAACAnBF0QAAAAIBhI3RAAAAA4JwtdEAAAACAJUF0QAAAACCFVnRAAAAAAG6EdEAAAACgrZV0QAAAAMD/pHRAAAAAgM6zdEAAAABA48V0QAAAAMCk03RAAAAAwEXjdEAAAADAqAp1QAAAAAD1G3VAAAAAgOE0dUAAAAAAQ0B1QAAAAOBaUXVAAAAAIHBcdUAAAACAYWZ1QAAAAOCZhXVAAAAA4IWSdUAAAADgxpx1QAAAAAD6s3VAAAAAYJvkdUAAAADgf/F1QAAAAIDCEHZAAAAAIFIkdkAAAABA6Gx2QAAAAOB8gnZAAAAAIDGUdkAAAAAgIKx2QAAAAMA+1XZAAAAA4Gv7dkAAAAAAKgV3QAAAAODXFXdAAAAAwAwid0AAAAAAskN3QAAAAECMWHdAAAAA4Jpzd0AAAADA34N3QAAAAKAulHdAAAAAgLOwd0AAAABg2cB3QAAAAMBU2HdAAAAAwNntd0AAAACgXvl3QAAAACCwEHhAAAAAYJUjeEAAAABAxTl4QAAAAGAwSHhAAAAAoHJVeEAAAAAgeWV4QAAAAADQcnhAAAAAAKqCeEAAAADgTY14QAAAAOCgpXhAAAAAYN+0eEAAAACANst4QAAAAOB93HhAAAAAYJM2eUAAAACgAat5QAAAACDJu3lAAAAAQO/TeUAAAABAD+Z5QAAAAIBxBHpAAAAAYKoUekAAAAAAgSd6QAAAAEAuNXpAAAAAoNxEekAAAADA5lV6QAAAAOBtfXpAAAAAICTOekAAAADgTOR6QAAAACCi9XpAAAAAIFsfe0AAAAAAzjV7QAAAAEDmRXtAAAAAoKhUe0AAAACgZIZ7QAAAACD3oXtAAAAAYIHIe0AAAADgxdh7QAAAAGC+C3xAAAAAoCUwfEAAAAAgmmZ8QAAAACBgdXxAAAAAwJuGfEAAAADATJR8QAAAAGBQyXxAAAAAIDrUfEAAAABAAOV8QAAAAICdPH1AAAAAAL5GfUAAAAAg9lN9QAAAAGC2ZX1AAAAAgAd3fUAAAAAgAYh9QAAAAICwl31AAAAAoGWrfUAAAACgh7V9QAAAAECrwn1AAAAAYJzTfUAAAABgzd59QAAAACBoBX5AAAAAgA8bfkAAAAAA0id+QAAAACAuNn5AAAAAQPJVfkAAAABgpGV+QAAAAECzh35AAAAAIGKVfkAAAAAgp61+QAAAAGADwn5AAAAAQBzSfkAAAACAY+V+QAAAAOCtBX9AAAAAYIsUf0AAAAAgbCh/QAAAAICqNX9AAAAAAIZEf0AAAACAjlV/QAAAAKC8an9AAAAAAL92f0AAAABAO4l/QAAAAOBKp39AAAAAIEnJf0AAAAAgCtl/QAAAAMAM6n9AAAAAIID5f0AAAABgQQKAQAAAAGB+CoBAAAAAQJsfgEAAAACgoiqAQAAAACCpPoBAAAAAgNJagEAAAADg+2qAQAAAAMDygoBAAAAAgJOOgEAAAAAA0JSAQAAAACCqnIBAAAAAQO6jgEAAAAAgcK6AQAAAAKAju4BAAAAA4NrRgEAAAACA5tiAQAAAAMAr4IBAAAAA4FjmgEAAAACgCf6AQAAAAOC4B4FAAAAAYO0YgUAAAADgBR6BQAAAAKB5LIFAAAAAIOE9gUAAAADgKGOBQAAAAECKbIFAAAAA4MVygUAAAAAgTIOBQAAAAOA0jIFAAAAAwHyzgUAAAAAg/ryBQAAAAKDGw4FAAAAAQHjLgUAAAABAN9uBQAAAAMDj44FAAAAAoLTqgUAAAADg2PKBQAAAAMAu+4FAAAAAIJUDgkAAAABArA2CQAAAACAHFIJAAAAAYFcagkAAAACgklSCQAAAAKAjY4JAAAAAoJNrgkAAAACAfXWCQAAAACBWe4JAAAAAoPiCgkAAAADgWIuCQAAAAAD1koJAAAAAwEesgkAAAAAg782CQAAAAGB424JAAAAAoMTjgkAAAACg++qCQAAAAOAF+4JAAAAA4Gp8g0AAAAAAnIqDQAAAAGD7q4NAAAAAwL67g0AAAACg08SDQAAAAEBV5INAAAAAwBv2g0AAAADgKwOEQAAAAKAOFIRAAAAAYHUbhEAAAACg5yqEQAAAAGA/Q4RAAAAAILNLhEAAAADAKVOEQAAAAOAjbYRAAAAAgOKGhEAAAADg+ZuEQAAAAKCQs4RAAAAAQOrChEAAAACgNdyEQAAAAECn+4RAAAAAIAcshUAAAADgEjSFQAAAACBvPIVAAAAAIBhMhUAAAADAbVOFQAAAAMDkpYVAAAAAIEWuhUAAAAAAw9GFQAAAAIDe3IVAAAAA4BzlhUAAAADgqhaGQAAAAIDZI4ZAAAAAoBFjhkAAAABAAe2GQAAAAGAmpYdAAAAAIMpliEAAAADg0qOIQAAAACDcrYhAAAAAIOx3iUA=</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="1896">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>27d8Q5AdhUPZUv1DAHmrRFACFEa69wNFat0aRTFaLERQLhNElvGHQ5VScUVP75JDT64uQ7Tu50MbsNdFCM5XRS4Y+USUIWlDaWyWQ0wOAUTjQUBD925dRPyd60ST1yZE7WGJRuWWvUP/WQZDUOBaQ7P7jkTyn0dEtpGmQ1tbgkMN9nVFTvN+RbYEFESwCwVE4n0ERIO5AkQ0EgJFjFi3Q4BwpkWJqwxDrl0RRF0YKEYp36lEvmhxQ7oalkT7jwxESvIxRI77nUNFsYpE6e8SRDZd4kWJ3ipFGgQyRFwhE0RuFHVDeUENRISGGkQy7ZBF1CAfRD2FkUR5lMlEAaUYRJyXLkUSQiZFDhE4RFyE10O11XVEuS07RB3WDETfWJNDvA8JRs/cUkXmU6VFWsd0RXvAA0RbuQJFvd7GRHG5zUOtEsVDvGYsRZClD0UwpQhFAWG/RBQPA0XGiQxEFJXtQwOyK0TLoVND62bmQ+Z7jkQXjyZF8xDYRSPOPkNvpBlFRUHCRDz/nURbwrpEuOoERIf0MUbMXihFmFWLRKnt2UQZcDtIAZ/8RrhMV0YCM4RFqo4PRDItWUQiYDhGX+oeRFF+skQ9QuFEuNAhQ4RmVkX4I0pEioF1RLhWAEcGpp5ETHC6RcS+cEXp8r1F6hMMRbCR0UIPhnJEWneuRDviJkefYIVFdzT5RDCULkTg2iRGfPQzRXfbJkXjlitF1vb4RNWfMEP+46JE+G7RRHWOCUTj/J1EXqb7Q+pBRkSba6BEFCumRBfCEERKQoVE2EsKRbdzBUViIdFEnZPpRDYVkES3epJFzJeLRRJci0QQ+f1EUNZJRd/SCUa7QwtG7cmOQzMYOkQp8XVEw4mURca3vkURLf1FarP6QzfnpUa0o31FWMAIRgwIL0U/S5ZEnpitREHbA0WmIiJGnDJbRZfTy0QvFVhGx2odR2Ac80Xm7WNF9EpsRJtbxkS27YJFxkMNRQpjLEW8G75IJEqtRhMoJ0ZFmetGV61rQ073U0QR4ZZEHl45RCc2X0QwppVE/EQpRpBmcUXO1iJG1VxvRI3xA0RxIqNEzaxoRJ5URESsUkxEi5+ORDIliUPFIwtFydDARGqZnkSXHglFdLEORbwB7EOp4wxFduZQRJoDykNI3QFEeflARCrTfkTlWvFEgkgERU11OEV+3ppESoXLQ+C+akNSa7FD909RRL4JI0U0Y8JEi7Y2RRZ5Y0QuDyNFZjWoRMLDm0QabYBFKe3ERofVbEfTyt9Defm9RJOAlUQtYOVEdum/RK3e4UMBaahFdJyqRLqmlEPuCbVGOCT4Q/+AoUWuhmpH2D3FRvuOG0Xn7hFDe2IARQrHBkWE0z1Eb4C7RNo08EPR9fBEd+IuRLx26kQGrmpE7ieXRH1p1EQRQ6NEVjSWRPCNSESvj3lFY0WJRbCOlEVD+hBFzA+5RCmSE0UOiQpECBunRp6LUkaSkUlHW6+IRKjIUUQqV69EIVrlRfXYVEVP6ApERS/NRAzzfER0q/NDjdgFRABB90SH4KxDnQYMRrI0nEWAMkhGaEMHRRXANUZMOrFEFbcwQ7FFzEOW8KFFYD6rRGTa20SWpglFV/cgRECcfEOgF4dFQEovRDD9ykP4My1EOJ/TQ6wHSES0P4NEXQQXRG8QjENA8YVEdB1IRRh5EkXZIItECvxXQ6NZQUQT+h1ErdpGRD3M8kMHARtF1S/CQ54aOET3CGxE2VMERlSOFkQvKTtGVeMJR5aVy0XNfFlEBvqXRBNN/0T9WzZE+TBjROP7RkS/gLJDKkk4Q3AnA0OqejlEGGAMRlQYkUUtfedE4qP9Q7p1sUMbQ3lFMByCRHncmkO4CR1E2LLKQxbNMkRslMBDQMHXQzKkJkRWVDNEsSImQw==</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-        <spectrum index="2" id="controllerType=0 controllerNumber=1 scan=10073" defaultArrayLength="655">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="776.653564453125" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="62636.9921875" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="9.842114375e05"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="222.149307250977" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="1565.076416015625" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.904148333333" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 785.37@cid35.00 [205.00-1585.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="6"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="3.791263580322" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="784.86529541015625" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="205" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="1585" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="785.37" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="784.865295410156" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000041" name="charge state" value="2"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="9.16468375e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="6988">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAAIMfEa0AAAABg/kNsQAAAAKDt5GxAAAAAwK8HbUAAAADADSduQAAAAIDfT25AAAAAQGBpbkAAAABgbopuQAAAACBKo25AAAAAYFN3b0AAAACgv6ZvQAAAAOAAE3BAAAAAAAokcEAAAACA3jRwQAAAAMDcVHBAAAAAQEdjcEAAAACAZaRwQAAAAMDxsnBAAAAAADjTcEAAAADgnOJwQAAAAEDX83BAAAAAwNIBcUAAAADggzVxQAAAAKBHQ3FAAAAAQBNUcUAAAAAAz15xQAAAAGAqwnFAAAAAAF/ScUAAAADAMOZxQAAAAKDJNnJAAAAAoBljckAAAABA53ZyQAAAAEAUhHJAAAAAYPSSckAAAADAx/VyQAAAAABHFHNAAAAAwIdEc0AAAACgpmVzQAAAAIB8dHNAAAAA4F+Uc0AAAAAAaaRzQAAAAICEtHNAAAAAQJ9EdEAAAADA91N0QAAAAMD2aHRAAAAAACR1dEAAAAAAnYR0QAAAAGCso3RAAAAA4NS1dEAAAABA89F0QAAAAICD4XRAAAAAgCMDdUAAAAAAhjR1QAAAAGDSTHVAAAAAgOBmdUAAAACANHV1QAAAAIDCg3VAAAAAwHK0dUAAAADACsh1QAAAAMD613VAAAAAAF/ldUAAAAAgqgN2QAAAAEBzKnZAAAAAQGo3dkAAAACgrld2QAAAAIBYcnZAAAAAYJiTdkAAAABAC7R2QAAAAED1z3ZAAAAAQFL3dkAAAAAATwR3QAAAAICjEndAAAAAAN8yd0AAAACgWUN3QAAAAMDAVHdAAAAAwP5zd0AAAAAASKx3QAAAAMBr1HdAAAAAIGnhd0AAAACg+/R3QAAAAMD1BnhAAAAAAGAVeEAAAABAlIR4QAAAAACgsHhAAAAA4H3UeEAAAADApOV4QAAAACAx8XhAAAAAgAIWeUAAAADAqTJ5QAAAAIBHR3lAAAAA4CVheUAAAABAvpR5QAAAAAAxp3lAAAAAAC/FeUAAAACgP9d5QAAAAEDa9XlAAAAAgD0XekAAAABg6iZ6QAAAAEAINXpAAAAAgEhEekAAAAAgrVV6QAAAAEBhZHpAAAAAoFdzekAAAAAAHYR6QAAAAKBGmHpAAAAAADq1ekAAAABgDcR6QAAAAMBp03pAAAAAAO7iekAAAADAyfV6QAAAAIC7FXtAAAAAwDAle0AAAACAVlN7QAAAAIBmhXtAAAAAIK2Te0AAAADAJqZ7QAAAAIBLxHtAAAAAoP3Xe0AAAACAWil8QAAAAIDmRHxAAAAAgEtZfEAAAAAAX3d8QAAAAIC7lnxAAAAAYKqlfEAAAABAc718QAAAAIBq1XxAAAAAYHrlfEAAAADAxPd8QAAAAIAABn1AAAAAQNYofUAAAACAUTZ9QAAAAOAySH1AAAAAAPtjfUAAAABA53Z9QAAAAKAOg31AAAAAADaXfUAAAAAAwax9QAAAAKDi1n1AAAAAAEfnfUAAAACgLPV9QAAAAICzBn5AAAAAQFIWfkAAAAAAzEZ+QAAAAODXVn5AAAAAgBtmfkAAAAAg+3F+QAAAACDihn5AAAAAIB6VfkAAAACgN7R+QAAAAEDXxn5AAAAA4IPlfkAAAACg0/Z+QAAAACAxF39AAAAAAEAjf0AAAAAgWTV/QAAAACDBRn9AAAAAIMBWf0AAAABAlmV/QAAAAOCCh39AAAAAgBaVf0AAAABgK6F/QAAAAABjtX9AAAAA4PXHf0AAAABgXeV/QAAAACB8939AAAAAAIgDgEAAAABAnwqAQAAAAAD+EoBAAAAAgB8bgEAAAAAABSaAQAAAAMCuPoBAAAAAAMFKgEAAAAAgz1OAQAAAAGCVW4BAAAAAgHhlgEAAAAAgAGuAQAAAAIBfcoBAAAAAQAN8gEAAAAAA5oKAQAAAAICAm4BAAAAAQGi8gEAAAADAH8yAQAAAAIDf0oBAAAAAAN3agEAAAAAAquGAQAAAACAS64BAAAAAgCjzgEAAAACgL/qAQAAAAKB3AYFAAAAAwPULgUAAAADAsSKBQAAAAIBAK4FAAAAAwH0zgUAAAABgqEKBQAAAAED4SoFAAAAAwK9TgUAAAACAJlyBQAAAAIA1ZYFAAAAAAPFrgUAAAABg5HaBQAAAAMAGfIFAAAAAgLGDgUAAAABgDIuBQAAAAMAto4FAAAAAALyzgUAAAAAAALyBQAAAACC9w4FAAAAAQOLigUAAAACAw+qBQAAAAECf9oFAAAAAwA//gUAAAAAALQSCQAAAAICdDIJAAAAAAE4TgkAAAADAcBuCQAAAAKDOI4JAAAAAQBkrgkAAAABA1DKCQAAAAKCQOoJAAAAAYHtDgkAAAADgFUuCQAAAAOAyXYJAAAAAwB5jgkAAAADAcmuCQAAAAMCHc4JAAAAAwJB+gkAAAABAxoWCQAAAAGBsjIJAAAAAgFKSgkAAAACAXZyCQAAAAADAoYJAAAAAwByqgkAAAABAjLCCQAAAAIANuIJAAAAAAInAgkAAAADg+tSCQAAAAAA63oJAAAAAwCbkgkAAAADANfSCQAAAACDPDINAAAAAwPMTg0AAAABA5xuDQAAAAEDwJINAAAAAAFIqg0AAAADAGjODQAAAAGAOO4NAAAAAgKNEg0AAAAAAb0qDQAAAAEB1W4NAAAAAwFZjg0AAAABAemyDQAAAAOC1dINAAAAAQL98g0AAAAAgSoODQAAAAABAi4NAAAAAYIqUg0AAAAAgXZuDQAAAAIBao4NAAAAAgN6qg0AAAADAM7KDQAAAAIARuoNAAAAAgK7Lg0AAAACAD9ODQAAAAKD224NAAAAAwEHqg0AAAADALfmDQAAAAMCHA4RAAAAAwGkLhEAAAADgERKEQAAAAAByG4RAAAAAQK4jhEAAAADAEiuEQAAAAACKOoRAAAAAoGI/hEAAAACAWESEQAAAAMAqVoRAAAAAwBJchEAAAACAK2qEQAAAAACSc4RAAAAAwBmFhEAAAACA+4qEQAAAAMDtkoRAAAAAYAijhEAAAABAf66EQAAAAGC+s4RAAAAAQOXNhEAAAAAAkN2EQAAAAECZ5YRAAAAAALL0hEAAAACAmf2EQAAAAMDoBIVAAAAAQPkKhUAAAACAPBqFQAAAAEClI4VAAAAAwJAqhUAAAABgaDqFQAAAAADyRYVAAAAAAC5UhUAAAADAP1uFQAAAAAD0YYVAAAAAwNRqhUAAAABAbnSFQAAAAOCMe4VAAAAAQBeGhUAAAABg4IuFQAAAACCEk4VAAAAA4F+ehUAAAACAeaOFQAAAAADjrYVAAAAAQFC0hUAAAAAg672FQAAAAGC/w4VAAAAAIPrVhUAAAACAs92FQAAAAAD14oVAAAAAAGj1hUAAAADAkfyFQAAAAIBmA4ZAAAAAYKENhkAAAAAgNR6GQAAAAAA3JYZAAAAAgH8shkAAAAAAYTyGQAAAAOBwQ4ZAAAAAwBdJhkAAAADAGliGQAAAAEDEZIZAAAAAwDBthkAAAABAmoOGQAAAAIBQi4ZAAAAAAFaRhkAAAAAAiJqGQAAAAAC4ooZAAAAAAGGthkAAAACAhbOGQAAAAMDnu4ZAAAAAwNbShkAAAABALNyGQAAAAABa54ZAAAAAwD3thkAAAAAAIfSGQAAAAEDx/IZAAAAAAD0Lh0AAAAAAhhOHQAAAAEA2GodAAAAAgAQlh0AAAAAAviuHQAAAAICaMIdAAAAAwKE1h0AAAAAAiD6HQAAAAAAORYdAAAAAgFxNh0AAAAAAPFOHQAAAAIAoWIdAAAAAAOZfh0AAAACAH2uHQAAAAECzcodAAAAAAA57h0AAAACAOoWHQAAAAID8jIdAAAAAgAOUh0AAAADAN56HQAAAAECnpYdAAAAAQE+sh0AAAAAAqrSHQAAAAIAYvIdAAAAAAAzGh0AAAABAJdKHQAAAAEBC2IdAAAAAAIrfh0AAAACAUuaHQAAAAABh9YdAAAAAwEj9h0AAAAAAVwSIQAAAAEA9CohAAAAAAGMSiEAAAABAYR6IQAAAAMB8JIhAAAAAQEMsiEAAAACAlz6IQAAAAIA6RYhAAAAAAMBMiEAAAAAAplGIQAAAAEDIc4hAAAAAgCGkiEAAAACANayIQAAAAIApxohAAAAAwJnTiEAAAABAkOuIQAAAAEB49IhAAAAAQDf8iEAAAAAAxg2JQAAAAMBXXIlAAAAAwBpsiUAAAAAApnOJQAAAAEAdfIlAAAAAwFiEiUAAAACApoyJQAAAAIDqk4lAAAAAwOOciUAAAADAVLSJQAAAAMAm34lAAAAAAODwiUAAAABA8PyJQAAAAECgBIpAAAAAgGELikAAAABAlBOKQAAAAECGG4pAAAAAwPUkikAAAABAVjWKQAAAAEBrRIpAAAAAAJpVikAAAAAABGWKQAAAAADDdIpAAAAAAI+MikAAAACAiZSKQAAAAMD0nYpAAAAAQACtikAAAAAAdbaKQAAAAMDn2opAAAAAgLQbi0AAAABAUS2LQAAAAAAWW4tAAAAAgAN4i0AAAAAA4YOLQAAAAICooYtAAAAAwBG9i0AAAAAAxsSLQAAAAMDH0otAAAAAAJ77i0AAAACAiRWMQAAAAMBgHIxAAAAAwIstjEAAAAAAZzuMQAAAAIDXW4xAAAAAwINjjEAAAACAnmuMQAAAAIB4doxAAAAAACWDjEAAAAAAj4yMQAAAAAAOnIxAAAAAgEykjEAAAACAJquMQAAAAMC8toxAAAAAgPW8jEAAAADAf8iMQAAAAIDf24xAAAAAAJ3rjEAAAABADveMQAAAAICU/YxAAAAAwJYEjUAAAADADw2NQAAAAMDoFI1AAAAAQI0djUAAAABA8CSNQAAAAAA9K41AAAAAQP00jUAAAABAjz6NQAAAAEAFRY1AAAAAQJpLjUAAAABAfFCNQAAAAMCKVY1AAAAAwCtfjUAAAACAa2+NQAAAAMCzdY1AAAAAwCiFjUAAAAAAMpuNQAAAAMCepo1AAAAAgLmujUAAAAAAurWNQAAAAEDYvo1AAAAAgB/FjUAAAADAn8yNQAAAAEDq041AAAAAQH7ejUAAAAAAYvaNQAAAAEAw/I1AAAAAwMMSjkAAAABAASWOQAAAAABrLY5AAAAAACY4jkAAAADAAESOQAAAAMAQS45AAAAAQKNTjkAAAAAAxl+OQAAAAAApaI5AAAAAwP16jkAAAABA+YSOQAAAAMBvlI5AAAAAAGOjjkAAAACAaLqOQAAAAACExY5AAAAAgAjNjkAAAADAQ+aOQAAAAIDcA49AAAAAwIMMj0AAAACAeBWPQAAAAADVHI9AAAAAwNomj0AAAAAARS+PQAAAAEC0NY9AAAAAAC5Uj0AAAADAkVuPQAAAAMBBZI9AAAAAwDZ9j0AAAAAAYoWPQAAAAAAAlo9AAAAAAOicj0AAAABAVKWPQAAAAMActY9AAAAAgEfjj0AAAADAKOiPQAAAAIDn949AAAAAQE79j0AAAADAfgOQQAAAAKAhCpBAAAAAwMIQkEAAAAAgeRaQQAAAAMDqGJBAAAAAALEekEAAAACAbySQQAAAAOD+QpBAAAAAwLdZkEAAAACgPl6QQAAAAGAmZpBAAAAAwFNrkEAAAAAg2HuQQAAAAODzf5BAAAAAgImJkEAAAAAgl5CQQAAAAOCAmpBAAAAAgLeikEAAAACgqaeQQAAAAEDzqpBAAAAAIC6vkEAAAAAAIbaQQAAAAGDiupBAAAAAoF7HkEAAAACAjMuQQAAAAECs1ZBAAAAAANnmkEAAAAAAkOqQQAAAAMAZ/pBAAAAAYD8HkUAAAADghAqRQAAAACBfDpFAAAAAIMURkUAAAABgah+RQAAAACCKIpFAAAAAgJMqkUAAAAAA9D6RQAAAAGA0QpFAAAAAoPRJkUAAAACAfk6RQAAAAGBqUpFAAAAAAPpWkUAAAAAgklqRQAAAAMBCXZFAAAAAwMhikUAAAACgI3ORQAAAACCpd5FAAAAAoIJ6kUAAAABA14aRQAAAAKBSq5FAAAAAwCu1kUAAAADgNbiRQAAAACDlupFAAAAAgNu/kUAAAACA1MeRQAAAAGA3z5FAAAAA4GbtkUAAAADgs/GRQAAAAABv95FAAAAAYHL7kUAAAAAAEv+RQAAAAACVApJAAAAAAJgFkkAAAAAgkQqSQAAAAACID5JAAAAAoNklkkAAAABgtSqSQAAAAODtPpJAAAAAoGREkkAAAAAAJWKSQAAAAABXf5JAAAAAQI2PkkAAAADAe5OSQAAAAAB2mpJAAAAAoMarkkAAAACg3ruSQAAAAODQvpJAAAAAYN/SkkAAAAAAANeSQAAAACBi2pJAAAAA4H7nkkAAAACg5PaSQAAAAIDb+pJAAAAA4C8Jk0AAAAAgORqTQAAAAMCrHpNAAAAAQJsjk0AAAAAAjlOTQAAAAMA2V5NAAAAAII1jk0AAAADgJWiTQAAAAECDdpNAAAAAgGuCk0AAAABAlouTQAAAAADpqpNAAAAAYFevk0AAAACgE7OTQAAAAGDGwJNAAAAAYHzDk0AAAACAlNyTQAAAAIDN75NAAAAAoDnzk0AAAADg4PaTQAAAAID4+pNAAAAAYPcVlEAAAACgOh+UQAAAAODZKpRAAAAAYME2lEAAAAAg5jqUQAAAAKC5PpRAAAAAYOlBlEAAAABApk+UQAAAAGCjU5RAAAAAgBhxlEAAAABAxHOUQAAAAOBydpRAAAAAYLx6lEAAAAAg+IaUQAAAAGBCn5RAAAAAQNaqlEAAAABgP0OVQAAAAKCjrpVAAAAAAE60lUAAAAAA48uVQAAAAMCI0JVAAAAAoFzvlUAAAAAgaPOVQAAAAEC19pVAAAAAQDn/lUAAAADggjaWQAAAAABOO5ZAAAAAYCU/lkAAAAAgl0OWQAAAACAXgJZAAAAAgFGIlkAAAACgoouWQAAAAMC4r5ZAAAAAIMbOlkAAAACA7wKXQAAAAGDzhpdAAAAAQE50mEA=</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="3496">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>FhVXQ3oi10Pu5v1EWMRuRPpjZkPAa6xDi6m6QkCdQER6fpFDw6adQ9UBrkM0J7lD7E6MRFPWKkRWgBZEyE1qQ1XD4UOyXJNDyNZoQ+YNVEPUxvhCbc9XQ+xEpEP7Hu9FIFZXRCwVkEIsESFEP16DQ84Gc0P2xuVDS2VPQ6SE40OUO4pDoQrGQ16qGUSUQ1hDV1XjQxRxRkTHlI1EWGiiQ4vMFENkxTBEiIBXRJddhEMGgZtDEiWIQ9jvFEOv7iJDFMcbQ/HgoUOp0zJDdOsIRJam0UOHkAREWpHCQ5qhVkQNTSBEa9zPRHRaqUPSA/xDV8wJQyOgLkO7UAxEQl6kQ1oLcUNKoClD5NqxQrgkUEO145JE+EF7Qy5g/UL0g6BD9VeDREW2kUNWNnRE3j/wQxvpj0NIeHdEThBeQ1lINET+nHVDNO+ZQ6yfAUP/P31E13AkRF8zzkOVQFNDEFg+RCJbxEOBSr9DyT0EREBIa0S8ychDG8zjRN/2Q0OvmV1EFRgLRAV/wUTPZmNENaKeRLwDyULGF4ZEmj43RLwd0ES2xSBEgMKKRLFLS0RQDnJE8t5RQ88qdUS2hIRDdNxmQ5xgJUMy11NFg8CwRE/5P0T/YnBED9kfRFf1UUO/luJD6vr8QxEDTUTpZ6RDJJSSRP0NRkT/mAtEAr7PRYSjMkUc9/1D8HdaQ6+ExENuBExECKq3QzMq1USK4ExEtk5URHWntUTCs49DKtSlQ2kDMERV3YdETTQKRONneEOp2mdElf1vRDKzykT+9pFD8DPCQ9ws8kPCm2ZEBYWURPlH10TN7NlDyAqHQ+tZCkRyOVBD/JAjRL3zPkMFosVDq7cyRQ5qpkSMZktE0u2GQ2m5D0OaDlREUuauQ231NkNTPbZEcvKfRHWwCkP00MBD5PkwRIXpT0QYUNJDoz+mQ5lICkNvW2VEfhRaQ1YT9kM6PTREjG0NQ+HNlkT7nS9DdkSKRBx6tEOXBRZEKV4JRXHwoUTSo4NDIsLfQoDlAkTWiABEjk2OQ4sXCUPAz2FEEySZRBVVFkXoW4pENpFERDwa7ESX3sZEWD+mQ/eFW0TiMypEQp31Qz/Vk0QtBnpD/4pCRMcWL0P3X0lD4lnnRBaChkWk49tFAfZbRZCTRUSD825Ds1EyQ4VmikNArTBE3J1XRPQ0TUQ+ouBEt3MqRJGqo0TTDddCrcLhREnPAENsvClEs5ZxRJRapkNIQARERNRFRG1pXUTo8NJEeoH2RKpUckR08aVEUuk1RGvVMES8irxDK+myRJFbGUTS3TBEGalsRDEYakQHFtREbsv0RJHFTELVHo1Fpio/Rak1FUVY5b5EGPHlRBO2IUUhV5ZEnI0oRIda1EP8imZEmrSgQyFkD0XzaA9ENSyGRYyyeESQkqJE5NKjRN361EUWGZVFRXwMRZSVd0R2N3hEmgDIRM2gJUOjxa9FLaaHRCP/vUSmZINEODF1RPj5wEOrdq5EJtYbRVK2PkPSAb5Deu80RGkIMEV4wVVE8E6LROYoIkTl4BhEXQoERMhXRkUcr1ZES4cBRC4RSkMnGUREv/VeRLPxC0QM4DVEpE3NQ7ZKZ0IetuhE+wEYRACjzkNv77pDNdyLRDEa30O/a79Ea7hKRa5gRkSKswJFYDFdRVNcF0SdL6FCWlnaRFywYUQ3/NxDUEnARUqCtEXEsJtEpjEQRIRe3URwhbxEBsObRJSlCEbokYlF1pcOQ8NRIUTmmnhF8TKYRYMf0kZxYvJF5A4FRWxtd0TClC5E+sV1Q3R9GkPMMxlETrurQ9Z5MURyZjhFAYg7RTX/00SSYkxFw6zWRPY3c0N93QdFOAw4QxmKK0XJScJDc0hlREeN3UPI329EPqGaRXaJAUXJWoRD1t3wQ3vUE0Wwar5EKwj6RIiGkUbkfJpF5ndCRSSk10SaW5pE46kTRRf4V0VQKKBDOousRLwHFkUQbXVFhgjoREgvkUPBW21GZ/PyRp+HEUbfqMlEt94NRSoqMURGkWBDpnlqQwy93Ub+rHRHvzfmRZQBsENtCz9Du7SIQ18JIkPjgB9EFkM6RLZItkPl5TlDeSOlQ1JWpkQvka1E+/gdQwjL00QlM6dEbAZqQwtsJkRgdHVEWKckRErgLUM+T6dDO1QXRL+UCEWudWBFHzADRMIZqUNfwAlGYHtsRWPWlET53QxEod1vQ0zyQkT6BABESqI9RhHveUXV1IhE4M/EQ3B8okLnDDZDvrCeQ9eSbEOMBoxD5RIHQ7c5GURGSJxEJhzqQlne30IsDrRDCxWJQ5xXwUMIMNBDJ+INRL15WEPqSlVDhdnGQ6xWP0VOUqtE9FjhROhwXkRHxgxE8vwPRKu5vkNMo5lD+u+bQ+uagEQuM2dEqo+KQ8uT0UOxRAxDct49RD3ZVERdMgpEyiMMQyedvENeV9xC/FqAQyoXSkSJT6dFwwNORWuhYkRU9xxDVfGcRCvj10JB0hREgDqcQ/6pckOGBgBEqbGHRANQEkTEIqZEiNpURO7yYUSOLshDMnqHQxjzsUJHjPlDOnk9RAQisULzi51EeBqoRMLeh0SSPZ9EdCe+RJYV80NglZJEPjc+RXlULEUqbBtEkEmtQxTD7UPu13lDdUpEQ/eFI0NpH1hFIi2ORnNRBUbtK2NFxgriQl4fhENAl9hDwlYARESiQEPP5WNDbvgURCVXEETz/cxDiEOXRFZ4M0QywQFE5OSoRGAWk0SZYlxD6/lNRKzVVkTNpfBDUgufRLfEH0PkR+ZC1cEoRLA7pEPNdw5EiicrRCEHC0TvzylEigxKQ2y1SUNxlaRDssXiQ9cPJUTSJX9D1k5ZRNBKYER/Z79DebegQ3FRY0PSRb1DrB9kRNqEMETSTwBFdqqqQ/PRQUR+vrRD58kFRUYhY0UbP3tEDgCBQ9WfmEMaZ3RDyQ2bQwSQYEQehZNDGx7PQ5KQm0bAwzNGDHz9RFWIJkRsBIBDyIMqRJjeqETg/URD4CckROtiQkSHSRhEOKkaRJJba0PA66hEKWXgQ488d0OfL4hCc0qzQx7XgESOGXtEzknDRMoLlEVkKmJErAdrRK4Qe0TG8eRD6XGAQwAfIkR0Gi1DFAYOREi6AkRfd7JDi2sTRMXrWER+cI5Djw47RC8qYkM0QmNE3sF/RDgJ7kTxlQ5EqWCTQ3TLUkPhWglEVR6/Q77iCkU4ZnNEpP2QRBR5C0Ncv6xCTP1QQ30rZ0Oume5DEAeSQ6Q2cUNffu9EQUerRJ1KrUP1dOhC2bomRP6GaUMe3AtF2D0/RRrxyET6S9FDSlUMRIBIu0M60P5DOjowR8CA60bKYDVG9FeUQ4zii0OD/H1Dj93MQ4wMw0PEa0VE/7DmQt62z0NS43lDdTyvQxINMkRAN3NCMLbAQ4x30EMtZCZDK4bWQ7S0AERNkp5E8+SrQ6MMyURKN2RF6JwiRVqRoESaohFDKil7Q5IY5ENcDlpDCqtoQ26KqUMuOZJDKDmTQw==</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-        <spectrum index="3" id="controllerType=0 controllerNumber=1 scan=10074" defaultArrayLength="527">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="607.387390136719" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="29106.244140625" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="5.746735e05"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="225.983779907227" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="1706.907836914063" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.906203333333" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 792.46@cid35.00 [205.00-2000.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="7"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="4.701874256134" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="0" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="205" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="2000" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="792.46" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="792.46" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="1.341634125e06" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="5624">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAAIHs/bEAAAADAoqJsQAAAAKDq5GxAAAAAAGBhbUAAAADAZeptQAAAAGDWCG5AAAAAwI4jbkAAAACgkkRuQAAAAEBwaG5AAAAAgMaGbkAAAADgF8huQAAAAEBN5G5AAAAA4Kwkb0AAAACALYJvQAAAAOC3pm9AAAAAgAMlcEAAAABg7DJwQAAAAGBCZHBAAAAAoFlycEAAAABAKMJwQAAAAGAK9XBAAAAAAAABcUAAAABAUSVxQAAAAECAM3FAAAAA4HBDcUAAAABAaVJxQAAAAADJYnFAAAAAAMOxcUAAAAAgANJxQAAAAAB24XFAAAAAgDkDckAAAADApUJyQAAAAEAaT3JAAAAAIOpYckAAAABAumJyQAAAAOAMdXJAAAAAgNyCckAAAAAAJaNyQAAAAOD4tXJAAAAAAAfjckAAAACAhvRyQAAAAMC2BHNAAAAAQIwkc0AAAAAA+UFzQAAAAMAcVXNAAAAAIL9yc0AAAAAAvINzQAAAAIB/knNAAAAAQH6dc0AAAADg67ZzQAAAACCawnNAAAAAAFPTc0AAAAAgFeNzQAAAAKDu8nNAAAAAAKYTdEAAAADAjlN0QAAAAIB5dnRAAAAAQNmFdEAAAACAmaN0QAAAAACpsnRAAAAAAMfidEAAAAAAgiV1QAAAAECCMnVAAAAAAJJDdUAAAACA3VN1QAAAAMAwc3VAAAAAAOWTdUAAAACgYaR1QAAAAMAjs3VAAAAAIK7DdUAAAABgzNF1QAAAAEAR5HVAAAAAYAUIdkAAAAAAcBR2QAAAAMDGMXZAAAAAgH9EdkAAAAAAQlN2QAAAAEBlY3ZAAAAAwJ6BdkAAAAAAapV2QAAAAAAMsnZAAAAAgEPCdkAAAACg/NN2QAAAAMDpNHdAAAAAgMdUd0AAAABAXGJ3QAAAAGAflHdAAAAA4KO4d0AAAAAA2sl3QAAAAMA41XdAAAAAgMvld0AAAACAKgN4QAAAAGCIY3hAAAAAgIlxeEAAAAAAMbR4QAAAAMBy1HhAAAAAwOjzeEAAAAAAigN5QAAAAACkFXlAAAAA4OkyeUAAAADA01N5QAAAAMAMZHlAAAAAIM9zeUAAAABAqZN5QAAAAKAi1HlAAAAAAN/ieUAAAABAWvR5QAAAAGCvBnpAAAAAAO0SekAAAAAAkyV6QAAAAADDOnpAAAAAYItHekAAAADAXFR6QAAAAIAZY3pAAAAAwJ6DekAAAACgTpd6QAAAAEDjpXpAAAAAgFrFekAAAAAAr+V6QAAAAADC83pAAAAA4P8Fe0AAAAAA/BN7QAAAAID5R3tAAAAAwIhle0AAAABA5Ih7QAAAAAAElntAAAAAQFyme0AAAAAAxLR7QAAAAIAuBXxAAAAA4BgjfEAAAADASUV8QAAAAABGZ3xAAAAAgGh4fEAAAACgiIZ8QAAAAMC0pnxAAAAAANO0fEAAAAAgQcZ8QAAAAIBO1XxAAAAAYOHrfEAAAACgKAh9QAAAAIBAE31AAAAA4DsjfUAAAAAAozN9QAAAAOAkSn1AAAAAYAZmfUAAAABgAXZ9QAAAAICuln1AAAAAgNukfUAAAABAMbV9QAAAACDuw31AAAAAoHDUfUAAAABAK+Z9QAAAAKCtCn5AAAAAgPwVfkAAAADgcCZ+QAAAAOA9NX5AAAAAoAtHfkAAAABAr1V+QAAAAOAacn5AAAAA4EWFfkAAAADAz5R+QAAAAOC0pX5AAAAAwBXEfkAAAADAcfF+QAAAACDgBX9AAAAAADUnf0AAAADgfjJ/QAAAAABUQn9AAAAAYCZWf0AAAACgbGV/QAAAACD0dX9AAAAAIJiJf0AAAAAA6Jd/QAAAAMAkxn9AAAAAIHfpf0AAAACAT/V/QAAAAMBFAoBAAAAAgAgUgEAAAAAgJSKAQAAAAKDUMoBAAAAAgMpqgEAAAAAAbnKAQAAAAAC3gIBAAAAAwMeKgEAAAABg9pKAQAAAAEDFmoBAAAAAgHGigEAAAADAQ6qAQAAAACADtIBAAAAAAKa5gEAAAACAz8KAQAAAAMAAyIBAAAAAwMDTgEAAAABgOfGAQAAAAICkAYFAAAAAICERgUAAAADAYhuBQAAAACBHIYFAAAAAgNsrgUAAAACAcjOBQAAAAICGO4FAAAAAgNJCgUAAAABgvEqBQAAAAEDFUoFAAAAAQC5agUAAAAAAnGSBQAAAAODsaoFAAAAAQIlzgUAAAABAO3+BQAAAAIB1ioFAAAAAwJORgUAAAADgnZuBQAAAAIBBqYFAAAAAwGbTgUAAAAAgKNuBQAAAAIB544FAAAAAQDPrgUAAAADAbvOBQAAAACAZ/IFAAAAAIP0DgkAAAADAEQ2CQAAAAIAXE4JAAAAAQNMagkAAAACAnyOCQAAAAIDlOYJAAAAAQN1DgkAAAADATEyCQAAAAMDLUoJAAAAAgFlqgkAAAADgMHOCQAAAAODLe4JAAAAAQMmCgkAAAAAgPIuCQAAAAICplYJAAAAAwMOkgkAAAAAgqbKCQAAAAAAoxoJAAAAAAKrLgkAAAADAENmCQAAAAIBr9YJAAAAAYBn7gkAAAADghQODQAAAAODuDYNAAAAAQN4Sg0AAAAAAKhyDQAAAAEAKI4NAAAAAAHQrg0AAAACghUKDQAAAAMAPSINAAAAAgJlTg0AAAAAgLlyDQAAAAIC0Y4NAAAAAwEZzg0AAAACA3XqDQAAAAADOioNAAAAAwB6eg0AAAAAAyKODQAAAAEDdqoNAAAAAQJ28g0AAAACAddyDQAAAAIAM44NAAAAAQOXsg0AAAACAYfKDQAAAAMCM+oNAAAAAgCUChEAAAADAJBGEQAAAAMABMoRAAAAAQLtLhEAAAADAf1OEQAAAAIA5aoRAAAAAAKByhEAAAACgqYuEQAAAAECCm4RAAAAAQGulhEAAAADgurOEQAAAAOA/u4RAAAAAACbEhEAAAABAJ8yEQAAAAEC65oRAAAAAAHnuhEAAAAAAXAOFQAAAAEChCIVAAAAAAPwThUAAAAAAfBuFQAAAAACrJoVAAAAAQDo2hUAAAAAAp0KFQAAAAOC0UoVAAAAA4E9ahUAAAACAFWeFQAAAAKB9dIVAAAAAQASEhUAAAACAqZ2FQAAAAMDxo4VAAAAAYLiqhUAAAACgKLOFQAAAAKB7y4VAAAAAANjUhUAAAADAxOKFQAAAAKAn7IVAAAAAwCDzhUAAAABAhvuFQAAAACCEA4ZAAAAAADoNhkAAAADAMxiGQAAAAAAQQoZAAAAAQDVPhkAAAAAAOFSGQAAAAMA/WoZAAAAA4C1khkAAAAAAg2uGQAAAAAD9dIZAAAAAABV8hkAAAADAmIeGQAAAAMCvk4ZAAAAAALulhkAAAACAd6yGQAAAAIDrtYZAAAAAgES+hkAAAADA4sOGQAAAAEA8y4ZAAAAAwL/UhkAAAABANNuGQAAAAMCY44ZAAAAAQEfrhkAAAACARPeGQAAAAIBu/oZAAAAAgAQch0AAAABAKSWHQAAAAIBJLIdAAAAAgJQ/h0AAAADAoUeHQAAAAEAaVYdAAAAAQJtch0AAAAAA9mSHQAAAAEB1a4dAAAAAwJV7h0AAAACADoOHQAAAAEDliIdAAAAAQPWRh0AAAABAmJyHQAAAAIApo4dAAAAAAPirh0AAAADAFbSHQAAAAEAUuodAAAAAAEDGh0AAAACAY8yHQAAAAEBX1IdAAAAAwGrbh0AAAABAEeOHQAAAAEB+7IdAAAAAACLzh0AAAABAfQ2IQAAAAAAbHIhAAAAAAIYsiEAAAACAHDSIQAAAAEAqPIhAAAAAgIpDiEAAAAAAwk2IQAAAAEB3VYhAAAAAAAtiiEAAAACAe2uIQAAAAIBCdohAAAAAAMd8iEAAAADAHYSIQAAAAEDO2ohAAAAAQEfiiEAAAADAM+yIQAAAAMALFIlAAAAAgCdIiUAAAADA6lqJQAAAAEDEY4lAAAAAAO2TiUAAAABA/52JQAAAAADZzIlAAAAAALbciUAAAADAyeSJQAAAAIAj7IlAAAAAwHwbikAAAACAhj+KQAAAAMBezopAAAAAANr0ikAAAADAGPyKQAAAAEA1HItAAAAAQLAli0AAAADAtlKLQAAAAEBQXYtAAAAAwIGTi0AAAAAAYp2LQAAAAEBA+YtAAAAAAMg7jEAAAABAsVSMQAAAAIAyZIxAAAAAgDd8jEAAAACAmI2MQAAAAID5moxAAAAAQOSkjEAAAACAE66MQAAAAECfs4xAAAAAAEjEjEAAAADAdN6MQAAAAICp5oxAAAAAwJ7zjEAAAABAb/2MQAAAAEDQQ41AAAAAADtOjUAAAACA4GSNQAAAAIBGgI1AAAAAwJ2UjUAAAACAlK+NQAAAAMDztI1AAAAAQPLkjUAAAABA+B+OQAAAAEDTJ45AAAAAgLctjkAAAABA3TmOQAAAAIADQ45AAAAAgIB9jkAAAABASJWOQAAAAAAVoo5AAAAAwJutjkAAAACAnbyOQAAAAACW0I5AAAAAwNgMj0AAAADAuBOPQAAAAMC1LI9AAAAAwD87j0AAAADAOUmPQAAAAMBWUY9AAAAAAKRYj0AAAABAXnuPQAAAAMBfhI9AAAAAAP2Mj0AAAAAAK5aPQAAAAIDkvY9AAAAAABDUj0AAAADAz9uPQAAAAKD6F5BAAAAAICsikEAAAADAzz+QQAAAACB0R5BAAAAAoEROkEAAAADAb1SQQAAAAMAbYpBAAAAAIMxmkEAAAADAgmqQQAAAAAAYfpBAAAAAoImEkEAAAACgiYeQQAAAAKAxj5BAAAAAQDubkEAAAABgPZ6QQAAAAMA9pJBAAAAAoGmnkEAAAACgxa6QQAAAAOBHsZBAAAAAwP3AkEAAAABgNMeQQAAAAEBbypBAAAAAINHOkEAAAADAxfOQQAAAAOCAG5FAAAAAoHEhkUAAAADgnDqRQAAAAKCnTpFAAAAAAGtUkUAAAADABFeRQAAAACCJa5FAAAAAYMt6kUAAAACAT4iRQAAAAMCbkJFAAAAAAIqWkUAAAABgbJqRQAAAAMATuJFAAAAA4G/KkUAAAAAg0/SRQAAAAGDiFpJAAAAA4B4lkkAAAABABiySQAAAACA7MpJAAAAAYNc6kkAAAABA6D6SQAAAAAA0R5JAAAAAADd3kkAAAACgUJ6SQAAAAEDJpZJAAAAAYAPXkkAAAACAS+qSQAAAAABv85JAAAAAgOQak0AAAACgejuTQAAAACA+UpNAAAAAwJWfk0AAAADgiL6TQAAAAKCCw5NAAAAA4DPTk0AAAADgywKUQAAAAMAhC5RAAAAAgNlDlEAAAADgZG6UQAAAACDycpRAAAAAoOF3lEAAAABgHZaUQAAAAABImpRAAAAAYEmhlEAAAABA6uWUQAAAAAAx7ZRAAAAA4Iz2lEAAAACgNRKVQAAAAIA8k5VAAAAAANCelUAAAACgSaGVQAAAAKA765VAAAAAIGDvlUAAAAAghwOWQAAAAGA4C5ZAAAAAoJsmlkAAAADgsCyWQAAAAGAaVZZAAAAAAO2WlkAAAABgl7yWQAAAACCZu5hAAAAA4OYumUAAAAAA06yZQAAAAAACvJlAAAAAoEr/mUAAAACgoauaQA==</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="2812">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>MS/EQrbRtkOj7R9DKkPeQ5CkSkNBzY5DNJPGQ7LFEUNCqt9COigBQzpJHUNMc89D8KDURL05AkSYm3BEI0URQ42iVUN+V69DcgVwQ6p1z0P8VqBD90nIQzTu0EPG1SdE7f2FQ8CBfUM1KZxDJIjxQidgrkLbRgFDutWEQy6X3EXt5RtDYAVNQzXR1EOHfWhDsL+JRDsrOkUE3ItDOLECQ04ORET90q1DfU+kQlpgm0SmAdNC9Kj+Q4I+XkPd+y9FftcjRJ8aTEJ3PMxDnnKWRT6amERmiVtC2/1ZRJN3DkSHFbNDUPEnROjUokIFulpDCnNxQwbjtUR5OTNDPoRbQ1ZgHEQoYqxCiMtpQ3/RTESUWxVDSWHnQ4hAtEO+3nNDrm1sQ7vSBETLcgpEKr7sRG7q6EMnIWJE0mTVQ4vXpEP0LEtGE20SRABQU0R7pOBDOMMHRRCtpkNmLjNEXS+KQ2gQkEKCDRNFyxQlQ9kJ30KsFlZEIROBRFLfEEREgI5DURlJRDMMrkOVVxJEcC2ERKpZj0W4rRRDQmm7Q9oOe0XV/TNEcH+cQ0nlQUVs4DREnA0RRI4Mr0N2/ZJCfQMwRLpbn0MD+w5Dwtk6REE8F0QeAy5FoVKKQ/qhfEUgrGFFkLiJQwwqH0ROKRNDMEO7QnA4NUPVzMBDPFqCRAfGPERUGrhFvCt0Q+jWO0PXuaBDL+xVQsg4yUK/3ZpEGOozRcy2hUS1fyRF23kCRFjANEPKqINCFoGeROaXrkRtSD1DIqnHQ/8hmENbWbhELTIKQ+IzQUQnOY1GE4mFRCHEnkQMJclDbPq9QtBZ50MDv5JDA5HEQ5E0aULocMVD2ivHRHMsj0QNKhBEygMYQxayJkMhnkdCZHwEQ6kPJ0MooStEbpf3RWPHU0PqOOxD7z6uRGrTIETL6JtD7H7OQuDg6EPYxINDQskZRCGOu0T3Mr1EF2jOQtEOA0Rrp4VEWq5KRBAM20Sa2HJDUD8JRLbAhkUShWRDE4CuQyPFskNvc1VDWIFnRMSVLkNlLM1F+E2dRN28HESSVO1DLB7DQwR8q0No1JtCkPkcRGMdDEQupZxEc3mFQ5PY0kOhD0hEuKxUQ45imUR8NPBFUcrDRORsIETdO6tEf/4PRKvljETCP1xFox/EQ7u+nEQfAN5DbhsqRETmpUTv+ptCrQ8SRB+WwENmTbhDrIcBRPVbgEYJkxtCbUtMRqn8FkQG4bFCcTqEQyBsM0TP4J9DS+1BQ5iANkPI9dhDUKrPRFXLQ0Sg0tlFfWTjRrtYEUTUZrNDRmZrQ1bZWkSZgqNEYpZVQ8lAHkTzoLZD05q9REwddkR4WpND58KYQ+4D00PmxpJDJkLyRBR5BkWmyKdE5x3/QtwR60LQGsVEiJqvQ95bKUPOs1VDrhS5Q1ltAUV4Fg9FNpknQ2jLM0Tn2ZhCSkUMRY09/kOzngNDZRLoQzFEoUPhmTFEcNi8RBR480P043RG/RwRRc6rh0OGUINDRKb6Q3QaDUR9VtFDvEB5Q/sUIEM7XKpCEdh0RGuTHURq4X9E9WYORDrGgEQ0cARFIGg/RDxb+kO8VRlEisSfQ5u8t0R+shBE0CQaQ82OwUKmcGxD09jMQ8bykENe4xlEHi5aRE0skkOezldE5yVCQzZg5UN2N7hEeladRFq+V0WIXG1Ea356RAfYJ0MFiahEtoc3Rb0hjER+1qtE3TcFQ3MtLUPG8MdDUXGrQ/+9tkSNCi5E1pCmQ2KI20NcpapDkz8UReffzEQIlgpELIdvQxwp1UTSzzxFBj6dRLb0QUT6ktpDojq6Q/sGK0SVzwxFj0l6ReJxlUVqWLlETi/TRNknXkRLszxFTj0ZRRzrL0RQQcNDAmpQRD4gJEQPnJFDPGV+RS4AikaHqS5GeBPbRSiH9UMEs5JE45itRELkqkSUP5JGFuqQRrqXLUW24chEIGRfRGrG0kOgHutC7QnDQ9HRrEKAs3JCWD04RMsHD0QMkHJDDweGRD4QJkSoqaRDKVNkQ3ZWBkR9th1EIRljQxid20LUQHZD9aQnQ9K6pkI5qc9D/OsFQ9555UNJeYVEGKp+RNPiyUNg5MBDPA8cQwXFLUNW8Z1DFDjBQrrMP0RNzFlDzM2iQ+WHw0NjGtNDtM+AQzujCUOpagREcM+TQ3wwvELpA41D3GraQ52KAkPgzQdE1M3bQ2iCkkMKFVxEMX9QQipk+0JW+AtEBAF2Q2Fxx0Q+voFEmiYLRGwcVUM9E4xD+6Y3RDDvbUQgZE5DdX7MQzHAPEMPCIxELWOuQxR5W0QXV8BDVE2LRBB4YkPm8tVDiInwQ2nVgUIDhPRDyFHaQzFzIEM4ESlDCChtQnv6/0QYwtFDHnnpQw6bvUM2ApVDckBfREcmqkMidthDYEPHRLY99UPZeUlF9BSMRGIvMUOrw1BEbL1gRKSRt0UcjT1E6m1iQ2jukUPI+I9D4agdQ/EdrUNzXj9ELhjEQ+6Tc0P38JhEtKFYQjq/WkN//nBET70RRFOxvENRtBpEwibJQyb02ELACqNDxwBNQ7xRW0OAwG5DEQO6Q9ymCUQuV4REWrsuQ7L2y0MPQZ1DhNc2QwOSqELrcT1DYUMVRP6jpEK4XLNDSCv7QoPz10Mx1E1DNmw1Q9MVB0RJXY5COYrhQmy+rEReVP5DZ1h6Q+oM3kMGNOhDPlwGQ9oEs0NVmc5Due64Q9+fkENoBdpCiqe2Qqag9UOCZbFDPzSKQz6iGEPAqLhCkD4LRLR0H0Mth61D0ifiQsQcz0PmtHdD8mB7Q5deoUMo0+hD7JxTQ2gKl0M=</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-        <spectrum index="4" id="controllerType=0 controllerNumber=1 scan=10075" defaultArrayLength="705">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="511.889038085938" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="4.01549875e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="2.9060245e06"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="155.132064819336" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="1295.76611328125" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.908515" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 523.58@cid35.00 [130.00-1585.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="8"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="3.158650636673" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="523.5802001953125" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="130" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="1585" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="523.58" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="523.580200195313" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000041" name="charge state" value="3"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="5.1873746875e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="7520">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAA4DlkY0AAAABAHKhjQAAAAAAayWNAAAAAIJPnY0AAAACAH+5kQAAAAGCQBmVAAAAAQFMkZUAAAABAx2NlQAAAAGCzgGVAAAAAQL2iZUAAAABALuJlQAAAAAAXA2ZAAAAAQDwlZkAAAABgp0pmQAAAAMAWgWZAAAAA4BzlZkAAAAAANgFnQAAAAEBZJWdAAAAAwAVpZ0AAAAAg54BnQAAAAOAhpmdAAAAAgCzCZ0AAAACgySNoQAAAAECbRmhAAAAAII2JaEAAAADg3Z5oQAAAAACq5GhAAAAAYLAHaUAAAABAwydpQAAAAMCES2lAAAAAQN9jaUAAAABAD4RpQAAAAEAEpGlAAAAA4C/kaUAAAAAAHyZqQAAAACAIZGpAAAAAwEiBakAAAAAgrKRqQAAAAEDr5GpAAAAAQBUDa0AAAACAMyBrQAAAAECDRmtAAAAAoDJja0AAAACACKRrQAAAAABEumtAAAAAQGfja0AAAADAlAVsQAAAAEAcJmxAAAAA4OVFbEAAAAAAy2dsQAAAAEBVg2xAAAAAwPO6bEAAAACAGOZsQAAAAGBuB21AAAAAQDUjbUAAAAAgi0htQAAAAEAzZm1AAAAAwGzFbUAAAABgKANuQAAAAIB1JG5AAAAAQLREbkAAAAAgmWRuQAAAAMDohm5AAAAAgCunbkAAAAAATcZuQAAAAICe525AAAAA4K5Fb0AAAACAR2NvQAAAAKCnhm9AAAAAQLapb0AAAAAgc8tvQAAAAIAH329AAAAAAMYBcEAAAACA+hRwQAAAAABiInBAAAAAQNUycEAAAABA8kRwQAAAACBYWHBAAAAAgItkcEAAAABAGHRwQAAAAKCnhXBAAAAAAAqVcEAAAACAYadwQAAAAEB9xHBAAAAAgGDRcEAAAADAeeJwQAAAAKDk83BAAAAAgIADcUAAAABA4iNxQAAAAAAFNHFAAAAAAPNDcUAAAABAsFJxQAAAAIA7ZHFAAAAAoFJ0cUAAAACg1INxQAAAAAAOlHFAAAAAQJrDcUAAAABAT9NxQAAAAOAy5HFAAAAAQBXzcUAAAACAoARyQAAAAGCgFHJAAAAAAJ4lckAAAADAEzJyQAAAAIAIRXJAAAAAANZVckAAAADA/GRyQAAAAMDkc3JAAAAAgLGCckAAAACAuqlyQAAAAMBkt3JAAAAAQMjEckAAAAAAIdRyQAAAAKBW5HJAAAAAAPb2ckAAAABAGAVzQAAAAEAvE3NAAAAAABgnc0AAAACge0dzQAAAAMCHVHNAAAAAwK5ic0AAAABAh3JzQAAAAACig3NAAAAAQGeTc0AAAABAYaNzQAAAAACfxHNAAAAAQBLUc0AAAADA8+JzQAAAAEDG8nNAAAAAoNACdEAAAACA+RF0QAAAAADYInRAAAAA4OMydEAAAABAJUR0QAAAAIAyTnRAAAAAQPBjdEAAAABAx3Z0QAAAAEDZhHRAAAAAgD6UdEAAAACA0aF0QAAAAIBuq3RAAAAAIEHDdEAAAADAftV0QAAAAIBv5XRAAAAAAJX0dEAAAADgJAV1QAAAACDxEXVAAAAAgBwidUAAAABAkTJ1QAAAAEA6QXVAAAAA4GVSdUAAAABAB2Z1QAAAAIAldXVAAAAAIPWHdUAAAABgGpV1QAAAAICps3VAAAAAQJHBdUAAAABA8dB1QAAAAEBb5nVAAAAAIM7/dUAAAACgRxh2QAAAAAClJHZAAAAA4LE0dkAAAACAWlF2QAAAACCwX3ZAAAAAQIVzdkAAAACAGIl2QAAAAMAelXZAAAAAgKaldkAAAAAACdV2QAAAAADE5HZAAAAAgFH5dkAAAAAAFAR3QAAAAEC5FHdAAAAAwF4kd0AAAAAAljV3QAAAAEDsQ3dAAAAAQLJXd0AAAACANGV3QAAAAACnc3dAAAAAAICId0AAAAAg8ZR3QAAAAEAvpHdAAAAAwCa0d0AAAABAo8Z3QAAAAEDw3XdAAAAAAEXtd0AAAAAAmQB4QAAAAIArFnhAAAAAwMYleEAAAABAJzR4QAAAAACeSXhAAAAA4KJVeEAAAACAy2h4QAAAAGAxfXhAAAAAwIWMeEAAAAAgvpd4QAAAAKCVpnhAAAAAoFm0eEAAAABAhsR4QAAAAGC253hAAAAAABr1eEAAAABgRAl5QAAAAGDhE3lAAAAAgBQneUAAAAAgHjN5QAAAAADIP3lAAAAA4KxTeUAAAABgcWN5QAAAAGDceHlAAAAAwKKIeUAAAABgG5Z5QAAAACA3pXlAAAAA4Cm1eUAAAADgxr55QAAAAOAr23lAAAAA4A7seUAAAACAGPh5QAAAAGBJCHpAAAAAAH8VekAAAACg0yR6QAAAAIAHN3pAAAAAIP1EekAAAAAAglR6QAAAAGB+ZnpAAAAAwEx4ekAAAAAAvoR6QAAAAIDJlXpAAAAAILCmekAAAABg6bR6QAAAAMDDwXpAAAAAQKXXekAAAACgTOZ6QAAAAECR9XpAAAAA4NIHe0AAAADg4Rh7QAAAAEDuJntAAAAAIN0ze0AAAAAgWEN7QAAAAKAkVntAAAAAQP5ke0AAAABgTnN7QAAAAOANh3tAAAAAgAOVe0AAAABg8Kh7QAAAAEAst3tAAAAA4MLIe0AAAADgHNZ7QAAAAECx7XtAAAAAIOP3e0AAAADAngV8QAAAAKCeFHxAAAAAQDghfEAAAAAgICt8QAAAAEA8OXxAAAAAwHNHfEAAAAAg01Z8QAAAAMAobnxAAAAAAFiBfEAAAADAt5J8QAAAAGDupXxAAAAA4CG4fEAAAAAA2Md8QAAAACDe0nxAAAAAYK7kfEAAAADgFfZ8QAAAAIBtCH1AAAAAIDEYfUAAAADAmCl9QAAAAICHOH1AAAAA4BdLfUAAAAAg/1R9QAAAAGC4Z31AAAAAYHZ1fUAAAACgGoR9QAAAAACSlH1AAAAAwB+ifUAAAACgFrF9QAAAAMDlu31AAAAAYOjGfUAAAACgF9Z9QAAAAID95H1AAAAA4Ff6fUAAAACAGwd+QAAAAEDBIX5AAAAAIJc0fkAAAAAA70d+QAAAACCoVX5AAAAAwJNmfkAAAACgb3h+QAAAACA6hn5AAAAAoNmUfkAAAACAjqR+QAAAAMBZsn5AAAAAgK/MfkAAAACgotd+QAAAAACA7X5AAAAAgBH5fkAAAACgsxJ/QAAAAEB2H39AAAAAwHsvf0AAAAAA1Dp/QAAAAAAsSX9AAAAAAMhXf0AAAABA+m9/QAAAAMCSf39AAAAAoCuVf0AAAAAgqqN/QAAAACAStX9AAAAAwEnKf0AAAABghtZ/QAAAAOBc5X9AAAAAgDn+f0AAAABAkQWAQAAAAKDNEIBAAAAAAKEXgEAAAABAUh+AQAAAAMDKJ4BAAAAAwMUtgEAAAABAETmAQAAAAKDDQYBAAAAAQEJIgEAAAAAAX1CAQAAAAAAgW4BAAAAAgEpkgEAAAACAnnWAQAAAAECDgYBAAAAAIPqKgEAAAADgOZSAQAAAAIA0moBAAAAAANmngEAAAAAAwrKAQAAAAMC9u4BAAAAAgFjDgEAAAABAE8qAQAAAAIDL0oBAAAAAAPPbgEAAAABAyeSAQAAAAAAM7oBAAAAAoAjzgEAAAABAEvyAQAAAAGAtBYFAAAAAgBoMgUAAAABgXRWBQAAAAICuIYFAAAAAoIosgUAAAAAgUDOBQAAAACBZQ4FAAAAAAPVNgUAAAACAQVWBQAAAAEBaW4FAAAAAwExjgUAAAABAJW2BQAAAACAQdIFAAAAAgD57gUAAAADA9IGBQAAAAMBxioFAAAAAwAmWgUAAAADABJ6BQAAAAEBLp4FAAAAAYCO5gUAAAACgBsCBQAAAAMC4y4FAAAAAwMbRgUAAAABAu92BQAAAAEBG5YFAAAAAwI/sgUAAAAAAjPSBQAAAAADq+4FAAAAAAFMDgkAAAAAATQuCQAAAAMD0E4JAAAAAQD8qgkAAAACgvDOCQAAAAAB5OoJAAAAAwANEgkAAAABAn0yCQAAAAIABU4JAAAAAgBdbgkAAAAAAmGOCQAAAAACVbYJAAAAAICB8gkAAAAAAT4GCQAAAAMBli4JAAAAAAMSVgkAAAADAU6KCQAAAACAwsYJAAAAAgEDAgkAAAADAqcuCQAAAAOAt1IJAAAAAQLXbgkAAAACAL+mCQAAAAMAD8oJAAAAAwFP7gkAAAAAApwGDQAAAAODfC4NAAAAAwFcag0AAAADABiCDQAAAAMDTLINAAAAAgLw1g0AAAAAAz0KDQAAAAMBgTINAAAAAYL5Sg0AAAACABluDQAAAAGDMZINAAAAAYE5ug0AAAACADneDQAAAACBwfINAAAAAAFWKg0AAAACgs5ODQAAAAMBPmoNAAAAAwHmpg0AAAABA7rCDQAAAAACJuYNAAAAAAN7Fg0AAAAAA8MqDQAAAAMAi0oNAAAAAgOnbg0AAAACAc+ODQAAAAECI9INAAAAAYEf8g0AAAACAegOEQAAAAEAmDIRAAAAAgOEWhEAAAADAgSGEQAAAAMD0KoRAAAAAQJ80hEAAAAAAmTyEQAAAAADRSIRAAAAAgN9RhEAAAAAAMF+EQAAAAECtZoRAAAAAgBNthEAAAACAxXSEQAAAAMA1foRAAAAAAJ6EhEAAAADAHIqEQAAAAMBgmYRAAAAAQMahhEAAAAAAUaqEQAAAAMCduoRAAAAAgFPDhEAAAACAfMyEQAAAAMCb24RAAAAAwHHkhEAAAAAAvuyEQAAAAAAO9oRAAAAAwL7+hEAAAADAmgSFQAAAAABqDYVAAAAAgGQUhUAAAABAkRuFQAAAAICLJIVAAAAAwC0uhUAAAADAKzSFQAAAAIA8PYVAAAAAwJZEhUAAAABAQ0+FQAAAAMACVoVAAAAAwBVjhUAAAAAAJW2FQAAAAEBpdYVAAAAAANyChUAAAAAA4IuFQAAAAADwkoVAAAAAQDylhUAAAABAoq2FQAAAAADAtIVAAAAAQKa8hUAAAAAAE8SFQAAAAEBr1IVAAAAAQMTbhUAAAACAreOFQAAAAIDQ64VAAAAAwN70hUAAAACA3PuFQAAAAIC4A4ZAAAAAgC0MhkAAAABAQRGGQAAAAEDJIIZAAAAAwAc0hkAAAADAij2GQAAAAMDWQoZAAAAAgB9JhkAAAABAD1SGQAAAAAC9W4ZAAAAAQIhkhkAAAAAAMGyGQAAAAEAbdIZAAAAAwK59hkAAAAAAMoOGQAAAAEAMjIZAAAAAwJOThkAAAAAAfZ2GQAAAAEBfo4ZAAAAAALOzhkAAAAAAq8OGQAAAAIA/zIZAAAAAgO3ThkAAAACABN2GQAAAAMCR5IZAAAAAQCTrhkAAAACAPfOGQAAAAIDp+4ZAAAAAQOADh0AAAABANgyHQAAAAIA3E4dAAAAAQDgah0AAAAAAIyOHQAAAAACnNIdAAAAAgK8+h0AAAAAA60WHQAAAAEDaVIdAAAAAgKxph0AAAAAAJ3SHQAAAAMCdf4dAAAAAgG2Fh0AAAADAfpGHQAAAAABBmYdAAAAAQO2jh0AAAAAAxKuHQAAAAMBTtIdAAAAAQPC6h0AAAACAyMKHQAAAAAD/yodAAAAAQC/Uh0AAAABAA9yHQAAAAEAF44dAAAAAAIvth0AAAABA7POHQAAAAIDQ/odAAAAAAAwEiEAAAAAAiQqIQAAAAED+E4hAAAAAAC4biEAAAABAYSSIQAAAAID/K4hAAAAAQMQ1iEAAAADAmT2IQAAAAIAnRYhAAAAAAINLiEAAAABAmlSIQAAAAED4bYhAAAAAAKV0iEAAAABA4HqIQAAAAMClg4hAAAAAQOKMiEAAAAAAVJWIQAAAAIBgnYhAAAAAQAyliEAAAADArayIQAAAAMDFvIhAAAAAACTMiEAAAACAfdSIQAAAAAC24ohAAAAAwMXtiEAAAADAnvyIQAAAAMA9BIlAAAAAACUNiUAAAABATRWJQAAAAEApHIlAAAAAwMYjiUAAAACAjyuJQAAAAIArNYlAAAAAgFE+iUAAAADAxEWJQAAAAEDYS4lAAAAAgAJciUAAAACAfGuJQAAAAMAUdYlAAAAAAJ18iUAAAACAJ4yJQAAAAECRlIlAAAAAQNmciUAAAAAACaSJQAAAAABgs4lAAAAAQLDYiUAAAABAa+OJQAAAAEBo7YlAAAAAwLvyiUAAAAAAz/yJQAAAAMA+A4pAAAAAgIIRikAAAACA7BuKQAAAAAAmI4pAAAAAwPAoikAAAADAVzSKQAAAAEDpO4pAAAAAQE1DikAAAAAAvkqKQAAAAAB5ZopAAAAAQH1tikAAAACA6nWKQAAAAIDGi4pAAAAAAP+UikAAAACAQ5yKQAAAAMD5pIpAAAAAwA6sikAAAACAtbSKQAAAAEBZxIpAAAAAgH3SikAAAABAAdyKQAAAAIBS44pAAAAAQMDsikAAAABA4/yKQAAAAACEBYtAAAAAQLwMi0AAAAAAYB6LQAAAAMBHLotAAAAAgK00i0AAAABAnT6LQAAAAICwRItAAAAAQCxNi0AAAAAAHVWLQAAAAAC+XYtAAAAAAMp8i0AAAAAAgYSLQAAAAICGjYtAAAAAAMmTi0AAAADACZyLQAAAAMDNvotAAAAAQKTEi0AAAAAA5c6LQAAAAMCR1YtAAAAAgPjci0AAAADASOaLQAAAAAD97otAAAAAQKb3i0AAAACA3gSMQAAAAAD6FYxAAAAAQOocjEAAAAAATySMQAAAAEAdNoxAAAAAgHU8jEAAAACAuESMQAAAAEAmToxAAAAAgFNXjEAAAAAA6GuMQAAAAIAje4xAAAAAQGCEjEAAAAAAF4yMQAAAAADlloxAAAAAQM2bjEAAAABAkKaMQAAAAIB7rIxAAAAAwM+zjEAAAADA1L2MQAAAAMC71YxAAAAAACMejUAAAADASSWNQAAAAEAKLo1AAAAAQEIzjUAAAACAUEWNQAAAAIA5TI1AAAAAgDBWjUAAAADAyGuNQAAAAADlnI1AAAAAQCamjUAAAACA9bSNQAAAAIBIvI1AAAAAgI37jUAAAACACg6OQAAAAECxJo5AAAAAALIrjkAAAABANFWOQAAAAEBMZY5AAAAAgOR9jkAAAABAT4WOQAAAAMBCi45AAAAAQLEDj0AAAAAAXA2PQAAAAMBaFY9AAAAAgGUdj0AAAACAn0yPQAAAAIDfU49AAAAAQN7dj0AAAADA4f2PQAAAACCXA5BAAAAAALEHkEAAAAAA5R2QQAAAACCULZBAAAAAgMBNkEAAAADgYGaQQAAAAKBDe5BAAAAAIOaikEAAAABgB6eQQAAAAMA53pBAAAAAIDobkUAAAACAxCKRQAAAAKBQLpFAAAAAgHxjkUAAAACgBn6RQAAAAEA7i5FAAAAAwO+lkUAAAADgAqqRQAAAAADD7pFAAAAAwD4bkkAAAACggl6SQAAAACCEcpJAAAAAYIDIkkAAAAAAlS+TQAAAACDN85NAAAAAwMj2k0AAAABgrDqUQAAAAIAQP5RA</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="3760">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>sW+MQ29WF0RVhlhE8oc9Q1dEi0Qyb3ZDVXVCRMy1EURTBWVE/asbRM+4jkVgogJDCn0NRJ2gLENq0WBD0iaBRCLIXkN+P+xEZQgaRHhAA0OnEwNEn2ZwQ5Qp4EJ+MTJEuHwPRO6ffEOpN1ZEsrKVRGi9PESvlj1ErCe8RJRcvEOl90xEa52UQ52z4kQdHtlE/J6FQ5QMMERo1N1ENVkNRNLV2UTvl5tESbA5ROmcyEUCCuZCJDsQQ7KUs0NqpedDh6WrRAO5OkU99X5F6dNVRZghSUXmCQVEovfHQvKjv0N/mU5DKmBNQ+qqVUQJ2I5DcruoQ2Uov0JI9QtFa5adRIgkTUTYKFxE9ABqQwrlEENFIOlCjl+KRI1hXURFuDdDtgvORIBXeUPSuGNFEQ4KRZ6cBkTGO+VEwLxjQ2DKG0T+H81DpsoAQza9+ENrnwNE27rHQ5JSEkOI3CVEqMYoRBRl2UPm03hDQTaLRsLtFUVao81E0sExRZTiHERhCWFDZDBzRcJX6UT7t1tE4KxERDi2MEVyGRFESmWvQ/rD9kPct8dDFuGnROHrmELCAVVEhyybQ9Yx9US0W8xDDEinQ3uJi0VwMelElWMpRPjljEVJmfNEOm7eRC5SqUW5Bp1EhnZQRQF51kQtCZFEY0QAREiI2ULwRO1D4co6Q7zeMkQooANEConQRCBzCEWSiH9FJm8bRNXefUS5EIdEwqvBQ7a2AkSaIIJE7HyOQ4ZkMUSv6C9E1IMARUBZLEQm/ktE4pE5RIJgREV8y6pE+29ZRI6RnkSjuPlEwzw/RC6QE0VMMvlEkxkbRTjK2UUhOCRG38koRCQonkRSEapGzuQaRq5FyUXq35ZF1q+lREfXXkWUbPpEs5dER6qPckYmgI1FPitVRCJQiEQRRd5CxyoYRpCJJUXJqPRDJvgYQ6b+AUUDDPxE4vCnRC0hLESfuBJEsufhRJ4kY0VJAgBF5uuoRBjANUXvxFlFVOKgRPuOfURQHGBDrZ6DRLicq0bYf9BEvQ8yQ6WrfkS0XkxFxBOQRHTH2kSwYnJEqcuKQ4ot6UPFMWVEwQJBRErdXEUCYIpEjzYwRn+OAEVYURNEt4/URlTKZEP0Rx1FJQZYRRCTgEaNX1ZFQllNREbKBEWZ4fZEBcGwRXXBPkWUyohG5SlSRcWV4EaRCBVFgSlJRG/DhkV45AJFt0YBRTrYJEWECRVH7t+mRQ+kykOsFAFDPOgaRSXck0TRBMVEALYfRbd2IUVQP+lEzJM8RIKuxkO6OctFRlSXRAIpjUTjvIRFBqDGRGheJ0UOSEFFtfc+RVxxREUucrtE8Ta1RHuNgEQgdAFFLrEPRZoT6kQGPw5GggQGRuzHpUXtHkRGcJ+qRIj3gkX3qdVGOHQzRoBGbUVnJGVFZJdKRl4fU0XxsuREp0e3Rf+9AUZy741GXrjrRfDHA0VsF8FFC2CZRLJIQUXTpeJE8C63Rdr4tkUW0WFG+ET+RVREHURJLKdF2b98ReP5u0SmHaNEBZ4XRXjU0EWtqt1Db9gfRV66uEUMtRpHwwb4RbRQFkaMFoBFJ5ZmRc9TPkVe73xFmhT5RPYhmUZE3A5GWy/RRHqDekXql4FG/Y2nRQKs1kacss1ExiBKR5PDykfYmJhGbDYmRhGpxEWuL2hFvBHESPGUi0YuhTNHWnkmR3qg0kXGw4BG8VnBRhgPj0MU8xBDaIIdQw8FhEOtw0JEixRYQ23tiETMHHpE7TrfQ7eK20Q+v55EfweIRaRArEVQUuhEz8OfRcAjR0TwXN5DVjkDRgaCQkXHJ8ZEPn70Q4U8LUWswdJEyNg3RtMGR0QZRjxFC3UORfDwAURQTK5EMiSbRctadUU2UM1DUBwqRARskkVnCP1F3aH2RcqHUUV61rdFo5bMRUZYIUa4ozVFTnH/RTRpZEYfy6JEY48ORVWS6ETzbj9G0BNdRHIvhUWS0VRFxktIRiGTn0R+Pp9Gjr1pRK2k90N6uGtEMHVcRcnfbEWV5IhEQe3nRNOopUO8myRFoum8RHxdlERDKpNECEz3RIKZrkNcipNENmsURYWO9UUuqBxGjwieRc3ldUVt4G1EUXHCRKnBhERa+RlE/IT2RKDjTUUisk9FJdRPRXYCoEWH9gVGPRy2Q6194kZtSKZGIaoNRkbow0TC47NDAkRcRSBKhkV1xr1EFHMIRhWcC0bmHylFYrPSRBF8vUXAKRVFM5FORYMBBEXHWQlH8HX5RR7UB0V7mdFF4tk3RC8FxUNvWFhFxCwLRUIPhUZ8OV1EWH+yRHm73kSwHDlFp02DRZXttUT498JExJQiRTyLMUS8Io5F7EfbRAuVGkXnsklGL302Rtgdf0R1x1RENS6xRJTmdkSukztFyubbRCZyQ0UHxsZFIgoGRZyGGkWrJZZFUjXyRGyTfESGyTlFPGYaRT3PvUVn/ipFtN3/RNaazEURcLZETeeoRMR7ZEW0ckVF7FPZRICcbUVKDSpFFlKQQ8tDZUUyJ5dG8RgJReP61kS0FapE0RwyRh3TJUYINONEMCW/RHxuzESx+xJEn0fMRiNrOUbAU0hF58YzRQhzSkQjN3JE9fQPRspR7UVpPGlFYn1ERuiQu0YX1w9GdjySRH06nENFh/tDcgweQ6LxA0UBIXFFtNpgRLVyGUVGPSdEDg2FRDwdBUahxJZFrn52RGlHaURu4uZD/jC0Q75grUSGwCZF2GitRCnIW0OO6JZD//AoRV4+qESmFAVDfh9KRFiVuEWmlT1EE7SSRMknhkQjKcJDR12BRaf1jkV62xBErdqBRSY9okWo7khEXECCRGw4v0NGXa9GnNplRv82ZUROPyxEPsfXRIINuUQTec9EBBKDRDyiP0VEUWFES9wvQ3maPkRQh49DjpOMRLlJJ0R1bopDNx4yQ3wGHkQxwwFFovs5RDZ5SUQd9rtDUDwSRMkimkRg46pDhp0bQ3fcs0QbgOpEps/6RffasEX9gkJF8EkdRocGH0Vk3QlFkEEDRPLmHUVdntBER0MARBTYCkVmGydEE6ZGRKv3vEbsIoBGFd21RbftKkQ0cLZEz/bzQzzfLEWG1nFEOWWORGLg0UQciQpFxyH+Q6Ir3kYDYNtF2f0jQuZ4aUROwghEFaDgRJ3qb0OBcElEm7v4RDBtFUWE7d5FB2e9RREhnUMXJI9DJpvWQ0n9DETOMg1EaKxbQ+AokES6eXREva2ERGxVAUQtVv5ETtn4RHOMlUNAA4tDtLqfRPD4hESDiNJEpJJuQ5ioqkNGDhFDLcFLRFcQQETVBgVEq5/oQ18fD0RFr4JDBbcyRJ7jdkS9JchDqVHOQzuIGkQVLslDsar5Q9iQ0EMJmh9EDwoERNjM6kMRajxFCMOMRLQnHkQs0xZEbhD9QmeZmEPfAJJDwfGxQqu2JESSQgtE/QbaQ5kaFkPXWkhEWG5JRQ36VERoYuRDooE/RJYAB0WyUG5Eht4GRA7k0UTgaZhE5gzXQ/OmAURokdFDD6uHQ5zejUR1q1pEjkrOQxtf9kOlnv5Dx8wPRBzhakT8W/xDGS3MQyTm60IdCHZDOqFAQ13zsEQq0JdDwwsuQ467MEO/NhBEgu1aQ7EY3UP5Rh1DjGB3ROiuGkMGeNVDZiZ7Q3vPKUMACa5EekibQ1n1BEOJf+tDLzawQ+M4pEOiuipEQKAHRFW4BkRTKfBDiRoARI1bFkMZGZdDzh1eQ6X/tkOEis5DkaK0Q3BcyEJLV7VD+WKuQyS0JUOQBCtD</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-        <spectrum index="5" id="controllerType=0 controllerNumber=1 scan=10076" defaultArrayLength="227">
-          <cvParam cvRef="MS" accession="MS:1000580" name="MSn spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000511" name="ms level" value="2"/>
-          <cvParam cvRef="MS" accession="MS:1000130" name="positive scan" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000127" name="centroid spectrum" value=""/>
-          <cvParam cvRef="MS" accession="MS:1000504" name="base peak m/z" value="175.092834472656" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000505" name="base peak intensity" value="37119.2734375" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-          <cvParam cvRef="MS" accession="MS:1000285" name="total ion current" value="2.4489709375e05"/>
-          <cvParam cvRef="MS" accession="MS:1000528" name="lowest observed m/z" value="117.065841674805" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <cvParam cvRef="MS" accession="MS:1000527" name="highest observed m/z" value="429.252563476563" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-          <scanList count="1">
-            <cvParam cvRef="MS" accession="MS:1000795" name="no combination" value=""/>
-            <scan instrumentConfigurationRef="IC2">
-              <cvParam cvRef="MS" accession="MS:1000016" name="scan start time" value="32.910578333333" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <cvParam cvRef="MS" accession="MS:1000512" name="filter string" value="ITMS + c NSI d Full ms2 418.26@cid35.00 [105.00-430.00]"/>
-              <cvParam cvRef="MS" accession="MS:1000616" name="preset scan configuration" value="9"/>
-              <cvParam cvRef="MS" accession="MS:1000927" name="ion injection time" value="11.571287155151" unitCvRef="UO" unitAccession="UO:0000028" unitName="millisecond"/>
-              <userParam name="[Thermo Trailer Extra]Monoisotopic M/Z:" value="0" type="xsd:float"/>
-              <scanWindowList count="1">
-                <scanWindow>
-                  <cvParam cvRef="MS" accession="MS:1000501" name="scan window lower limit" value="105" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000500" name="scan window upper limit" value="430" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                </scanWindow>
-              </scanWindowList>
-            </scan>
-          </scanList>
-          <precursorList count="1">
-            <precursor spectrumRef="controllerType=0 controllerNumber=1 scan=10068">
-              <isolationWindow>
-                <cvParam cvRef="MS" accession="MS:1000827" name="isolation window target m/z" value="418.26" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000828" name="isolation window lower offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                <cvParam cvRef="MS" accession="MS:1000829" name="isolation window upper offset" value="1.0" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              </isolationWindow>
-              <selectedIonList count="1">
-                <selectedIon>
-                  <cvParam cvRef="MS" accession="MS:1000744" name="selected ion m/z" value="418.26" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-                  <cvParam cvRef="MS" accession="MS:1000041" name="charge state" value="1"/>
-                  <cvParam cvRef="MS" accession="MS:1000042" name="peak intensity" value="3.20005e05" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-                </selectedIon>
-              </selectedIonList>
-              <activation>
-                <cvParam cvRef="MS" accession="MS:1000133" name="collision-induced dissociation" value=""/>
-                <cvParam cvRef="MS" accession="MS:1000045" name="collision energy" value="35.0" unitCvRef="UO" unitAccession="UO:0000266" unitName="electronvolt"/>
-              </activation>
-            </precursor>
-          </precursorList>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="2424">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000514" name="m/z array" value="" unitCvRef="MS" unitAccession="MS:1000040" unitName="m/z"/>
-              <binary>AAAAwDZEXUAAAAAA1BFfQAAAAIDEI2BAAAAAAGZDYEAAAADgmWNgQAAAAMCUh2BAAAAAQIKiYEAAAABAr8BgQAAAAMDF5WBAAAAAAN9+YUAAAABgtqFhQAAAAMC0yGFAAAAAYE7rYUAAAACgAyNiQAAAAMBeZGJAAAAAgJiGYkAAAACAbcViQAAAAACLQGNAAAAAgEBbY0AAAAAAuoNjQAAAAMC/omNAAAAAIJbEY0AAAADAluFjQAAAAODDxWRAAAAAAIAmZUAAAABgTWhlQAAAAAAvhGVAAAAAgPjiZUAAAADAFgNmQAAAAMCKJWZAAAAAIOhCZkAAAABArGJmQAAAAACLhGZAAAAAgOWkZkAAAACA7MZmQAAAAIAV6WZAAAAAgCACZ0AAAACA4CdnQAAAAEBfRWdAAAAAoOBjZ0AAAACAURhoQAAAAECFpWhAAAAAAFbCaEAAAAAgOOVoQAAAAICvA2lAAAAAABomaUAAAACgxU1pQAAAAKBog2lAAAAAAOmkaUAAAAAAKuZpQAAAAMDAH2pAAAAAAJBkakAAAAAgoIJqQAAAAABzompAAAAAgDHFakAAAAAAPuNqQAAAAKDuAGtAAAAAQGAoa0AAAABAnUJrQAAAAOAjY2tAAAAAAEiHa0AAAAAAt6VrQAAAAGAqv2tAAAAAwHbja0AAAACASgVsQAAAACDXJGxAAAAAgHNGbEAAAADArWZsQAAAAEBygmxAAAAAwNuobEAAAACAecNsQAAAAMBe4mxAAAAA4GUGbUAAAADAnSVtQAAAAIAMR21AAAAAwPWDbUAAAABAE6ZtQAAAAABABm5AAAAAwPoibkAAAABAoUZuQAAAAIBbZm5AAAAAAGKFbkAAAADAa6huQAAAAIDUxm5AAAAAgJjmbkAAAAAA9AZvQAAAAMDmZ29AAAAAwIKCb0AAAAAAf6VvQAAAAEDDxG9AAAAAwPblb0AAAACgsBJwQAAAAMAjInBAAAAAgHQ0cEAAAAAgGkRwQAAAAEAmU3BAAAAA4BVgcEAAAADgvIBwQAAAAIBMonBAAAAAgAizcEAAAABAEsVwQAAAAOCB0nBAAAAAwC/icEAAAABAIfJwQAAAACCBA3FAAAAA4GMVcUAAAADgPiNxQAAAAKDiRHFAAAAAQM9UcUAAAADApmFxQAAAAEDcdnFAAAAAYGuEcUAAAAAAoZhxQAAAAGAns3FAAAAA4MnDcUAAAADgrtVxQAAAAIBK5XFAAAAAwOLycUAAAAAAHANyQAAAAMCTFHJAAAAAgKIickAAAAAACWRyQAAAAOCDdXJAAAAAoFCDckAAAACAIJRyQAAAAMAco3JAAAAAgOvBckAAAADAluVyQAAAACAO9nJAAAAAAOMDc0AAAACAVhRzQAAAAADBI3NAAAAAYLdCc0AAAADgRlJzQAAAACAXdHNAAAAA4A+Ec0AAAADAOpVzQAAAAGC6pHNAAAAAINizc0AAAACA69RzQAAAAICz5HNAAAAAoG/yc0AAAAAgmA10QAAAAMB2GHRAAAAAoJgldEAAAABglDN0QAAAAKAjUXRAAAAAoOtddEAAAAAgWnN0QAAAAGAihXRAAAAAoDKWdEAAAACAX6Z0QAAAAEBMx3RAAAAAQFnRdEAAAACgVuB0QAAAACBq9XRAAAAAQCUEdUAAAABAPBR1QAAAAIBGJHVAAAAAgP4zdUAAAADAk0R1QAAAAGDuU3VAAAAAAHNjdUAAAADATnl1QAAAAADIpXVAAAAAoBqzdUAAAAAgG8N1QAAAAEBc1HVAAAAAoMjhdUAAAADAehZ2QAAAAOBiMnZAAAAAACNGdkAAAADg1FR2QAAAAGBvZXZAAAAAwBZydkAAAACgpZN2QAAAAEDNnnZAAAAAIA+ydkAAAADAisN2QAAAAGAP1HZAAAAAILzkdkAAAAAAXB13QAAAAADkLHdAAAAAwBNDd0AAAAAgOlV3QAAAAGBiZHdAAAAAIJp0d0AAAADggYV3QAAAACAKmXdAAAAAQAW7d0AAAACAntV3QAAAAMCW43dAAAAAgKjzd0AAAABgSQd4QAAAAGBwFHhAAAAAQJoleEAAAABA5TV4QAAAAECLU3hAAAAAgFxieEAAAABAb3B4QAAAAMDMgnhAAAAAgOOVeEAAAADAH614QAAAACA0uXhAAAAAYHrIeEAAAABAFdN4QAAAAABa9HhAAAAAwJoDeUAAAAAgRhR5QAAAAABTKHlAAAAAYIU5eUAAAAAA3l15QAAAAKB3cXlAAAAA4NeJeUAAAADAbJR5QAAAACDRo3lAAAAAQPu3eUAAAAAgcMd5QAAAAACB13lAAAAAAF4DekAAAADgYxR6QAAAAKBWJHpAAAAA4ME0ekAAAAAAPoh6QAAAAACqmnpAAAAAoESmekAAAACACtR6QA==</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="1212">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>aFNuQqIMLUKU+IFEr1joROBBE0P6ieJCUgx6RIvxQkQXOaBDYX/VQtSLP0Mj0J5BHTAVQ9IKV0M4lFxE0ia3Q/1lF0NL4yxD1dyuQixBsEKdi+5EMb97RZj6+0PDy2ZCYM86Q0zZmEKnMrlDRv8QR93aY0XURQ9EtMdBRLLy6UMmb7xDCqIhQikewEInBSZDbWSSQ3kOPUPj4hVE+NliQworQEP6pAFDWiECRMzxVkRpoPFCuWRRQ5O/Q0MvfFZEy3X3Qa6uAUOonVFDS6dyQwkg90I4RhZC096NQ3dCG0WBHxZElGuGQhdAg0Ntmj9DITSXQ2xs2kJvgIFDwbcVRA5hwUMs8TpEiKaRRGtDXEQwv7lDy6b6Q8aLM0MWBClC3t/MQ6fzlkN03V1C7BnFQ5kfRURWXNJCH/oRQyGXG0NBUYBFly3yRMrOBkPc7hVE1NljQ2OalULwRIhDfaVJRErukEOS3D9E7TgXQx5niEKL/HRCKhafQypxDERRf+hDFlyxQ0httUM2e1JDhmUGRE+eiEQPTQhFtE63RPFGYkSaGY5EO4tNQ799wkK94ShDpUZ6Qqrwe0IpbwJCpmCwQh/Yp0PaPUVDBgMRQ6knrEMsRJpEwy0ORXAnSkUdUcZDzhurQwcssEPudDVDAypqQ0ttBUM3YJBDED8TQ6OeDEOIM69DDO8LRQIXkERRSiFCwNqyQi6HGEPwYB5EW7VBQ/YZS0KG3JVD6s0/Q5wXmUJ38ZFD8GWIQ8yFIEQ+RnRDZ4+NQ/83qUMeU5tDjoVsQ5BbgUOoMp1DcUPxQ85yMUSICtlDayiFQ/9zDkN8xF9FmqU4QzH1m0NE9nFDsDWdQ3XiBUSMxGlDbsjNQibxHUS0xaFCvrHNQ5dZXkPd8Z1C4q4EQ0x8K0Triw9ETnzmQ5ZN1ESp2xJEvYeBQzFBqUSo5PxD3/LSQ4qIFkT7lINEJQs6RIr1B0O2YMlFHdc2RVkQ6URL8FJEvHD2Q0p3P0ReiapDL4aFRAqTHkVN/0xG0MX6RehT0EQymZNCL7udQ4JQV0R43VJEqOcJRFaCrkMVDUNDi32fQ+oo/EN9dChEtYtPRIyQCUMpXKhFShWpRp9ssUXsRMFEw3pjRBAMgkRO3udDtGXKRY9O/kU4zgZEoJU0RpzC1UQzJ9pCOsEuQpGRkkK4v8hDdchLQ0zwYURYrF5DlRooQ0P+GEM=</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </spectrum>
-      </spectrumList>
-      <chromatogramList count="1" defaultDataProcessingRef="pwiz_Reader_Thermo_conversion">
-        <chromatogram index="0" id="TIC" defaultArrayLength="32884">
-          <cvParam cvRef="MS" accession="MS:1000235" name="total ion current chromatogram" value=""/>
-          <binaryDataArrayList count="2">
-            <binaryDataArray encodedLength="350764">
-              <cvParam cvRef="MS" accession="MS:1000523" name="64-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000595" name="time array" value="" unitCvRef="UO" unitAccession="UO:0000031" unitName="minute"/>
-              <binary>tkJrWGYkdT9FkchRk/OIPxTLLa2GxI0/CSPjPl+gkT8nreW7ge+TPx8RUyKJXpY/dJDqToppmT+eB3dn7babPwz65abgA54/MImgVykqoD/SsXB/G0+hP917uOS4U6I/BthHp658pj+bE44zYKOnP1rwoq8gzag/a6K8fNj4qT8POCUz8SGrPzWLKtaDXKw/zhYjJVDXrT8ksbenvgavPxdQldxOSLA/LBasXmvcsD/MC7CPTl2xPyHi+R9zeLM/LZW3I5wWtD8Z/BAu99y0PziEKjV7oLU/mPI0c1s1tj+rjcTenvq2P2LTXezQw7c/YLNJa/luuD9ULfzzRyu5Pw8LtaZ5x7k/iG2LMhtkuj8I2Yzm25W8P+VecyFpSr0/D6y9YiDivT9ylQF69Jm+P+Y3X/+IOb8/nNzvUBTovz9t/8pKk1LAPytapkxXncA/UwWjkjoBwT/MC7CPTl3BP5GTnCZGqcE/4F8XWNq8wj9pLd8NfB/DPx2PGaiMf8M/JZLoZRTLwz88g4b+CS7EPyBGCI82jsQ/rHMMyF7vxD+HFtnO91PFP5fNCccZsMU/ddASUTkTxj8k64M/1mbGP0NjE4buf8c/ovtfm3rKxz9CQ/8EFyvIP9j9UFb5i8g/VsTWWRrlyD85h1jqRkXJP9dhX8W8ock/nH34DLsCyj8ueNFXkGbKP9NyjbyZvso/+Db92Y8Uyz+lxQb4WyjMP3/7OnDOiMw/oHkmIX7rzD8hoOinJUPNP96OcFrwos0/f9YPxIwDzj9jBirj32fOP9NyjbyZvs4/Z82iivUgzz+VOBjX5YHPPxe/FuET2M8/WOpGRYmD0D8mLtr2ULXQP8VAxPM/5tA/slveL3kW0T+zkJOcJkbRP3OqomXKdNE/Rq6uHZ+j0T9+oVpX39PRP8hOZT4NBdI/N9BpA5020j8Jl3tujmDSP1YOLbKd79I/oxt0HFIf0z//snvysFDTP3jBzc/6gdM/DBfMcuyz0z8sIwhqC+LTP2QWtKNLEtQ/k3wSxdFC1D8iBTxWFnLUP9wuNNdppNQ/HDU5j53K1D8Jih9j7lrVP5ayDHGsi9U/BTQRNjy91T8FOShhpu3VP6V7sJ/YHdY/C6AFjvFO1j/l0CLb+X7WP0z1d8kSsNY/Ssrwsjnh1j894n1CYxPXPzk9ApLDOtc/FI4zYKO/1z87x4Ds9e7XPwM+P4wQHtg/a5IyvGxO2D+Qa0PFOH/YP/e/NvWUr9g/ny/QyPrg2D+fNOfzZBHZP8xqp9OnQtk/5YbMgnZ02T/kTulg/Z/ZP5x1syyFLdo/zAuwj05d2j8oo7dlrY7aP74oVEriv9o/QvSRgSnw2j+WLuqAESHbPz1u5RI0U9s/aDcNZFCA2z/tAkubl7DbP1InoImw4ds/7C+7Jw8L3D/nocnY45jcPzJ/cgFVydw/ofMau0T13D+qVeG8JSbdP8ShpK03V90/6Hq1tgOI3T9rFlWsB7ndP2G+vAD76N0/Or87DMAZ3j/BuheFSkneP+a2asS5c94/LNFsMVIC3z+IaHQHsTPfP+U8dirzad8/626e6pCb3z+jK/7cvcnfP6EAd8bk+t8/qeZfuGAW4D8MCnBnTC7gP2RYxRuZR+A/Dlf0dJtd4D/PQao7KabgP1g5tMh2vuA/ux/KKn/R4D8CtMAx3ungP7n0QhSmAuE/MDLu8wUa4T/e/fFetTLhP+yjU1c+S+E/xOv6Bbth4T/LmQDWvajhP86yFLaMweE/VXqAAZfa4T+WKdNVp/DhPxfELQx+COI/aP1AzDgg4j/ol5uCDzjiP2gaJ5hEUOI/YtaLoZxo4j8bL90kBoHiP7FDD4/XluI/MLPiLtXf4j9kXdxGA/jiP5bvBr6PEOM/bh/fy2on4z/Q+oGYcUDjPy457pQOVuM/a1hmJFVu4z+DixU1mIbjP/iAUzITn+M/1ZXP8jy44z8uB2fdLMvjPzzKrqHBE+Q//q9NPeUr5D/u3mQug0TkPz24O2u3XeQ/0oQA86N05D+gVykqCIvkP1iYqwzQo+Q/SK/zXMy85D/T7mrM/tPkP3AY3ypi6+Q/a68YiHj+5D8RO1PovEblP327Em4fX+U/nmNA9np35T/RDToOqY/lPxeKYXRmqOU/aMN0NCHA5T9Y8oslv9jlP3iC6gx58eU/RMU4fxMK5j/ykDzqwiLmP0F1hrz4NeY/xaTSYgN85j/lTADrXpTmP1tCPujZrOY/9iNFZFjF5j8hWcAEbt3mP+3LrLhL9eY/1s2yFLYM5z+DaRg+IibnP+O/U9tgO+c/BLUFcQuD5z8sohMvPJznP3aWRrkhs+c/l1ZD4h7L5z8SKeCxshDoPxVawzIjKeg/UBn/PuNC6D9f7/54r1roP8RCrWneceg/0gDeAgmK6D/7Bbth26LoP93arygSueg/CV2v1nYA6T8V60EuXhnpPxQ3gfx/L+k/GGhkffBH6T/PqOZfuGDpP5O+Iz0feOk/xTh/EwqR6T8/vpfVTqfpP8ai6exk8Ok/WPeiUCkJ6j+fi5lXiCHqP4/Sf+nHOeo/Dj08XltS6j+YTBWMSmrqP+g9u2kgg+o/J71vfO2Z6j8aaam8HeHqPwIjQjaj+eo/03rSnM8T6z/+r0095SvrP3S9WtsBROs/gmO804pc6z8qShyM63LrPxRXlX1XhOs/gQwKcGfM6z+GPe3w1+TrP7BamfBL/es/qy7NmkUV7D9ObYPtOi7sP1OGl80JR+w/kQVM4NZd7D9flR5gwKXsP3bgnBGlvew/tUeCg9DU7D8GgZVDi+zsP1aKCsICBe0/IuUn1T4d7T+hZ7PqczXtP08zt1UjTu0/JANT4Hdm7T+2b9vk3X7tP7XT6VOhlO0/IEHxY8zd7T9Mjjulg/XtP34gZhwQDu4/EqW9wRcm7j9FN+g4pD7uP248xZd2V+4/8Aa+j5Bu7j+8fsFu2LbuP2DtFQMRz+4/YwYq49/n7j9rx+coGv7uP3dakatrR+8/kL3e/fFe7z/DTwl1fnfvPxu2LcpskO8/Df0TXKyo7z/sQS5eGcHvP2qs6tKs2e8/rHMMyF7v7z+VZYhjXRzwP/uefj1MKPA/c6qiZco08D96CTuy30DwP8NXTlW0TPA/8ar0AANu8D/9PZ6DVHfwP8b5m1CIgPA/0oxF09mJ8D8ODZ4cGJPwP2YEQW1BnPA/s1bHBA+m8D9TliGOdbHwP/xK+o70vPA/3wU3P+vH8D+PqiaIus/wP/Oj9F/68fA/VPhGh5r78D/kURcWyQTxP5F++zpwDvE/pCbnsVMZ8T8XfQVpxiLxPweZZOQsLPE/Q6Uk/js18T90mC8vwD7xP8yP0n/pR/E/Js/isvdP8T9WM1he33TxP4iyyl80fvE/BWaY7R2I8T90/D2eg5TxPxsN4C2QoPE/7ZklAWqq8T9Wp/CNDrXxP8VVZd8VwfE/tf0rK03K8T/BkNWtntPxP8rDQq1p3vE/XZLwqvQA8j9MIuhVigryP0s8oGzKFfI/Ct/oUHMf8j+1N/jCZCryP5pScfbhM/I/jSPW4lNA8j8kYkok0UvyP8P9bTzFV/I/nCtd1AFj8j8Paqzq0mzyP0K6xekRkPI/P4wQHm2c8j8yXXUK36jyP9rhr8katfI/jSPW4lPA8j+jt2WtjsnyPxvbWHau1fI/ul6t7QDi8j8gDDz3Hu7yP5ijx+9t+vI/oUrNHmgF8z90eBuu6CnzP5tqQJeDM/M/TPBgnqg/8z9ATS1b60vzPxjX5YG1V/M/R2q0L7Ni8z+e0sH6P4fzP2ufjscMlPM/akWurh2f8z96pSxDHKvzPyyf5Xlwt/M/BVk84n3C8z8BAy61y+TzP0rF2YfP8PM/SMfC/W388z+lc2u/ogj0P3zlVEXLFPQ/G2mpvB0h9D9T/V2yBCz0PxC0AkNWN/Q/sdzSakhc9D896sIimWj0P8iDGqu6dPQ/g365KfiA9D/qz36kiIz0P4n3CY1NmPQ/89V7F9y89D/5qKyTIMn0P2hXIeUn1fQ/EFD005Lh9D/Wexfc/Oz0PyHi+R9z+PQ/Byrj32cc9T8z6dzaryj1P3M2CjabNPU/7M2VLupA9T/yFF/aXU31PwwCK4cWWfU/ySxoR5dk9T/mMkjUHon1PyXEbx32lfU/ZkE7uiSh9T/p8Xub/qz1P7gGtkqwuPU/mQXt6JLE9T+D1WuNG9H1Pytyde343PU/wPTjHGLp9T/Js7js/fP1P6ee8tV7F/Y/iBHCo40j9j9Mgd+Z4y/2P1Pgd+b4O/Y/6Xq1tgNI9j9OKETAIVT2P71KUUFYYPY/BoGVQ4ts9j88tQ2263j2P9HbslbHhPY/mk9DQRaP9j+bakCXg7P2P1uZ8Ev9vPY/YLAbti3K9j8bNyIFPNb2Py071wqt4fY/PQ/uztrt9j8K9Ik8Sfr2P/V/DvPlBfc/uu8r6TsS9z/TxCj1Uh73P+ZsFGw2Kfc/V3iXi/hO9z+9JSaVFlv3Pw/R6A5iZ/c/5845ZVtz9z/SQu96Vn/3Py3vlzyLi/c/SfQyiuWW9z9sPq4NFaP3P6OK9SAXr/c/qV0mnVu79z83y1LYMsb3P4Qaq7o06/c/SBYwgVv39z8WhzO/mgP4PzlFR3L5D/g/UgJ13W4c+D/CVCCg6Cf4PwUXK2owTfg/+9MzqvlX+D9rDhDM0WP4P2hswtD9b/g/V3BSq8J5+D8TJ/c7FIX4PxVC9JGBqfg/6OYIBv2y+D/IzXADPr/4P3rHKTqSy/g/PqvfXxfY+D8XTWcng+P4P+6+UK2r7/g/6pCb4Qb8+D/qToppuQb5P0vQTB3RKvk/V2P2nyI0+T+qDrkZbkD5P1sIclDCTPk/56HJ2ONY+T/biv1l92T5P9dcSJpScfk/6dSVz/J8+T9+42vPLIn5Px6vLSlklPk/3dqvKBK5+T+hSs0eaMX5P1JEhlW80fk/nHrKV+/d+T+j8TFFpun5P/fMkgA19fk/XGJSabEB+j9Hej7wHg36P/Mau0T1Fvo/skY9RKM7+j8X3PysH0j6PyckrKB8VPo/S/qO9Hxg+j8ihEcbR2z6P615aDL2ePo/mqkjWgWE+j/Q3ZvMZZD6P21h8EO4nPo/ut+hKNCn+j94I/PIH8z6P6VWhfOW2Po/alIKur3k+j/KplzhXe76P1Uo5cjd+vo/b3F6BCQH+z+uGnHunBP7P31Hej7wHvs/LNFsMVJC+z/cyiVopk77P+v6BbthW/s/qCVDe+Jm+z+RgSnwO3P7P3xpdzVmf/s/qShxMK6L+z8f7Cd2R5n7Pzk1vbGNpfs/nXWzLIWt+z+M1lHVBNH7P7mVS9BM3fs/PEaMsSbp+z9MGqN1VPX7PwaJ2iPBAfw/GBn3+QIN/D8XM68QQxj8P3BXwu3jO/w/dyrzaShI/D90iKVuVFT8P0uG9sRNYPw/MlpHVROE/D9CLl4ZQZD8P/wo/Zd+nPw/L+I7MevF/D8OsdSNitL8P08uoCq53fw/VnVp1izq/D8wL8A+OvX8P99EGgJtGP0/MfDce7gk/T8GpsDvzDH9P1hRg2kYPv0/5QKqkttJ/T/G6RGQHFb9P5RaFc5bYv0/A30iT5Ju/T9onkmI33r9P7pJDAIrh/0/SLc4PQKS/T846DikPrb9P8z2DqR4wv0/PKWD9X/O/T++PfU1uNr9P2U2yCQj5/0/DkdqtC/z/T/3olApif/9Pz9NLVvrC/4/GdflgbUX/j8zOEpenSP+P9QzqvkXLv4/YULf8JVT/j9h6P7Xpl7+P3oxlBPtav4/B8vrmw53/j/BOSNKe4P+P+/M8fd4jv4/JXUCmgib/j8mS8DCXKX+PwpLPKBsyv4/6jGkna3W/j9rskY9ROP+P6xzDMhe7/4/DYE2TEcT/z+QGaiMfx//P+LEagbLK/8/ZOlDF9Q3/z9Y0nek50P/P7N+IGYcUP8//LRkaE9c/z8OFeP8TWj/P9NABgW4c/8/cShp682V/z9Smzi536H/PymBum43rv8/V/y5e5O5/z8J9nKy58X/P8N8eQH20f8/T7oH+4nd/z8yXXUK3+j/PwRGhGxG8/8/zywJUFMLAEBvRzgteBEAQAUntSqcFwBAM32Ji7YdAEA7rcjVtSMAQFdTbN+2KQBAcjPcgM8vAEAb/VVtJDYAQIyUQF23OwBAsYUgByVMAED1X/pxDlEAQLtE9dbAVgBAlfHvMy5cAECDRO2R4GAAQHFdHlh7ZQBA9+ymgQxqAED5ezwHqW4AQDI9YYkHdABAklS5Y8R4AEDzYePnrHwAQBZ/7t5kjgBANIXOa+ySAEBtJPb21JcAQLr/tamnnABAUr01sFWiAEA/EDMOCKcAQEugrtuNqwBAhJFxny+wAEDa4a/JGrUAQIWh+1+bugBAmkosFqy+AEAANbVsrc8AQNJKNFuM1ABAq43E3p7aAECP39v0Z98AQISZtn9l5QBAET6BnYjrAEAHpsDvzPEAQG+OYNAv9wBAw5YxGDb9AEDVASNCNgMBQMtfND6mCAFAxiYM3f8aAUDtFQMRzx8BQCaFjFp0JQFAJxQi4BAqAUD5tQifwC4BQBakGYumMwFA78SsF0M5AUAK3+hQcz8BQLT6/XWBRQFACAPPvYdLAUD/JhQi4FABQGKZkVS5YwFAc7LnRQBqAUApaevNlW4BQNJKNFuMdAFAmus00lJ5AUDvC9W6+n4BQIXrUbgehQFAYcjqVs+JAUBCusXpEZABQEE7uiThlQFAEq0Cok2bAUBk2blWaK0BQKWD9X8OswFAdP9rU0+5AUBOIP/f674BQLWeNOfzxAFAZ4uREqjLAUC6B/uJ3dEBQBhjTVKG1wFAKggLFJ7dAUApcTCuy+MBQCgK9Ik86QFAjawP/lj7AUC8yBfHWwECQJQLqEpuBwJAUNftxpUNAkDwt1AMoxMCQHNbNeLcGQJAMcuxz3YfAkAv+grSjCUCQDdkFrSjKwJAscxIqtwxAkAaH1NkmjYCQDM7eBNpSAJAIshBCTNNAkDxW4d9FVMCQMqeFwEoWQJAOh4zUBlfAkCPYNAvN2UCQC61y6RzawJAsqpLs2ZxAkAZKYG6bncCQBkU4M6YfAJAiK2zNMqNAkDyxfFWcJICQFBbELcwmAJAKvA7c/ydAkDK0J64CaQCQAFiJfkkqgJAe5CLV0awAkCzOeE4A7YCQMyP0n/pxwJADNCjzzTOAkBPBkfJq9MCQPghXO652QJAJz5kt7zfAkCOgs0mreUCQLwqPcCA6wJAUQyjM0P9AkAgiBkHhAMDQPBTQp3fHQNApHA9CtcjA0DcU1+DqykDQB0gmKPHLwNAJYqjhd41A0DX4GqK7TsDQOm/9OMcQgNApheiMBVIA0CI53/M4U0DQESzxUgJVANAO2NyfTJZA0AASlZYg2oDQHPXEvJBbwNAHLlbfzh1A0AS5845ZXsDQG+e6pCbgQNAukkMAiuHA0BHtAqINo0DQLinvgZXkwNA1CtlGeKYA0A5lLT15qoDQHGxogbTsANAhCo1e6C1A0AkC5jArbsDQCI68cLDwQNAgH106srHA0CSXP5D+s0DQGu3XWiu0wNA0JNFdOLlA0BK2npzpesDQAf4WyiG8QNAd+sPp6b3A0CcBjIowP0DQK79iiKRAwRA2QOtwJAVBED14xxiqRsEQP1NKETAIQRAzMmeFwEoBECAxJyNgi0EQH/z9Y+YMwRAcyFpSsU5BEAmmi1GSkAEQHF/G0/xRQRAZCMQr+tXBEDLZ3ke3F0EQIFYST6JYgRABBT9tGRoBEDyZvoSF20EQHaWRrkhcwRAm8k329x4BEAUhu5/bYoEQLMUtozBkARA/oULZjmWBEBTjtytP5wEQG3i5H6HogRAY2LzcW2oBECkupNiWq4EQPnaM0sCtARAHd6GK3q6BECNCwdCssAEQCUz8SG7xQRAnZ0MjpLXBECooSCLR9wEQKbQeY1d4gRAkolu0HHoBEDwzPH3eO4EQHQUDT8l9ARA//SMav4FBUAvq51OnwoFQIOzbpalEAVAluSTKI4WBUCoiVHqpRwFQKOK9SAXLwVAqi7NmkU1BUCpXSadWzsFQNBMHdEqQAVALgQ5KGFGBUB4CyQofkwFQKZh+IiYUgVABGuvGIhYBUDmIr4Ts14FQKK0N/jCZAVAalU4b4lpBUBfnWNA9noFQHp90+EOgQVA+0K1rr6HBUAFOShhpo0FQGJC3/CVkwVAo5p/4YKZBUDlLOxph58FQKG+ZU6XpQVAxU0g/9+rBUD+SBEZVrEFQFjSd6TnwwVAaXc1Zv/JBUC+857dNNAFQP75o5Vo1gVA13YAsZLcBUCKWS+GcuIFQEYldQKa6AVAfpT+Sz/uBUC01dLJPwAGQGkAb4EEBQZAeqUsQxwLBkBU6LzGLhEGQM0WIyVQFwZAdmwE4nUdBkBrmnecoiMGQAu1pnnHKQZAaTL2OOYvBkBLVG8NbDUGQHfwJtIQSAZA8B6NMDJOBkDcEU4LXlQGQGl8TJFpWgZAL9XfJUtgBkDjCaoz5GUGQCuHFtnOdwZAIHu9++N9BkBimZFUuYMGQKPxMUWmiQZA5L1qZcKPBkDQPJMQv5UGQDb1lK/emwZAW0qDyA+iBkD7fIFG1qcGQGM1g+X1rQZAPcCAS+2yBkDcLjTXacQGQDkgHMa3ygZAX990uEPQBkAwTKYKRuUGQBKQHNZB6wZABzIowJ3xBkArhxbZzvcGQD0s1Jrm/QZAIBSB11QDB0D2tMNfkxUHQI3m25VwGwdANjy9UpYhB0DWHCCYoycHQMLVFNu3LQdAT3rf+NozB0BNb2xj2TkHQF8UKiXxPwdAHISmEotFB0CgVykqCEsHQG29udJFXQdA+Um1T8djB0BqRa6uHX8HQF9zIWlKhQdAeo1donqLB0Co4zEDlZEHQM3+U4SulwdAFwY/hMudB0DKltIg8qMHQJC1mR28qQdA7jLp3NqvB0B7QR7UWLUHQJR/QHqdxwdAy0qTUtDNB0ACFuYqA9QHQDrhOAM22gdAaMN0NCHgB0BGqZfyNPMHQKbA78zx9wdAy6FFtvP9B0B9MtlSGgQIQDDDbO9ACghA0GkDnTYQCEA+u2kggyIIQD2w9oqBKAhAtzD4IVwuCECGONbFbTQIQBPdoOOQOghACSPjPl9ACEDCwHPv4VIIQN0sS2HLWAhAh9THVqpeCEBpjNZR1WQIQC/laea2aghAsYo3Mo98CEAHLRGVM4EIQBJr8SkAhghAcAAQisCLCECWhZzkNJEIQGgng6PklQhA20CnDXSaCECZpvWkOZ8IQJH62ErVowhAT2An4pqoCECIWxj8EK4IQNOsWVSxvghArsO+innDCEBr+W7g+8gIQPvDqemNzQhA6dzaryjSCECMkRKo69YIQEr3YD+x2whAP3dvMpfhCEC6pdWQuOcIQHY3T3XI7QhAfwvFMDrzCED20akrnwUJQGjT/vSMCglAz/+Yw9sQCUCDhv4JLhYJQBC3MPghHAlAz6jmX7ggCUA2JxxnwCYJQM/abReaKwlASq0K5y0xCUA0Fk1nJ0MJQKTnA+/RSAlAiENJW29OCUDSvsyKu1QJQJhp+1dWWglAEphhtndgCUDFKPVSnmYJQPzzRyvRbAlAY6xJyvByCUAgHMa3ingJQFnd6jnpfQlAL7j5WT+QCUBAl4OzbpYJQOCxspCTnAlAWqZMV52iCUD5buD7CKkJQDP2OOZPrglA48KBkCzACUDbFmU2yMQJQJayDHGsywlAvDeZyyDRCUCBkCxgAtcJQHdKB+v/3AlA4JwRpb3hCUBRkMUj3ucJQOdvQiEC7glA+RQA4xn0CUBkXdxGA/gJQEM50a5CCgpA0BdoZH0QCkBm9+RhoRYKQHjWbrvQHApAWmyAv4UiCkCYRNCrFDUKQF/v/nivOgpAjLlrCflACkCVdRIkyUYKQCz5xZJfTApAlANjajhSCkCiQJ/Ik2QKQJDNaL5daQpACxSevSBvCkAWUn5S7XMKQJqByvj3eQpAx9eeWRKACkBw87N+IIYKQNjlgbVXjApAnLKteWiSCkCJpW5UlJgKQMFmk9bynQpAcbGiBtOwCkDjPl+gkbUKQDZHMOiXuwpASOztqa/BCkA+4JTMxMcKQK+ZfLPNzQpA5/A2XNHTCkAy1iRleNkKQGZb89Bk7ApAbcX+snvyCkDDNzrU3PcKQA0FWTzi/QpAAqdkJj4EC0A5OOtmWQoLQC9mXiGGEAtA7L0Lbn4WC0BRdg0NnhwLQOCEQgQcIgtAOpoQYH40C0DQ7SWN0ToLQGj9QMw4QAtAj7JraPBEC0BBfcucLksLQOIBZVOuUAtAIMLlnptjC0DlbBRsNmkLQAFlU67wbgtAtQ2267h0C0ATaQi0YXoLQEs0W4yUgAtAHOBvoRiGC0Dr/xzmy4sLQPHH2swOngtAdDHzCjGkC0DaI8FBaKoLQO7gTaQhsAtAN65sDCe2C0AQ8fyPObwLQG3i5H6HwgtAyz03RzDIC0Ao9zsUBdoLQMcRa/Ep4AtANwUfcErmC0Atv/n6R+wLQAXIveZC8gtA8rp+wW74C0DdxQ49PP4LQGpI3GPpAwxACmMLQQ4KDEDx5MCYGg4MQKwEi8OZHwxAQk5ymhglDEAlkuhlFCsMQKhNnNzvMAxAuFAMozNDDEBq4Z8/WkkMQH3AKZmJTwxAaD9SRIZVDEARz/+Yw1sMQJU4GNflYQxAnBa86CtoDEDNtP0rK20MQE0g/9/rfgxAasai6eyEDEASHISmEosMQBCFqUBAkQxA6TvS84GXDEAqQtertZ0MQCA2fs7KowxA8I/3qpWpDEAdrP9zmK8MQNnJ4Ch5tQxA451W5Oq6DECwd3+8V80MQN3NUx1y0wxAMRDx/I/ZDEBz3CkdrN8MQP9GKKO35QxAqu6kmJbrDEDBRJbffP0MQG0+rg0VAw1AdW7tVxQJDUBpnGASQQ8NQPg2/dmPFA1AoKaWrfUlDUBMIuhViioNQEJQWxC3MA1AQAsc4502DUBuJySsoDwNQFumTFedQg1A3UkxLddIDUBEjpqcx04NQMgPgnuLVA1ATfvTM6pZDUB6xyk6kmsNQDblCu9ycQ1AbjzFl3Z3DUDBRJbffH0NQFl2rhVagw1A5hp5M32JDUAUw+jMUI8NQBG6Xq3toA1AxErySRSnDUC6PplsKa0NQBcwgVt3sw1AWMLt43u5DUBMtpQGkb8NQCQz8SG7xQ1AshGI1/XLDUA2k2+2udENQJxLcVXZ1w1APZY+dEHdDUCsxacAGO8NQB3RKiDa9A1AaBLitw77DUCVaLYYKQEOQMz5PFlEBw5A5xN5knQNDkDC+j+H+RIOQOVRFxbJJA5AfcucLospDkCY5dhnuy8OQLwA++jUNQ5ALbriz907DkAiIiIiIkIOQG3vQIonSA5AfpT+Sz9ODkBz/D2eg1QOQI9e57mYWQ5Avc5zMfNqDkBeOz5H0XAOQOoxpJ2tdg5Auv+1qad8DkDV3yVLwIIOQA3lRLsKiQ5AolApif+ODkByktPEKJUOQAjE6/oFmw5AxlVl3xWhDkCWx61cgqYOQMP9bTzFtw5ADsuMpMq9DkBOXfksz8MOQH4FacaiyQ5AhKlAQNHPDkCq/i5ZAtYOQOvKZ3ke3A5Axm00gLfgDkDE1lka5eYOQHe5iO/E7A5ADwNwxkPyDkAf5OKVEQQPQKLBkwNjCg9A2cayc60QD0Cf5XlwdxYPQFKw2aS1HA9AItCG6WgiD0CcxCCwcigPQA8AQhF4LQ9A96JQKYk/D0Bfre0AYkUPQCV6GcVySw9AETMOCIdRD0AG7eiShFcPQPvgj7WZXQ9ADWRQgDtjD0BF09nJ4GgPQNDLKJZbeg9A0DROMImAD0BUZJrWk4YPQMPjtSWFjA9A8f+97oeSD0D7L/04h5gPQKO/qo3Eng9AYUf2GwCkD0CqxGLB6rUPQNF5jV2iug9AZ1kKW8bAD0CWr9674MYPQGTxiPcJzQ9A5yDVnRTTD0B9Oh4zUNkPQDnMlxdg3w9AvW987ZnlD0AbHWru++oPQAb6RJ4k/Q9ASc8H3qMBEEBOl8XE5gMQQJ/Nqs/VBhBAo2XKdNUJEEC6c07Z1gwQQBSOM2CjDxBA1aVZs6gSEEC0UbDZpBUQQEZCW86lGBBA0EnvG18bEEDmu4HvIyQQQDbVgC4HJxBAFIHXVAMqEEBbttYXCS0QQPc45k8uMBBAKjJN60kzEEBdmjWLKjYQQGv5buD7OBBAb/Wc9L5BEEC+nxov3UQQQLkZbsDnRxBAJlgczvxKEEDUM6r5F04QQPUISA7rUBBAav6FC2ZZEEAIsTOFzlsQQNzKJWimXhBALcc+231hEECakVS5Y2QQQOAY77QiZxBAC+pb5nRpEEDOTgZHyWsQQGKMNUkZbhBAVBhbCHJwEEANKoToI3MQQLuGBk8OfBBAT/4B6XV+EEDYBZY2L4EQQDIbZJKRgxBAGnYFyL2GEEDljhFjrIkQQD8djxmojBBAFMj/97qPEEBtkElGzpIQQEIe1FjVlRBATyZbSoOYEEDFWnwKgKEQQE6XxcTmoxBA1y/YDdumEEAyf3IBVakQQMTGz1l5rBBAo8TBuC6vEEAP5on6N7IQQNpVSPlJtRBABYN+uSm4EEDQP8HFiroQQDXn82QRvRBAMMA+OnXFEECmhiM12scQQHJIfWylyhBABK3AkNXNEEBdqr9LltAQQBdNZyeD0xBA9b7xtWfWEECHzIJ2dNkQQLriz92b3BBAMCJkM5rfEEAGyL3mQuIQQL3OczHz6hBARqFSEv/tEEDYruPSC/EQQH0y2VIa9BBAlV1Dgyf3EEDTwfo/h/kQQLrF6RGQ/BBAAPvo1JX/EECLNzKP/AERQF/iom0PBRFAzDggHMYHEUCDuIXBDxERQB9TZJrWExFAnuqQm+EWEUAnLPGAshkRQIv1IBevHBFAFPidOf4eEUBbSoPIDyIRQF//iDkbJRFA8gwa+icoEUCzJEBNLSsRQMJJrQrnLRFAqHz13gU3EUAeYMCldjkRQIzTIyA5PBFARLCXkz0/EUCTWhXOW0IRQJi4aNtDRRFADkqYaftHEUBfnWNA9koRQJzkNDFKTRFAhMs9N0dQEUBRoE/kSVIRQCTRyyiWWxFAkfKTap9eEUAsWL3WuGERQAs+4JTMZBFA6ek2u8hnEUA5IBzGt2oRQPE2XNHTbRFAltc3He5wEUDTC1GYCnQRQHlQY1WXdhFAVg4tsp1/EUDpaEKA+YERQMm4zxdohBFAItjLyZ6HEUAAhCLwmooRQOhNRSqMjRFAZ8iLX4uQEUB11Sl8o5MRQHmKL+2ulhFAkLWZHbyZEUAi+N9KdpwRQF/nuZh5pRFA1pC4x9KnEUBxny/QyKoRQPE2XNHTrRFAcM6I0t6wEUC3IG5h8LMRQCNfHG8FtxFAmNh8XBu6EUAPpHiC6rwRQCWKo4XexRFA576vpO/IEUDY/VBW+csRQAK8BRIUzxFAXJweAcnREUCYlmvkzdQRQG0k9vbU1xFAAKEIvKbaEUD52jNLAuQRQEmil1Es5xFAAdGm/enpEUDyLC57/+wRQPfETSD/7xFAFw6EZAHzEUBLzR5oBfYRQPAzLhwI+RFAlnhA2ZT7EUB9yG55vwQSQCuHFtnOBxJAaA3LjKQKEkBQ9NOSoQ0SQC+gKrmdEBJAAy61y6QTEkDOgI3+qhYSQGrJ0J64GRJA1wJogWMcEkCqv0uWgCUSQASle7CfKBJAqrTYAH8rEkCRm+EGfC4SQEoEvUpRMRJAMV9egH00EkDp5B+QXjcSQBzw+WGEQBJA8M8frURDEkBUmU9DQUYSQBaxdZZGSRJAzqrP1VZMEkCGpCkVZ08SQJ0JYN2LUhJAclgHLRFVEkBPp0+FUl4SQC2NckNmYRJAHun5wHtkEkD8zhx/j2cSQLTlXIqrahJAwfL6psNtEkCzvQMpnnASQCkafkqocxJA/cTuKLt2EkACksM6aHkSQJOxxzF/ghJAl4OzbpaFEkDeuLIxnIgSQLxkCViYixJADNW6+p6OEkCeHBhTw5ESQDu39iuKlBJA3kxf4qKdEkCO6QlLPKASQK4yQI8+oxJAztIoN2SmEkCs1THBg6kSQAdfmEwVrBJAJ/QNXzm1EkAX+eJ4K7gSQGhplBsyuxJAyk+qfTq+EkDWUdUEUccSQL6PkG5xyhJAR39VG4nNEkBnAlj3otASQBakGYum0xJAU2Sa1pPWEkAdrP9zmN8SQICSFdag4hJA2iCTjJzlEkBsLiRNqegSQLzYoYfH6xJAyjfb3JjuEkAQMw4Ih/ESQH3gPRph9BJABfpEniT9EkAcQpWaPQATQPonuFhRAxNAn+V5cHcGE0Cazk4GRwkTQEAYeO49DBNAkPeqlQkPE0AZ529CIRITQEzD8BExFRNAzKy4S/UXE0B6sohOvCATQHZceiEKIxNAAHzdD2UlE0C4WFGDaSgTQKA/WolmKxNAa5IyvGwuE0DOlS7qgDETQAEb/VVtNBNAIshBCTM9E0Ammi1GSkATQGOxYPVaQxNAvHmqQ25GE0AMk6mCUUkTQFOO3K0/TBNA2/6VlSZVE0DVlc/yPFgTQHHeEpNKWxNAH4DUJk5eE0BTBaOSOmETQJCoPRIcZBNAnnsPlxxnE0DkzfQlLmoTQAWoqWVrbRNA/+cwX15wE0CS08Qo9XITQF3Ed2LWexNAyatzDMh+E0CeHBhTw4ETQAs+4JTMhBNA/F+besqHE0AcAIQi8IoTQKV7sJ/YjRNA/ooikaOWE0CQe82FpJkTQOoJSzygnBNAQ5jI8pufE0DMTcEHnKITQNACx3inpRNAiBkHhMOoE0CpKHEwrqsTQDLeaUWurhNANpNvtrmxE0C/mgMEc7QTQG2D7TouvRNAAFeyYyPAE0Cc9qdnVMMTQNlfdk8exhNArSfN+TzJE0BApN++DswTQENOcpoY1RNA4KltsF3XE0AnwoanV9oTQCp3jBhj3RNAhD/WZnbgE0BPr5RliOMTQOu9C25+5hNA3DZ5t5/pE0CLR7xPaOwTQDHjgHAY7xNAY2LzcW34E0DHsnOt0PoTQNSiK/7c/RNAEbpere0AFECtH4gZBwQUQM5L2JH9BhRAmNh8XBsKFECA+VH6Lw0UQAB0mC8vEBRAiQyreCMTFEDs7amvwRUUQCDXhopxHhRACH+szewgFEAW3uUiviMUQD9/tBLNJhRAkO9ltdMpFECTpGsm3ywUQNu8hB3ZLxRAWhrlhswyFEDZd0XwvzUUQKVza7+iOBRA2blWaA07FEAf/LE2s0MUQC1b64uERhRA74/3qpVJFEDDV05VtEwUQKs+V1uxTxRAW9sBxEpSFEBx+/heVlsUQMuEX+rnXRRAVHQkl/9gFEBhgcKzF2QUQAYFuDMmZxRACtejcD1qFEDDsxfkQW0UQL4oVEribxRA54TjDNh4FED1xjaWnXsUQCDSb18HfhRAEmOsScqAFED7ljldFoMUQFWPIe1shRRAsGojsbeHFECiEy88HIoUQG+WpbBljBRA+Zgi07SOFECyqkuzZpEUQBSG7n9tmhRAD4eStt6cFEAdrP9zmJ8UQPOGDpTuoRRAtuu49EKkFEDhE9iJuKYUQGHgufdwqRRAUgJ13W6sFEAnkP/vda8UQCti6yyNshRAcsyfXEC1FEAy2VIaRL4UQF3ki+OtwBRA8A4DcMbDFECoQilH7sYUQMnd+sOpyRRAW3fzVIfMFEAnkP/vdc8UQFH3AUht0hRAE/JBz2bVFEAgi0e8T9gUQL1a2wHE2hRAA/ToM43jFEDZmULnNeYUQAM7EddE6RRA2RUg95rrFEDvQIonqO4UQOzNlS7q8BRAkRe/FuHzFEBl3xXB//YUQGmxAf4W+hRASJckvCr9FEC17aFq4f8UQLgjnBa8CBVA/6Uf5xALFUAzSNQeCQ4VQCRqjwQHERVA09GEAPMTFUD9OIdY6hYVQLUy4Zf6GRVAPiKmRBIdFUAAV7JjIyAVQIkHlE25IhVA9R3p+cArFUC4Za2OCS4VQCXU+d1hMBVAf0WRyFEzFUCD3bBtUTYVQJrOTgZHORVAzlMdcjM8FUDTVafwjT4VQMWUSKKXQRVAC8pHZZ1EFUAsSDMWTUcVQGjgWgAtUBVAgVhJPolSFUD27o/3qlUVQJLDOmiJWBVASr2Up5lbFUB1B7EzhV4VQIxPATCeYRVAaTUk7rFkFUBtzUOTsWcVQJijx+9tahVAIvjfSnZsFUD/9Ixq/nUVQK4its7SeBVAEc//mMN7FUB98MfazH4VQGXX0ODJgRVAqwzQo8+EFUDMOCAcxocVQBNuH9/LihVAnMxlkKiNFUB6CTuy35AVQAMRz/+YkxVAqBW5unacFUB07+GS454VQGURnXjhoRVAoijQJ/KkFUC5jQbwFqgVQPe8CEDJqhVATpfFxOazFUDgpFaF87YVQKwUFYQFuhVA6bevA+e8FUByxFp8CsAVQCBJNkQCwxVAG+BvoRjGFUBYvda4EckVQCNKe4MvzBVAVyb8Uj/PFUBvhhvw+dEVQHEwrssD2xVAKQ0iPwjeFUA34PPDCOEVQDuV+TQU5BVA6lOhlCPnFUCi9khwEOoVQGMD/C0U8xVAHRAO41v1FUDnRQBKVvgVQKAidL1a+xVARaZpPWn+FUCojH+fcQEWQES43HNzBBZA6XWei5kHFkBpJZotRgoWQPIsLnv/DBZAjkgBj5UVFkDd8n7JsxgWQEugrtuNGxZAkdWtnpMeFkBmDIZNdyEWQKxBhRB9JBZAbrBdx6UnFkCFucoAPSoWQK+hwZMDMxZAvd798V41FkAOT6+UZTgWQOwvuycPOxZAWMUbmUc+FkBKVliDCkEWQGufjscMRBZA9ODurN1GFkDRKiDatE8WQCIKU4GAUhZAHISmEotVFkCcOLnfoVgWQEHxY8xdWxZAYXRmqHdeFkBAclgHLWEWQI/XlhQyahZA13YAsZJsFkBN03rSnG8WQHd0ScKrchZA9gt2w7Z1FkBQQ0EWj3gWQFShlCN3exZAC+ctMamEFkCnL3HRtocWQDACULLCihZA1KIr/tyNFkCpTZzc75AWQGu3XWiukxZAqHfes5uWFkB0gGCOHp8WQLrSRR0wohZAAEIReE2lFkAh+sjAFKgWQEH+v9f9sBZATihEwCG0FkCoJUN74rYWQApjC0EOuhZA8oPg3iK9FkCzuOz9M8AWQK5sDCdWwxZAqeFIjfbFFkA7cM6I0s4WQKg65Ga40RZA0r7MirvUFkBIG0esxdcWQADb1FO+2hZAAqJN+9PjFkCyYPVa4+YWQMlueb/k6RZAbvJuP/PsFkDHuriNBvAWQCrbmocm8xZAL6hvmdP1FkCt3Xahuf4WQBtpqbwdARdAowG8BRIEF0Bc3i95FgcXQDqKhp8SChdAi4GI538MF0A6XRYTmw8XQLm6dnyOEhdAvW987ZkVF0DVQzS6gxgXQLSTwVHyGhdA5kfpv/QjF0Bch30V8yYXQOV2QsIKKhdA4PCVUxUtF0DjpZvEIDAXQLj5WT8QMxdA6gQ0ETY8F0Dw6dfDhD4XQBG6Xq3tQBdAt1o6+QdEF0DXwFYJFkcXQOV2QsIKShdAddASUTlTF0A36DikPlYXQH06HjNQWRdAzce1oWJcF0AUGpswdF8XQN+mP/uRYhdAvalIhbFlF0AXp0dAcmgXQLMMcayLaxdAKbuGBk9uF0Bc3i95FncXQAFFPy0ZehdA8oPg3iJ9F0CEkXGfL4AXQHXQElE5gxdAJKygfFSGF0A8gFhJPokXQN/b9Gc/khdAJhH0KkWVF0Cv49ILUZgXQAjJAiZwmxdAWFaalIKeF0CfxWXvn6EXQBTLLa2GpBdAgXhdv2CnF0CqJoi6D7AXQKW9wRcmsxdAvOgrSDO2F0BFniRdM7kXQDbdxQ49vBdAYLhglmO/F0Bt4uR+h8IXQCaFjFp0xRdAk6E9cRPIF0DFrBdDOdEXQDLrxVBO1BdAGe+0IlfXF0AKLlbUYNoXQJPjTulg3RdAqg65GW7gF0CuMkCPPuMXQIQSZtr+5RdA+NcFljbvF0CC2oK4hfEXQKxea9yI9BdA4AAgFIH3F0DQP8HFivoXQH/hglmO/RdAvdvPPJMAGEAfwuWemwMYQG8yl0GiBhhAav6FC2YJGECwRfgEdhIYQE2+2ebGFBhAuywmNh8XGEB96IL6lhkYQG95v+RZHBhAyepWz0kfGEDXZnbwJiIYQHprYKsEKxhA+08Rul4tGECXtTomeDAYQJFMdIOOMxhAQAsc4502GEAwMu7zBToYQKaOaBUQPRhA0KPPNE5AGEB/tBLNFkMYQBts13HpRRhABKV7sJ9IGEBJzwfeo1EYQKPp7GRwVBhA4AAgFIFXGEC+yVwGiVoYQMPt43tZXRhAQqL2SHBgGECR9cEfa2MYQP75o5VoZhhAKSfaVUhpGEDNx7WhYmwYQH2BRtYHbxhAzANrrxh4GEABEIrAa3oYQA4AQhF4fRhAcclxp3SAGEDUkqE9cYMYQMXRQu96hhhA5VRFy5SJGEB4eqUsQ4wYQPevrDQplRhAwo7sNwCYGEDjnVbk6poYQJLLf0i/nRhA/yH99nWgGEBQ/Bhz16IYQEOlJP47pRhAucfShy6oGECOihIH46oYQEZKoK7brRhAlu8Gvo+wGEAemow9jrkYQBFDmMjyuxhA8F1w87O+GEAtAQtzlcEYQE0tW+uLxBhAUeJgXJfHGEChUhL/ncoYQN+Z4+/xzBhAaGzC0P3PGEBtW5TZINMYQGcKndfY1RhAyshZ2NPeGECMZ9DQP+EYQL99HThn5BhANvJm+hLnGEAn9zsUBeoYQIC/hWIY7RhA2p+eUc3vGEBkj2P+5PIYQOx+KKv89RhA8IXJVMH4GECxdZZGuQEZQB7k4pURBBlAsQlD978GGUDSb18HzgkZQOBfF1jaDBlA27yEHdkPGUDxrSK2zhIZQEIe1FjVFRlAdkfZNTQYGUDPLAlQUxsZQH/Js7jsHRlAn7DEA8omGUBOpCHQhikZQJ737KaBLBlACjabtJYvGUD7kSIyrDIZQC9uowG8NRlA3kkxLdc4GUARshnNtzsZQL/xtWeWRBlAeM4p25pHGUB7D5ccd0oZQLkJ5P97TRlAS/qO9HxQGUBiQt/wlVMZQBGN7iB2VhlAThOj1EtZGUA/fIZdAWIZQMmb6UtcZBlAzrpZlsJmGUC2LcpskGkZQGUmPmS3bBlAE6sZLK9vGUB348rGcHIZQITTghd9dRlAy+ubDnd4GUCfeSYhfnsZQCmBum43fhlA6sIimeiGGUDIxSsjCIoZQOnxe5v+jBlAj1iLTwGQGUClg/V/DpMZQOK3DvsqlhlAmnecoiOZGUDFGGuSMpwZQNwm7/YznxlAeNmccJyhGUCG/gkuVqQZQA/eRBoCrRlACqUcuVuvGUCoHf6arLEZQLXwzx+ttBlANIj8ILi3GUDjKb60u7oZQJwGMijAvRlAjEXT2cnAGUDmDR0o3cMZQBp2Bci9xhlA+VYRW2fJGUCdsq15aNIZQAkrKB+V1RlArx2fo2jYGUD1Up5mbtsZQEXDTwl13hlAXNHTbXbhGUADhWcvyOMZQIwAlKyw5hlAkNJ/6cfpGUBbXyS05ewZQDAiZDOa7xlABE7JTHz4GUBCsoAJ3PoZQKWYlmvk/RlAQYonqM4AGkACaIFjvAMaQMWcjYLNBhpA78nDQq0JGkC6VmgNywwaQDAFfmeODxpAWmyAv4USGkC+MJkqGBUaQDNluuoUHhpAlp1rhdYgGkAVGLK61SMaQJWv3rvgJhpAMds7kOIpGkC6c07Z1iwaQB1aZDvfLxpA8jmKhp8yGkAtKWTUojsaQDQOCIfxPRpALaVB5AdBGkA77KuYN0QaQEi/fR04RxpAfdCzWfVJGkApZwJY91IaQHq6zS7yVRpAMnpb1upYGkARtzD4IVwaQKLEwbguXxpAPvAejTBiGkBoke18P2UaQCL6yMAUaBpAgvJRWSdxGkCbakCXg3MaQJYeYMCldhpAa/6FC2Z5GkBus4t8cXwaQPeFal19fxpAwp52+GuCGkBfEfxvJYsaQPA7c/w9jhpAgoPQVGKRGkBrEyf3O5QaQNc07zhFlxpAq8J5S0yaGkAO41tFbJ0aQC9JeFV6oBpAIYMC3BmjGkBdVfZdEawaQKOn2+wirxpAEOaJ+jeyGkChEAGHULUaQJMV1qBCuBpA7EEuXhnBGkDAQ1GgT8QaQOnHOcRSxxpAJt9sc2PKGkBHC73rWc0aQFTTG9tY1hpAfh04Z0TZGkCWK7zLRdwaQAprUCFE3xpANdJSeTviGkAlEfQqReUaQIoU8FhZ6BpAEgS1BXHrGkC4pJBRi+4aQOLRxhFr8RpAhtawzEj6GkDyvax2Ov0aQAkj4z5fABtAkYEp8DsDG0CzkJOcJgYbQLdif9k9CRtAgZhxQDgMG0DcQ9XCPw8bQHep/i5ZEhtAaeif4GIVG0B3tlo6+RcbQBHXRHn5IBtAT1jiAWUjG0DXKsHicCYbQGsbbNdxKRtA/QsXzHIsG0ChciaAdS8bQCIKU4GAMhtA4z5foJE1G0DMWh0TPDgbQBrAWyBBQRtAmqQML5tDG0Al/ju1DUYbQK15aDL2SBtASmv5buBLG0AyUgJ13U4bQLsk4VXpURtAczshYQVVG0B/8Qwa+lcbQOTv8RykWhtAaw4QzNFjG0DYaaSl8mYbQGE8g4b+aRtA8r2sdjptG0BVwaikTnAbQK6m2L5tcxtAqD0SHIR2G0DKwBT4nXkbQMMAnPGQfBtAvq+k70h/G0CI3zrsq4gbQOMR7xMaixtA+8Op6Y2NG0DZ45g/uZAbQGJ8q4itkxtAUrtMOreWG0AVDT8l1JkbQLqtGnHunBtAmFRabICfG0CRcZ8v0KgbQOtWz0nvqxtAyBfHW8G5G0BIzNko2LwbQBQ8mCfqvxtAPg0FWTzCG0DRGpYZScUbQKfYvm2TxxtAc9TkPHbKG0AeHq8tKdQbQLVCa1hm5BtAPzIwBX7nG0Bp0/70jOobQFHX7caV7RtAJYJepajwG0AzrOKNzPMbQIMXfQVp9htACQHmR+n/G0C4Lg+svQIcQHpjG8vOBRxADI6SV+cIHEBcGyrG+QscQH1kYAr8DhxAgTZMRxMSHEDQ4MmBMRUcQNbKhF/qFxxAi4S2nEshHECbwfL6piMcQINMMnIWJhxAPLUNtusoHEBvdKi57yscQGHo/temLhxAIgAlK6wxHEDkF0t+sTQcQOh1nouZNxxA2+n0qVA6HEA8yq6hwUMcQPXWwFYJRhxAA4iV5JNIHECWz/I8uEscQH4lfUd6ThxAuzyw9opRHED4Nv3Zj1QcQLBqI7G3VxxA7bYLzXVaHEA9J71vfF0cQNvxOYqGXxxAiFPTG9toHEAaYWTc52scQHQprir7bhxAP5lsKQ1yHEAJJhH0KnUcQG1B3MLgdxxAB/NE/RuBHEBYzWB5fYMcQIyp4UiNhhxAJ7hYUYOJHEDCEg8om5IcQJegmTqilRxAT7fZRb6YHEDPg7uzdpscQK0SLA5nnhxAB9t1XHqhHECakVS5Y6QcQGTZuVZorRxA7RUDEc+vHECJ6q2BrbIcQF8EoGSFtRxAzHcD30e4HEDjKb60u7ocQFrY0w5/vRxA0DROMInAHED5uDZUjMMcQLKVqseQxhxAO4BYST7JHEDME/VvhNIcQDqfJ4vo1BxA6cxQ77zXHEBoKrFYsNocQKUk/ju13RxAEWOsScrgHEDc71AU6OMcQGZrfZHQ5hxARUyJJHrpHEBQ/Bhz1/IcQCcu2vZQ9RxAbJ2lUW74HEARPoGdiPscQK6ek943/hxAlqKCsEABHUCRUYuu+AMdQCNfHG8FBx1AvqdfDxMKHUDyZvoSFw0dQNBHBqbADx1A+lH6L/0YHUDihYdDSRsdQFkSoKaWHR1AAcYzaOgfHUBt5/up8SIdQEGSbIgEJh1ArtAalhkpHUB4eqUsQywdQIbZ3oEULx1ANjy9UpYxHUDZuVZoDTsdQG0xUgJ1PR1AOGdEaW9AHUA8OTCmhkMdQOH28b2sRh1AFNNyjbxJHUAYpV7K00wdQF8xEPH8Tx1A3ze+9sxSHUBn0NA/wVUdQN5hAM54WB1ASPEE1RliHUDlbv3h1GQdQG1B3MLgZx1AvetZ/f5qHUBGhGxG820dQM4WIyVQdx1A3FNfg6t5HUDqrYGtEnwdQAIrhxbZfh1AbkxPWOKBHUDIoAB3xoQdQJ57D5cchx1AaQi0YTqKHUC6zxdoZI0dQHrKV+9dkB1Adnlg7RWTHUCdFNNyjZwdQI9TdCSXnx1AnGASQa+iHUBVye2EhKUdQGz0V7WRqB1AB+bo8XurHUCGPe3w17QdQCsOZ341tx1AdMq25qG5HUBuJySsoLwdQGi+XQm3vx1A3olZL4bCHUD10akrn8UdQD2TEL91yB1A/Yf029fRHUABWuAY79QdQBiiMBUI2B1As+pztRXbHUA9oGzKFd4dQHl90+EO4R1Ah78ma9TjHUDo8Xub/uwdQAAd5ssL8B1ADiqE6CPzHUCX/GLJL/YdQJFZ0I4u+R1AZvoSF237HUBN27+y0gQeQFroXc/qBx5AhpzkNDEKHkClyDStJw0eQLTV0sk/EB5Af11gafMSHkDQN3zlVBUeQOd/zOFtGB5A2b5tk3cbHkBPimm5Rh4eQJ7vp8ZLJx5AFZmm9aQpHkAsxBAmsiweQMiYu5aQLx5Abf/KSpMyHkDG5PpksjUeQGxo8OTAOB5Asp3vp8Y7HkALSVMqzj4eQEmyIRKYQR5AJnDrbp5KHkCBaNP+9EweQKAlonImUB5AWR/8sTZTHkCpj61UPVYeQLdFmQ0yWR5Aip5us4tcHkCF+9t4il8eQD2eg1R3Yh5Ax6ouzZplHkBa7XT6VGgeQM/K41YucR5A79lNAxl0HkDgNdWALnceQOQfkF7neR5ABUFtQdyCHkBfHG8FJ4UeQAXQAsd4hx5A+M/AtQCKHkBtYfBDuIweQNGB0j3Yjx5AnCZGqZeSHkBLyAc9m5UeQGKcvwmFmB5A9oxq/oWbHkAN0KPPNJ4eQBDpt68Dpx5AKWGm7V+pHkC7ix16eKweQGDyLC57rx5AK2LrLI2yHkAv+grSjLUeQKUcuVt/uB5A9vvrAku7HkB0iKVuVMQeQP13ahtsxx5ACYUIOITKHkDywsOhpM0eQOIBZVOu0B5AuBtXNobTHkCfSYjfOtweQB3EzhQ63x5AzIJ2dEniHkBN/bypSOUeQDNI1B4J7h5ALaVB5AfxHkDKJ1EcLfQeQJ2Y9WIo9x5AyBzehiv6HkC5lUvQTP0eQKCZOqJVAB9A3pOHhVoDH0DiZXPCcQYfQDLzCjGECR9Aeo1donoLH0DcaABvgRQfQHh3d3d3Fx9ACr/Uz5saH0CSV+cYkB0fQCXx36ltIB9AruCkVoUjH0C70FynkSYfQCgPC7WmKR9A1s2yFLYsH0DRmaHeeS8fQA1slWBxOB9AHOOdVuQ6H0A8Sbpm8j0fQIJ+uSn4QB9AyrO47P1DH0DXo3A9CkcfQCdO7ncoSh9AEN5EGgJNH0BeTva8CFAfQD36TOMEUx9AHPg+QrpVH0BXeJeL+F4fQBG/ddhXYR9AYUwNR2pkH0AQ7s7abWcfQOVecyFpah9A8hRf2l1tH0COeohGd3AfQGPrLI1ycx9A2Uenrnx2H0CHBk8OjHkfQNertR1AfB9Aj2DQLzeFH0CdnQyOkocfQGnw5MCYih9AbIgEZpiNH0Ds5WTPi5AfQEVX/Ll7kx9AGx9TZJqWH0CsD/5Ym5kfQBnaEzeBnB9AfcApmYmfH0DpFqdHQKIfQNgVIPeaqx9AY29PfQ2uH0CDm5/1A7EfQKMBvAUStB9ALNSa5h23H0AAnPGQPLofQG2D7TouvR9A0YHSPdi/H0CbVZ+rrcgfQFRP+eq9yx9AKPppydDOH0CndLD+z9EfQCcM3f/a1B9AIoYwkeXXH0BxE8j/99ofQJvRfLsS3h9AqaROQBPhH0Brgqj7AOQfQHBPfQ2u5h9AhvbETSDvH0DXs/r9dfEfQCir/EXj8x9A4KRWhfP2H0BylQF69PkfQLrKAD36/B9ABSzMVQYAIECjmn/hggEgQFBTy9b6AiBAC5B7zYUEIEBLdmwE4gUgQKGkrTdXCiBAU0/56r0LIEDoZRTLLQ0gQK1p3nGKDiBAnNzvUBQQIEA7EddEeREgQBfUt8zpEiBAYETIZjQXIEDeRBoCbRggQG8Sg8DKGSBA/2tTT/kaIEB4KAr0iRwgQLNWxwQPHiBAWx0TPJgfIEAp0CfyJCEgQPeCPKixIiBA5vVNhzskIEBtiARmmCUgQB6fo2j4KSBAPW7lEjQrIED3qpUJvywgQFg5tMh2LiBA8rVnlgQwIED+n8N8eTEgQBcOhGQBMyBAusXpEZA0IEDn+6nx0jUgQKOflgztOSBASkn8d2o7IED3Hi457jwgQIh4/sccPiBAc6JdhZQ/IEDTetKcz0MgQDm8DVf0RCBARaZpPWlGIEATPJgn6kcgQHRu7VcUSSBAnQlg3YtKIEALbn7WD0wgQO2W90ueTSBAyVnY0w5PIEAvZl4hhlAgQPQvXDDLUSBAz+r31wVWIEDgACAUgVcgQEpWWIMKWSBAbeLkfodaIEBKwqvSA1wgQPa0w1+TXSBASS7/If1eIEB6IQpTgWAgQFstnfwDYiBAqe6kmJZjIEC/gjRj0WQgQBtpqbwdaSBAhfOWmFRqIEAyj/zBwGsgQIo0BNowbSBAwN9CMYxuIEDkoISZtm8gQIceHq8tcSBAF0M50a5yIEBqEyf3O3QgQGOHHh6vdSBATiD/3+t2IEC4bfJuP3sgQDt9KpRyfCBA5xiQvd59IEDlfoeiQH8gQFgsWL3WgCBAnZXHrVyCIEDhxGoGy4MgQPJG5pE/iCBA9GQRnXiJIEC4aNtD1YogQESb9qdnjCBAPdUhN8ONIEAjDYE2TI8gQCDKKn/RkCBA8oslv1iSIEDc0mpI3JMgQOTKxnBilSBAGnYFyL2WIEBUEBYoPJsgQOX6ZLKlnCBA+jxZRCeeIEBzol2FlJ8gQIfkURcWoSBAAEpWWIOiIEAoyOIR76MgQF42JxxnqCBArfIXjY+pIEAdjOvywKogQMl+A4BQrCBAs8VICdStIEDNMwnxW68gQCAE9xbpsCBAd+PKxnCyIEDF9m2bvLMgQNUhN8MNuCBAxHdi1ou5IEAhZhwQDrsgQIIp8DtzvCBApe9Izwe+IECURXTihb8gQPo0FGTxwCBAgfx/r/vBIECoPRIchMYgQJwzorQ3yCBAIjrxwsPJIECJRncQO8sgQMBgN2xbzCBADXGsi9vQIEBIZZ0ESdIgQMoFVCW30yBAq9caNyLVIEAC8bp+wdYgQF+lqCAs2CBAfeiC+pbZIECO/qo2EtsgQIrYOkuj3CBAIO9VKxPeIEBNX+Kibd8gQK5UPYa04yBAlMFR8urkIEDiZXPCceYgQFafq63Y5yBAMpxYzWDpIEBkj2P+5OogQDElkuhl7CBA2evdH+/tIECGwQ/hcu8gQLzg5mf98CBABQKKflryIED5mCLTtPYgQOz9M3At+CBAUiegibD5IEBegH106vogQH39I+Zs/CBAEk4LXvT9IEA+MjAFfv8gQLeXNEbrACFAph/nEEsFIUCDNGPRdAYhQIlJpcUGCCFAn4uZV4gJIUA03IDPDwshQLZ8N/B9DCFAS1mGONYNIUDl1TkGZA8hQCQww2zvECFAZG1mB28SIUBm4kN2yxMhQNWVz/I8GCFA3MLgh3AZIUBacZfq7xohQOWGzIJ2HCFAyr4rgv8dIUCPNo5Yix8hQE+CJNkQISFAirDh6ZUiIUAe5OKVESQhQOm8xi5RJSFAEBs/Z+UpIUCRu/WHUyshQLByaJHtLCFAO2u3XWguIUA+N0cw6C8hQMpMfMhuMSFAUFPL1voyIUA2iyrWgzQhQHblszwPNiFAqwSLw5k3IUBG8L+V7DghQJMANbVsPSFAB3Q5OOs+IUA4Z0Rpb0AhQFvz0GTsQSFAjBhjTVJGIUBWt3pOekchQJdGuSGzSCFAabEB/hZKIUA8c/w9nkshQEhdWCQTTSFAP3dvMpdRIUDLb77+EVMhQCJseHqlVCFA9bnaiv1VIUCngQwKcFchQNmpzKehWCFAAWIl+SRaIUDOFDqvsVshQGiR7Xw/XSFAn3b4a7JeIUAmIX7rsF8hQESzxUgJZCFApuUaeTNlIUA7NgLxumYhQJIV1qBCaCFAYKsEi8NpIUAXnwJgPGshQGRDJDDDbCFA4g7BXk5uIUDfroTbx28hQPmLxscUcSFAgG3qKV91IUBcTbF923YhQFX7dDxmeCFA/cHAc+95IUAu0rFwf3shQMOuALnXfCFAB0r3YD+BIUDyygiC2oIhQH3gPRphhCFAbFNP+eqFIUB8o0PNfYchQE+CJNkQiSFATK5PJluKIUDF1lka5Y4hQIQ/1mZ2kCFA+HgOUt2RIUB/tBLNFpMhQLqoA0aElCFAevSZxgmWIUBR4mBcl5chQDLRDToOmSFAZDOab1eaIUCj3JBZ0J4hQHGPpQ9doCFAJ6CJsOGhIUB/f11gaaMhQFZtJPb2pCFA9dvXgXOmIUAAAAAAAKghQHiC6gx5qSFAHKnRvsyqIUDcCQkrKK8hQM9uGsigsCFA25JCRi2yIUB08g9Ir7MhQENrWGYktSFANkQCM8y2IUDVz5uKVLghQIv9ZffkuSFAnIIPOCW7IUBI4XoUrr8hQHWL0yMgwSFA6Bu+cqrCIUAeHq8tKcQhQH/eVKTCyCFAigJ9Ik/KIUAWNZiG4cshQABCEXhNzSFAKN2D/cTOIUA0qvkXLtAhQEiv81zM1CFAVLY1D03WIUB8bo5g0NchQFiIIUxk2SFAUDblCu/aIUB9GgqyeNwhQFg0nZ0M3iFAJ1YzWF7fIUDP91PjpeMhQF9RJHLU5CFAa3VM8GDmIUB8qFr45+chQElbb6506SFAjsTenvrqIUCLgYjnf+whQOybDncI7iFABe3okoTvIUDOkBe/FvEhQNbaDiBW8iFAxWLB6rX2IUBoGieYRPghQKhXyjLE+SFA0A8jhEf7IUCi0R3EzvwhQFR8aXc1/iFAPi8CULICIkC8Em4f3wMiQISZtn9lBSJAMVICdd0GIkCv49ILUQgiQKy9YiDiCSJAy1fvXXALIkCPlYWc5AwiQFMN6HJwDiJASBtHrMUPIkBq2VpfJBQiQIqonAlgFSJA75c8i8sWIkAgi0e8TxgiQGX0tqzVGSJAxg49PF4bIkBqpKXydhwiQE9IWEH5ICJAHRM8mCciIkAEY2o4UiMiQGmpvB3hJCJAtzD4IVwmIkDtT8+o5iciQFN5O8JpKSJAPcCAS+0qIkBSH1upeiwiQK62Yn/ZLSJAbqgY528yIkDKrqHBkzMiQKK0N/jCNCJAwTHeaUU2IkDVc9L7xjciQPTweG1JOSJAS9BMHdE6IkC2JYWMWjwiQGdEaW/wPSJA4IyH5FE/IkAXG+BvoUAiQGQrVY8hRSJA5gXYR6dGIkD7ZLKlNEgiQG+e6pCbSSJA8OTAmBpOIkDNFiMlUE8iQFlJPoniUCJAMOBSu0xSIkAyNRyp0VYiQCaaLUZKWCJAus0u8sVZIkDx7AV5UFsiQI94n9DYXCJAAwmKH2NeIkBQypG79V8iQDtoiaicYSJA51qhNSxjIkCakVS5Y2QiQEscjOvyaCJA0jqqmiBqIkDOFDqvsWsiQIC/hWIYbSJAqHfes5tuIkCASL99HXAiQGqPBAehcSJA3jzVITdzIkA6SHUnxXQiQLhlrY4JdiJACks8oGx6IkD1V7WR2HsiQL6HS447fSJAAwmKH2N+IkAwBX5njn8iQOctMam0gCJAbhea6zSCIkBZk5ThZYMiQHxZ7XT6hCJA/jNwLYCGIkCPxwxUxociQP3uMABnjCJAgP5oJZqNIkDA5Flc9o4iQFonQZJskCJAYVRSJ6CRIkCEiSy/+ZIiQD+p9ul4lCJAZ2FPO/yVIkDpWLi/jZciQHmaua0amSJAuYCq5HaaIkCVzMSH7J4iQO3gTaQhoCJAzpUu6oChIkBxE8j/96IiQDFfXoB9pCJAQpJsiASmIkDpO9LzgaciQH4YITzaqCJAdk8eFmqtIkAW84YOlK4iQBPl5cPGryJAUz9vKlKxIkDQCgxZ3bIiQIcb8PlhtCJAm13ki+O1IkDyPLg7a7ciQPD5YYTwuCJAqzYSe3u6IkAkYkok0bsiQN7QgdI9wCJA01J5O8LBIkB27fgcRcMiQJl5hRjCxCJAwTHeaUXGIkCiPXETyMciQEGnDXTayCJADsZ1eWDNIkDmszwP7s4iQC8skolu0CJAvm2Td/vRIkCpXSadW9MiQNtQMc7f1CJA58b0hCXWIkATF217qNoiQJYmpaDb2yJApjzN3FbdIkBT2DIGw94iQH9id5Rd4yJAP1dbsb/kIkDd/9rUU+YiQAVhgcKz5yJABxArySfpIkAEc/T4ve0iQPMau0T17iJAEphhtnfwIkAn2lVI+fEiQHVhkUx08yJAGN8qYuv0IkAHUjxBdfYiQJiTPS8C+CJAO7ok4VX5IkAliqOF3v0iQDsBTYQN/yJAkuAgNJUAI0BfkzXqIQIjQJ/tvlCtAyNAQog+MjAFI0BqBsvrmwYjQCVDe+ImCCNA6oARIZsJI0Do5ggG/QojQD+hsQlDDyNAl5hUWmwQI0CekLCC8hEjQDcNZFCAEyNA6ZrJN9sUI0DBiJDNaBYjQAnHGbDRFyNAtrkxPWEZI0ChHV2S8BojQOp4zEBlHCNAdv2C3bAdI0D8GHPXEiIjQLht8m4/IyNA6WD9n8MkI0DQzREM+iUjQKe72KGHJyNATytyde0oI0DDu1zEdyojQOE4Azb6KyNAgG3qKV8tI0CMkRKo6y4jQITLPTdHMCNAj1u5BM00I0BeQ4MnBzYjQPOTap+ONyNAKbNBJhk5I0CrjcTenjojQChZYQ0qPCNADlf0dJs9I0BS8uocA0IjQMp01Sl8QyNANa0nzflEI0AWubp2fEYjQDQ2Yej+RyNARUyJJHpJI0BQU8vW+kojQER+ENxbTCNAekMHSvdQI0Bloht0HFIjQNlnuy9UUyNA5RdLfrFUI0ANs70DKVYjQEjhehSuVyNAfgBSmzhZI0AA+LofylojQD/7kSIyXCNAbU44zoBdI0BkvwFAKGIjQNQjIDmsYyNAvmplwi9lI0DmIr4Ts2YjQHFV2XdFaCNAhkAbpqNpI0AcdBxSH2sjQOke7Cd2byNA1X0AUptwI0DEtkWZDXIjQDw5MKaGcyNA93XgnBF1I0CWAXr0mXYjQCE0lVgseCNAthDkoIR5I0D/usDS5n0jQKyQ8pNqfyNA4wFlU66AI0CLcf4mFIIjQEDRT0uGhiNAR8mrcwyII0CxHuTilYkjQMaapAwviyNANsX2bZuMI0BYvda4EZEjQFFrmneckiNA5RI0U0eUI0ANrqbYvpUjQM35PFlElyNAbIXWsMyYI0D3mgtJU5ojQMVNIP/fmyNA4+esPG6dI0DOS9iR/Z4jQAmvSg8woCNADxP6hq+kI0CgVPt0PKYjQKI9cRPIpyNA+RxFw0+pI0DjY4pM06ojQBlmewdSrCNAJYqjhd6tI0B4PavfX68jQN7VmP2nsCNAGKp19T21I0AZsNFf1bYjQHFV2XdFuCNAFPBYWci5I0C4itg6S7sjQIERIZvRvCNAEVMiiV6+I0BtBxAryb8jQPmlft5UxCNACbymGtDFI0C6SQwCK8cjQC69EIWpyCNA6fnAezTKI0D1Hen5wMsjQMzuycNCzSNAFUo5crfOI0DVPh2PGdAjQL/xtWeW1CNA3W5c2RjWI0DpkoRXpdcjQJZothgp2SNA94I8qLHaI0CHinH+JtwjQF9bUsio3SNAEEBqEyffI0A4Mo/8weAjQPPA2isG4iNADEQ8/2PmI0DMp6Egi+cjQHqyiE686CNAIuhVigrqI0A8/2MOb+sjQLCPTl357CNA8OnXw4TuI0DaMB1NCPAjQEmVO0aM8SNAJZLoZRTzI0AoB8bUcPQjQOJ1/YLd+CNAd8bk+mT6I0Ct5buB7/sjQD3QCgxZ/SNA/TiHWOr+I0CAvFetTAAkQG5h8EO4BCRAf7HkF0sGJEBbdMWfuwckQKTsGho8CSRADiVtvbkKJECQ/+91PwwkQDjGO63IDSRAoxt0HFIPJEDU8ZiByhAkQOD42jNLEiRAXTP5ZpsTJEDDq9IDDBgkQIdY6kZFGSRAWsMyI6kaJECaNYsq1hskQKHzGrtEHSRATqxmsLweJEChX24KPiAkQP1qDhDMISRAbM8sCVAjJECi7gOQ2iQkQPABp2QmJiRATOgbvnIqJEDK6G1ZqyskQOT/e90PLSRAizpgRMguJEA9PF5bUjAkQDXqIRrdMSRAXr9gN2wzJED3OxQF+jQkQJGb4QZ8NiRAPsOuALk3JEAysfm4NjwkQI63gpNaPSRA5ssLsI8+JEBx4UBIFkAkQJWKsw+fQSRAswdagSFDJECiemtgq0QkQPlZPxAzRiRA4Drsq5hHJECMzgz1zkskQJPGaB1VTSRA77QiV9dOJEBjRQ2mYVAkQNzk3X7mUSRAdifFtFxTJEB9AjsR11QkQMWXdldjViRANPyUUOdXJEAeYMCldlkkQC8fNn7OWiRA/Y85vA1fJEDQaQOdNmAkQLuwSCa6YSRA7MA5I0pjJEAPE/qGr2QkQDxGjLEmaSRAUaVmD7RqJECyogbTMGwkQBKDwMqhbSRA+J05/h5vJEDsAkubl3AkQKIwFQgociRArv2KIpFzJECmVJx9+HQkQFNcVfZdeSRAzDDbO5B6JEDw2U0DGXwkQHG00LuefSRAfdj4OSt/JEBGfCdmvYAkQBnnb0IhgiRAkS+Ot4KDJEC0RFTOBIgkQEqtCuctiSRAosGTA2OKJECjjSPW4oskQFtHVRNEjSRAAg6hSs2OJEBQssIaVJAkQI8MTIHfkSRA/3BqemOTJECKhp8S6pQkQHqFGMJEliRAwqONI9aaJEA7eBNpCJwkQGgibHh6nSRA+e/UNtieJEDoXc/q958kQPRHK9FsoSRA58kiOvGiJEA2iyrWg6QkQBvDidUMpiRA27dt8m6nJEBY0nek56skQDQE2jAdrSRA69rxOYquJEAXvxbhE7AkQOVURcuUsSRAVbljxBizJEABVcnthLQkQIO7s3bbtSRASJ9pnGC6JEBm/ylC17skQPuExiYMvSRAqHfes5u+JEB2KvNpKMAkQOq63biywSRApfeNrz3DJEBbzqW4qsQkQLw3mcsgySRAvSAPaqzKJEACin5aMswkQMbk+mSyzSRAntLB+j/PJEDPbhrIoNAkQFJJnYAm0iRAEltnaZTTJEAdf4/nINUkQCmjt2Wt1iRAQp3fHQbYJEDlo7JOgtwkQL2pSIWx3SRAmk9DQRbfJED1Pf16mOAkQJTJltIg4iRAJAuYwK3jJECTb7a5MeUkQIwdeni85iRA3rObBjLoJEACXQ7OuukkQC7NmkUV6yRAUv9GKKPvJEA879lNA/EkQDmsg5aI8iRAn9Xvrwv0JEDQ5eCsm/UkQJ4kXTP59iRAOIQqNXv4JEAiy2++/vkkQF1txf6y+yRABTQRNjz9JEDhvCUmlf4kQH/R+JgiAyVAak3zjlMEJUBGSqCu2wUlQLr3cMlxByVARdPZyeAIJUCdeOHhUAolQKq02AB/CyVA39OvhwkNJUAuOe6UDg4lQA+U7sF+EiVAu2kggwIUJUAYWNq8hBUlQHhyYEwNFyVA+mnJ0J4YJUBzsudFABolQBEEtQVxGyVAtZ405/McJUBx87N+IB4lQKee8tV7HyVAh1ClZg8kJUBa2NMOfyUlQK00KQXdJiVArx2fo2goJUB4wc3P+iklQNnbU1+DKyVACuxEXBMtJUD+FophdC4lQN5xio7kMiVANoYTqxk0JUD7/XWBpTUlQJmJD9ktNyVAuCOcFrw4JUBbvhv4PjolQDe7yBfHOyVA8tqSQkY9JUCo63bjyj4lQAW9SlFBQCVAycAU+J1BJUBr5M30JUYlQLq9pDFaRyVAm8k329xIJUBWzBs6UEolQHlYqDXNSyVA+zIr7lJNJUB4xPuExk4lQLPyuJVLUCVAtdsuNNdRJUCNyfXJZFMlQOUXS36xVCVAsnB/G09ZJUDpij93b1olQGpI3GPpWyVAGTbdxQ5dJUDK/Q5FgV4lQMKO7DcAYCVA3MLgh3BhJUDGO63I1WUlQOCpbbBdZyVAJBPdoONoJUCn7V9ZaWolQDs+R9HwayVAx3BiNYNtJUBcapdJ524lQFU1QdR9cCVAO787DMBxJUBP/gHpdXYlQAEYz6ChdyVA3SxLYct4JUArtIZlRnolQE9AE2HDeyVAx9/jOUh9JUACDqFKzX4lQD08XltSgCVA6S526OGBJUBeS8gHPYMlQD7glMzEhyVARdjw9EqJJUBogWO804olQBlmewdSjCVA6KT3ja+NJUC+ON4KTpIlQAeUTbnCkyVADoyp4UiVJUACDqFKzZYlQO1U5tNQmCVAYcjqVs+ZJUCqQEDRT5slQI8+0zjBnCVALhwIyQKeJUDQP8HFiqIlQC1LYcsYpCVACUgO66ClJUCs/3OYL6clQI3uIHamqCVAurVfUSSqJUCfeSYhfqslQFGtq+/pryVAC+pb5nSxJUAXDoRkAbMlQHjuPVxytCVA+qvaSOy1JUB8o0PNfbclQOzNlS7quCVAQ5CDEma6JUBKiN867LslQI4ONfd9vSVAyXGndLC+JUBCz2bV58IlQLFQa5p3xCVAIL3OczHLJUCxFp8CYMwlQA0iPwjuzSVAmTd0oHTPJUAbEvdY+tAlQFZAtGl/0iVAmqkjWgXUJUBQgDtjctUlQL8W4RPY2SVAjY8pMk3bJUBgbgo+4NwlQFR8aXc13iVAj41AvK7fJUAp7Q2+MOElQCbHndLB4iVAxaTSYgPkJUB/MPDce+glQMTOFDqv6SVAQkP/BBfrJUD9f6/7oewlQP6FC2Y57iVAOUAwR4/vJUDhxGoGy/MlQAaGrG719CVAM4KgtiD2JUD7COkWp/clQH/7OnDO+CVAXwfOGVH6JUApVEriv/slQNAvNwUfACZA4GJFDaYBJkBseHqlLAMmQG9ECnisBCZA5+PaUDEGJkAweRaXvQcmQEE4jG8VCSZA8qgLi2QKJkDqToppuQ4mQNr2ULXwDyZAsccxf3IRJkCJmBJJ9BImQPjCZKpgFCZACdFHBqYYJkCGYhidGRomQKTfvg6cGyZA0ab96RkdJkA730+Nlx4mQO3gTaQhICZAYTdsW5QhJkDU3PeV9CUmQNwJCSsoJyZAQTN1RKsoJkAFcQuDHyomQPCaakCXKyZA7VcUiRwtJkDdc3MEgy4mQNWqcN4SMyZAkOcg1Z00JkCufJbnwTUmQB7htOBFNyZAy+ubDnc4JkBbELcw+DkmQBEEtQVxOyZAE+0qpPw8JkD129eBcz4mQLOwpx3+QiZAsqIG0zBEJkB2w7ZFmUUmQCjFtFwjRyZAvDKCoLZIJkDyNHNbNUomQINZjn22SyZAvvbMkgBNJkBmtdPpU1EmQKYPXVDfUiZA1x9OTW9UJkAzDgiH8VUmQG48xZd2VyZAmyDqPgBZJkBMP84hllomQMnthIQVXCZAVCCg6KddJkC143MUDV8mQEJoKrFYYCZAnU6fCqVkJkDxNlzR02UmQIF4Xb9gZyZA8Nx7uORoJkCdsq15aGomQCnlyN36ayZAe5jQN3xtJkAC8bp+wW4mQA6BNkxHcyZAaW/whcl0JkCaRRXrQXYmQGn4KaHOdyZADFnd6jl5JkBMXLTtoXomQO5ihx4efyZA9nKy50WAJkB4TTWgy4EmQNlnuy9UgyZAmbNRsNmEJkDBTsQ1UYYmQPb21NfgiiZAHnVhkUyMJkASoKaWrY0mQFg+y/PgjiZAJpotRkqQJkA/CO4t0pEmQA27AuRekyZA9zsUBfqUJkA3lp1rhZYmQFUwKqkTmCZAB76PkG6ZJkCNZedaoZ0mQJWS+O/UniZAx0s3iUGgJkB9Ik+SrqEmQA4NnhwYoyZAW7G/7J6kJkADeAskKKYmQHcI9nKypyZA9dOSoT2pJkCTXyz5xaomQNNFHTAirCZAHLYtymywJkB0yrbmobEmQNCbilQYsyZAeAskKH60JkBnfjUHCLYmQHexQw+PtyZApJVothi5JkBMP84hlromQAd8fhghvCZAuH18L6u9JkA21YAuB78mQKp6DGlnwyZA+FPjpZvEJkAb4G+hGMYmQBPl5cPGxyZALVOmq07JJkA9hrSz1comQFwgQfFjzCZAy0qTUtDNJkA6baDTBtImQFgHLRGV0yZA8mb6EhfVJkBJY7SOqtYmQBf54ngr2CZAEBYoPHvZJkCl70jPB94mQFsALXCM3yZA/pqsUQ/hJkD7OnDOiOImQDZpLd8N5CZAbYgEZpjlJkDzjlN0JOcmQOwCS5uX6CZASCOMjPvsJkDUUJDFI+4mQCL1sZWq7yZAH7Jb3i/xJkCPFnrXs/ImQH2Ji7Y99CZAY6QE6rr1JkAdxM4UOvcmQFBDQRaP+CZAcnXt+Bz9JkBwZ0yuT/4mQIBDqFKz/yZAsjazgzcBJ0AAvu6HsgInQNeOz1E0BCdABHP0+L0FJ0DzyB8MPAcnQPCiryDNCCdACvSJPEkKJ0ClwthCkAsnQFroXc/qDydAm1q21hcRJ0AFkwh6lRInQCg8e0EeFCdAHISmEosVJ0BvN65sDBcnQMYWghyUGCdA23VceiEaJ0CpKHEwrhsnQIo0BNowHSdAO6WD9X8eJ0AO8LdQDCMnQB1ArCSfJCdAOHSgdA8mJ0CiydjjmCcnQLL85usfKSdAbTmX4qoqJ0Bhnqh/IywnQC9RvTWwLSdAAdnr3R8vJ0A9sPaKgTAnQKtGnDvnNCdA+eq9C242J0CdhT3t8DcnQAfbdVx6OSdAxwkmEfQ6J0CGONbFbTwnQPCNDjX3PSdAc0urIXE/J0CRyFGT80AnQMww2zuQQidADMAZD8lDJ0CO6QlLPEgnQE4Yuv+1SSdAEpAc1kFLJ0BNSkG3l0wnQLi3SMfCTSdAfUd6PvBOJ0Al8d+pbVAnQLE7yq6hUSdAKtuahyZTJ0C18M8frVQnQDNI1B4JVidAsH/EnI1aJ0DYbNJavlsnQLA9syRAXSdAvJaQD3peJ0Ar+64I/l8nQAfbdVx6YSdAX51jQPZiJ0A/qfbpeGQnQN40kEEBZidAtQVxC4NnJ0AWrF5r3GgnQApg3YtCbSdAss92X6huJ0DLWh0TPHAnQGFUUiegcSdAJXUCmghzJ0CxbVFmg3QnQF3pog4YeSdAnVv7FUV6J0AzxLEubnsnQEPa2WrpfCdAStI1k29+J0AKHswT9X8nQBAWKDx7gSdAVX+XLAGDJ0AHmWTkLIQnQCGwcmiRhSdAc8/NEQyKJ0DBc+/hkosnQDQE2jAdjSdAlqrHkHaOJ0C5UzpY/48nQKN9mRV3kSdARvgEdiKWJ0BIp658lpcnQNjor2ojmSdA1ohz55yaJ0DTKDdkFpwnQMJ+YneUnSdAgq0SLA6fJ0D6TOMEk6AnQLUy4Zf6oSdA7IM/1mamJ0BCRi264qcnQB8JDkJTqSdAry0pZNSqJ0D90Uo0W6wnQC+ob5nTrSdASGWdBEmyJ0A755RtzbMnQLmVS9BMtSdAP3+0Es22J0AO+PwwQrgnQAEb/VVtvCdAerrNLvK9J0AigRlme78nQPVCFKYCwSdAPdhP7I7CJ0AtLnv/DMQnQDhviUmlxSdARAIzzPbGJ0A4trHsXMsnQIppuUbezCdAt03e7WfOJ0BHj9/b9M8nQIK9nOx50SdAEv+d2gbTJ0BTyKhFV9QnQDhsW5TZ2CdAw5lfzQHaJ0AD1wJogdsnQB8+w64A4SdA7dPxmIHiJ0DXGjciBeQnQG1OOM6A5SdAfYFG1gfnJ0B6PvAejegnQDYHCObo6SdAkUlGzsLuJ0BJY7SOqvYnQG0k9vbU9ydAXa/WdgD5J0Do4fHakvonQGFH9hsA/CdAwmF8q4j9J0AoF1CV3P4nQBKQHNZBAyhANRyp0b4EKEA3BR9wSgYoQOB0uEOwByhAOymm5RoJKEBapkxXnQooQMknURwtDChA2iCTjJwNKEBExTh/ExIoQIM3kYZAEyhAmXmFGMIUKED6diXcPhYoQJ0Rpb3BFyhAIxj0y00ZKEAJM23/yhooQGr2QCswHChAgP5oJZodKED9wcBz7yEoQMEcPX5vIyhAHQv3t/EkKEA3XNHTbSYoQBNZfvP1JyhAqG+Z02UpKEC8y0V8Jy4oQOCMh+RRLyhA9bGVqscwKEDpFqdHQDIoQOfTUJDFMyhAfOprcDU1KEBJnYAmwjYoQN7tZ55JOChAp3Sw/s85KEBx+/heVjsoQAvnLTGpPChAAlj3olBBKEDoOKQ+tkIoQE1/9iNFRChADa6m2L5FKEAj07SeNEcoQLgjnBa8SChASA7roCVKKEBYc4Bgjk4oQBTI//e6TyhAT/a8CEBRKECPFnrXs1IoQN3vUBToUyhAj5qcx05VKEDAqo3E3lYoQONw5ldzWChAW7kEzdRZKEDZStVjSFsoQKyYN3SgXChAPO/ZTQNhKEDopyVDe2IoQIczv5oDZChAR39VG4llKEC143MUDWcoQASle7CfaChAD8mjLixqKEBrmnecomsoQMM/f7QSbShAH/RsVn1uKEAAb4EExW8oQJa3I5wWdChAgDMekkd1KEAQdR+A1HYoQIkU8FhZeChAxEKtad55KEA8/2MOb3soQL6fGi/dfChAbDuAWEl+KEAOJW29uYIoQLsvVOvqgyhA2qz6XG2FKEDlllZD4oYoQAQU/bRkiChA0sYRa/GJKEBZzWB5fYsoQHdn7bYLjShAA0NWt3qOKEBRORPAuo8oQC2/+fpHlChA7T9F6HqVKEC/x3OQ6pYoQPGAsilXmChAxAjh0caZKEDG1HCkRpsoQLpWaA3LnChASkG3lzSeKED4S57FZZ8oQAi0YTqaoChAfB8h3eKkKEAN7YmbQKYoQAA1tWytpyhAazM7eBOpKEDHIfWxlaooQPkUAOMZrChAUPTTkqGtKEB99d4FN68oQCWCXqWosChA/fuMCweyKECuifLyYbMoQFEcLfSutyhAN4lBYOW4KEDHc5DqTrooQHRmqHfeuyhAE36pnze9KEBmMbH5uL4oQOP8TShEwChAI1fXjs/BKEAue/8MXMMoQAVpxqLpxChAQcw4IBzGKEDt0/GYgcooQFhe33S4yyhAE5uPa0PNKEBcE+Xlw84oQI7pCUs80ChARBfUt8zRKECzmNh8XNMoQHgQO1Po1ChAiCZjj2PWKECYqwzQo9coQDIge7372yhAWtjTDn/dKECZMl11Ct8oQLODN5GG4ChAnq2WTv7hKEDY+Dkrj+MoQHJYBy0R5ShA+eq9C27mKECJXkax3OooQCjN+TxZ7ChAaCeDo+TtKEDRmaHeee8oQCRNqTj78ChAGM+goX/yKEBO7ncoCvQoQAlIDuug9ShA6ja7yBf3KEBxPQrXo/goQCfaVUj5+ShAsz74Y23+KECwpO9Iz/8oQDeOWItPASlAk18s+cUCKUBOnNzvUAQpQKV7sJ/YBSlA739t6ikHKUDUkqE9cQspQDENw0fEDClA2dMOf00OKUDHRiBe1w8pQGa10+lTESlAqjPkxa8VKUAtQxzr4hYpQHoEJId1GClAQ6hSswcaKUD6YYTwaBspQHw8B6nuHClARcNPCXUeKUCTZ3HZ+x8pQLs8sPaKISlAXtcv2A0jKUCLR7xPaCQpQP4JLlbUKClAFEwi6FUqKUDr/xzmyyspQLSGZUZSLSlAqCVDe+IuKUAJBv1yUzApQPNMQvzWMSlAF2U2yCQzKUCiOFroXTcpQFRSJ6CJOClASNQeCQ46KUBYJBPdoDspQIaUn1T7PClAXWWAHn0+KUDMj9J/6T8pQC1LYcsYRClAewxpZ6tFKUAep+hILkcpQMZtNIC3SClAQxzr4jZKKUDOFDqvsUspQOSQ+thKTSlAO1PovMZOKUCT2wkJK1ApQMgPgnuLVClA2UKQgxJWKUDpkoRXpVcpQEYqjC0EWSlAX5hMFYxaKUDcRgN4C1wpQNHgyYExXSlAfbb7QrVeKUC45LhTOmApQAu1pnnHYSlAoXQP9hNjKUAn57FTmWcpQMF7NMLIaClAW9sBxEpqKUC4/nBqemspQICFucoAbSlArWnecYpuKUDH9IQlHnApQDuFb3SocSlAHK7o6TZzKUAnmETQq3QpQHFFT7fZdSlAVgbo0Wd6KUCMzgz1znspQImLtj1UfSlATuYySNR+KUA9PF5bUoApQOkudujhgSlALkEzdUSDKUDfV9J3pIcpQFQAjGfQiClAMDLu8wWKKUAWMIFbd4spQF/FvKEDjSlAKWnrzZWOKUAJO7LfAJApQMoSsDBXkSlAwkmtCueVKUDczzyTEJcpQNV9AFKbmClAcwmaqSOaKUBKFEcLvZspQPfMkgA1nSlAtsF2HZeeKUDZh8+wK6ApQHi8tqSQoSlA3nGKjuSiKUBcUsioRacpQKC7N5nLqClAd4wYY02qKUDTetKcz6spQNVjSDtbrSlAmqHeec+uKUChQog+MrApQKJAn8iTtClAXpUeYMC1KUBch30V87YpQPUDMeOAuClAC0YldQK6KUAD9OgzjbspQAXdXtIYvSlA5gXYR6e+KUAYojAVCMApQCOhLedSxClA4+zDZ9jFKUCU7sF+YscpQI2chT3tyClAmMCtu3nKKUBqgqj7AMwpQP/vdT+UzSlA81SH3AzPKUDefuaZhNApQO8DkNrE0SlAxukRkBzWKUBR4mBcl9cpQNMwfERM2SlAtDwP7s7aKUBq1iyqWN8pQHYSJMmG4ClA6aIOGBHiKUC8ZAlYmOMpQB1/j+cg5SlAKbuGBk/mKUBkkpGzsOcpQH4V84YO7ClArwj+t5LtKUBXz0nvG+8pQOctMam08ClAww34/DDyKUBBSBYwgfMpQFX2XRH89ylASXhVeoD5KUAbkQIeK/spQODrfiir/ClAn2mcYBIBKkC+ON4KTgIqQMoFVCW3AypAgBY4xjsFKkAyGDbdxQYqQCV9R3o+CCpAYKsEi8MJKkApTzO3VQsqQA9Nxh7HDCpAKYG6bjcOKkBW8UbmkQ8qQMXBuC4PFCpAk3TN5JsVKkDEhL7hKxcqQF7HpReiGCpA6fnAezQaKkCRL463ghsqQJNncdn7HypAXQaJ2iMhKkA55k8uoCIqQGXnWqE1JCpAhCo1e6AlKkCZiQ/ZLScqQA0a+ie4KCpA6RanR0AqKkAMwBkPySsqQPevrDQpLSpARUyJJHoxKkBfnWNA9jIqQNyAzw8jNCpApeoxpJ01KkDgLZCg+DkqQOEWBj+EOypAnlO2NQ89KkDl6PF7mz4qQP85zJcXQCpAwGh8TJFBKkCgHV2S8EIqQL7MirtURypATytyde1IKkC0ccRafEoqQPjaM0sCTCpAjvFOK3JNKkCaFXep/k4qQHHJcad0UCpA5Tx2KvNRKkCgInS9WlMqQNeT5nyeVCpA+vpHzNlYKkDywNorBloqQDxWFnKSWypAXxxvBSddKkCgAmA8g14qQIVvdKi5XypAkQc1VnVhKkDxBNUZ8mIqQKf40u5qZCpAKiXx36llKkDqhShMBWoqQCC9znMxaypATaHzGrtsKkBnLJrOTm4qQGi+XQm3bypALTbA30JxKkClLEMc63IqQOWGzIJ2dCpA+uWm4AN2KkBgfpT+S3cqQHV+dxiAeypA7zUXkqZ8KkDZsRGI130qQIqWKdNVfypAYUok0cuAKkAniLoPQIIqQEYaAm2YhipABGaY7R2IKkD02KnMp4kqQJyf9QMxiypANsX2bZuMKkDB2isGIo4qQApTgYCijypA46/JGvWQKkB86mtwNZUqQIwdeni8lipA8WPMXUuYKkAV8FhZyJkqQEoPMOBSmypAc+Ru/eGcKkCq5l+4YJ4qQOSghJm2nypAI/PIHwykKkAidqbQeaUqQNdMvtnmpipAmEGi9kioKkBm75+Ba6kqQDnJaWKUqipA0gtRmAqsKkC4JsrLh60qQP2PObwNrypAAHmvWpmwKkBX5Ora8bEqQNSnQilHtipAkyiOFnq3KkDK08xt1bgqQJRaFc5buipAZ8Vdqr+7KkCd5DQxSr0qQLph26LMvipADhXj/E3AKkDyTEL81sEqQJLY21NfwypA5d1+5pnEKkAl9vbU18gqQFtKg8gPyipA8CbSEGjLKkBC2tlq6cwqQDtrt11ozipAQylH7tbPKkDFA8qmXNEqQCG4t0jH0ipAqGdU8y/UKkDQqOZfuNgqQDobBZtN2ipAxTA6M9TbKkBHC73rWd0qQCndg/3E3ipAJZotRkrgKkACBlxql+EqQC6ob5nT5SpAb+USNFPnKkDwv5Xs2OgqQPvjvWpl6ipAkVGLrvjrKkAYAShZYe0qQIbUx1aq7ipApbiq7LvyKkBza7+iSPQqQMLy+qbD9SpAlJcPGz/3KkDYAH8LxfgqQCzRbDFS+ipAA4VnL8j7KkAYjY8pMv0qQE72vAhAAStAL+Vp5rYCK0CV8e8zLgQrQMbk+mSyBStAtlcMRDwHK0BnPCSPuggrQNqvKBI5CitAqGI9yMULK0C5lUvQTA0rQGIF5aOyDitA2ijYbNISK0BNC170FRQrQADTj3OIFStAEOm3rwMXK0CWtTomeBgrQMN8eQH2GStAHFc2hhMbK0C1mR28iRwrQPHH2swOHitAAU2EDU8fK0C3/nBqeiMrQNKEAPOjJCtAs3Ot0BomK0DaKwYinicrQNO84xQdKStAUWuad5wqK0C2dyDFEywrQIXwaOOILStAj9rEyf0uK0C4kh0bgTArQCJ0vVrbMStArtNIS+U1K0Cx8XNWHjcrQI56iEZ3OCtAMRUIKPo5K0CgInS9WjsrQOBCMYzOPCtARjLRDTo+K0Ad5ssLsD8rQPCK4H8rQStAF0M50a5CK0Cx17s/3kMrQGPuWkI+SCtAFQgo+mlJK0CJ0t7gC0srQC0WrF5rTCtAoKaWrfVNK0ABamrZWk8rQFTjpZvEUCtAq8J5S0xSK0BZe8VAxFMrQD55WKg1VStARP0boYxWK0DBwHPv4VorQLIWnwJgXCtAF3XAiJBdK0BAEDMOCF8rQEoXdcCIYCtA5Vlc9v5hK0DTWNWlWWMrQMnazA7eZCtAQXqd52JmK0CcS3FV2WcrQGFPO/w1aStAdsO2RZltK0Ap3YP9xG4rQKfd1Zj9bytAajhSo31xK0DVpVmzqHIrQPMiACUrdCtApST+O7V1K0D05QXYR3crQKCBawG0eCtAXBC3MPh5K0CWNi9hR34rQDVrFlWsfytAKdAn8iSBK0DMTcEHnIIrQHgj88gfhCtAXltSyKiFK0CixMG4LocrQJtVn6utiCtAok370zOKK0B9Sqjzu4srQDDYDdsWjStARUyJJHqRK0A112mkpZIrQN21hHzQkytA5cWvRfiUK0D/FophdJYrQJh2V2P2lytAtvP91HiZK0DwIbvl/ZorQDVuRAp4nCtAy6FFtvOdK0D3EdItTp8rQKDtvlCtoytAE3mSdM2kK0AH3qMRRqYrQMcpOpLLpytAmus00lKpK0A4d84p26orQKLMBplkrCtAKdNVp/CtK0C+Iz0feK8rQJysUQ/RsCtA6IL6ljm1K0B+fC+rnbYrQKYXojAVuCtAysAU+J25K0ASOWpyHrsrQAutYZmRvCtAWRe30QC+K0DgACAUgb8rQH6MuWsJwStAUU60q5DCK0BKiN867MMrQPfhM+wKyCtAfgBSmzjJK0BuizIbZMorQLIpV3iXyytAhs5r7BLNK0B9QmMThs4rQPvTM6r5zytAux/KKn/RK0C961n9/tIrQItkoht01CtA9ihcj8LVK0DA3BR8wNkrQKHopyVD2ytAMQ3DR8TcK0DxWFnISd4rQHxujmDQ3ytAuLQaEvfgK0Btxf6ye+IrQJFucXoE5CtAoKF/govlK0AnqM6QF+crQNoYTqxm6CtAPpEnSdfsK0ASa/EpAO4rQERe/FqE7ytA5/h7PAfxK0Bt4uR+h/IrQO+8ZzcN9CtAVObTUJD1K0DSlIqzD/crQEYldQKa+CtAxCreyDz6K0AN2OivavsrQMxVBujR/ytAlr9ofEwBLEBGpIDHygIsQDYXkqZUBCxAdlQ1QdQFLECY4ME8UQcsQHE9CtejCCxAw8vmhOMMLEA4dKB0Dw4sQGl/ekY1DyxAwUFoKrEQLECxtHkJOxIsQI2UQF23EyxA0f2vTT0VLEC/jaf40hYsQH+CixU1GCxA4JwRpb0ZLEAqvrS7GhssQBnvtCJXHyxAkXGfL9AgLEBfB84ZUSIsQBIJzDDbIyxAJkvAwlwlLEBFyGY03yYsQKHTBjptKCxAukHHIfUpLEBiCBNZfissQHx200AGLSxAxZd2V2MuLECXi/hOzDIsQLz6nn49NCxAOalV4bw1LEAQXVDfMjcsQPqGr5yqOCxAW2dplBs6LECk374OnDssQDkwpoYjPSxAZhTLLa0+LECJvT31NUAsQPOe3TSQQSxAlxQyatFFLEA2oMvBWUcsQGaT1vLdSCxAMBofU2RKLEAkfzDw3EssQFB49oI8UCxAqKlla31RLEDG7D9F6FIsQCgflXUSVCxAjSsbw4lVLECZMl11ClcsQJfvBr6PWCxAW2dplBtaLEBhX8W8oVssQKvXGjciXSxAderKZ3leLEAvWQIW5mIsQDZpLd8NZCxAnKpomTJlLEANRDz/Y2YsQFroXc/qZyxAwPTjHGJpLEBtrS8S2mosQFvJjo1AbCxAs6AdXZJwLED5IVzuuXEsQLOTwVHycixAsfm4NlR0LECqipYp03UsQIF4Xb9gdyxAN4lBYOV4LEBkbWYHb3osQJ9hV4DceyxARiBe1y+ALEC6dnyOooEsQN4f71UrgyxAtvDPH62ELEBB6R7sJ4YsQIY1qBCihyxAu1R/lyyJLEDRlnMproosQDbA30IxjCxACZ/ATsSNLED5nTn+Ho8sQF6/YDdskyxA+DsUBfqULEA8pYP1f5YsQI51cRsNmCxAXe65OYKZLECwZ/X765osQBq9LWt1nCxAz5NFdOKdLEAiedSFRaIsQI0DwmF8oyxA6Q5iZwqlLED4XlY7naYsQELXq7UdqCxAdMq25qGpLEDsTKHzGqssQOX6ZLKlrCxAPNo4Yi2uLECw9oqBiK8sQDIDlfHvsyxAZLzTily1LEApURwt9LYsQI0j1uJTuCxAo32ZFXe5LEDjujyw9rosQJ737KaBvCxACE0lFgu+LEC1IlfXjr8sQNnLyZ4XwSxA/ACkNnHCLECt3XahucYsQCey/ObrxyxAFbF1lkbJLEDLpHNrv8osQMlhHbREzCxAFgY/hMvNLEBq0RV/7s4sQMb0hCUe0CxANlmjHqLRLEDV5Dx2KtMsQGWVv2h81CxAFv75o5XYLEDlyN36w9ksQOzAOSNK2yxAd9Zuu9DcLEDxWFnISd4sQNuCuIXB3yxAUjcqShzkLEA9lj50QeUsQAtJUyrO5ixAObnfoSjoLEDput24suksQNoQCcww6yxA942vPbPsLEC32UW+OO4sQEf+YOC57yxAbIXWsMzwLEAK7ERcE/UsQEtenWNA9ixAqz5XW7H3LEBKkCQbIvksQIGSFdag+ixAdE7Z1jz8LEBPS4b2xP0sQIJbd/NU/yxA1JrmHacALUDy1XsX3AQtQAg1VnVpBi1AXzEQ8fwHLUCoUrMHWgktQI5tLDvXCi1AUsioRVcMLUAcT/Gl3Q0tQIWHQ0lbDy1A4ZLjTukQLUCh3nnPbhItQJvB8vqmEy1AVdl3RfAXLUCWv2h8TBktQMzBWTfLGi1AaxMn9zscLUBdeDiUtB0tQPLIHww8Hy1Al2Of7b4gLUAiXO65OSItQMrLh42fIy1Achb2tMMnLUBw05/9SCktQL1a2wHEKi1AB9MwfEQsLUDs7amvwS0tQDEdTQgwLy1AvBWc1KowLUDuCKcFLzItQIjX9Qt2My1AK4cW2c43LUCWv2h8TDktQNX8CxfMOi1AYBJBr1I8LUDeoxFGxj0tQJ7vp8ZLPy1AG4F4Xb9ALUCZs1Gw2UQtQLMELMxVRi1AfG6OYNBHLUBdeiEKU0ktQJy3xKTSSi1ABg39E1xMLUBez+r3100tQDVm/ylCTy1Az04GR8lTLUAYjY8pMlUtQFTYMgbDVi1AdmS/AUBYLUAPp6Y3tlktQHazLIUtWy1AGU6sZrBcLUCX/GLJL14tQHgI9nKyXy1AQI8+0zhhLUAOzrpZlmItQJXpqlP4Zi1A1CZO7ndoLUAVgddUA2otQOjOOWVbay1AX6O/qo1sLUD65abgA24tQGQ730+Nby1A8G36sx9xLUDjQY1VXXItQBpZH/yxdi1AQmMThu53LUBE9dbAVnktQAReUw3oei1ALTOSKnd8LUANBVk84n0tQDvpfeNrfy1ASTlyt/6ALUDDu1zEd4ItQBWpMLYQhC1AzAuwj06FLUCWMwGse4ktQOcD79EIiy1A1x9OTW+MLUDe+sOp6Y0tQE1f4qJtjy1Al/Qd6fmQLUDQyyiWW5ItQJo1iyrWky1AND6myDSVLUCWp5nbqpktQEbBZpPWmi1A3SkdrP+bLUCgoX+Ci50tQO9FoVISny1An0efaZygLUCoP/uRIqItQB/8sTazoy1AfHbTQAalLUDFd2LWi6ktQBxvBSe1qi1ApFhuaTWsLUBdeDiUtK0tQGBhrjJAry1Amo9rQ8WwLUAilrpRUbItQOviNhrAsy1AVThviUm1LUB54eFQ0rYtQD7lq/cuuC1AWz0nvW+8LUC9V61M+L0tQM1Q77xnvy1AsP7PYb7ELUBd1AEjQsYtQCHA/Cj9xy1ArdUxwYPJLUBsIchBCcstQCNPkq6ZzC1ASgfr/xzOLUDaKwYins8tQH6MuWsJ0S1A9iuKRI7SLUC89YdT09MtQATaMB1N2C1Aux/KKn/ZLUBbwzIjqdotQNzSakjc2y1AUUZvy1rdLUBAnJre2N4tQJd7bo5g4C1A3Mf3strhLUCqXSadW+MtQPwtFMPo5C1AvOgrSDPmLUD7V1aalOotQK12On0q7C1ACSsoH5XtLUBXeJeL+O4tQNQ779lN8y1A4JTMxIf0LUDP6vfXBfYtQFa3ek569y1AT7fZRb74LUBIZZ0ESfotQP5Ym9nB+y1Axy5RvTUALkBgcTjzqwEuQI04d84pAy5AkAQHoakELkBxEJpKLAYuQA+cM6K0By5Af+NrzywJLkDe/fFetQouQH6Ji7Y9DC5AwvL6psMNLkDczzyTEA8uQN52oblOEy5ASOSoyXkULkCmBxhwqRUuQEi/fR04Fy5AuCOcFrwYLkAniLoPQBouQKhiPcjFGy5ACX3DV04dLkAtQxzr4h4uQCrG+ZtQIC5AqB3+mqwhLkAl4VXpASYuQDEFfmeOJy5AJId10BIpLkBRTrSrkCouQE0LXvQVLC5A8qXd1ZgtLkCabCkNIi8uQK7LA2uvMC5Aok370zMyLkDm01CQxTMuQCuPW7kENS5AMkWmaT05LkCKB5RNuTouQNy6m6c6PC5A1Ut5mrk9LkBbUsioRT8uQDxeW1LIQC5A84slv1hCLkBFdOKFh0MuQNbqmODBRC5A1BOWeEBJLkDQ0D/BxUouQMl+A4BQTC5AIF7XL9hNLkB0LsVVZU8uQN6D/cTuUC5AUBToE3lSLkA/TS1b61MuQNDAtQBaWC5AV8cED+ZZLkChXEBVclsuQFaKCsICXS5AEo3uIHZeLkBoT9wE8l8uQPTweG1JYS5A1fTGNpZlLkBX5xiQvWYuQGgy9jjmZy5AMrk+mWxpLkCgHV2S8GouQE0QdR+AbC5A3cD3EdJtLkBfe2ZJgHIuQDt4E2kIdC5AHISmEot1LkD4Y21mB3cuQH9qvHSTeC5A0uP3Nv15LkBFdOKFh3suQKaOaBUQfS5A/m08xZd+LkC07aFq4X8uQNz0Zz9ShC5AwUSW33yFLkC/GQ/Jo4YuQL4Lbn7Why5AB76PkG6JLkDyrSK2zoouQGU+DQVZjC5AWaMeotGNLkAxdP9rU48uQJZGuSGzkC5A0E9LhvaULkBv+MqpipYuQCGjFl3xly5A9PB4bUmZLkB1GmmpvJ0uQKhCKUfuni5AtElr+W6gLkAog6Pk1aEuQDzifUJjoy5AI8Mq3sikLkA7Y3J9MqkuQHeuFVrDqi5AH1h7xUCsLkCDu7N2260uQL8GV1Nsry5A5r6vpO+wLkBI2TU0eLIuQOqQm+EGtC5AUCmJ/061LkAQUPTTkrkuQH96RjX/ui5AfeA9GmG8LkATZtr+lb0uQNuVcPv4vi5AF+ET2InALkBlhTWoEMIuQH/z9Y+Ywy5A84Pg3iLFLkCWHmDApcYuQKfd1Zj9xy5AGiyvbzrMLkCTADW1bM0uQEjXTL7Zzi5Ae3OlizrQLkD4VhFbZ9EuQISJLL/50i5Aw+O1JYXULkCXiMqZANYuQD9PFtGJ1y5AwQyzvQPZLkBa+OePVtouQPVPcLGi3i5Adl+o1tXfLkAWzltiUuEuQHbL+yXP4i5AH3VhkUzkLkC41C6TzuUuQG7ILGhH5y5Al2Of7b7oLkDMZZCoPeouQEvySRRH6y5A2kjs7anvLkBTHXIz3PAuQACc8ZA88i5AoAqlHLnzLkBbKm9HOPUuQJ52+Guy9i5AuMfShy74LkAU03KNvPkuQOfrHzFn+y5AphrQ5eD8LkBrHpqMPf4uQLn0QhSmAi9AjLY9VC0EL0CuX7AbtgUvQAIwnkFDBy9AcFrwoq8IL0DSdHYyOAovQEH2evfHCy9AdxVSflINL0CZvsRF2w4vQFT7dDxmEC9A5qv3LrgRL0CMTRi6/xUvQKLEwbguFy9ABMJhfKsYL0AAfwvFMBovQN2YnrDEGy9A4Cpi6ywdL0BrBsvrmx4vQAkB5kfpHy9AXXLcKR0kL0CrLs2aRSUvQIcrerrNJi9Aeq1xI1IoL0DOfV9J3ykvQCRATS1bKy9AnmuF1rAsL0B1bu1XFDEvQDnJaWKUMi9AJzx7QR40L0BeW1LIqDUvQJ+12y40Ny9Ag+06Lr04L0Cjh8drSzovQOfwNlzROy9AoRABh1A9L0BmiGNd3D4vQF+IwlQgQC9A+MJkqmBEL0CqxGLB6kUvQCeQ/+91Ry9AsqU0iPxIL0D3DqR4gkovQNcaNyIFTC9AcZfq75JNL0DW3TzVIU8vQAOIleSTUC9AB8Omu9hRL0Cb0Xy7ElYvQCINgTZMVy9AVanZA61YL0DyNHNbNVovQH1KqPO7Wy9AW0dVE0RdL0BT9RjSzl4vQKC2IG5hYC9AV1Ns37ZhL0AJE1l+82UvQENBFo94Zy9AxRuZR/5oL0AOyaMuLGovQI2UQF23ay9AwpYxGDZtL0CCixU1mG4vQMNUIKDoby9AhjjWxW10L0AAgfQ6z3UvQIWHQ0lbdy9AHwT3Ful4L0Dy4tcifHovQGYcEA7jey9A8k4rcnV9L0AnNDZh6H4vQMIChWcvgC9A/EXjY4qEL0B/cgFVyYUvQKhHQHJYhy9AXh5Ye8WIL0AniLoPQIovQP4B6XWeiy9A2/6VlSaNL0CRD3o2q44vQAmvSg8wkC9Ai4nNx7WRL0AgZhwQDpMvQFHiYFyXly9AQf6/1/2YL0CU5nyeLJovQBKVMwGsmy9Ad76fGi+dL0DhE9iJuJ4vQCqpE9BEoC9A/Yf029ehL0Cu240rG6MvQNeLoZxopy9ARiV1ApqoL0Cweq1xI6ovQEvaenOlqy9AfM2FpCmtL0D+pwhdr64vQPFjzF1LsC9ASEOgDdOxL0BBmrFoOrMvQKOPDEyBty9A9VrjRqS4L0AnTu53KLovQHbVKXyjuy9ADjX3fSW9L0BKDAIrh74vQIVXpQcYwC9AxLEubqPBL0CSZEMkMMMvQNzcmJ6wxC9A8d+pbbDFL0AQ4XLPzckvQBb2tMNfyy9AfTwHqe7ML0BxoRhGZ84vQLkZbsDnzy9A/YLdsG3RL0AhLFB49tIvQH038H2E1C9A4yaQ/+/VL0A2vbGNZdcvQGc8JI+62C9AAVrgGO/cL0CW33z9I94vQD6J4mih3y9ARWRYxRvhL0DViHPnnOIvQLWx7Fwr5C9AUBG6Xq3lL0D95usfMecvQDLp3Nqv6C9A86P0X/rpL0CWGUmVO+4vQJgCvzPH7y9AWE5VtEzxL0AFJId10PIvQEmN9mVW9C9AEhQ/xtz1L0DJdr6fGvcvQBK1R4KD+C9AgRlmewf6L0D1qVDKkfsvQNxQMc7f/C9AO7f2K4oAMEAQoo8MTAEwQPoCjawPAjBAXE2xfdsCMEAi2MvJngMwQLMshS1jBDBA07zjFB0FMEAIOIQqNQcwQK3lu4HvBzBAmegGHYcIMECazk4GRwkwQKkbFSUOCjBABx2H1McKMECfL9DI+gwwQA46DqmPDTBAWG5pNSQOMEBZVLEe5A4wQIEmwoanDzBATtaoh2gQMEDMtP0rKxEwQMFmk9byETBAQlvOpbgSMEB/uSn4gBMwQK12On0qFDBAkyBJNkQWMEBhCvzOHBcwQLLXuz/eFzBAWZvZwZsYMEDFA8qmXBkwQFZYgwohGjBAmtuqEecaMEARlTMBrBswQGVb89BkHDBACiYR9CodMEB6YxvLzh0wQGRd3EYDIDBAKej2ksYgMEC/S5aAhSEwQHdvMpdBIjBAhrz4tQgjMECreCPzyCMwQKEquZ2QJDBAPZY+dEElMEBev2A3bCcwQAeZZOQsKDBApze2sewoMEBgcTjzqykwQNYU27dtKjBAS7h9fC8rMEAMNLI++CswQBsqxvmbLDBAgJIV1qAuMEApFWcfPi8wQMzJnhcBMDBAAeZH6b8wMEBSswdagTEwQLwFEhQ/MjBA01q+G/gyMEB3CPZysjMwQGFMDUdqNDBAjErqBDQ1MEB/rM3s4DUwQHnpJjEIODBAGyrG+Zs4MEDYBZY2LzkwQDMOCIfxOTBADA+HkrY6MEAN9c57djswQB87lfk0PDBA9zsUBfo8MECsScrwsj0wQFg5tMh2PjBAeKws5CQ/MEBcXTs+R0EwQKDgYkUNQjBAk3wSxdFCMEDbDiBWkkMwQHqtcSNSRDBA4QZ8fhhFMEDBLMc+20UwQC2yne+nRjBA44WHQ0lHMECHr5yqaEkwQOx+KKv8STBAMI63gpNKMEA/Z+VxK0swQJNKiw3wSzBAZSY+ZLdMMED5VhFbZ00wQMUG+FsoTjBAb+D7COlOMEA8kOIJqk8wQGESQa9SUDBA8JIlYGFSMEAzMzMzM1MwQI47pYP1UzBAfKuIrbNUMECqomXKdFUwQP9oJZotVjBANKK0N/hWMEBDmMjym1cwQE4Yuv+1WTBADyBWkk9aMECL6MQLD1swQGsOEMzRWzBAjZduEoNcMEBF/RuhjF4wQPF4bUkhXzBAW3TFn7tfMEA/jBAebWAwQI/PUTT8YDBAKkLXq7VhMEDRItv5fmIwQK4yQI8+YzBAZED2evdjMEBLiw3wt2QwQLnPF2hkZTBAfKNDzX1nMEC5jQbwFmgwQDU5j53KaDBAy5wui4lpMEBUmU9DQWowQLm/jaf4ajBAKTdkFrRrMEBEuNxzc2wwQGRIO1stbTBAerrNLvJtMEDXnlkSoG4wQCe1Kpy3cDBAjIS2nEtxMEBN4wSTCHIwQBBYObTIcjBAbnaRL45zMEBCLl4ZQXQwQDK0J24CdTBAIjrxwsN1MEBOG+i0gXYwQFcm/FI/dzBAWuhdz+p3MEBzCZqpI3owQKW4quy7ejBAPP9jDm97MEDTYgP8LXwwQLzDAJzxfDBAKPIk6Zp9MEBT0xvbWH4wQL87DMAZfzBAlialoNt/MEBsET6BnYAwQMr1yWRLgTBALl4ZQVCDMEAfcEpm4oMwQGirpZN/hDBAQI8+0ziFMED6yMAU+IUwQFjKMsSxhjBAJxxnwEaHMEBXKSoIC4gwQKfgA07JiDBAULoH+4mJMEAwpoYjNYowQHaei5lXjDBArtAalhmNMECjZcp01Y0wQK2GxD2WjjBAGwWbTVqPMEBt0lq+G5AwQD86deWzkDBAvodLjjuRMEBYdq4VWpMwQPTLTcEHlDBAnqVRbsiUMEAQMw4Ih5UwQCJ51IVFljBARFnlLxqXMEBYtZHY25cwQBsqxvmbmDBAzj58hl2ZMEBNHdEqIJowQAD4uh/KmjBAA42sD/6cMEALmMCtu50wQNEi2/l+njBAeOb4ezyfMED+6RnV/J8wQEuo87vDoDBAEkn0MoqhMECI7Jb3S6IwQB5QNuUKozBA8CvpO9KjMEBjYvNxbaQwQIA7Y3J9pjBAfwvFMDqnMEDH155ZEqgwQDNAjz7TqDBAwGh8TJGpMEDHc5DqTqowQDjrZlkKqzBAh6JAn8irMECX0iDyg6wwQM4EsO5FrTBAc5UBevStMEDFagbL668wQCxQePaCsDBAE5uPa0OxMEBUCNFHBrIwQE7JTHzIsjBAq8q+K4KzMEBMaRD5QbQwQIWxhSAHtTBAUkSGVby1MEDc0mpI3LcwQBsqxvmbuDBAY7zTily5MEDG6RGQHLowQHsUrkfhujBAMlUwKqm7MEAezBP1b7wwQC0Z2hM3vTBABv1yU/C9MEBoDcuMpL4wQHHBLMc+vzBAWp4Hd2fBMEAW7m/jKcIwQHoxlBPtwjBAg0kEvUrFMEADPj+MEMYwQG2tLxLaxjBAOCpKHIzHMEA7JngwT8gwQDf92Y8UyTBAInS9WtvJMEBMXLTtocowQAFqatlayzBA8e8zLhzMMEBSzb9wwcwwQCMIagvizjBAT8x6MZTPMEDA7J48LNAwQCk/qfbp0DBABFYOLbLRMEDO0ig3ZNIwQCzxgLIp0zBAnYU97fDTMED4ja89s9QwQE5Nb2xj1TBAAz4/jBDWMECEkXGfL9gwQKXKHSPG2DBAYRqGj4jZMED5kwuoStowQBRsNmkt2zBAIaMWXfHbMEBb64uEttwwQD89o5p/3TBANZiG4SPeMEC73biyMeAwQE2+2ebG4DBAcXoEJIfhMEBUQp3fHeIwQDmUtPXm4jBAuk4jLZXjMEAXbXuoWuQwQEqQJBsi5TBAf6zN7ODlMEA012mkpeYwQPMC7KNT5zBAVXI7IWHpMEDpaEKA+ekwQIkHlE256jBAC/zOHH/rMEA0x9/jOewwQOnxe5v+7DBAqFfKMsTtMEC+yVwGie4wQILn3sMl7zBAaXQHsTPxMEAEkNrEyfEwQLU3+MJk8jBANBZNZyfzMECA1CZO7vMwQIbmOo209DBAx1N8aXf1MEDwHo0wMvYwQLZS9RjS9jBAfQI7Edf4MEALQQ5KmPkwQPvG155Z+jBASyf/gPT6MEBWSPlJtfswQEbOwp52/DBAbYPtOi79MEDe+sOp6f0wQHd0ScKr/jBA7i3SsXD/MECTviM9HwAxQDO8bE44AjFAXTDLsc8CMUCGGMJElgMxQJ6gOkNeBDFAALGSfBIFMUAidL1a2wUxQAKaCBueBjFAdUSrgGgHMUDVPh2PGQgxQMvTzG3VCDFA0KsUFYQJMUANaWerpQsxQGhx2ftnDDFAU8vW+iINMUBWxwQP5g0xQCJEHxmYDjFAM4rlllYPMUCQqD0SHBAxQKkwthDkEDFAY2o4UqMRMUBpfEyRaRIxQB5QNuUKEzFAsAPnjCgVMUDgnBGlvRUxQDQMHxFTFjFArMWnABgXMUA+/XqY0BcxQFBDQRaPGDFAwtD9r00ZMUC8kXnkDxoxQDRLAtTUGjFADyibcoUbMUB49oI8qB0xQCf8Uj9vHjFA+NcFljYfMUDfIh0L9x8xQKOXUSy3IDFA93r3x3shMUCdW/sVRSIxQCpnAlj3IjFA6cxQ77wjMUAEFP20ZCQxQA+U7sF+JjFAs14M5UQnMUC5cCAkCygxQC4Uw+jMKDFAbWsemowpMUBfB84ZUSoxQDkITSUWKzFAVp+rrdgrMUDWk+Z8niwxQAB83Q9lLTFACU0lFgsuMUCToT1xEzAxQMHS5iXsMDFAupNiWq4xMUDfT42XbjIxQPzm6x8xMzFA+b1Nf/YzMUDeD2WVvzQxQLbz/dR4NTFAj/R84D02MUBxMK7LAzcxQDJVMCqpNzFAs8VICdQ5MUCoA0aEbDoxQOc9u2kgOzFAFjWYhuE7MUBLUUFYoDwxQLa5MT1hPTFAg2kYPiI+MUBCz2bV5z4xQIx3WpGrPzFAOGdEaW9AMUB8sJ/YHUExQAkbnl4pQzFAdIOOQ+pDMUD6hq+cqkQxQOj2ksZoRTFA9RCN7iBGMUAxUgJ13UYxQHz69TChRzFAmpFUuWNIMUCKFx4OJUkxQE+iOFroSTFAHy457pRKMUDuUv1dskwxQJGTnCZGTTFAEhQ/xtxNMUB+CJd7bk4xQJyCDzglTzFAoSCLR7xPMUCLgYjnf1AxQBGFqUBAUTFAJOFV6QFSMUCHDpTuwVIxQHpwd9ZuUzFAob5lTpdVMUCpyXnsVFYxQFzeL3kWVzFAxTA6M9RXMUBvCj7glFgxQJoIG55eWTFAVCW3ExJaMUBogWO801oxQGR1q+ekWzFAhAUKz15cMUCzwhpUCF0xQAL20akrXzFAGgqyeMRfMUC6qANGhGAxQLyOSy9EYTFAsSP7DQBiMUC5Lg+svWIxQAjm6PF7YzFAk74jPR9kMUBlYAr8zmQxQIL3aISRZTFAFBJWUD5mMUDjNhrAW2gxQFi91rgRaTFA9ihcj8JpMUAZeO49XGoxQDsBTYQNazFAd0LCCsprMUAoQZJsiGwxQHDTn/1IbTFAGa2jqgluMUCEFZSPym4xQJk3dKB0bzFAGjT0T3BxMUD11sBWCXIxQGYxsfm4cjFA7kq4fXxzMUCcM6K0N3QxQKZUnH34dDFAUC6gKrl1MUB+JX1HenYxQPPIHww8dzFAiiy/+fp3MUDLXzQ+pngxQIfUx1aqejFAPIvL3j97MUDO34RCBHwxQDENw0fEfDFAToc7BHt9MUBWkk+iOH4xQAmnBS/6fjFAU0/56r1/MUB6IQpTgYAxQD2WPnRBgTFAS5NS0O2BMUAJO7LfAIQxQGto8OTAhDFAif9ObYOFMUBUtjUPTYYxQInS3uALhzFAmAK/M8eHMUAlK6xBhYgxQOif4GJFiTFA0gDeAgmKMUDChqdXyooxQHVhkUx0izFAI4yM+3yNMUBbSoPID44xQFjKMsSxjjFALpjl2GePMUBt70CKJ5AxQCAE9xbpkDFA2T15WKiRMUCRYRVvZJIxQPOOU3QkkzFAA78zx9+TMUCakVS5Y5QxQBFwCFVqljFA9qQ5nyeXMUC3A4iV5JcxQDPM9g6kmDFAo0PNfV+ZMUAQrL1iIJoxQO1HisiwmjFA4tw5p2ybMUCtdjp9KpwxQDN6W9bqnDFAanIeO5WdMUDn6x8xZ58xQG17qFr4nzFAT5rzebKgMUC31hcJbaExQMgc3oYrojFAejGUE+2iMUCMd1qRq6MxQGhx2ftnpDFAmnecoiOlMUDpLnbo4aUxQIJuL2mMpjFAHl2S8KqoMUD5c/cmc6kxQLefeSYhqjFAYXl90+GqMUBYJBPdoKsxQLg7a7ddrDFA3feV9B2tMUC48RRf2q0xQLnXXEiarjFA232hWlevMUBhR/YbALAxQIyH5FEXsjFADgiH8a2yMUBKSfx3arMxQG3vQIontDFANXNbNeK0MUB42ZxwnLUxQIgJfcNXtjFA2dY8NBm3MUC35qHJ2LcxQOnsZHCUuDFAjGfQ0D+5MUD3Lrj5WbsxQDI9YYkHvDFAWwhyUMK8MUD0gfdohL0xQLGXkz0vvjFAwt1Zu+2+MUB8F9z8rL8xQOBaAC1wwDFA2ht8YTLBMUC4K+H28cExQHkWl71/wjFAYYbZ3oHEMUCk7BoaPMUxQOAtkKD4xTFA7UeKyLDGMUA48H2EdMcxQCVDe+ImyDFAN4lBYOXIMUDAokjkqMkxQNP+9IxqyjFAxIS+4SvLMUBm/ylC18sxQEOoUrMHzjFAaGR98MfOMUAKGbXois8xQFnQji5J0DFA9UIUpgLRMUBXGaBHn9ExQFbpAQZc0jFAtgBa4BjTMUAws+Iu1dMxQPhT46Wb1DFA0P2vTT3VMUCPwvUoXNcxQKHr1doO2DFA0viYItPYMUD9gt2wbdkxQOCEQgQc2jFAapdJ59baMUD6uDZUjNsxQPNczLxC3DFAnTbQaQPdMUDzEnZkv90xQLdN3u1n3jFAbLqLHXrgMUDrJEiSDeExQDjGO63I4TFAt4eqhX/iMUDso1NXPuMxQHGndLD+4zFAT7fZRb7kMUCCvZzseeUxQFR8aXc15jFAAmVTrvDmMUB/8/WPmOcxQC071wqt6TFAvAUSFD/qMUCoJUN74uoxQDX3fSV96zFAUSFEHxnsMUCdwjc61OwxQEJwb5GO7TFAEy88HEruMUCCrRIsDu8xQMMaVAjR7zFAeAskKH7wMUBdn0y2lPIxQM8sCVBT8zFAcm2oGOfzMUCqSIWxhfQxQFtHVRNE9TFAetez+v31MUCYUSy3tPYxQC5eGUFQ9zFAoevV2g74MUB6z24ayPgxQGgFhqxu+TFAaybfbHP7MUDl2Ge7L/wxQDqfJ4vo/DFAhCo1e6D9MUBdDs66Wf4xQHFNlJcP/zFAkd3yfsn/MUD/PuPCgQAyQBiqdfU9ATJAj0YYGfcBMkBHMOiXmwIyQLHEA8qmBDJAxawXQzkFMkDEfHkB9gUyQEdqtC+zBjJAOpLLf0gHMkDK0J64CQgyQKzv6dfDCDJAPz2jmn8JMkBSg2kYPgoyQIlBYOXQCjJA8ewFeVALMkCH6WhCgA0yQLXgRV9BDjJAMqm02AAPMkDWVuwvuw8yQAkG/XJTEDJA7jouvRARMkCLw5lfzREyQF+YTBWMEjJA44WHQ0kTMkCtH4gZBxQyQLocnHWzFDJAgOnHOcQWMkCxgvJRWRcyQPu2Td7tFzJAkhrty6wYMkBKPoniaBkyQMsV3uUiGjJAtFn1udoaMkAIILWJkxsyQLs0axZVHDJAdVEHjAgdMkAxZ6Ngsx0yQHe2Wjr5HzJAMPDce7ggMkDlGnkzfSEyQAGc8ZA8IjJAPd1mF/kiMkAKjU0YuiMyQN5hAM54JDJAedSFRTIlMkAs6TvS8yUyQKvHkHa2JjJAp2QmPmQnMkDcU1+DqykyQCJ51IVFKjJAXKRj4f4qMkDRRwamwCsyQLqoA0aELDJAH+wndkctMkBN4wSTCC4yQAD4uh/KLjJAG3kzfYkvMkDzXMy8QjAyQK5cgmbqMDJA8XhtSSEzMkA7IWEF5TMyQMnym69/NDJAcnXt+Bw1MkCPDEyB3zUyQPI5ioafNjJA+kSeJF03MkBVTRB1HzgyQJKOhfvbODJA7HkRgJI5MkDexQ49PDoyQCGoLYhbPDJAPNLzgfc8MkDQPJMQvz0yQAxhIstvPjJAXBj8EC4/MkAdIJijxz8yQE8mW0qDQDJA2uGvyRpBMkA44yF51EEyQL6PkG5xQjJAyXa+nxpDMkAKmqkjWkUyQOloQoD5RTJAQAsc451GMkD/cGp6Y0cyQKpgVFInSDJAogvqW+ZIMkAADVwLoEkyQC3nUlxVSjJABsvrmw5LMkDkoISZtksyQBuZR/5gTDJAuycPC7VOMkBG42OKTE8yQGN6whIPUDJAZWAK/M5QMkAHFUL0kVEyQKnJeexUUjJAs+pztRVTMkDKPyC9zlMyQEKFEH1kVDJA4iNiSiRVMkD1RUJbzlUyQIV0i9MjWDJAEDDgUrtYMkAcZ8BGf1kyQAOy17s/WjJAVX+XLAFbMkAY9MtNwVsyQGKcvwmFXDJAqPsApDZdMkDpaEKA+V0yQJwmRqmXXjJAs14M5URfMkBhGoaPiGEyQMoyxLEuYjJAJh5QNuViMkDDbO9AimMyQG9c2RhOZDJAwz9/tBJlMkCBiOd/zGUyQOKfP1qJZjJA44WHQ0lnMkBfTva8CGgyQBsqxvmbaDJAKDQ2YehqMkAi2MvJnmsyQIHSPdhPbDJA8vJh4+dsMkBgcTjzq20yQApLPKBsbjJARoyxJilvMkD7tk3e7W8yQJw4ud+hcDJA9CpFBWFxMkBzz80RDHIyQKjb7CJfdDJAdYvTIyB1MkB0BIN+uXUyQEWmaT1pdjJAIrbO0ih3MkCDzSat5XcyQELcwuCHeDJAWE5VtEx5MkABKFlhDXoyQKsBXQ7OejJA9W+EMnp7MkDoaiv2l30yQHep/i5ZfjJAgcr49xl/MkCIaHQHsX8yQOqVsgxxgDJA/n3GhQOBMkB9BWnGooEyQL5yqqJlgjJANBZNZyeDMkDyQc9m1YMyQMnym69/hDJAYzixmsGGMkCURXTihYcyQHRO2dY8iDJANMoNmQWJMkCqbbBdx4kyQMww2zuQijJAKjJN60mLMkD24TPsCowyQIYgByXMjDJA4Ch5dY6NMkCdPhVKOY4yQGV42ZxwkDJAZl4hhjCRMkCZZOQs7JEyQK3AkNWtkjJAbgL5/16TMkDAz7hwIJQyQIZa07zjlDJAqOMxA5WVMkDa6fSpUJYyQLN224XmljJAqdG+zIqXMkC/3BR8wJkyQJrWk+Z8mjJAfwvFMDqbMkCq7Lsi+JsyQFKw2aS1nDJA4wSTCHqdMkAsl6CZOp4yQLOwpx3+njJAiIVa07yfMkDgd+b4e6AyQG5mB28ioTJAGdLOVkujMkDa2Wrp5KMyQMEHnJKZpDJA8hRf2l2lMkDZX3ZPHqYyQB7cnbXbpjJANdqXWXGnMkBo4FoALagyQKAS6vzuqDJAY01ShpepMkCgVPt0PKoyQLZCa1hmrDJADxgRshmtMkDEQq1p3q0yQIJuL2mMrjJAOJnLIFGvMkC7aSCDArAyQL5lTpfFsDJAwPTjHGKxMkAUnr0gD7IyQEyzZlHFsjJAcTXF9m2zMkB2ieqtgbUyQAVxC4MftjJAzMFZN8u2MkDuZ55JiLcyQNOcz5NFuDJA2qfjMQO5MkC9xi5RvbkyQFPTG9tYujJAteNzFA27MkBkzF1LyLsyQHTCcQZsvDJASNk1NHi+MkDjLtXfJb8yQHd8jqLhvzJAcT0K16PAMkArWqZMV8EyQLqYeYUYwjJAdNL7xtfCMkCp7qSYlsMyQKGZOqJVxDJA4QZ8fhjFMkChMv59xsUyQF/3Q1nlxzJArLUdQKzIMkBYazuAWMkyQINMMnIWyjJAYVyXB9bKMkAblhlJlcsyQNn7Z+BazDJAbUkhoxbNMkBi3tCB0s0yQMww2zuQzjJAnLzbzzzPMkBMN4lBYNEyQB0TPJgn0jJA0AoMWd3SMkCILqhvmdMyQGESQa9S1DJAkxgEVg7VMkD0L1wwy9UyQNp6c6WL1jJA5ZttbkzXMkC5cCAkC9gyQEFQWxC32DJAKBdQldzaMkArE36pn9syQNflgbVX3DJAlhEEtQXdMkAxoW/4yt0yQB/0bFZ93jJAvHzY+DnfMkCjx+9t+t8yQHqyiE684DJAB9t1XHrhMkCweq1xI+IyQN7tZ55J5DJA2DpLo9zkMkDXCq1hmeUyQOlQc99X5jJAI3wCOxHnMkA0wsi4z+cyQNRgGoaP6DJASgS9SlHpMkC6mHmFGOoyQMCqjcTe6jJAPDkwpobrMkALXvQVpO0yQPxvJTs27jJADrbruPTuMkBD0pSKs+8yQCgHxtRw8DJAJtcnky3xMkCUOBjX5fEyQNB5jV2i8jJARAdK92DzMkCc+dUcIPQyQLEbti3K9DJACW05l+L2MkCSEqjrdvcyQEk2RAIz+DJAwXs0wsj4MkAA049ziPkyQEVPt9lF+jJAqHz13gX7MkDbgriFwfsyQH038H2E/DJAOYdY6kb9MkC/+fpHzP0yQPR0m13k/zJAzVg0nZ0AM0A7uiThVQEzQCDvVSsTAjNA3D6+l9UCM0ASW2dplAMzQHtWv78uBDNAM3pb1uoEM0DgYkUNpgUzQDRG66hqBjNAeI9GGBkHM0C0Es0WIwkzQLSLfHG8CTNAN1zR020KM0A0Fk1nJwszQF3+Q/rtCzNA4Ot+KKsMM0CJxYLVaw0zQE9QnSEvDjNA7Lsi+N8OM0CIcLnn5hAzQBmojH+fETNAer/kWVwSM0DQm4pUGBMzQHdfqNbVEzNAaOVxK5cUM0AAX/dDWRUzQF59T78eFjNAwKqNxN4WM0A/ieJooRczQDsmeDBPGDNA8m4/80waM0AgD2qs6hozQN1B7EyhGzNAqvHSTWIcM0CowTQMHx0zQHqAAZfaHTNAirDh6ZUeM0AGeVBjVR8zQO3DZ9gVIDNAw64AudcgM0BVye2EhCEzQKXC2EKQIzNAMwGse1EkM0DRiRceDiUzQLOoYj3IJTNAlsetXIImM0BnhnrnPSczQIMH80T9JzNAPEF1hrwoM0DEPZY+dCkzQJgSSfQyKjNAIfKD4N4qM0B/NQcI5iwzQK5Cyk+qLTNAAiZw624uM0D70AX1LS8zQBVSflLtLzNAUpPz2KkwM0ACksM6aDEzQLzLRXwnMjNAXGqXSecyM0BbOvkHpDMzQHiXi/hONDNAcKEYRmc2M0DOaL5dCTczQKZpPWnONzNA59Z+RZE4M0DOIZa6UTkzQFQltxMSOjNAffDH2sw6M0DKkbv1hzszQKzN7OBNPDNA6fF7m/48M0A9m1Wfqz0zQNgyBsOmPzNAqtTsgVZAM0ANq3gj80AzQGzC0P2vQTNAzYJ2dElCM0BCJhk5C0MzQOnpNrvIQzNAL2ZeIYZEM0CCLB7xPkUzQGM1g+X1RTNAZOH+Np5GM0B9cbwVnEgzQFMFo5I6STNAhtGZod5JM0CP3K0/nEozQINxXR5YSzNAlrcjnBZMM0CSjoX720wzQO2W90ueTTNA0csolltOM0DGYNh0F08zQEUFYYHCTzNAxjutyNVRM0BR9wFIbVIzQA5HarQvUzNAMgOV8e9TM0Cnpje2sVQzQKNgs0lrVTNAHRM8mCdWM0Dv0Qgj41YzQPXGNpadVzNAIagtiFtYM0DWmP2nCFkzQOpToZQjWzNAX9pdjdlbM0AxQni0cVwzQOdPLqAqXTNA+1Qo5chdM0BdK7SGZV4zQHOdRloqXzNAK6T8pNpfM0ABj5WFnGAzQMoSsDBXYTNAsznhOANiM0A0jRNMImQzQNsWZTbIZDNA5v2SZ3FlM0D8Uj9vKmYzQDSFzmvsZjNAURwt9K5nM0BgLyd7XmgzQPV84D0aaTNA8TZc0dNpM0BJKej2kmozQGBhrjJAazNAr1qZ8EttM0ALRiV1Am4zQEJbzqW4bjNA5+sfMWdvM0CvGIh4/m8zQFm4v42ncDNAwyewE3FxM0CiEy88HHIzQBKLBavXcjNAn7PyuJVzM0CaHbyJNHQzQIz7fIFGdjNAGgeEw/h2M0DwfYR0i3czQKOSOgFNeDNAn2mcYBJ5M0CxknwSxXkzQNP+9IxqejNAdrMshS17M0BKiN867HszQI8EB6GpfDNAGORBjVV9M0A8xZd2V38zQHsc8ycXgDNAp+ADTsmAM0B/4YJZjoEzQBtx7pxTgjNA0JuKVBiDM0DmDR0o3YMzQKVza7+ihDNAPu3w12SFM0CT5nyeLIYzQPGtIrbOhjNArlyCZuqIM0D5549WookzQBFTIoleijNAhvbETSCLM0CRF78W4YszQFSM8zehjDNA8Btfe2aNM0DnxvSEJY4zQJCg+DHmjjNADWlnq6WPM0D2j5izUZAzQNP+9IxqkjNAEEBqEyeTM0AF8v+97pMzQBcb4G+hlDNAwPTjHGKVM0CBUzITH5YzQNUZ8uLXljNAbZN3+5mXM0DxgLIpV5gzQAXdXtIYmTNA7wOQ2sSZM0Dp6Ta7yJszQBn3+QKNnDNAOYdY6kadM0Bzz80RDJ4zQCsQUPTTnjNAXRYTm4+fM0Atv/n6R6AzQBH0KkUFoTNAF+lYuL+hM0CWx61cgqIzQAfo0WcaozNAZEg7Wy2lM0AhJAuYwKUzQIyM+3yBpjNAkp4PvEenM0A5RUdy+aczQOAIZfS2qDNAoWez6nOpM0CKyLCKN6ozQKVJKej2qjNAZJKRs7CrM0Cs6tKsWawzQNojwUForjNAXBj8EC6vM0AkfzDw3K8zQD0kj7qwsDNAGjT0T3CxM0CbKC8fNrIzQDvHgOz1sjNATwZHyauzM0CIMdYkZbQzQEBVcjshtTNAPfIHA8+1M0DyXrUy4bczQJLgIDSVuDNAvodLjju5M0AgmKPH77kzQKabxCCwujNAenB31m67M0AhNJVYLLwzQAaGrG71vDNAHL5yqqK9M0AGyL3mQr4zQKMWXfHnvjNAfzUHCObAM0Ch20sao8EzQCTJhkhgwjNAhvbETSDDM0DDNzrU3MMzQE9gJ+KaxDNACpqpI1rFM0ASpb3BF8YzQHnh4VDSxjNA0dNtdpHHM0AcQpWaPcgzQBFwCFVqyjNAnl4pyxDLM0BvOtwh2MszQEbrqGqCzDNAfh04Z0TNM0Aiy2++/s0zQHd0ScKrzjNAqnoMaWfPM0AX+eJ4K9AzQH0COxHX0DNAPz2jmn/RM0BKvZSnmdMzQER+ENxb1DNAuiGzoB3VM0CN9mVW3NUzQHRBfcuc1jNATSUWC1bXM0A+cRPI/9czQHBa8KKv2DNAhbacS3HZM0DFBvhbKNozQAlQU8vW2jNAtUeCg9DcM0Dh7qzddt0zQEhItzg93jNAHjNQGf/eM0DkvWplwt8zQHgoCvSJ4DNABTQRNjzhM0Cs2kjs7eEzQIfxrSK24jNAIE5Nb2zjM0CrQ26GG+QzQMPwETEl5jNAoanEYsHmM0BLZuJDduczQC2FLWMw6DNApD62UvXoM0D9MEJ4tOkzQM/vDgNw6jNA86s5QDDrM0CK8vJh4+szQLD+z2G+7DNAe14EoGTtM0DDTwl1fu8zQFxV9l0R8DNA54TjDNjwM0COSAGPlfEzQCJ51IVF8jNA7RLVWwPzM0B7UaiUxPMzQBn3+QKN9DNAVhuJvT31M0BWAdGm/fUzQJ9ZEqCm9jNAWdWlWbP4M0DC0P2vTfkzQOV2QsIK+jNAO1PovMb6M0ARPoGdiPszQFKrwnlL/DNA6fF7m/78M0DLLa2GxP0zQJrzebKI/jNAwcWKGkz/M0Cjx+9t+v8zQETFOH8TAjRATO0y6dwCNECB7PXujwM0QBArySdRBDRAvjCZKhgFNEDxGXYFyAU0QIWEFZSPBjRAsUgmukEHNEBHrMWnAAg0QNfqmODBCDRAwBHK6G0JNEAnysuHjQs0QKU0iPwgDDRAMwbDprsMNEAO41tFbA00QOC+DpwzDjRALUMc6+IONEBAn8iTpA80QH3gPRphEDRAcnXt+BwRNECigrBA4RE0QHtJY7SOEjRAvRWc1KoUNEBk2blWaBU0QCkqCAsUFjRAMjUcqdEWNECPU3Qklxc0QILvI6RbGDRAJ7pBxyEZNEDLhF/q5xk0QBdDOdGuGjRAPxVKOXIbNECwNW5EChw0QKD9SBEZHjRAR2q0L7MeNEArvMtFfB80QJP479Q2IDRAaeOItfggNEC7sEgmuiE0QOUkp4lRIjRARDz/Yw4jNEDr/xzmyyM0QAutYZmRJDRA5FYuQTMlNEDnsVOZTyc0QH9lpUkpKDRARvC/lewoNEA/sTvKrik0QCDXhopxKjRAbJVgcTgrNEBW2XdF8Cs0QMFBaCqxLDRAdmwE4nUtNEAtrYbEPS40QLaMwbDpLjRAtwvNdRoxNEDccEVPtzE0QB3ehit6MjRAS9VjSDszNEC2PVQt/DM0QNv5fmq8NDRAh+loQoA1NEAPA3DGQzY0QLG3p74GNzRAQfZ698c3NEAOT6+UZTg0QGvM/lOEOjRAybCKNzI7NEA5KGGm7Ts0QPBL/bypPDRA78SsF0M9NEABC3OVAT40QPm1CJ/APjRAOiNKe4M/NEDFUjcqSkA0QA/BXk72QDRAVxmgR59BNECi5r6vpEM0QI0j1uJTRDRARvC/lexENEBQEbperUU0QOmKP3dvRjRArP9zmC9HNEDAWyBB8Uc0QJdGuSGzSDRAdFYet3JJNECzrXloMko0QKoeQ9rZSjRAC3isLORMNEClBxhwqU00QJucx05lTjRAbnF6BCRPNEDYw4S+4U80QMMdgr2cUDRA+08Rul5RNEAwbLqLHVI0QH8jlNHbUjRA+dUcIJhTNEClizpgRFQ0QHqFGMJEVjRAQrKACdxWNECduvJZnlc0QHi0ccRaWDRAORPAuhdZNED9h/Tb11k0QLKykJOcWjRAnil0XmNbNEAkLZW3I1w0QGawvL7pXDRAUrMHWoFdNECdRloqb180QPbhM+wKYDRA2QB/C8VgNECH6WhCgGE0QEx0g45DYjRAEuK3DvtiNECWsgxxrGM0QPG6fsFuZDRAhSUeUDZlNECD9X8O82U0QDZ5t595ZjRA8ddkjXpoNEB1xZ+7N2k0QGcKndfYaTRAZr0YyolqNEBsskY9RGs0QLIubqMBbDRARnwnZr1sNEC/S5aAhW00QLoMErVHbjRAxiYM3f9uNEDibbiip280QDRgo7+qcTRAdLD+z2FyNECO/qo2EnM0QLmI78SsczRAwbDpLnZ0NEATYcPTK3U0QMNfkzXqdTRAQj7o2ax2NEDSfLsSbnc0QNmHz7AreDRAT/Gl3dV4NEBYPsvz4Ho0QFbxRuaRezRAxxFr8Sl8NEAUs14M5Xw0QC0BC3OVfTRA6VBz31d+NEDJdr6fGn80QBgumOXYfzRAMUJ4tHGANEAACEXgNYE0QOMJqjPkgTRA5g0dKN2DNEDOHmgFhoQ0QH7GhQMhhTRArrZif9mFNEDktSWFjIY0QEapl/I0hzRAvEw6t/aHNEDXsMxIqog0QNWALgdniTRAhn/+aCWKNECl8naE04o0QEgjjIz7jDRA2VpfJLSNNEBYHM78ao40QLvyWZ4HjzRAg3Z0ScKPNEC6xekRkJA0QNMwfERMkTRAtWytLxKSNEAtJjYf15I0QNsOIFaSkzRAqGdU8y+UNEDFepCLV5Y0QLYAWuAYlzRAJH8w8NyXNEAwthDkoJg0QJPGaB1VmTRA0gDeAgmaNECOUEZvy5o0QIw9jvmTmzRAmXRu7VecNECPJgSYH500QKMr/ty9nTRAhxbZzvefNEBBbUHcwqA0QIfpaEKAoTRA4vHakkKiNEC2xo1IAaM0QHw0wsi4ozRA3Esao3WkNEBpdAexM6U0QLGvYt7QpTRAGAltOZemNECPiCmRRKc0QNOHLqhvqTRA6YUoTAWqNEA7U+i8xqo0QJ95JiF+qzRApW5UlDisNEC6kDSl4qw0QL2MYrmlrTRAQJeDs26uNED41wWWNq80QPWRgSnwrzRAzVg0nZ2wNED0wwjh0bI0QPCaakCXszRAsb/snjy0NEDlbv3h1LQ0QK8I/reStTRAJI+6sEi2NEAeUDblCrc0QMxVBujRtzRAv7fpz364NECCZuqIVrk0QCrwO3P8uTRAZJeo3hq8NEDiHksfurw0QFWPIe1svTRAMp+Ggiy+NEAFQW1B3L40QCTusfShvzRAFVeVfVfANEDmMkjUHsE0QIjnf8zhwTRAHDU5j53CNEDSJQmvSsM0QHaJ6q2BxTRAVLY1D03GNEAjQjaj+cY0QMPgh3C5xzRAj5BucXrINEBkZSEnOck0QBlW8UbmyTRAdF5jl6jKNEAqbBmDYcs0QGatjgkezDRAIK1Es8XMNECoXw8T+s40QE/MejGUzzRA9HmyiE7QNEAK7ERcE9E0QLXbLjTX0TRAyjfb3JjSNEBUZ8iLX9M0QKgtiFsY1DRAbriip9vUNEASg8DKodU0QJEKYwtB1jRAPVlEJ17YNEAiN8MN+Ng0QHgTaQi02TRAQ5CDEmbaNEC4MybXJ9s0QLcgbmHw2zRAAax7UajcNEB0HFIfW900QBnnb0Ih3jRAxLlzTtneNEDpO9Lzgd80QPghXO654TRA2EenrnziNEALa1AhROM0QGtlwi/14zRA9ZSv3rvkNEC9GMqJduU0QAjBvUU65jRAqlgPcvHmNEDfV9J3pOc0QB6vLSlk6DRAg7iFwQ/pNEDQ1VbsL+s0QGTMXUvI6zRAyA+Ce4vsNEChEAGHUO00QItx/iYU7jRAIbi3SMfuNECI1/ULdu80QMcRa/Ep8DRAUkFYoPDwNEALXvQVpPE0QO5Cc51G8jRAEGWVv2j0NEAURN0HIPU0QLF1lka59TRAqANGhGz2NEDSzlZLJ/c0QG90qLnv9zRArq4dn6P4NEA7uiThVfk0QIyH5FEX+jRAHMa3itj6NEAUN4H8f/s0QJLoZRTL/TRAeTN9iYv+NEDnsVOZT/80QH7bJu/2/zRA+Db92Y8ANUBTP28qUgE1QHf7mWcSAjVAH7+36c8CNUD8zhx/jwM1QFKrwnlLBDVAuLQaEvcENUBxwSzHPgc1QPSuZ/X7BzVAb0QKeKwINUCojH+fcQk1QLefeSYhCjVArFEP0egKNUB4zinbmgs1QD9vKlJhDDVAqaROQBMNNUCutmJ/2Q01QEjZNTR4DjVAHl2S8KoQNUC5eGUEQRE1QMS2RZkNEjVAGJrrNNISNUBnUcV6kBM1QElwEJpKFDVACs9ekAcVNUDeoxFGxhU1QApoImx4FjVAffXeBTcXNUAdWmQ73xc1QMXMK8QQGjVAtjUPTcYaNUDiFgY/hBs1QDSq+RcuHDVAsVWCxeEcNUCJORsFmx01QFj/5zBfHjVAbVuU2SAfNUCRF78W4R81QJkF7eiSIDVA5mwUbDYhNUDIJCNnYSM1QPn3GRcOJDVA4h5LH7okNUBGYm9PfSU1QKJq4Z8/JjVAiZgSSfQmNUAPf03WqCc1QP0LF8xyKDVAn6No+CkpNUDLhF/q5yk1QO7w12SNKjVAZzwkj7osNUByQDiMby01QPxvJTs2LjVAROVMAOsuNUBz3CkdrC81QFonQZJsMDVA9Las1TExNUDX8t3A9zE1QMNpwYu+MjVA+mGE8GgzNUAAOsyXFzQ1QI8uSXhVNjVAPy0Z2hM3NUCYH6X/0jc1QMSp6Y1tODVAd76fGi85NUCD9X8O8zk1QF8M5US7OjVAdWGRTHQ7NUC2ztIoNzw1QHlg7RUDPTVAUiegibA9NUArweJw5j81QJ1OnwqlQDVAh5K23lxBNUAIh/GtIkI1QBzjnVbkQjVAZ4uREqhDNUABG/1VbUQ1QLdFmQ0yRTVAhgtmOfZFNUBYyjLEsUY1QHMR34lZRzVA++CPtZlJNUC1/SsrTUo1QH2eLKITSzVAAKlNnNxLNUD9ReNjikw1QPv4XlY7TTVAjU0Yuv9NNUDra3A1xU41QDUUZPGITzVA2t6BFE9QNUAuiFsY/FA1QIiAQ6hSUzVA+9MzqvlTNUC9FZzUqlQ1QD0K16NwVTVALJegmTpWNUBXW7G/7FY1QBOrGSyvVzVA2RhOrGZYNUAdnHWzLFk1QNLGEWvxWTVA8jmKhp9aNUAWIPeaC101QEYQ1BbEXTVAgVhJPoleNUAEY2o4Ul81QDl/EwoRYDVAWQ9y8cpgNUC9UpYhjmE1QKWAx8pCYjVAC73rWf1iNUDde7jkuGM1QI0j1uJTZDVAfiV9R3pmNUAn/4D0Omc1QDDQyPrgZzVABrth26JoNUCV3E5IWGk1QJfCljEYajVAAiuHFtlqNUAk0csolms1QNCjzzRObDVAN/3ZjxRtNUDXRHn5sG01QDCz4i7VbzVAokCfyJNwNUA2cXK/Q3E1QEuwOJz5cTVA5j+k375yNUDNirtUf3M1QHE486s5dDVAclgHLRF1NUBtGYNh03U1QJoQYH6UdjVARsZ9vkB3NUCRBzVWdXk1QK6BrRIsejVAQrKACdx6NUDpHuwndns1QD3lq/cufDVAFNBE2PB8NUAHbPRXtX01QDxO0ZFcfjVAFU9QnSF/NUAknBa86H81QF2qv0uWgDVAzMFZN8uCNUBLZuJDdoM1QNydtdsuhDVAvrwA++iENUD4BHYiroU1QNtApw10hjVAumbyzTaHNUDCjuw3AIg1QITQVGKxiDVAaCJseHqJNUCBNkxHE4o1QE/sjrJrjDVAPEaMsSaNNUDSxhFr8Y01QAWw7kWhjjVAztxWjTiPNUC+YiDi+Y81QGAXWNq8kDVACfFbh32RNUBDOdGuQpI1QMLdWbvtkjVA4jPsCpCTNUBqIIMC3JU1QDZ5t595ljVAl8rbEU6XNUCdhT3t8Jc1QLXwzx+tmDVAJG+mL3GZNUCdPhVKOZo1QAAyh7fhmjVADWlnq6WbNUCsB7l4ZZw1QF3MvEIMnTVA+PTrYUKfNUAfcEpm4p81QCUrrEGFoDVANxrAWyChNUBNjFIv5aE1QLLPdl+oojVAZeQs7GmjNUBTVBAWKKQ1QKtGnDvnpDVA2T15WKilNUD+v9f9UKY1QPrAezTCqDVATqQh0IapNUB3bzKXQao1QLvyWZ4HqzVAmAK/M8erNUAStUeCg6w1QNwUfMAprTVAv1Ctq++tNUAQHm0csa41QOcIBv1yrzVALUthyxiwNUBCyk+qfbI1QM35PFlEszVAbzrcIdizNUABj5WFnLQ1QLa5MT1htTVAj7qwSCa2NUCMkRKo67Y1QIhodAextzVArjqFb3S4NUB+AFKbOLk1QJ5zyrbmuTVAIVF7JDi8NUAPaqzq0rw1QBWZpvWkvTVA8HU/lFW+NUDCUfLqHL81QMEEbt3NvzVAGRTgzpjANUAFbt3NU8E1QJSPyjoJwjVAqwFdDs7CNUDb1FO+esM1QMbk+mSyxTVAXwfOGVHGNUAtfeiC+sY1QBj0y03BxzVAIeL5H3PINUCOQ+pjK8k1QCzMVQboyTVATlW0TJnKNUAd/pqsUcs1QFhGENQWzDVAcXfWbrvMNUClg/V/Ds81QPXjHGKpzzVAxKnpjW3QNUCfhoIsHtE1QPV/DvPl0TVAWK1M+KXSNUAdOGdEadM1QN0pHaz/0zVAFFysqMHUNUA0CfFbh9U1QLq1X1Ek1jVAnqA6Q17YNUBDTnKaGNk1QBIUP8bc2TVApn7eVKTaNUDNUO+8Z9s1QPHvMy4c3DVAUSRy1OTcNUChoX+Ci901QOzV2g4g3jVAPaOaf+HeNUAwBX5njt81QMhRk/PY4TVAoRhGZ4biNUAPlxx3SuM1QN4/A9cC5DVAp2xrHprkNUC2uTE9YeU1QHDWzbIU5jVAWjfLUtjmNUAPYmcKnec1QCO+E7Ne6DVAK49buQTpNUAuQTN1ROs1QF9O9rwI7DVA7HbjysbsNUALJCh+jO01QP6/1/1Q7jVAoXQP9hPvNUCIvyZr1O81QFRvDWyV8DVAsAPnjCjxNUD6q9pI7PE1QHxmSYCa8jVAVtyl+rv0NUDF5uPaUPU1QGVLaRD59TVARRoCbZj2NUCj4aeEOvc1QPWRgSnw9zVA82Hj56z4NUBm75+Ba/k1QKxrx+co+jVAqh5D2tn6NUAbeTN9ifs1QLb4FADj/TVA+eq9C27+NUCetdsuNP81QEy7qzH7/zVA4CVLwMIANkDoMF9egAE2QM1IqtwxAjZAY6xJyvACNkBw4ym+tAM2QH/2I0VkBDZAlvQd6fkENkD1h1PTGwc2QExk+c3XBzZAPwCpTZwINkBo6J/gYgk2QEjUHgkOCjZA6ohWAdEKNkBYBy0RlQs2QBAO41tFDDZAsI9OXfkMNkAeDiVtvQ02QFgczvxqDjZAyyVopo4QNkBH7tYfThE2QOmFKEwFEjZAGGAfnboSNkAPKJtyhRM2QL3WuBEpFDZAfDwHqe4UNkAcvnKqohU2QEe8T2hsFjZA1cdWqh4XNkDOFDqvsRc2QKeufJbnGTZAe0ljtI4aNkAiKmcCWBs2QLREVM4EHDZAPnRBfcscNkB0HFIfWx02QGl3NWb/HTZAEzRTR7QeNkBizkbBZh82QAk7st8AIDZAJ5hE0KsgNkBJ10y+2SI2QDAFfmeOIzZAtNXSyT8kNkB+jLlrCSU2QD3VITfDJTZApgpGJXUmNkCn8I0ONSc2QOlA6R7sJzZAjQsHQrIoNkB2bATidSk2QCX+O7UNKjZA/bRkaE8sNkAtpUHkBy02QJigmTqiLTZAMjAFfmcuNkCVI3frDy82QEMpR+7WLzZALIpEjpowNkAFFytqMDE2QL/5+kfMMTZAoTUsM5IyNkC1HUCsJDM2QKHzGrtENTZAbxKDwMo1NkACJnDrbjY2QBL/ndoGNzZA/nWBpc03NkC8vulwhzg2QGZ7B1I8OTZAgd+Z4+85NkA2CjabtDo2QJ5jQPZ6OzZAMH4twic8NkA5crf+cD42QONLu6sxPzZAGBGyGc0/NkBGCI82jkA2QNVGYm9PQTZAhu5/bepBNkB0e0ljtEI2QLwNV/R0QzZAr6kGdDlENkBdr9Z2AEU2QO/Jw0KtRTZAtAqINu1HNkBXaA3LjEg2QFZVVVVVSTZAa+TN9CVKNkC2jMGw6Uo2QANLm5ewSzZAlZ9U+3RMNkDFjzF3LU02QJApMk3rTTZAqqqqqqpONkBoaZQbMk82QKhvmdNlUTZAyBzehitSNkCGgiwe8VI2QDqX4qqyUzZAO30qlHJUNkAn9A1fOVU2QAgwP0r/VTZAkUlGzsJWNkByhXe5iFc2QEk2RAIzWDZAUgeMCNlYNkCI78SsF1s2QDe7yBfHWzZANlFePmxcNkARaMN0NF02QJlk5CzsXTZAvAopP6leNkCngQwKcF82QMoKa1AhYDZAa6K8fNhgNkCJORsFm2E2QMNHxJRIYjZAQYonqM5kNkAaUdobfGU2QJpFFetBZjZAgnNGlPZmNkC8ntXvr2c2QGY+DQVZaDZAq9caNyJpNkBZ3eo56Wk2QK2GxD2WajZAejarPldrNkBT/V2yBGw2QEBdtxtXbjZAozNDvfNuNkBdbcX+sm82QNUJaCJscDZAyrv9zDNxNkDiJpD/73E2QKSixMG4cjZAxUgJ1HVzNkD7R8zZKHQ2QE8rcnXtdDZA2qz6XG11NkATH7Jb3nc2QOzlZM+LeDZACX3DV055NkBL6gQ0EXo2QFrDMiOpejZA92iEkXF7NkAHfH4YIXw2QHkmIX7rfDZAvW987Zl9NkCdlcetXH42QKNtD1ULfzZAEkn0MoqBNkAQrL1iIII2QNlFvjjegjZAYPIsLnuDNkBERERERIQ2QP5g4Ln3hDZAhEcbR6yFNkBvvv4Rc4Y2QD1u5RI0hzZAB+v/HOaHNkBXaA3LjIg2QD+5gKrkijZA0fBTQp2LNkB2gaXNS4w2QLfRAN4CjTZAUiegibCNNkBrzP5ThI42QOmqU/hGjzZAjAjZjOaPNkA61Nz3lZA2QNh5LmZekTZAj0YYGfeRNkDEbx32VZQ2QHAlOzYClTZAzrIUtoyVNkBGbJ2lUZY2QCEsUHj2ljZAc6JdhZSXNkCEyz03R5g2QKJFtvP9mDZAYVRSJ6CZNkA6GwWbTZo2QBmw0V/VmjZAYcPTK2WdNkBqlBsyC542QCSxt6e+njZAcoV3uYifNkB7kItXRqA2QH6MuWsJoTZAbPyclcehNkAiClOBgKI2QNzPPJMQozZAMo/8wcCjNkBCovZIcKQ2QHTv4ZLjpjZASKeufJanNkDsq5g3dKg2QIr6N0IZqTZA17gRKeCpNkCMxscUmao2QHS6LCY2qzZAByXMtP2rNkCNCwdCsqw2QGP2nyJ0rTZA23VceiGuNkDpJjEIrLA2QNPZyeAosTZAP0K6xemxNkCTzq39irI2QM0WIyVQszZAR6zFpwC0NkDnZ/1AzLQ2QD89o5p/tTZAiM+wK0C2NkC/AUAoArc2QLye1e+vtzZAiLLKXzS6NkCZ+JDd8ro2QDutyNW1uzZATpzc71C8NkAmnVv7Fb02QOcYkL3evTZAQNFPS4a+NkBbb650Ub82QOSItfgUwDZAxcTm49rANkCoxks3icE2QPfETSD/wzZAYKO/qo3ENkBortNIS8U2QBRHC73rxTZAE6PUS3nGNkDZLe+XPMc2QHnMQGX8xzZARnwnZr3INkDOlS7qgMk2QGDq501FyjZAHhZqTfPKNkDyoMaqLs02QPv9dYGlzTZAVJlPQ0HONkA7x4Ds9c42QLoxPWGJzzZAJmBhrjLQNkASnXjh4dA2QLYQ5KCE0TZAmS8vwD7SNkCGgiwe8dI2QE/pYP2f0zZAhihMBQLWNkCFZy/Ig9Y2QCccZ8BG1zZAT7SrkPLXNkAQn2FXgNg2QEWeJF0z2TZAtTLhl/rZNkAMD4eStto2QOw00lJ52zZA16u1HUDcNkC1gU4b6Nw2QEj5SbVP3zZA922bvNvfNkC2fDfwfeA2QBujdVQ14TZAS5NS0O3hNkApaevNleI2QLiK2DpL4zZAr9674ObjNkA6DqmPreQ2QGbvn4Fr5TZA+uWm4APmNkAZ2hM3geg2QAwCK4cW6TZAUIVSjtzpNkCM463gpOo2QB04Z0Rp6zZA48KBkCzsNkA5vA1X9Ow2QLRRsNmk7TZAfNXKhF/uNkBtW5TZIO82QHlYqDXN7zZA2un0qVDyNkBGUuWOEfM2QPJBz2bV8zZAaftXVpr0NkB3MjhKXvU2QMsV3uUi9jZAdgXIveb2NkBpoXc9q/c2QA5Pr5Rl+DZAmnecoiP5NkCN2X+K0Pk2QL5/Bq4F/DZAXeSL4638NkCmPM3cVv02QIH8f6/7/TZAYQXlo7L+NkA8xZd2V/82QAyLZKIbADdA5IvjreAAN0DvrN12oQE3QIYQfWRgAjdABsvrmw4DN0DMRXwnZgU3QIbuf23qBTdAMk3rSXMGN0CC597DJQc3QIwI2YzmBzdAksM6aIkIN0BDTnKaGAk3QHZUNUHUCTdAgHUvCpUKN0BIFjCBWws3QKHO7w4DDDdAuLxf8iwON0DtR4rIsA43QMEcPX5vDzdANFNHtAoQN0DZxrJzrRA3QFNcVfZdETdAD1UL//wRN0DTyT8gvRI3QF6/YDdsEzdAQN6rViYUN0BfUSRy1BQ3QPbeBTc/FzdAuqXVkLgXN0D/If32dRg3QLrn5ggGGTdAFPBYWcgZN0BrrxiIeBo3QE3rSXM+GzdAOWItPgUcN0BkQyQwwxw3QJ8XAShZHTdA4mBclwceN0DgWgAtcCA3QD7o2az6IDdAbWsemowhN0B4UkzLNSI3QL2Up5nbIjdAoua+r6QjN0BCaCqxWCQ3QPJJFEcLJTdA+/11gaUlN0AtIR/0bCY3QAKfH0YIJzdAXXohClMpN0D/ndoG2yk3QGRtZgdvKjdAkip3jBgrN0A6l+Kqsis3QGESQa9SLDdAKXl1jgEtN0CuQspPqi03QGiZMl11LjdAHjNQGf8uN0CRhkAbpi83QGdhTzv8MTdAb2xj2bkyN0AW9rTDXzM3QN0pHaz/MzdAVvmLxsc0N0Aemow9jjU3QEiCg9BUNjdAv8dzkOo2N0Ad5ssLsDc3QPG6fsFuODdASpAkGyI5N0AgMWejYDs3QIdtizIbPDdAXTs+R9E8N0DV1+Bqij03QBZFIkdNPjdA451W5Oo+N0BGrq4dnz83QE7WqIdoQDdAJId10BJBN0D4PkK6xUE3QL5yqqJlQjdAMQ3DR8REN0BjvNOKXEU3QN6LQqUkRjdAk7beXOlGN0DnmYT4rUc3QD+MEB5tSDdAzF1LyAdJN0CxO8quoUk3QIMXfQVpSjdAUt1JMS1LN0BPet/42ks3QCRV7hgxTjdAh2VGUuVON0DuvlCtq083QJzEILByUDdAUbXwzx9RN0AQGz9n5VE3QHReY5eoUjdA9VKeZm5TN0DvExqbMFQ3QCTZEAnMVDdAMMA+OnVVN0AbJ5hE0Fc3QNVDNLqDWDdAcsyfXEBZN0C8dJMYBFo3QA5CU4nFWjdAWwAtcIxbN0Bo4FoALVw3QKr26XjMXDdAhgZPDoxdN0AYWwhyUF43QJoVd6n+XjdAdzI4Sl5hN0C6JOFV6WE3QEI+6NmsYjdA0iUJr0pjN0Dmu4HvI2Q3QESDJwfGZDdA1YAuB2dlN0Cuga0SLGY3QCtKHIzrZjdAcW+RjoVnN0Bt70CKJ2g3QCjAnTG5ajdARLCXkz1rN0DHuriNBmw3QE+a83mybDdAznhIHnVtN0BgPIOG/m03QEeHmvu+bjdAz6Chf4JvN0A95av3LnA3QC5Oj4DkcDdA2QOtwJBxN0BY711w83M3QKwHuXhldDdAjZyFPe10N0AQFig8e3U3QKo4+/AZdjdAZBvLzrV2N0BqnGASQXc3QPvwGXYFeDdAnqVRbsh4N0Av+grSjHk3QIOj5NU5ejdADeAtkKB8N0B58WsRPn03QN7d3d3dfTdA/m08xZd+N0CSZEMkMH83QIwlv1jyfzdA8BExJZKAN0DVKXyjQ4E3QGa66hS+gTdAqD0SHISCN0DqU6GUI4M3QL9LloCFhTdAQQYFuDOGN0CsUQ/R6IY3QLJjIxCvhzdAkFai2WKIN0ATJ/c7FIk3QGHI6lbPiTdAsCgSOWqKN0AXghyUMIs3QN/oUHPfizdAg3mi/o2MN0ChdA/2E483QOHEagbLjzdAPZMQv3WQN0AF3V7SGJE3QMsQx7q4kTdAEXAIVWqSN0Aq+IBTMpM3QIzr8sDakzdAPc3cVo2UN0DXXEiaUpU3QEF1hrz4lTdAsdzSakiYN0BpjNZR1Zg3QPQqRQVhmTdAs/8UoeuZN0Dinz9aiZo3QHFNlJcPmzdAHebLC7CbN0CzLIUtY5w3QEYqjC0EnTdA01J5O8KdN0DmdFlMbJ43QLgjnBa8oDdADsZ1eWChN0CMh+RRF6I3QKHGqi7NojdAPBxK2nqjN0Bj7lpCPqQ3QEYqjC0EpTdAUiegibClN0CwRfgEdqY3QADDBbMcpzdAVoLF4cynN0DphShMBao3QCbkg57NqjdA2aGHx2urN0DvExqbMKw3QIy5awn5rDdAJfkkiqOtN0BDkIMSZq43QEQfGZgCrzdAX4OrKbavN0DUJk7ud7A3QIgBOOMhsTdAelORCmOzN0Cffj1M6LM3QGWypTSItDdA8OGS4061N0DusfShC7Y3QMCNp/jStjdARnTihYe3N0DyRuaRP7g3QLfRAN4CuTdAi2zn+6m5N0AMCnBnTLo3QJsb0xOWvDdAIshBCTO9N0BqWk+a8703QIkHlE25vjdAG1xNsX2/N0AXM68QQ8A3QIjHa0sKwTdAtaFinL/BN0AASlZYg8I3QJvZwZtIwzdAAvn/XvfDN0ATLzwcSsY3QBT4nTn+xjdAyAxUxr/HN0DeJzQ2Ycg3QJYRBLUFyTdAus0u8sXJN0DTOMEkgso3QGEK/M4cyzdAjgHZ693LN0CjXYWUn8w3QIyEtpxLzTdARnTihYfPN0CcvwmFCNA3QEQPj9eW0DdAOTCmhiPRN0CgT+RJ0tE3QIB1LwqV0jdATSUWC1bTN0AtS2HLGNQ3QBasXmvc1DdAy9b6IqHVN0AF5aOyTtY3QLivA+eM2DdA8DMuHAjZN0BoeR7cndk3QBMvPBxK2jdA+wW7YdvaN0BDmMjym9s3QAYN/RNc3DdASCOMjPvcN0CZtn9lpd03QO2ZJQFq3jdA70WhUhLfN0BmXiGGMOE3QK8I/reS4TdAPvAejTDiN0B5pxW5uuI3QE18yG554zdAYfVa40bkN0Bk1KIr/uQ3QM4mreW75TdAfiV9R3rmN0BslWBxOOc3QKajCQHm5zdAPw0FWTzqN0AHV1Ns3+o3QBIhm9F86zdAUzcqShzsN0CGWtO84+w3QJKRs7Cn7TdAFpzUqnDuN0D9jzm8De83QIzODPXO7zdASzRbjJTwN0BrMzt4E/E3QFjqRkWJ8zdAAMtKk1L0N0C8N5nLIPU3QPV/DvPl9TdAo4Xe9az2N0A48H2EdPc3QAKKfloy+DdADat4I/P4N0Bx7pxTtvk3QCQDU+B3+jdAZ0yuTyb7N0B9Ik+Srv03QPmTC6hK/jdAbSHIQQn/N0CMzgz1zv83QDi+9sySADhA463gpFYBOEBefU+/HgI4QH0NrqbYAjhA/OsCS5sDOEAq499nXAQ4QO7je1ntBDhACMkCJnAHOEBmkKg9Egg4QHh/vFetCDhA1Sl8o0MJOED3strp9Ak4QLkuD6y9CjhANdqXWXELOEAodkfZNQw4QPAWSFD8DDhAzLkUV5UNOEBUmU9DQQ44QNSa5h2nEDhAzsrjVi4ROEC41C6TzhE4QEgTAsyPEjhAKU8zt1UTOEDx7zMuHBQ4QJjQN3zlFDhAYzBsuosVOEDTxCj1UhY4QHZ5YO0VFzhA9zPPJMQXOEDs1doOIBo4QN+mP/uRGjhAp7bBdh0bOEAb0OXgrBs4QGMLQQ5KHDhAz3Mx8wodOEBxC4Mfwh04QIXzlphUHjhAkip3jBgfOEDiip5usx84QHYq82koIDhAxZd2V2MiOEAqZwJY9yI4QL6X1U6nIzhANOTFr0UkOEAdRcNPCSU4QDRgo7+qJThAjxFjrEkmOEAO09GEACc4QGTMXUvIJzhAP6n26XgoOECrnU6fCik4QEYdMCJkKzhA5ruB7yMsOEAZpV7K0yw4QAcyKMCdLThA7PLA2isuOEB98MfazC44QBt5M32JLzhA/bRkaE8wOEDUZTGx+TA4QKV2mXRuMThA6b/04xwyOECh8OwFeTQ4QF+L8AnsNDhAodtLGqM1OEAINVZ1aTY4QPvQBfUtNzhAXxQqJfE3OEAI7i3SsTg4QA4AQhF4OThAax6ajD06OEAX8Z2Y9To4QM1Q77xnOzhAMYSJLL89OEBGMtENOj44QBJRORPAPjhAW2+udFE/OEB+vkAj6z84QE2EDU+vQDhAahts13FBOEAzZbrqFEI4QBBYObTIQjhArv2KIpFDOEAr+64I/kM4QD4q6yRIRjhAe/fHe9VGOEDyPLg7a0c4QEn8d2obSDhAg0TtkeBIOEBQ9NOSoUk4QOLx2pJCSjhAyxgMm+5KOEDdXtIYrUs4QK46hW90TDhAK1WPIe1MOEBEk7HHMU84QLyB7yOkTzhAQN6rViZQOEDWXjEQ8VA4QFUDuhycUThA1r0oVEpSOECeXinLEFM4QBRxTZSXUzhAFQDjGTRUOEDuqa/B1VQ4QNCrFBWEVThART8tGdpXOEBlISc5TVg4QK5cgmbqWDhAfSJPkq5ZOEBl3OcLNFo4QH0qlHLkWjhAphKLBatbOEA77KuYN1w4QKxjggfzXDhAkJizUbBdOEBdDs66WV44QLwygqC2YDhAbb250kVhOEBxYjWD5WE4QBurujRrYjhANNyAzw9jOEANozNDvWM4QOpb5nRZZDhA/kP67etkOEBCxyH1sWU4QApoImx4ZjhASIWxhSBnOEAfCQ5CU2k4QFnd6jnpaThAa8z+U4RqOECloNtLGms4QEUFYYHCazhAPVlEJ15sOECMuWsJ+Ww4QCxYvda4bThAew+XHHduOEDzyB8MPG84QI8ev7fpbzhAQznRrkJyOEDvela/v3I4QCoyTetJczhAe/8MXAt0OECdwjc61HQ4QDJ/cgFVdThAPrZS9Rh2OEA0ETY8vXY4QJS09eZKdzhAZAYq4993OED4GRcOhHg4QK00KQXdejhAAWpq2Vp7OEAa1fwLF3w4QPV3yRKwfDhAasS5c059OECL/WX35H04QCZTBaOSfjhAzqKK9SB/OEAbYWTc5384QHhi1ouhgDhA8oPg3iKBOEDWi6GcaIM4QHSDjkPqgzhAhAUKz16EOEA3T3XIzYQ4QPRkEZ14hThAOf4ez0GGOEC9WtsBxIY4QDXal1lxhzhA1QRR9wGIOEBBbUHcwog4QP4rK01KiThAdZtd5IuLOED0BRpZH4w4QJQw0/avjDhAmrFoOjuNOEAsr2863I04QOSYP7mAjjhAWTzifUKPOEAj1uJTAJA4QHM2CjabkDhAWoEhq1uROEAB0ab96ZE4QCkflXUSlDhAOtTc95WUOECdjYLNJpU4QMRCrWnelThA8uLXInyWOEALFJ69IJc4QGTpQxfUlzhA9HmyiE6YOECW9B3p+Zg4QO9yEd+JmThArmTHRiCaOECfSYjfOpw4QPFo44i1nDhA98ySADWdOEBl19DgyZ04QMNkqmBUnjhAB3Q5OOueOEBxb5GOhZ84QAAd5ssLoDhAoLs3mcugOEAv+grSjKE4QIE2TEcTojhAy5TpqlOkOEDRFX/u3qQ4QJHNaL5dpThAZUtpEPmlOED3SHAQmqY4QM/yPLg7pzhAu/WHU9OnOECjzAaZZKg4QIceHq8tqThAfdCzWfWpOEDktSWFjKo4QPjHe9XKrDhAUSmJ/06tOEBSmzi53604QFsVzltirjhA/TiHWOquOEAZDJvuYq84QO2mgQwKsDhA4JTMxIewOEAmLtr2ULE4QPey2un0sThAH0sfuqCyOEDlqMl57LQ4QM54SB51tThA7iWN0Tq2OEDY9Qt2w7Y4QASdNtBptzhAdDHzCjG4OED6NBRk8bg4QF9bUsiouThA+eq9C266OEDgNdWALrs4QPDUNtiuuzhA6N7DJce9OECzyl80Pr44QDZ+zsrjvjhAGQyb7mK/OEA7IWEF5b84QLFtUWaDwDhAcpLTxCjBOEBIQ6AN08E4QHzysFBrwjhAfYFG1gfDOEBD0pSKs8M4QPCNDjX3xThAb77+EXPGOEB7iEZ3EMc4QOZ8niyixzhAZq2OCR7IOEAIYsYB4cg4QNMYraOqyThAyol2FVLKOEAsYAK37so4QPwlz+KyyzhAl3tujmDMOEBtVn2uts44QD1R/0YozzhAm6QML5vPOEB/ZaVJKdA4QJaAhbnK0DhAYcPTK2XROEADeAskKNI4QBDM0eP30jhA35GeD7zTOECG/gkuVtQ4QK4/nJre1DhAZMdGIF7XOEC35qHJ2Nc4QHVM8GCe2DhAWipvRzjZOEDp9KlQytk4QMy8Qgxh2jhAnCtd1AHbOEBtBxAryds4QH9N1qiH3DhAnOQ0MUrdOEAlxG8d9t04QLQPn2FX4DhAXR5Ye8XgOECwd3+8V+E4QGHI6lbP4ThAIpa6UVHiOEAh8oPg3uI4QLIpV3iX4zhAoV9uCj7kOEAP3kQaAuU4QNcnky2l5ThAp7OTwVHmOED4U+Olm+g4QIr6N0IZ6ThAFZmm9aTpOEAAuddcSOo4QDZEAjPM6jhADZ4cGFPrOEB3QsIKyus4QI5AvK5f7DhAk1LQ7SXtOEBGENQWxO04QDP2OOZP7jhA7hgxxprwOEBFgT6RJ/E4QMnd+sOp8ThA268oEjnyOEBJ10y+2fI4QCzZsRGI8zhAySdRHC30OEDKDZkF7fQ4QMxiYvNx9ThAbI0bkQL2OEAdh9THVvY4QL9IaMu5+DhA5FYuQTP5OEBUlDgY1/k4QOinJUN7+jhAXvQVpBn7OEBby3cD3/s4QBC8RyOM/DhAqDXNO079OEAskolu0P04QEqYaftX/jhAK7mdkLD+OEAMjpJX5wA5QK+UZYhjATlAcWI1g+UBOUAYz6ChfwI5QOMR7xMaAzlANE4wiaADOUDFGGuSMgQ5QAhixgHhBDlAyWlilHoFOUClDC+bEwY5QDk9ApLDBjlAymRLaRAJOUBqch47lQk5QM+1QmtYCjlAs+pztRULOUAY1+WBtQs5QL1KUUFYDDlArGOCB/MMOUAARyijtw05QMNkqmBUDjlA9jChb/gOOUBWt3pOeg85QIKlzUvYETlAMhMfslsSOUDaKNhs0hI5QD++l9VOEzlAECay/OYTOUC/t+nPfhQ5QNvEyf0OFTlAO2iJqJwVOUDhSI32ZRY5QBoHhMP4FjlAwTkjSnsXOUDg1t081Rk5QE/hGx1qGjlA58kiOvEaOUAB3gIJihs5QPuefj1MHDlA/pqsUQ8dOUAl+SSKox05QAEQisBrHjlAVfMvXDAfOUDf6FBz3x85QHPfV9J3IDlASS7/If0iOUDi3DmnbCM5QAwXzHLsIzlAulFR4mAkOUBmsLy+6SQ5QDLzCjGEJTlAeN6zmwYmOUDp/temniY5QJLY21NfJzlASfx3ahsoOUAzzPYOpCg5QOqIVgHRKjlAVEriv1MrOUDk2lAxzis5QLs0axZVLDlA/kP67essOUDopPeNry05QB+6oL5lLjlA7PXuj/cuOUAfwuWemy85QNWVz/I8MDlAw1dOVbQwOUBfnWNA9jI5QASdNtBpMzlAlkOLbOczOUASe3vqazQ5QDK0J24CNTlA+/11gaU1OUDXZnbwJjY5QOazPA/uNjlAliGOdXE3OUDQElE5Ezg5QLMUtozBODlAYO0VAxE7OUD1b4Qyejs5QJZ9VwT/OzlArCSfRHE8OUBFR3L5Dz05QPpxDrHUPTlAK0UFYYE+OUBqYpR6KT85QMxy7LPdPzlAf4eiQJ9AOUBRDKMzQ0E5QOuoaoKoQzlAPeWr9y5EOUABAy61y0Q5QIAWOMY7RTlAvAD76NRFOUBRa5p3nEY5QAfo0WcaRzlAchb2tMNHOUC/1M+bikg5QNMwfERMSTlACwxZ3epJOUCohDq/O0w5QO6MyfXJTDlAyhKwMFdNOUDUM6r5F045QK/WdgCxTjlAatYsqlhPOUA7Wy2d/E85QOlg/Z/DUDlA/bypSIVROUD1LXO6LFI5QGba/pWVUjlAwbUAWuBUOUCtm2UpbFU5QDfLUtgyVjlA0CfyJOlWOUDNbdWIc1c5QGGBwrMXWDlAj8o6CZJYOUCMSuoENFk5QG/1nPS+WTlA8HU/lFVaOUBZjn22+1o5QM+t/YoiXTlAHtRY1aVdOUA8vVKWIV45QH5fSd+RXjlAIKDopyVfOUCuVD2GtF85QPGAsilXYDlAUnskOAhhOUBi3tCB0mE5QKT0X/pxYjlAr9uNKxtjOUCcWM1geWU5QOc1donqZTlAvqx2On1mOUAO8LdQDGc5QDgqShyMZzlANqP5diVoOUAgkF7nuWg5QND9r009aTlAKrZv2+RpOUA1KQXdXmo5QBcrajANazlAjBU1mIZtOUAZkL3e/W05QJjArbt5bjlAI5noBh1vOUAKjU0Yum85QH0aCrJ4cDlAmrFoOjtxOUCXFDJq0XE5QNp6c6WLcjlAW4yUQF1zOUARfWRgCnQ5QIEefaZxdjlA3o5wWvB2OUCURXTihXc5QNVbA1sleDlA7HbjysZ4OUCqv0uWgHk5QPfspoEMejlAGgJtmI56OUAQBp57D3s5QAnHGbDRezlA7Mh+A4B8OUDjKb60u345QPDPH61EfzlAkcAMs71/OUB7kItXRoA5QLhAguLHgDlAKz3AgEuBOUC6JOFV6YE5QPVPcLGigjlAXi7iOzGDOUCdhT3t8IM5QFQYWwhyhDlANNyAzw+HOUCRTHSDjoc5QO+8ZzcNiDlA5RdLfrGIOUDH3+M5SIk5QCcUIuAQijlAOxkcJa+KOUBbxmDYdIs5QAnMMNs7jDlAf2/Tn/2MOUDe9ax+f405QIJepaggkDlAYi0+BcCQOUCY8jRzW5E5QDgACEXgkTlAvAopP6mSOUCQpQ9dUJM5QEfmkT8YlDlAFxvgb6GUOUA/A9cCaJU5QPey2un0lTlAovtfm3qWOUC8GrP/FJk5QJzMZZComTlAektMKi2aOUBKgJpatpo5QFdgyOpWmzlA1xo3IgWcOUBNSkG3l5w5QDCGcqJdnTlAFu5v4ymeOUC9sY1l5545QN0kBoGVnzlAih9j7lqiOUC5S/V3yaI5QF8PE/qGozlAdtNABgWkOUBpNSTusaQ5QNOkFHR7pTlABhpZH/ylOUDp/temnqY5QOz6BbthpzlArXY6fSqoOUBGtvP91Kg5QBefAmA8qzlAeVioNc2rOUCcbW5MT6w5QGv5buD7rDlA2QOtwJCtOUDbdVx6Ia45QDYnHGfArjlAj/zBwHOvOUCFHdlvALA5QGItPgXAsDlA2qz6XG2xOUD+dYGlzbM5QPR5sohOtDlAgycHxtS0OUC31hcJbbU5QGIYnRnqtTlAqD0SHIS2OUBL8kkUR7c5QDT8lFDntzlANlFePmy4OUCcqmiZMrk5QJ//MYe3uTlAKuPfZ1y8OUCxVYLF4bw5QKgd/pqsvTlAGCE82ji+OUDC+j+H+b45QA65GW7AvzlARuuoaoLAOUDaVUj5ScE5QMS2RZkNwjlAlZL479TCOUBi6yyNcsM5QESLbOf7xTlAO2u3XWjGOUDOS9iR/cY5QJ8ni+jExzlALkl4VXrIOUCRk5wmRsk5QPXWwFYJyjlAI86dc8rKOUBuH9/Lass5QLiq7LsizDlAIMoqf9HMOUA/+GNtZs85QNr2ULXwzzlAfRoKsnjQOUA0W4yUQNE5QJQ4GNfl0TlAxUXbHqrSOUAIyQImcNM5QO2Jm0D+0zlAS6jzu8PUOUBHf1UbidU5QHAtgBY41jlAmxvTE5bYOUAMyF7v/tg5QNnJ4Ch52TlAAUU/LRnaOUBqQJeDs9o5QGIIE1l+2zlAXTgQkgXcOUBp+1dWmtw5QH4AUps43TlA5Vlc9v7dOUBMBQKKft45QAPHeKcV4TlA++CPtZnhOUApDSI/COI5QBqT65PJ4jlAEufOOWXjOUDJs7js/eM5QNVDNLqD5DlA9wZfmEzlOUDiJpD/7+U5QAwPh5K25jlAyjoJkmTnOUADBHP0+Ok5QEDuNReS6jlArhVawzLrOUDKBVQlt+s5QPjCZKpg7DlAYhVvZB7tOUASoKaWre05QAoRcAhV7jlAiwWr1xrvOUCy17s/3u85QE0tW+uL8DlAX9IYraPyOUDxlVMVLfM5QJ268lme8zlAbwUntSr0OUBlYAr8zvQ5QDSVWCxY9TlAKvA7c/z1OUB3On0qlPY5QBb2tMNf9zlArcjVteP3OUAj2/l+avg5QNxbpGPh+jlA2YSh+1/7OUCaqSNaBfw5QJkF7eiS/DlAwYBL7TL9OUAw+CFc7v05QMdbwUmt/jlA92iEkXH/OUDCH2szOwA6QESDJwfGADpAfpHQlnMBOkB8bo5g0AM6QFAJdX53BDpAVuG8JSYFOkBbuQTN1AU6QMo329yYBjpAQpqxaDoHOkC+0aHmvgc6QJ737KaBCDpAbaDTBjoJOkDBg3mi/gk6QCaN0TqqCjpA7q7G7D8NOkALe9rhrw06QCvRbDFSDjpAjqf40u4OOkB9hl0Bcg86QM78ag4QEDpAIMoqf9EQOkAcoYzelhE6QI3elrU6EjpAfWRgCvwSOkDI0ocuqBM6QKlV4bwlFjpAcBWxdZYWOkAggwLcGRc6QFYOLbKdFzpAiYNxXR4YOkB6z24ayBg6QH/hglmOGTpAqayTIEkaOkD9/rrA0ho6QIguqG+ZGzpA/XqY0DccOkCdCWDdix46QNJ3pOcDHzpA1v85zJcfOkAaSZU7RiA6QA+keILqIDpANOwKkHshOkDpog4YESI6QGYxsfm4IjpAKjJN60kjOkCMzgz1ziM6QD9SRIZVJDpAKWnrzZUmOkD1h1PTGyc6QHXVKXyjJzpAnmZuq0YoOkB6sohOvCg6QDu6JOFVKTpA9pz0vvEpOkDORsFmkyo6QHPXEvJBKzpAE3ZkvwEsOkClkFGLriw6QHqlLEMcLzpA/+QCqpIvOkDy0k1iEDA6QDwHqe6kMDpAD1LdSTExOkCu8C4X8TE6QNiBc0aUMjpA0LhwICQzOkAH6/8c5jM6QOMBZVOuNDpAgdxrLiQ1OkArE36pnzc6QJ7y1XsXODpArssDa684OkBhMlUwKjk6QJLoZRTLOTpA8hykupM6OkDe5SK+Ezs6QEU/LRnaOzpAOUpenWM8OkCwA+eMKD06QDjjIXnUPTpAC8UwOjNAOkAjT5KumUA6QMxdS8gHQTpAqDrkZrhBOkBothgpgUI6QPHPH61EQzpA5WTPiwBEOkARY6xJykQ6QPmtw76KRTpAUkmdgCZGOkAzSwLU1EY6QAeEw/hWSTpAKPc7FAVKOkA2s4M3kUo6QFLAY2UhSzpAp0xXncJLOkBHdxA7U0w6QC5rdUzwTDpA4Ch5dY5NOkBY4gFlU046QHqlLEMcTzpAC8AZD8lPOkC2bK0vElI6QNWIc+ecUjpAb1SUOBhTOkBvjHdakVM6QEv1d8kSVDpAImx4eqVUOkC5eGUEQVU6QAgwP0r/VTpAuKSQUYtWOkB/0fiYIlc6QNj4OSuPVzpAXezQw+NZOkAkrKB8VFo6QFMS/53aWjpAEO7O2m1bOkBDgPlR+ls6QMFBaCqxXDpAx8L9bTxdOkAy2zuQ4l06QGe9GMqJXjpAo/6NUEZfOkBHj9/b9F86QMFOxDVRYjpAaEeXJLxiOkA6kst/SGM6QE+0q5DyYzpARiV1AppkOkDzKkUFYWU6QMbpEZAcZjpAsPNczLxmOkBFV/y5e2c6QGOXqN4aaDpAMyOpcsdoOkDjEe8TGms6QOZC0pSKazpAhzO/mgNsOkDShADzo2w6QOAqYussbTpAvVetTPhtOkAf9GxWfW46QLhQDKMzbzpA/ju1DbZvOkB29T39enA6QJbXNx3ucDpAuoPYmUJzOkBfg6sptnM6QDjzqzlAdDpAzczMzMx0OkDgKHl1jnU6QM2fXEBVdjpANyUz8SF3OkDjvWplwnc6QAldr9Z2eDpAUXskOAh5OkC2hHzQs3k6QHtzpYs6fDpAXxdY2rx8OkAd1kFLRH06QI7Zf4rQfTpAJD0feI9+OkB1Ct/oUH86QLFoOjsZgDpAtGRoT9yAOkAdvnKqooE6QGZmZmZmgjpAxErySRSDOkCCZuqIVoU6QFmGONbFhTpAysNCrWmGOkAjQjaj+YY6QNm+bZN3hzpAjF+L8AmIOkDNr+YAwYg6QMzuycNCiTpADehycNaJOkAIGHCpXYo6QFdbsb/sijpA23IuxVWNOkCRBUzg1o06QOjh8dqSjjpA9qQ5nyePOkBwV8Lt4486QF+N2X+KkDpAdYvTIyCROkB8eQH20ZE6QCpFBWGBkjpAHVA25QqTOkDb8TmKhpM6QKeRlsrblTpA62ZZCluWOkDOoor1IJc6QNZW7C+7lzpA7Mh+A4CYOkBhvrwA+5g6QEJwb5GOmTpAR4KD0FSaOkCa+JDd8po6QJ7X2CWqmzpAS4b2xE2cOkCVAXr0mZ46QAkbnl4pnzpAT0ATYcOfOkBCLl4ZQaA6QINE7ZHgoDpAvfvjvWqhOkDLFd7lIqI6QD5M6Bu+ojpAur2kMVqjOkCgfj1M6KM6QPXmShd1pDpA+Qy7AuSmOkDuSrh9fKc6QMTBuC4PqDpAGRTgzpioOkAH80T9G6k6QIHCsxfkqTpAlo3hxGqqOkBOWst3A6s6QF0WE5uPqzpAf2WlSSmsOkBiLT4FwKw6QEf7MivurjpAMZHlN1+vOkDxe5v+7K86QHb1Pf16sDpAFNBE2PCwOkAaUdobfLE6QOBKdmwEsjpA6cQLD4eyOkDpU6GUI7M6QCZbSoPIszpAPTxeW1K0OkBa4BjvtLY6QEOwl5M9tzpA/ukZ1fy3OkB+pIgMq7g6QD0nvW98uTpAS16dY0C6OkA75Ga4Abs6QJXs2AjEuzpAIRzGt4q8OkDPyuNWLr06QBo5C3vavTpAvyZr1EPAOkASgJIV1sA6QBgBKFlhwTpAukHHIfXBOkCmft5UpMI6QJJkQyQwwzpAdKB0D/bDOkDlNDFKvcQ6QHpBHtRYxTpAoImw4enFOkA730+Nl8Y6QKwM0KPPyDpAL4Zyol3JOkBTflLt08k6QC4EOShhyjpAZTbIJCPLOkATjjNgo8s6QO0aGjw5zDpA4lgXt9HMOkD5c/cmc806QMsV3uUizjpAWRrlhszOOkCRWdCOLtE6QGKkBOq60TpAUBToE3nSOkBuq0acO9M6QNjgaort0zpAXlMN6HLUOkA2VIzzN9U6QMWSXyz51TpANiccZ8DWOkCDN5GGQNc6QDnRrkLK1zpAnSEvfi3aOkCfWRKgpto6QDLjgHAY2zpA4AAgFIHbOkDngbVXDNw6QK4its7S3DpAnXWzLIXdOkDx5MCYGt46QLUfKSLD3jpAQWX8+4zfOkB0oHQP9t86QGlfZsVd4jpAzN4/A9fiOkBhuGCWY+M6QCS5/If04zpArLUdQKzkOkB7JDgITeU6QGI1g+X15TpAXfb+GbjmOkCREqjrduc6QCuMLQQ56DpAN4lBYOXoOkBeukkMAus6QGb6Ehdt6zpAd7ZaOvnrOkCb/uxHiuw6QCbXJ5Mt7TpANs07TtHtOkBtUWaDTO46QJ8kXTP57jpAuBtXNobvOkBlrY4JHvA6QEkedWGR8DpAo/l2JdzyOkAJclDCTPM6QH9njr/H8zpApm5UlDj0OkCSVLljxPQ6QMj8yQVU9TpAdjdPdcj1OkASje4gdvY6QJlPQ0EW9zpAtT89o5r3OkCToT1xE/g6QNT+9Ixq+jpATj3lq/f6OkCmnvLVe/s6QHe2Wjr5+zpA0S1Oj4D8OkDOrf2KIv06QMuEX+rn/TpAwcJcZYD+OkDLjKTKHf86QEXoerW2/zpAozuInSkAO0Cb1pPmfAI7QETlTADrAjtAktjbU18DO0DOpbiq7AM7QBNelR5gBDtATRWMSuoEO0BAA9cCaAU7QAyW1zcdBjtAsexcK7QGO0BuPMWXdgc7QNNFHTAiCDtAmFEst7QKO0BeLuI7MQs7QF+9d8HNCztA6T4AqU0MO0AN5US7Cg07QKFP5EnSDTtAtOVciqsOO0CJKZFELw87QM7Cnnb4DztA1zw0GXsQO0CU+x2KAhE7QN2wbVFmEztAB84ZUdoTO0CzoB1dkhQ7QIEWOMY7FTtAkuhlFMsVO0DaQKcNdBY7QD6Eyz03FztAEGB+lP4XO0Av2vZQtRg7QE72vAhAGTtAP0K6xekZO0DxY8xdSxw7QMZtNIC3HDtAKAr0iTwdO0Bk19DgyR07QCQ9H3iPHjtAFoIclDAfO0BU4Hfm+B87QFJZJ0GSIDtAw3lLTCohO0Akp4lR6iE7QOCmP/uRIjtAtbsas/8kO0Bj9p8idCU7QAfgjIfkJTtAABCKwGsmO0C+sY1l5yY7QDPEsS5uJztAVhNE3QcoO0BrLiRNqSg7QEkhoxZdKTtAy4Rf6ucpO0DlXnMhaSo7QMiDGqu6LDtAEGjDdDQtO0CMw5lfzS07QL6PkG5xLjtAPy0Z2hMvO0CDH8Llni87QGHYdBc7MDtAfFntdPowO0A6vzsMwDE7QLX9KytNMjtAljtGjLEyO0A0IcD8KDU7QO2W90ueNTtALF3UASM2O0CluKrsuzY7QM4WIyVQNztAiptA/r83O0CgmTqiVTg7QEpzPk8WOTtAwn5id5Q5O0CIeP7HHDo7QLTIdr6fOjtAoJ5Rzb88O0AwEtpyLj07QOar9y64PTtATVedwjc+O0BAf7QSzT47QBfZzvdTPztAPRphZNw/O0A2UV4+bEA7QK15aDL2QDtAoYSZtn9BO0DcWHauFUI7QJVIopdRRDtAnmuF1rBEO0CPQ+pjK0U7QG3C0P2vRTtAllMVLVNGO0CUkvjv1EY7QB+IGQeERztAMlpHVRNIO0ADGRTgzkg7QHuY0Dd8STtAC0YldQJKO0DPbhrIoEw7QJtattYXTTtANjy9UpZNO0CdlcetXE47QF1ql0nnTjtAVisTfqlPO0BCovZIcFA7QLi0GhL3UDtAHPg+QrpRO0AFWTzifVI7QEYYGff5UjtADqmPrVRVO0CP0n/px1U7QLfZRb44VjtAlXUSJMlWO0CTKI4Welc7QKsmiLoPWDtAOE91yM1YO0DqKV+9d1k7QGWiG3QcWjtAAIQi8JpaO0AimegGHVs7QCWiciaAXTtAsekuduhdO0DOmFyfTF47QGZOl8XEXjtA9VKeZm5fO0BoMvY45l87QK+RN9OXYDtAnxcBKFlhO0Cfw3x5AWI7QFwT5eXDYjtAKjJN60ljO0DgnBGlvWU7QJ0hL34tZjtAigeUTblmO0ALiDbtT2c7QPK1Z5YEaDtAKHteBKBoO0B3oblOI2k7QG4vaYzWaTtAg92wbVFqO0Bv4PsI6Wo7QKmX8jRzaztA+D5CusVtO0Apu4YGT247QIX4rcO+bjtA4mihdz1vO0D1Hen5wG87QCV9R3o+cDtAT9S/EcpwO0CJbtBxSHE7QEhDoA3TcTtAB/uJ3VFyO0CHK3q6zXI7QNP2r6w0dTtAmdNlMbF1O0ADlfHvM3Y7QEdqtC+zdjtAoCJ0vVp3O0CK8vJh43c7QB6vLSlkeDtAny/QyPp4O0B4guoMeXk7QECvUlQQejtAFS1Tpqt6O0BkSDtbLX07QGGrBIvDfTtAbVFmg0x+O0AMZjn22X47QE2ZrjqFfztAA22YjiaAO0Cr0gMMuIA7QKU8zdxWgTtAqK58lueBO0C8lpAPeoI7QBnqnffsgjtA910R/G+FO0BOxh7H/IU7QIhgLyd7hjtAek563/iGO0BPkq6ZfIc7QKTk1TkGiDtAzHUaaamIO0Aa3UHsTIk7QH2zzY3piTtAqzYSe3uKO0CP2sTJ/Yo7QCcu2vZQjTtA7QqQe82NO0DtJY3ROo47QBNRORPAjjtAOcyXF2CPO0DP34RCBJA7QE5KQbeXkDtA+YvGxxSRO0AQUPTTkpE7QKwUFYQFkjtA01Wn8I2SO0DDeUtMKpU7QPwwQni0lTtAFgtWrzWWO0A55k8uoJY7QF2FlJ9UlztAIoYwkeWXO0C1QmtYZpg7QCSkW5wemTtAwdUU27eZO0CaC0lTKpo7QCNaBUSbmjtATRWMSuqcO0AcEA7jW507QJAMTIHfnTtAViPOnXOeO0BLROVMAJ87QOcl7Mh+nztAdL1a2wGgO0AXp0dAcqA7QGKh1jTvoDtAn1HNv3ChO0BoJ4Oj5KE7QIasbvWcpDtADB8RUyKlO0BL5e0Ip6U7QH1ETIkkpjtA+3Q8ZqCmO0BSwGNlIac7QH6EdIvTpztAAOgwX16oO0B/Uu3T8ag7QP0TXKyoqTtAj4DksA6qO0Dzs34gZqw7QPk0FGTxrDtAEPlBcG+tO0AQ/lib2a07QIbWsMxIrjtAa5dJ59auO0BGxn2+QK87QPksz4O7rztA93Ky50WwO0BN27+y0rA7QBfkQY1VsTtAF8H/VrKzO0DLPTdHMLQ7QG1h8EO4tDtAvHFlYzi1O0CQtZkdvLU7QGglmi1GtjtAQni0ccS2O0B0LsVVZbc7QBq4FkALuDtA9XfJErC4O0Acf4/nILk7QGc0366EuztAOWItPgW8O0BOSkG3l7w7QOZPLqAqvTtAhkAbpqO9O0ALur2kMb47QG9sY9m5vjtAjY8pMk2/O0Cab1fC7b87QKUcuVt/wDtAjZyFPe3AO0Apif9ObcM7QIoP2S3vwztAV/R0m13EO0Ck5wPv0cQ7QObDxs9ZxTtA4uzDZ9jFO0A8TtGRXMY7QL6Up5nbxjtAQCswZHXHO0DAz7hwIMg7QCuKRI6ayDtABZgfpf/KO0DhFgY/hMs7QHbTQAYFzDtAkK1UPYbMO0CNEB5tHM07QI9e57mYzTtAzUiq3DHOO0BFVM4EsM47QJlPQ0EWzztA9AADLrXPO0BNC170FdA7QMo329yY0jtAP0r/pR/TO0B1D/YTu9M7QGpq2Vpf1DtAd0oH6//UO0DWuvqeftU7QOhSXFX21TtA7Q2+MJnWO0Cq6Y1tLNc7QGnbQ9XC1ztAYdh0FzvYO0AeotEdxNo7QJJkQyQw2ztAZ8Vdqr/bO0As+cWSX9w7QKUh0Ibp3DtAj0gBj5XdO0BYUYNpGN47QKRo+Cmh3jtAqgZ0OTjfO0C07aFq4d87QKihIItH4DtAWD7L8+DiO0B9TJFpWuM7QNq8hB3Z4ztA+7tkCVjkO0C6ygA9+uQ7QCSpcseI5TtAG/1VbSTmO0CyCUP3v+Y7QI9rQ8U45ztA1lbsL7vnO0ATzRYjJeg7QPUyiuWW6jtAIYMC3BnrO0BZ6kZFies7QOeBtVcM7DtAtQ2267jsO0A2qz5XW+07QAjZjObb7TtAsGLe0IHuO0BnTK5PJu87QIiFWtO87ztARCdeeDjwO0CMbxWxdfI7QO0S1VsD8ztA+bg2VIzzO0D70zOq+fM7QGqkpfJ29DtA6Q5iZwr1O0Ct8heNj/U7QBe0o0sS9jtAzinbmof2O0DBNAwfEfc7QGZuq0ac9ztA5LAOWiL6O0DvQIonqPo7QH/R+Jgi+ztASKeufJb7O0A5nPnVHPw7QAnuLdKx/DtAVnI7IWH9O0D/ndoG2/07QIxSL+Vp/jtA10y+2eb+O0AU4M6YXP87QGgng6PkATxA8K8LLG0CPEDhh3C55wI8QOv6BbthAzxAKKv8ReMDPEDSEGjDdAQ8QG4PVQv/BDxApwAYz6AFPEA6GwWbTQY8QLph26LMBjxAKw5nfjUHPEBoJ4Oj5Ak8QNX39OthCjxA3uUivhMLPEBeM/lmmws8QBrV/AsXDDxAii/trsYMPEA9syRATQ08QOlLXLTtDTxA2rQ/PaMOPECgrtuNKw88QFbxRuaRDzxAINJvXwcSPEAPdwj2chI8QAReUw3oEjxA+mGE8GgTPEDV52or9hM8QJ+9IA9qFDxAqYdodAcVPEAkqXLHiBU8QLrvK+k7FjxAKBdQldwWPEDBxYoaTBc8QKO3Za2OGTxAiFsY/BAaPEDHPtt9oRo8QNDVVuwvGzxAadtD1cIbPEAgbmHwQxw8QPCFyVTBHDxA9iNFZFgdPECdHBhTwx08QCKWulFRHjxAWRrlhswePECp+wCkNiE8QGfQ0D/BITxAlFoVzlsiPEAqLTbA3yI8QA3Y6K9qIzxAYfBDuNwjPEA/qfbpeCQ8QDsMwBkPJTxASzygbMolPEAwNwUfcCY8QEr0MorlJjxAT4Ik2RApPECoxks3iSk8QK4q+64IKjxAuKSQUYsqPEAhLFB49io8QKRrJt9sKzxAuDZUjPMrPEC8hB3Zbyw8QKdUnH34LDxASZU7RowtPEBdfU+/Hi48QHa7cWVjMDxARg2mYfgwPEASDyibcjE8QH2W58HdMTxAABCKwGsyPEBJERlW8TI8QBDR6A5iMzxAytCeuAk0PEAkK6xBhTQ8QMEMs70DNTxAETMOCIc1PEDKrqHBkzc8QEWzxUgJODxAsW1RZoM4PEDHTmU+DTk8QLdKsDicOTxAKWTUois6PEBk4f42njo8QGpFrq4dOzxA/x7PQao7PECXJLwqPTw8QCBzeBuuPDxAiV5Gsdw+PECEjkPqYz88QCKGMJHlPzxAT7LCGlRAPEBN27+y0kA8QLiyMZxYQTxACu9yEd9BPEBvhDJ6W0I8QFtNsX3bQjxAGe+0IldDPEBq1EM0ukM8QOJIjfZlRjxAwcBz7+FGPEAy/n3GhUc8QEtMKi02SDxA5BdLfrFIPEBCwgrKR0k8QCq2b9vkSTxAYVeA3GtKPEDW3TzVIUs8QGSvd3+8SzxA5ygafkpMPECKB5RNuU48QHBqemMbTzxAzaehIItPPEAoH5V1ElA8QDbF9m2bUDxAoX+CixVRPEC7k2JarlE8QKyIrbM0UjxA9P3UeOlSPEA48H2EdFM8QDw+R9HwUzxAFEwi6FVWPEBMJ/+A9FY8QG92kS+OVzxAib099TVYPEDNzMzMzFg8QKVZs6hiWTxAHWXX0OBZPEBXc4Bgjlo8QF8R/G8lWzxAW66RN9NbPEBgEkGvUlw8QOTv8RykXjxAiO/ErBdfPEBN8GCeqF88QDvPxcwrYDxAmHmFGMJgPEB2+GuyRmE8QNebK13UYTxADCdWM1hiPEDQRNjw9GI8QGUBE7h1YzxAtO2hauFjPEDghEIEHGY8QIWEFZSPZjxA+EaHmvtmPEApw8vmhGc8QKfd1Zj9ZzxAk6ZUnH1oPEDf06+HCWk8QMBLloCFaTxAY1JpsQFqPEDnBdhHp2o8QNC4cCAkazxAAA1cC6BtPEDOJMRvHW48QP2KIpGjbjxA2blWaA1vPEDxYJ6of288QB6qFv75bzxAxty1hHxwPEABznhIHnE8QPCP96qVcTxAgXAY3ypyPED7rgj+t3I8QCQ12pdZdTxAPQ/uztp1PECgceFASHY8QA4lbb25djxAvV/yLC53PEDwK+k70nc8QOtb5nRZeDxAxacAGM94PEBtMVICdXk8QJI/GHjueTxAjqLhp4R6PEBYoPDsBX08QIcGTw6MfTxAwaBfbgp+PEB/X0nfkX48QEu4fXwvfzxABn5njr9/PEDV7IFWYIA8QJ38A9LrgDxAEiwOZ36BPEDEmV/NAYI8QPkkiqOFgjxAefFrET6FPEA2zTtO0YU8QCC6oL5lhjxA6vzuMACHPEDgACAUgYc8QK5SVBAWiDxA3NyYnrCIPEBVVVVVVYk8QGP7tk3eiTxA3FaNOHeKPEALoAWO8Yo8QOhlFMstjTxAfSJPkq6NPEDz+qbDHY48QKqNxN6ejjxAL82aRRWPPEDOFDqvsY88QJHiCaozkDxAo5dRLLeQPEBwtrkxPZE8QPkhXO65kTxAppat9UWSPEC4I5wWvJQ8QIo0BNowlTxAL26jAbyVPEDwdT+UVZY8QD5pzufJljxAEO7O2m2XPEBqvHSTGJg8QGYCWPeimDxAmGG2dyCZPEB/4YJZjpk8QKAaL90kmjxAMZkqGJWcPEDDP3+0Ep08QAYVQvSRnTxAVOvqe/qdPECaEGB+lJ48QE+qfToenzxAjZRAXbefPEDFjAPCYaA8QPVCFKYCoTxAXyGGMJGhPEA3rmwMJ6I8QF6qv0uWpDxAmiDqPgClPEAVJQ7GdaU8QF8fnbrypTxAZtr+lZWmPECLBavXGqc8QL7Roea+pzxAxoUDIVmoPEDnocnY46g8QN4veRaXqTxAZ7gBnx+qPEBbzqW4qqw8QFoNiXssrTxAuLdIx8KtPEDc4vQISK48QCc0NmHorjxAg6sptm+vPEAj88gfDLA8QEMsdaOisDxA5jJI1B6xPEDu5qkOubE8QJj1YignsjxATWcng6O0PEA0BNowHbU8QHem0HmNtTxAKwYinv+1PEBPG+i0gbY8QJoVd6n+tjxAuMSk0mK3PEDZw4S+4bc8QNA0TjCJuDxAk4ychT25PEAyZ6Ngs7k8QOHmZ/1AvDxAMyOpcse8PEBJPoniaL08QIPYmULnvTxA1P70jGq+PECiUCmJ/748QF8s+cWSvzxAEbcw+CHAPEB+pIgMq8A8QPwVRSJHwTxAwL8usLTBPEDvvGc3DcQ8QNeT5nyexDxAnMdOZT7FPEBuL2mM1sU8QGIdtERUxjxAGJrrNNLGPEBIMxZNZ8c8QLDeu+DmxzxAfxMKEXDIPEAR10R5+cg8QMx/SL99yTxA/CXP4rLLPEAeO5X5NMw8QJ+7N5nLzDxAKj3AgEvNPEAAgfQ6z808QJMgSTZEzjxAANvUU77OPEDVASNCNs88QBrty6y4zzxANOTFr0XQPEAUXKyowdA8QOmqU/hG0zxA3bWEfNDTPECVSKKXUdQ8QMzpspjY1DxAlhYb4G/VPEA/X6CR9dU8QG3F/rJ71jxAIaDopyXXPECMzgz1ztc8QCGLR7xP2DxA3+t+KKvYPEAPI4RHG9s8QEr3YD+x2zxAMuvFUE7cPED5Fy6Y5dw8QL4Yyol23TxAjTAy7vPdPEAZ7IZti948QBdlNsgk3zxAPMquocHfPEA9kxC/deA8QD+uDRXj4DxAsby+6XDjPEDdKR2s/+M8QLFQa5p35DxAzSN/MPDkPEB/4YJZjuU8QJvuYoce5jxA92VW3KXmPEANDZ4cGOc8QLTQu57V5zxAys61QmvoPEDXruPSC+k8QDDLsc926zxA7my1dPLrPEDcLjTXaew8QHPHiDHW7DxAs4ZlRlLtPEBuTE9Y4u08QHUHsTOF7jxAhtnegRTvPECcuvJZnu88QPEMGvon8DxAs4M3kYbwPEAERoRsRvM8QAyGTXex8zxAvyZr1EP0PEAXrF5r3PQ8QHSQ6k6K9TxASnuDL0z2PEBO5jJI1PY8QMBz7+GS9zxA+2SypTT4PEBQ8aXd1fg8QDR4cmBM+TxAC6oz5MX7PECTMrxsTvw8QM3MzMzM/DxAVThviUn9PECiSOSoyf08QI9oFRBt/jxABq4F0AL/PECn9aQ5n/88QNqHz7ArAD1AzAaZZOQAPUAEbt3NUwE9QOeZhPitAz1AdBQNPyUEPUCPPtM4wQQ9QL37471qBT1A+LLa6fQFPUARx7q4jQY9QHGkRvsyBz1AX4OrKbYHPUAlmi1GSgg9QF47PkfRCD1AIchBCTMJPUCapAwvmws9QCcmlRYbDD1AIFaST6IMPUDb/pWVJg09QJjaZdK5DT1AH4DUJk4OPUCvEEOYyA49QBKtAqJNDz1A2jAdTQgQPUDKXzQ+phA9QEhdWCQTET1AcG+RjoUTPUCdhT3t8BM9QGRFDaZhFD1AqTC2EOQUPUDdpfq7ZBU9QKr+LlkCFj1AHi457pQWPUCQiCmRRBc9QLBqI7G3Fz1ATmIQWDkYPUCY0Dd85Rg9QBRsNmktGz1AaYSRcZ8bPUCjHqLRHRw9QPFL/bypHD1Ag0kEvUodPUAT2nIuxR09QIDHykJOHj1AbcoV3uUePUAEuhycdR89QPHvMy4cID1ArHtRqJQgPUC/Hib0DSM9QP7kAqqSIz1A6pCb4QYkPUC8+LUInyQ9QGZ7B1I8JT1Ae4ABl9olPUCaf+GCWSY9QO7u7u7uJj1AeHd3d3cnPUDIgOz17ic9QLiSHRuBKD1Ary0pZNQqPUCTng+8Rys9QBGyGc23Kz1ABNowHU0sPUASnXjh4Sw9QHZsBOJ1LT1Ab4Yb8PktPUDME/VvhC49QFmrY4IHLz1AEnhNNaAvPUAvfi3CJzA9QG+EMnpbMj1AhBWUj8oyPUB4IMUTVDM9QCKGMJHlMz1AHgbgjIc0PUBrFlWsBzU9QAHpdZ6LNT1ATzO3VSM2PUCplMR/pzY9QOxph78mNz1ANBRk8Yg3PUAkxG8d9jk9QJ3seRGAOj1AzG++/hE7PUC8ntXvrzs9QGbKdNUpPD1AlU25wrs8PUB2bATidT09QF+wG7YtPj1AWlSxHuQ+PUBzaJHtfD89QK0Cok37Pz1AOFzR021CPUCoJUN74kI9QEY6Fu5vQz1AE1l+8/VDPUAzWF7fdEQ9QE5lPg0FRT1AlVDnd4dFPUAnTu53KEY9QJHyk2qfRj1ATbF92yZHPUCk374OnEc9QLFdx6UXSj1AcUh9bKVKPUBbb650UUs9QNPuasz+Sz1ACZd7bo5MPUCTjJyFPU09QGrmtmrETT1AUr01sFVOPUB6Tnrf+E49QME5I0p7Tz1AkW5xegRQPUC8eapDblI9QFVFy5TpUj1A1m670FxTPUCpnAlg3VM9QILvI6RbVD1AD6R4gupUPUBOalU4b1U9QDy9UpYhVj1A++jUlc9WPUAeG4F4XVc9QM9r7BLVVz1AhrnKAD1aPUBm9+RhoVo9QJQjd+sPWz1Aw2zvQIpbPUD3/hm4Flw9QPjHe9XKXD1Aoi3nUlxdPUAJ9nKy5109QJotRkqgXj1AjTh3zilfPUD96wJLm189QGWiG3QcYj1AXYJm6ohiPUACvAUSFGM9QHDGQ/KoYz1Am21uTE9kPUAKW8Zg2GQ9QKFns+pzZT1AYTyDhv5lPUBGpIDHymY9QJr9pwhdZz1AnyeL6MRnPUBbFc5bYmo9QLFDD4/Xaj1AZapgVFJrPUDtFQMRz2s9QD+p9ul4bD1AytjjmD9tPUB0Pk8W0W09QEjZNTR4bj1AL82aRRVvPUAdWmQ73289QL1KUUFYcD1AWnGX6u9yPUBn3SxLYXM9QFiYqwzQcz1ACV2v1nZ0PUA7DMAZD3U9QKPxMUWmdT1A3RzBoF92PUDvKLuGBnc9QN2YnrDEdz1APzVeukl4PUDgJUvAwng9QPYY0s5Wez1ArY4JHsx7PUD5pX7eVHw9QCX29tTXfD1AH32mcYJ9PUD4z8C1AH49QHq9++O9fj1AOUIZvS1/PUAMhk13sX89QM/6gZhxgD1AsVWCxeGAPUDnX7hgloM9QOqQm+EGhD1AZZW/aHyEPUCHHh6vLYU9QEGSbIgEhj1ANrODN5GGPUAEY2o4Uoc9QGhP3ATyhz1AkCHtbLWIPUCuzjEge4k9QJJc/kP6iT1AlwztiZuMPUBoHVVNEI09QB63cgmajT1AnQRJsiGOPUA5IBzGt449QNXkPHYqjz1Ak9by3cCPPUARK8knUZA9QH41BwjmkD1A3MLgh3CRPUCsFBWEBZI9QNgAfwvFlD1AND6myDSVPUD3eA5S3ZU9QAUfcEpmlj1AZ9gVIPeWPUAD9OgzjZc9QKeEOr87mD1AmiDqPgCZPUBSJ6CJsJk9QFioNc07mj1ArBdDOdGaPUCdARv9VZ09QChmvRjKnT1A8lFZJ0GePUB798d71Z49QKw5QDBHnz1ARJbffP2fPUCDs26WpaA9QFtHVRNEoT1A84YOlO6hPUA4XNHTbaI9QBIchKYSoz1A9n8O8+WlPUC6Rt5MX6Y9QHza4a/Jpj1A9TW4mmKnPUBGrMWnAKg9QDlIdSfFqD1ATDeJQWCpPUDIi1+L8Kk9QGTEGGuSqj1AlV1DgyerPUBVSPlJtas9QAsuVtRgrj1AZmt9kdCuPUBQ5EnSNa89QDOs4o3Mrz1AusXpEZCwPUB6KzipVbE9QC9W1GAasj1An82qz9WyPUDZ21Nfg7M9QAe2SrA4tD1Akatrx+e0PUC7D0BqE7c9QCy8y0V8tz1AJ7L85uu3PUB47j1ccrg9QCuPW7kEuT1AedmccJy5PUBsAbTAMbo9QPXDCOHRuj1AfpxDLHW7PUAEZpjtHbw9QNAXaGR9vD1A451W5Oq+PUDr+gW7Yb89QJhZcZfqvz1ATfOOU3TAPUBLVliDCsE9QMeqLs2awT1Ayk+qfTrCPUAVhAUKz8I9QHo2qz5Xwz1AqLnvK+nDPUAi+N9KdsQ9QC2yne+nxj1A2S3vlzzHPUD0AAMutcc9QDgQkgVMyD1AmbNRsNnIPUBxI1LAY8k9QJeIypkAyj1AUIiAQ6jKPUDAWPKLJcs9QCtqMA3Dyz1AyidRHC3MPUBhV4Dca849QJzUqnDezj1AQfFjzF3PPUBYmKsM0M89QMe/z7hw0D1AID7DrgDRPUAv3SQGgdE9QC4cCMkC0j1AOxkcJa/SPUCbgg84JdM9QKvKviuC0z1A7QqQe83VPUAYITzaONY9QP+97oey1j1AO1j/5zDXPUA8yq6hwdc9QGpq2Vpf2D1AHe4Q7OXYPUDnE3mSdNk9QFRCnd8d2j1AvH7BbtjaPUBljXqIRts9QIA4Nb2x3T1ApSkVZx/ePUClRBK9jN49QIkpkUQv3z1Ag1mOfbbfPUCbbW5MT+A9QP8mFCLg4D1ADlf0dJvhPUDB2isGIuI9QJg0Ruuo4j1Anl4pyxDjPUC7qzH7T+U9QCxYvda45T1A2HxcGyrmPUDqFL7RoeY9QFLAY2Uh5z1AeQH20annPUAkoS3nUug9QN5mF/ni6D1A/mX35GHpPUDsmw53COo9QHxJY7SO6j1An6No+CntPUAOkcAMs+09QCuXoJk67j1A3+ALk6nuPUApbBmDYe89QNILUZgK8D1As6AdXZLwPUBW4bwlJvE9QNuNKxvD8T1AdZMYBFbyPUBEHxmYAvM9QGg/UkSG9T1ATeMEkwj2PUBtOZfiqvY9QHDeEpNK9z1Aaw4QzNH3PUCbbW5MT/g9QLiXNEbr+D1AsTvKrqH5PUDSV5BmLPo9QPa8CEDJ+j1AdLosJjb7PUAB7ozJ9f09QMXuKLuG/j1ACf63kh3/PUDfV9J3pP89QGowDcNHAD5Aj3if0NgAPkDu6JKEVwE+QPCNDjX3AT5Aa68YiHgCPkCG2d6BFAM+QHo7wmnBAz5Aww34/DAGPkAFzdQRrQY+QGyVYHE4Bz5AZ6h33rMHPkCUDtb/OQg+QA434PPDCD5AwboXhUoJPkCke7Cf2Ak+QEwi6FWKCj5AVib8Uj8LPkB7i3Qs3As+QKKkrTdXDj5A2PULdsMOPkCBIatbPQ8+QJXs2AjEDz5Ajl2iemsQPkCQPOrCIhE+QKsz5MWvET5AUdobfGESPkA0hc5r7BI+QHlwd9ZuEz5APD5H0fATPkAj5mwUbBY+QISJLL/5Fj5AnSl0XmMXPkA57pQO1hc+QKXFBvhbGD5AiI2fs/IYPkBjhx4erxk+QNiZQuc1Gj5ArsCQ1a0aPkAxdP9rUxs+QD/DrgC5Gz5AehGAkhUePkDfbHNjeh4+QKhCKUfuHj5A7N0f71UfPkDkFB3J5R8+QBmDYdNdID5ArlyCZuogPkB0rdAaliE+QBghPNo4Ij5AdXtJY7QiPkDoWqE1LCM+QPOe3TSQJT5AdLLnRQAmPkB4ALGSfCY+QInS3uALJz5ATulg/Z8nPkBKcBCaSig+QOdn/UDMKD5A5OesPG4pPkAl/ju1DSo+QO5kcJS8Kj5AqEdAclgrPkA5xjutyC0+QIjslvdLLj5AaEeXJLwuPkDjLtXfJS8+QOv/HObLLz5ANfqr2kgwPkDx3Hu45DA+QBbrQS5eMT5AHE/xpd0xPkDdkFnQjjI+QLgWQAscMz5AfcaFAyE1PkBcKIbRmTU+QKfoSC7/NT5A9/G9rHY2PkB6MZQT7TY+QPAm0hBoNz5A0mTsccw3PkB2ZL8BQDg+QNzcmJ6wOD5AfOprcDU5PkCJORsFmzk+QK5SVBAWPD5A/EXjY4o8PkB6QwdK9zw+QLpZlsKWPT5AOqdsax4+PkB/6cc5xD4+QN52oblOPz5AoZQjd+s/PkCIa6K8fEA+QCaAdS8KQT5AyKMuLJJBPkDxgLIpV0Q+QFDxpd3VRD5AhV/q501FPkCbXeSL40U+QDSdnQyORj5AAfbRqStHPkB21Sl8o0c+QFwDWyVYSD5A/ITGJgxJPkBlnQRJskk+QJhp+1dWSj5A7Fn9/rpMPkDmTy6gKk0+QHSt0BqWTT5AJDgITSVOPkBoDcuMpE4+QONLu6sxTz5Abc1Dk7FPPkCu49ILUVA+QPCiryDNUD5ADJOpglFRPkB4E2kItFE+QKOvIM1YVD5AxK4AuddUPkBAIL3Oc1U+QFHy6hwDVj5Agm4vaYxWPkBLYcsYDFc+QKDtvlCtVz5AX6WoICxYPkB7HyHd4lg+QEJTicWCWT5AjvZlVtxZPkDcRgN4C1w+QE0QdR+AXD5AoBLq/O5cPkAdStp6c10+QMiLX4vwXT5AEarU7IFePkDTPdhP7F4+QDvpfeNrXz5A0+5qzP5fPkDKQk5ymmA+QACUrLAGYT5A4KltsF1jPkAVNZiG4WM+QI9WotliZD5AOoJBv9xkPkBtMVICdWU+QHblszwPZj5AuZ2QsIJmPkBQcLGiBmc+QHPcKR2sZz5ALb/5+kdoPkDUDn9N1mg+QAFNhA1Paz5AfUqo87trPkDV7IFWYGw+QFhJPonibD5AI2+mL3FtPkASpb3BF24+QNbCP3+0bj5AG67o6TZvPkAYEbIZzW8+QKf40u5qcD5ANVZ1adZwPkCytb5IaHM+QBpEfhDccz5A0MC1AFp0PkDS+Jgi03Q+QFFGb8tadT5A3t3d3d11PkD66r0LbnY+QEYYGff5dj5APoniaKF3PkBHWipvR3g+QJAh7Wy1eD5AZTbIJCN7PkBeM/lmm3s+QPK1Z5YEfD5A1CZO7nd8PkA3/dmPFH0+QDtLo9yQfT5AFu5v4yl+PkA0ETY8vX4+QAyeHBhTfz5A9JGBKfB/PkDsyH4DgIA+QGWlSSnogj5AA4BQBF6DPkASCcww24M+QGpq2VpfhD5AwbUAWuCEPkBsFGw2aYU+QNLj9zb9hT5A9/G9rHaGPkD/wgWzHIc+QCv2l92Thz5AccRafAqIPkAnpaDbS4o+QHG8FZzUij5AirMPn2GLPkBzUMJM24s+QH3DV05VjD5AbdWIc+eMPkAQ+UFwb40+QKK8fNj4jT5AwN9CMYyOPkBa5S8aH48+QGBJ35Gejz5AbI0bkQKSPkBtxf6ye5I+QAReUw3okj5AdC7FVWWTPkB5zEBl/JM+QLuoA0aElD5AT4Ik2RCVPkAxEPH8j5U+QPMXjY8plj5Apbiq7LuWPkB6GcVyS5c+QBfMcuyzmT5AYgDOeEiaPkCo63bjypo+QN52oblOmz5AsrrVc9KbPkDXyJvpS5w+QDMjqXLHnD5ACX3DV06dPkDg1t081Z0+QJaN4cRqnj5AiV5GsdyePkDmTy6gKqE+QPa0w1+ToT5AOHSgdA+iPkBrBsvrm6I+QAMMuNQuoz5AirgmysujPkBqatlaX6Q+QF+L8AnspD5AHISmEoulPkAHVCW3E6Y+QG3i5H6Hpj5AXeSL462oPkBkZSEnOak+QCNX147PqT5AK7SGZUaqPkALLG1ewqo+QHD7+F5Wqz5AdEnCq9KrPkDrW+Z0Waw+QLpzTtnWrD5AqG+Z02WtPkC2+BQA460+QGS0jqomsD5AtL0DKZ6wPkAsySdRHLE+QAcyKMCdsT5AEqW9wReyPkDZ0SUJr7I+QM2/cMEssz5ALSlk1KKzPkBdctwpHbQ+QOw8FzOvtD5AXzlV0TK1PkCzDHGsi7c+QOOlm8QguD5A8Uv9vKm4PkAD5F5zIbk+QPr9dYGluT5ARw7roCW6PkBJKej2kro+QEu4fXwvuz5A4sRqBsu7PkAbti3KbLw+QJjtHUjxvD5Ai1xdOz6/PkArhxbZzr8+QPasfn9dwD5AGMJElt/APkBWcjshYcE+QLUy4Zf6wT5AjoX723jCPkCsxacAGMM+QLNjIxCvwz5AMLj5WT/EPkDzJxdQlcQ+QI2n+NLuxj5AcRjfKmLHPkAeqhb++cc+QK8dn6NoyD5A02UxsfnIPkAqzj58hsk+QKUpFWcfyj5AsglD97/KPkCQiCmRRMs+QBDs5WTPyz5AxoUDIVnMPkAHOm2g084+QFtvrnRRzz5AT5fFxObPPkDwnZj1YtA+QM1AZfz70D5ApNRLeZrRPkBfsBu2LdI+QL1a2wHE0j5Ai9D1am3TPkAA4xk09NM+QFDsjrJr1D5A9hO7o+zWPkAYKYG6btc+QD5ULfzz1z5Aej7wHo3YPkAD5F5zIdk+QBqojH+f2T5AXrcbVzbaPkBKgJpatto+QIqWKdNV2z5Ab5GOhfvbPkAyX16Afdw+QBia6zTS3j5AGyKBGWbfPkDV52or9t8+QPXJZEtp4D5Al/Qd6fngPkCfUc2/cOE+QN9nXDgQ4j5AUIiAQ6jiPkCPTl35LOM+QIGaWrbW4z5AXt90uEPkPkDME/VvhOY+QFd4l4v45j5AwTkjSnvnPkACFuYqA+g+QGK5pdWQ6D5ARUdy+Q/pPkBnXDgQkuk+QI+A5LAO6j5ApEsSXpXqPkB1lka5Ies+QCv2l92T6z5ADXnxaxHuPkAFkwh6le4+QCbMtP0r7z5AxKa72KHvPkBGPUSjO/A+QB6XXojC8D5Ak8ZoHVXxPkAidL1a2/E+QGRQgDtj8j5AnNSqcN7yPkBs7BLVW/M+QCM68cLD9T5ANrVsrS/2PkC87UJznfY+QFfPSe8b9z5AwVYJFof3PkD5FADjGfg+QPaUr967+D5AzAuwj075PkDKSpNS0Pk+QH/rsK9i+j5AZk6XxcT6PkCR5Tdf//w+QM6yFLaM/T5Agt+Z4+/9PkCY3ZOHhf4+QCWS6GUU/z5ADkWBPpH/PkA2aS3fDQA/QBgxxpqkAD9AdMWfuzcBP0Bn0NA/wQE/QDnEUjcqAj9Atnw38H0EP0AdKN2D/QQ/QHnZnHCcBT9Ayk+qfToGP0AWZx8+wwY/QJnD23BFBz9AU4nFgtUHP0Dx12SNegg/QFZtJPb2CD9AznhIHnUJP0AAC3OVAQo/QHGsi9toDD9AEGqs6tIMP0AhPNo4Yg0/QLTFSAnUDT9AqayTIEkOP0D40u5qzA4/QPwguLdIDz9AP00tW+sPP0BZJ0GSbBA/QDJddQrfED9AfF4EoGQRP0CtAqJN+xM/QEbOwp52FD9AZpPW8t0UP0A/yQprUBU/QEZKoK7bFT9ANj/rB2IWP0Dnj1ai2RY/QCKBGWZ7Fz9A/A0AQhEYP0AjT5KumRg/QOwkSJINGT9A7DTSUnkbP0BW9l0R/Bs/QM4eaAWGHD9ADxgRshkdP0AdvnKqoh0/QGvH5ygaHj9A4RPYibgeP0Dkm21uTB8/QILqDHnxHz9AIRzGt4ogP0Db4a/JGiE/QLf+cGp6Iz9AakjcY+kjP0CGVbyReSQ/QMIimegGJT9Aeby2pJAlP0AxiaBXKSY/QD0SHISmJj9AT8djBionP0DMVQbo0Sc/QMBgN2xbKD9AmNA3fOUoP0CPNo5Yiys/QPQFGlkfLD9Auv+1qacsP0BhMlUwKi0/QK98lufBLT9A930lfUcuP0BaVLEe5C4/QHyGXQFyLz9AXzEQ8fwvP0BDLHWjojA/QKwnzfk8MT9ABbgzJtczP0AdzBP1bzQ/QET3vzb1ND9AcUA4jG81P0DgLZCg+DU/QB3ehit6Nj9Ae2tgqwQ3P0CNIKgtiDc/QGRd3EYDOD9A5xBL3ag4P0CfaZxgEjk/QI0gqC2IOz9ANkxHEwI8P0DZNTR4cjw/QKydTp8KPT9AixU1mIY9P0B/A4BQBD4/QJ9ZEqCmPj9Amab1pDk/P0A5tMh2vj8/QNn7Z+BaQD9ANxWpMLZAP0Aj07SeNEM/QF4z+WabQz9A00UdMCJEP0DkF0t+sUQ/QHDTn/1IRT9AZS6DRO1FP0AdwaBfbkY/QDa4mmL7Rj9APzIwBX5HP0BcGyrG+Uc/QBC8RyOMSD9AU4aXzQlLP0D3olApiUs/QECk374OTD9A8fRKWYZMP0DDBbMc+0w/QONbRWydTT9AlOZ8nixOP0DeGtgqwU4/QN52oblOTz9ABZtNWstPP0DvTeYySFA/QMXuKLuGUj9AswdagSFTP0D1qVDKkVM/QBWMSuoEVD9AZ8iLX4tUP0AdYqkbFVU/QKXNS9iRVT9A0TqqmiBWP0DTVafwjVY/QMxS2DIGVz9AvkAj64NXP0AGpsDvzFk/QPWhC+pbWj9AkL3e/fFaP0AAh1ClZls/QNUhN8MNXD9A+hIXbXtcP0Chf4KLFV0/QOzQw+O1XT9A40GNVV1eP0DprDxu5V4/QD2osapLXz9AlqeZ26phP0AfDDz3HmI/QEMEHEKVYj9AuBZACxxjP0CRoybnsWM/QOcoGn5KZD9AWyVYHM5kP0AFUfcBSGU/QJQbMgvaZT9AUdobfGFmP0CTmfiQ3WY/QOy1xo1IaT9Arl+wG7ZpP0A2tWytL2o/QFW0TJmuaj9ALStNSkFrP0CdaFch5Ws/QN9EGgJtbD9AcEIhAg5tP0B3ptB5jW0/QG/6sx8pbj9AJlMFo5JuP0D+Q/rt63A/QDnBJIJecT9Aq9pI7O1xP0B3HZdeiHI/QPRUh9wMcz9AlGJarpFzP0Bt70CKJ3Q/QDxBdYa8dD9ApEPNfV91P0B/ybO47HU/QGpCgPlRdj9Ad7mI78R4P0AHSvdgP3k/QPtUKOXIeT9AF0UiR016P0Ag1Z0U03o/QLG8vulwez9ABPL/ve57P0CjBtMwfHw/QNZeMRDxfD9AMtYkZXh9P0CjgrBA4X0/QArMMNs7gD9AlBPtKqSAP0DW0sk/IIE/QKH4MeaugT9A/W8lOzaCP0De/fFetYI/QCIqZwJYgz9AvkU6Fu6DP0DcSxqjdYQ/QAFa4BjvhD9A8P54r1qFP0C8ge8jpIc/QO7gTaQhiD9AKHteBKCIP0Abho+IKYk/QJf3S57FiT9AXdQBI0KKP0CAI5TR24o/QBfZzvdTiz9ACscZsNGLP0Bncdn7Z4w/QHX6VCjljD9AmODBPFGPP0DnDR0o3Y8/QK8dn6NokD9A1kFLROWQP0CqhX/+aJE/QO6UDtb/kT9ASgwCK4eSP0Bj5hViCJM/QJmrDNCjkz9AzFodEzyUP0DjHksfupQ/QJ5eKcsQlz9A8WCeqH+XP0D/OcyXF5g/QClXeJeLmD9ACZWS+O+YP0AVCCj6aZk/QCB7vfvjmT9AFZzUqnCaP0DcslbHBJs/QDDol5uCmz9A2dlq6eSbP0Abw4nVDJ4/QBbWoEKInj9AKr60uxqfP0DS8FNCnZ8/QGOXqN4aoD9AbickrKCgP0BO9rwIQKE/QHELgx/CoT9AdllMbD6iP0CXqN4a2KI/QCccZ8BGoz9AQnBvkY6lP0DywNorBqY/QJvWk+Z8pj9A1XCkRvumP0ChciaAdac/QFHnd4cBqD9A/z7jwoGoP0A2ww34/Kg/QK7OMSB7qT9AhPV/DvOpP0BPp0+FUqo/QB/p+cB7rD9ArJ1OnwqtP0DxaxE+ga0/QA84JTPxrT9A3TmnbGuuP0BdapdJ564/QGPrLI1yrz9AZzn22e6vP0AVkWEVb7A/QLqtGnHusD9AgYrQ9WqxP0C2j+9ltbM/QDLO34RCtD9Aw3Q0IcC0P0D7MivuUrU/QAn2crLntT9AAUpWWIO2P0A5sZrB8rY/QER74iaQtz9AC1GYCgS4P0AGnnsPl7g/QGz5buD7uD9AzdxWjTi7P0B5AfbRqbs/QBTGFoIcvD9AQRaPeJ+8P0AUJ/c7FL0/QNoDrcCQvT9AsUDh2Qu+P0CTCHqVor4/QD8tGdoTvz9AZZKRs7C/P0AfAclhHcA/QPdIcBCawj9Akyp3jBjDP0BwxkPyqMM/QIO1VwxExD9AAxkU4M7EP0BTIoleRsU/QG/1nPS+xT9AUr01sFXGP0CEFZSPysY/QC57/wxcxz9A/JlnEuLHP0Czc63QGso/QPs6cM6Iyj9A6OYIBv3KP0Cu4KRWhcs/QF5O9rwIzD9AbBE+gZ3MP0A0IcD8KM0/QIqms5PBzT9Akz0vAlDOP0C9WtsBxM4/QAMMuNQuzz9Awn5id5TRP0AtOe6UDtI/QELnNXaJ0j9ANPlmmxvTP0DcXtIYrdM/QCQtlbcj1D9AAqx7UajUP0DstcaNSNU/QPyk2qfj1T9AjDVJGV7WP0DjRqSAx9Y/QMfC/W082T9AfSJPkq7ZP0AjPwjuLdo/QInNx7Wh2j9Afdj4OSvbP0AAb4EExds/QMBDUaBP3D9An7s3mcvcP0BPE6PUS90/QAHujMn13T9At03e7WfeP0As4fbxveA/QHPMn1xA4T9A6MHdWbvhP0Cx0V/VRuI/QFtNsX3b4j9Anu+nxkvjP0DUl7ho2+M/QMKTA2Nq5D9Aasai6ezkP0AFqKlla+U/QAaJ2iPB5T9Aj1ai2WLoP0AUs14M5eg/QNqPFJFh6T9AWfrQBfXpP0Cb1pPmfOo/QDxR/0Yo6z9Ato/vZbXrP0B4eqUsQ+w/QOBCMYzO7D9A0zB8REztP0AV8FhZyO0/QMyP0n/p7z9AfeA9GmHwP0DWXjEQ8fA/QKVZs6hi8T9AK3yjQ83xP0CUWhXOW/I/QGaIY13c8j9AN5nLIFHzP0DD/W08xfM/QCa3ExJW9D9ANByp0b70P0A7AU2EDfc/QEaurh2f9z9A7uBNpCH4P0DGbTSAt/g/QMff4zlI+T9ABa3AkNX5P0Adau77Svo/QFg+y/Pg+j9AJV0z+Wb7P0B++Ay7Avw/QN4nNDZh/D9A8efuTeb+P0CP39v0Z/8/QEesxacAAEBAYwtBDkoAQECZBe3okgBAQGKE8GjjAEBAN1SM8zcBQECx2aS1fAFAQPEZdgXIAUBABUmyIRICQEB3qf4uWQJAQJZ4QNmUA0BAFRiyutUDQEBLEl6VHgRAQLxcxHdiBEBAscQDyqYEQEBZVLEe5ARAQFwY/BAuBUBADuNbRWwFQEDZd0XwvwVAQO2mgQwKBkBAB/AWSFAGQEC4JsrLhwdAQOviNhrAB0BABSzMVQYIQEDa6fSpUAhAQPYgF6+MCEBAE24f38sIQECofPXeBQlAQBKtAqJNCUBA4jPsCpAJQEC5/If02wlAQJO+Iz0fCkBAwtD9r00LQEC2LcpskAtAQBQNPyXUC0BATxbRiRcMQEBfJLTlXAxAQD8djxmoDEBAi674c/cMQEATm49rQw1AQIGyKVd4DUBA7ds2ebcNQEDZ690f7w1AQFDHYwYqD0BA8x/Sb18PQEDkg57Nqg9AQNnr3R/vD0BA6gQ0ETYQQEBA0U9LhhBAQC0JUFPLEEBAZA5vwxURQEA6r7FLVBFAQJR/QHqdEUBA0IHSPdgRQEC2AFrgGBNAQAeEw/hWE0BAZm6rRpwTQEAtuuLP3RNAQJn1YignFEBAtFTejnAUQEAI7i3SsRRAQDvHgOz1FEBA7pxTtjUVQECZN3SgdBVAQGrJ0J64FUBAwvo/h/kWQEC3Yn/ZPRdAQLLkF0t+F0BAleFlc8IXQEAwRGEqEBhAQDcFH3BKGEBA/1vJjo0YQECKTNN60hhAQHBCIQIOGUBADZ4cGFMZQEAo1T4djxlAQPnv1DbYGkBA2dY8NBkbQEA0lVgsWBtAQOqd9+ymG0BA6F3P6vcbQEAH0zB8RBxAQCQgOayDHEBAxqcAGM8cQEA28mb6Eh1AQPcuuPlZHUBAX0nfkZ4dQEDyc1Yetx5AQO4AYiX5HkBAewdSPEEfQED6uDZUjB9AQOTaUDHOH0BAJxQi4BAgQEAiedSFRSBAQL2hA6V7IEBAMwbDprsgQEB3Z+22CyFAQMjNcAM+IUBAEY3uIHYiQEBQwkzbvyJAQAONrA/+IkBAA0aEbEYjQEBvZB75gyNAQEIB7ozJI0BAF5e9fwYkQECRJ0nXTCRAQK6RN9OXJEBAIwhqC+IkQEBrUCFEHyVAQEBdtxtXJkBAMZkqGJUmQEC0WfW52iZAQO1XFIkcJ0BAKneMGGMnQEA/lFX+oidAQFvz0GTsJ0BAGzciBTwoQEC1ccRafChAQJl5hRjCKEBAemtgqwQpQEBNAOteFCpAQNrp9KlQKkBAxACc8ZAqQEB4xPuExipAQN3arygSK0BATSUWC1YrQEA5QDBHjytAQEtZhjjWK0BA0gDeAgksQED6sPFzVixAQO/7SvqOLEBAwT46deUtQECmUW7ILC5AQN9PjZduLkBAc3DWzbIuQEBu8m4/8y5AQEzg1t08L0BAdFYet3IvQEDu5qkOuS9AQKDDfHkBMEBAgLxXrUwwQEDs5WTPizBAQNKMRdPZMUBAd/uZZxIyQEDpUHPfVzJAQP5tPMWXMkBAapdJ59YyQEChnGhXITNAQEtUbw1sM0BA+xpcTbEzQECUVf6i8TNAQFWH3Aw3NEBA8ddkjXo0QECXg7NuljVAQCWKo4XeNUBAg2kYPiI2QEBcIEHxYzZAQIW+4SunNkBAFNBE2PA2QEB99d4FNzdAQOMEkwh6N0BAaua2asQ3QEBR53eHAThAQNRtdpEvOEBAOPB9hHQ5QEAzfYmLtjlAQKz3Lrj5OUBATVedwjc6QECc7HkRgDpAQDQuHAjJOkBAjPM3oRA7QEADgFAEXjtAQGNqOFKjO0BAYSoQUPQ7QEBwLYAWODxAQMS+inlDPUBAsQH+Foo9QEAlUNftxj1AQOdvQiECPkBAUJXcTkg+QEB1B7EzhT5AQEKVmj3QPkBArMWnABg/QEBdeiEKUz9AQK8I/reSP0BAzUOTscc/QECK3VF2DUFAQCEf9GxWQUBA99wcwaBBQEAAxjNo6EFAQEEGBbgzQkBAIP/f635CQEDhML5VxEJAQAXAeAYNQ0BAtIZlRlJDQECeqH8jlENAQBXTco28Q0BA/C0Uw+hEQECKFx4OJUVAQBUIKPppRUBAnfS+8bVFQEBS1QRR90VAQFe6qANGRkBAoSq5nZBGQECKJHoZxUZAQFu21hcJR0BAvLakkFFHQEAiu+X9kkdAQLxPaGzCSEBAHjNQGf9IQEDWDJbXN0lAQPuJ3VF2SUBAbd+2ybtJQEAXl71/BkpAQIvwCexESkBAm+EGfH5KQECOUEZvy0pAQBw6ULoHS0BAVThviUlLQEB4CyQofkxAQFb5i8bHTEBAOOtmWQpNQEC2f2WlSU1AQDlAMEePTUBA+nEOsdRNQEDONjemJ05AQKsZLK9vTkBAYi0+BcBOQEDq/O4wAE9AQDY3picsT0BAYOrnTUVQQEC7s3bbhVBAQDdPdcjNUEBA7jouvRBRQEArPcCAS1FAQP/kAqqSUUBAPv16mNBRQEDRHcTOFFJAQH3DV05VUkBAmSLTtJ5SQECdwjc61FJAQDIge737U0BAaP1AzDhUQEATwLoXhVRAQKsBXQ7OVEBA9V/6cQ5VQEAkNdqXWVVAQG+BBMWPVUBAnlbk6tpVQECJg3FdHlZAQPqw8XNWVkBAUTHO34RWQEBu6ilfvVdAQGEqEFD0V0BAqY+tVD1YQEDcaABvgVhAQPnS7mrMWEBAdnlg7RVZQEAaFw6EZFlAQCk3ZBa0WUBAGGhkffBZQEAV4/xNKFpAQKj40u5qWkBAfQVpxqJbQECWJqWg21tAQI2kyh0jXEBAQmgqsVhcQED0MorlllxAQPkXLpjlXEBApuUaeTNdQEB7e+prcF1AQDKP/MHAXUBAiUmlxQZeQED4iJgSSV5AQA0StUeCX0BAiK2zNMpfQEDbO5DiCWBAQFSZT0NBYEBAhlW8kXlgQEAw8Nx7uGBAQHEwrssDYUBAJemayTdhQEAx1iRleGFAQJDSf+nHYUBABSzMVQZiQEDgUrtMOmNAQBT9tGRoY0BAgEOoUrNjQEAq8Dtz/GNAQMMq3sg8ZEBAO7f2K4pkQEBpjNZR1WRAQEd6PvAeZUBAjawP/lhlQEB/G0/xpWVAQD43RzDoZUBA+J05/h5nQEAQ3FukY2dAQJ268lmeZ0BAEx+yW95nQEC+4SunKmhAQPDM8fd4aEBAWPKLJb9oQEB+jLlrCWlAQEDm8DZcaUBAVBUtU6ZpQEB6nedi5mlAQMZg2HQXa0BA5MrGcGJrQEA0YKO/qmtAQNTc95X0a0BAFwtWrzVsQECLgYjnf2xAQGUmPmS3bEBAK3J17fhsQEDIzXADPm1AQG1OOM6AbUBARQVhgcJtQECOxN6e+m5AQKPhp4Q6b0BA6BN5knRvQEAoSddMvm9AQFsFRJv2b0BA8B6NMDJwQEACOOMheXBAQGIQWDm0cEBA1Y2KEgdxQEDmpuADTnFAQCW/WPKLcUBA73pWv79yQEArcnXt+HJAQJ/dNJBBc0BAkzoBTYRzQEAlM/Ehu3NAQK8YiHj+c0BAdXYyOEp0QEByDrHUjXRAQKK0N/jCdEBA4N4iHQt1QEDfZC6DRHVAQEG/3BR8dkBACAsUnr12QED5buD7CHdAQLFIJrpBd0BA+JDd8n53QEAdIJijx3dAQBCaSiwWeEBACxzjnVZ4QEAT+oavnHhAQP04h1jqeEBA51qhNSx5QECo+NLuanpAQGb35GGhekBAUxL/ndp6QEBUrvAuF3tAQClhpu1fe0BAQ7Wuvqd7QEAkufyH9HtAQL0QhalAfEBAkbjH0od8QECNYrml1XxAQH2eLKITfUBATHSDjkN+QEA/xty1hH5AQBuBeF2/fkBAYb68APt+QEC0TJmuOn9AQMucLouJf0BAXrIELMx/QEB09yZzGYBAQK4AuddcgEBAqqqqqqqAQEDceIov7YBAQAJQssIagkBAsO5FoVKCQECS4CA0lYJAQPC/lezYgkBAYz3IxSuDQEDNbdWIc4NAQNl3RfC/g0BA0wtRmAqEQECs318XWIRAQOYF2EenhEBAHe4Q7OWEQECeIS9+LYZAQND6gZhxhkBANv/CBbOGQEBWbST29oZAQLI2s4M3h0BANdqXWXGHQECa02UxsYdAQJZ9VwT/h0BAQxzr4jaIQED1AzHjgIhAQI8+0zjBiEBApt3VmP2JQECDhv4JLopAQAQx44BwikBAnH34DLuKQEAsms5OBotAQIyEtpxLi0BAK/aX3ZOLQED6cQ6x1ItAQHHhQEgWjEBATtaoh2iMQECH1MdWqoxAQNSiK/7cjUBAh4px/iaOQEBGlPYGX45AQKiUxH+njkBAvrwA++iOQEBEk7HHMY9AQPJOK3J1j0BArIOWiMqPQEDSAN4CCZBAQIwYY01SkEBA9T39epiQQECK1QyW15FAQKYXojAVkkBAQF23G1eSQEBvMpdBopJAQC1rdUzwkkBAo+GnhDqTQECG3vWsfpNAQDGEiSy/k0BAU+B35viTQEAL4hYGP5RAQOyrmDd0lEBAJAuYwK2VQEAJ2Yzm25VAQKZRbsgslkBA5nRZTGyWQECQLGACt5ZAQKFinL8Jl0BABnlQY1WXQEC2SrA4nJdAQEZnhnrnl0BATmIQWDmYQEDutgvNdZhAQNd+RZHImUBAODrU3PeZQEDXjs9RNJpAQFQqzj58mkBATslMfMiaQEBi26LMBptAQO7zBRpZm0BAycAU+J2bQEAOLbKd75tAQH1speoxnEBAQ5CDEmacQECoOuRmuJ1AQONDdsv7nUBAEfxvJTueQEDutgvNdZ5AQLY1D03GnkBArMWnABifQEBq1iyqWJ9AQN1B7Eyhn0BA+qvaSOyfQECGxD2WPqBAQB0G4IyHoEBAVp+rrdihQEAWtKNLEqJAQJMyvGxOokBA5q4l5IOiQEClyh0jxqJAQJT7HYoCo0BAcfv4XlajQEDYMgbDpqNAQIs3Mo/8o0BAb1zZGE6kQEAQvEcjjKRAQNu8hB3ZpUBAdPcmcxmmQEDW9/TrYaZAQG05l+KqpkBAK0ocjOumQED+8V61MqdAQI8ZqIx/p0BAUmFsIcinQEAIagviFqhAQPWhC+pbqEBAaA3LjKSoQEBbBUSb9qlAQDfLUtgyqkBAMUJ4tHGqQEBd9v4ZuKpAQFaKCsICq0BAewdSPEGrQEAlv1jyi6tAQNKMRdPZq0BAniEvfi2sQEAUrkfheqxAQB2XXojCrEBAId3i9AiuQEBUmU9DQa5AQJG4x9KHrkBAztc/Ys6uQEBEWeUvGq9AQIqonAlgr0BAARjPoKGvQECRNKXi7K9AQEtMKi02sEBAmN2Th4WwQECp2QOtwLBAQN40kEEBskBAAqdkJj6yQEAXxC0MfrJAQG5h8EO4skBA7wvVuvqyQEAQXVDfMrNAQLfWFwlts0BAkcAMs72zQEB617P6/bNAQKaWrfVFtEBA2VIaRH60QEDbvIQd2bVAQCo1e6AVtkBADz08Xlu2QEAN/RNcrLZAQNlXMW/otkBAQI8+0zi3QECJHDU5j7dAQIzODPXOt0BA1kmQJBu4QEDS84H3aLhAQNS3zOmyuEBAHHdKB+u5QED/aCWaLbpAQIMXfQVpukBAzIeNn7O6QEC6rRpx7rpAQFHS1psru0BAIVnABG67QEDz2KnMp7tAQCzpO9Lzu0BAwRT4nTm8QEAETslMfLxAQGa66hS+vUBAfr5AI+u9QEDMK8QQJr5AQAcq499nvkBAh/GtIra+QEB0DMhe775AQPXBH2szv0BA8naE04K/QEDCD+Fyz79AQD62UvUYwEBASphp+1fAQEBHuSGzoMFAQJlH/mDgwUBA/ks/ziHCQEDEjAPCYcJAQCaN0TqqwkBAiZgSSfTCQECYuGjbQ8NAQFGolMR/w0BAf3IBVcnDQEA0cC2AFsRAQPFjzF1LxEBAREEWj3jFQECc6UtctMVAQMR8eQH2xUBAdDHzCjHGQEDTG9tYdsZAQNkL8qDGxkBAzmi+XQnHQEDbfaFaV8dAQN1B7Eyhx0BAb3Soue/HQED5MeauJchAQBGFqUBAyUBAHEraenPJQECmEosFq8lAQFroXc/qyUBAMH4twifKQECWjeHEaspAQC7a9lC1ykBAN8MN+PzKQECnKlqmTMtAQKKs8heNy0BACo1NGLrLQECaod55z8xAQDO/mgMEzUBAygA9+kzNQECnu9ihh81AQOCcEaW9zUBARr443grOQEDybj/zTM5AQAyb7mKHzkBA/uHU9MbOQEBb07zjFM9AQKUUdHtJz0BAGdoTN4HQQECSVLljxNBAQBcrajAN0UBAGdLOVkvRQEDCYXyriNFAQIeiQJ/I0UBA/y5ZAhbSQEDMn1xAVdJAQFSM8zeh0kBA5ajJeezSQECPJgSYH9NAQMrDQq1p1EBAayOxt6fUQEC7m6c65NRAQNC4cCAk1UBAmzB0/2vVQEArMGR1q9VAQNrZaunk1UBAUWaDTDLWQEBE1cI/f9ZAQBBYObTI1kBAQzGMzgzXQECu2F92T9hAQObo8Xub2EBA6ZrJN9vYQEAs8YCyKdlAQKyQ8pNq2UBAMWejYLPZQEDFpNJiA9pAQEZsnaVR2kBAC61hmZHaQEDYOkuj3NpAQEE4jG8V20BARERERETcQECYwK27edxAQFbcpfq73EBAoFcpKgjdQEAQejarPt1AQM6yFLaM3UBAlxQyatHdQEAnMQisHN5AQJNaFc5b3kBAfY6i4afeQEDgaort295AQJ2FPe3w30BA9CIAJSvgQEDbQKcNdOBAQDb/wgWz4EBAHSjdg/3gQEArINq0P+FAQLgmysuH4UBA135FkcjhQEC1bK0vEuJAQEhlnQRJ4kBA5Jg/uYDiQEDaIJOMnONAQI4B2evd40BAHAjJAibkQEDKw0KtaeRAQHR7SWO05EBAmfiQ3fLkQEAHLRGVM+VAQCdzGSRq5UBA1yeTLaXlQEBSuB6F6+VAQKU0iPwg5kBADoyp4UjnQECfi5lXiOdAQDB5Fpe950BAkVGLrvjnQEA5/h7PQehAQI6/x3OQ6EBAS9BMHdHoQED1X/pxDulAQBO4dTdP6UBAmXFAOIzpQEB/cgFVyelAQCtyde346kBAZXCUvDrrQED7psMdgutAQEf+YOC560BAJLn8h/TrQEAVHcnlP+xAQBoCbZiO7EBAvGxOOM7sQED7ljldFu1AQMcZsNFf7UBAOUAwR4/tQEClkFGLru5AQBfxnZj17kBAJ/+A9DrvQECP/MHAc+9AQM0Jxxmw70BAvmIg4vnvQECfSYjfOvBAQM4eaAWG8EBAR6SAx8rwQEDOaL5dCfFAQBaxdZZG8UBAkqZUnH3yQECrx5B2tvJAQLzg5mf98kBAvI5LL0TzQEDtXCu0hvNAQHQs3N/G80BAjWr+hQv0QEB9w1dOVfRAQDrU3PeV9EBAVB1yM9z0QECH2d6BFPVAQPd9JX1H9kBA/Sj9l372QECE28f3svZAQJzxkDzq9kBAL+qAESH3QECskPKTavdAQAt72uGv90BAf+aZhPj3QEAxzt+EQvhAQO7eZC6D+EBAhgMhWcD4QED0dJtd5PlAQNyAzw8j+kBA4DKny2L6QEBEN+g4pPpAQDqfJ4vo+kBAQX3LnC77QEAN2OivavtAQAMutcuk+0BAcFfC7eP7QEAwfi3CJ/xAQI5AvK5f/EBAypG79Yf9QECZ8Ev9vP1AQCrwO3P8/UBAbSkNIj/+QECY3ZOHhf5AQIX4rcO+/kBA47o8sPb+QECNckNmQf9AQHV+dxiA/0BAEc//mMP/QEBR53eHAQBBQDUsM5IqAUFAJ1YzWF4BQUA/d28ylwFBQI/k8h/SAUFAwLLSpBQCQUA+R9HwUwJBQH18L6udAkFARrbz/dQCQUDJdr6fGgNBQLraiv1lA0FAhkAbpqMDQUD579Q22ARBQEBVcjshBUFAvPBwKGkFQUBqrOrSrAVBQIcW2c73BUFAwRT4nTkGQUDTG9tYdgZBQMViweq1BkFA6vzuMAAHQUCsOUAwRwdBQIn/Tm2DB0FAgddUA7oIQUAX8Z2Y9QhBQNXvrwssCUFAuOz9M3AJQUCHXQFyrwlBQDAKlZL4CUFAUoNpGD4KQUCZ6AYdhwpBQH/7OnDOCkFAZRniWBcLQUCmPM3cVgtBQJDnINWdDEFAy94/A9cMQUBVuWPEGA1BQJTuwX5iDUFAeNmccJwNQUBtJPb21A1BQHf7mWcSDkFAgu8jpFsOQUCmft5UpA5BQEDWZnbwDkFAUdLWmysPQUBfQZqxaBBBQCJseHqlEEFA2DpLo9wQQUCad5yiIxFBQJolAWpqEUFADnTaQKcRQUAeZdfQ4BFBQF59T78eEkFAMzt4E2kSQUA012mkpRJBQDBHj9/bEkFAorx82PgTQUCZLy/APhRBQD67aSCDFEFAjz7TOMEUQUDeq1Ym/BRBQDAvwD46FUFAIp7/MYcVQUCXFDJq0RVBQK9vOtwhFkFA+c3XP2IWQUBGJXUCmhZBQMP9bTzFF0FA40N2y/sXQUCvqQZ0ORhBQKUcuVt/GEFA1d8lS8AYQUBk1KIr/hhBQKouzZpFGUFA85Nqn44ZQUDJNK0nzRlBQLqYeYUYGkFAYwtBDkoaQUAxy7HPdhtBQIiFWtO8G0FAjEKlJP4bQUCWGUmVOxxBQK0vEtpyHEFAS4sN8LccQUBk1KIr/hxBQOV+h6JAHUFAqdG+zIodQUCutmJ/2R1BQEPiHksfHkFAjIS2nEsfQUDjIXnUhR9BQPYoXI/CH0FAnL8JhQggQUCeZm6rRiBBQNM4wSSCIEFALvfcHMEgQUAqoc7vDiFBQP4rK01KIUFA8H2EdIshQUA63CHYyyFBQCAh3eL0IkFASL99HTgjQUBBKzBkdSNBQCxYvda4I0FAYB+duvIjQUD0P+bwNiRBQCUOxnV5JEFA9ZSv3rskQUAldQKaCCVBQIM3kYZAJUFAlj50QX0lQUA55k8uoCZBQKP5diXcJkFAakWurh0nQUD6RJ4kXSdBQCX5JIqjJ0FAQTu6JOEnQUA7z8XMKyhBQL1nNw1kKEFAlDDT9q8oQUCS08Qo9ShBQOteFColKUFAzqrP1VYqQUBLUUFYoCpBQPb21NfgKkFApJVothgrQUAZDJvuYitBQHPcKR2sK0FAGZC93v0rQUD5a7JGPSxBQFNHtAqILEFAH7+36c8sQUDe5SK+Ey1BQEAYeO49LkFAwbDpLnYuQUD5mCLTtC5BQMQQJrL8LkFAjY8pMk0vQUBmRlLlji9BQGDl0CLbL0FAjaTKHSMwQUA6VdEyZTBBQMc+232hMEFAaYzWUdUwQUCq/i5ZAjJBQI/0fOA9MkFAxOO1JYUyQUDgJUvAwjJBQI/sNwAIM0FA7q7G7D8zQUAt5CSniTNBQHdfqNbVM0FAGedvQiE0QUBK0jWTbzRBQEdNzmOnNEFAnRGlvcE1QUDHndLB+jVBQKmPrVQ9NkFAkqZUnH02QUBnWQpbxjZBQJ9BQ/8EN0FAIw2BNkw3QUA/TxbRiTdBQNd+RZHIN0FAVhNE3Qc4QUAvuPlZPzhBQKGhf4KLOUFAjM4M9c45QUBijDVJGTpBQESb9qdnOkFAAax7Uag6QUBegH106jpBQCTeJzQ2O0FAEiGb0Xw7QUDsCpB7zTtBQF6IwlQgPEFA50UASlY8QUB1fncYgD1BQAJdDs66PUFAGZC93v09QUCEyz03Rz5BQMHqtcaNPkFAfOVURcs+QUCXOV0WEz9BQAqlHLlbP0FAeeQPBp4/QUAdgr2c7D9BQCE0lVgsQEFA9Ecr0WxBQUCWsgxxrEFBQF3+Q/rtQUFAB5lk5CxCQUDfT42XbkJBQGtdfU+/QkFA1nsX3PxCQUAUpgIBRUNBQFff06+HQ0FAoVpX39NDQUDz3cD3EURBQK3tAGIlRUFAX9VGYm9FQUCkGYums0VBQNPRhADzRUFAFBJWUD5GQUAyatEVf0ZBQDZEAjPMRkFA/6Uf5xBHQUBgm3rKV0dBQDlAMEePR0FAVFpsgL9HQUDBtQBa4EhBQDQE2jAdSUFAWp4Hd2dJQUC4fXwvq0lBQCKuifLySUFA+E7MejFKQUA0WF7fdEpBQFsIclDCSkFA81SH3AxLQUBHC73rWUtBQBRxTZSXS0FAPEF1hrxMQUDXaaSl8kxBQEWeJF0zTUFAe3vqa3BNQUC1eQk7sk1BQLL0oQvqTUFAz16QBzVOQUDQ+oGYcU5BQE+32UW+TkFAbxrIoABPQUB6/N6mP09BQHYSJMmGUEFAHbREVM5QQUBUrvAuF1FBQC57/wxcUUFAmpmZmZlRQUDZsRGI11FBQOOlm8QgUkFAqPjS7mpSQUDHW8FJrVJBQK1u9Zz0UkFAHcTOFDpTQUCDNGPRdFRBQI0LB0KyVEFASREZVvFUQUA4X/+IOVVBQHmf0NiEVUFACbymGtBVQUCOklfnGFZBQI0j1uJTVkFAgqj7AKRWQUDbUDHO31ZBQDwMwBkPV0FAib099TVYQUCDF30FaVhBQHhi1ouhWEFADXGsi9tYQUCv240rG1lBQDvXCq1hWUFAJ+exU5lZQUCFxiYM3VlBQAWDfrkpWkFA7rYLzXVaQUDyfsmzuFpBQAbgjIfkW0FAu8DS5iVcQUD5pX7eVFxBQDSdnQyOXEFApOcD79FcQUCLBavXGl1BQFNcVfZdXUFAfQVpxqJdQUDgEKrU7F1BQG0MJ1YzXkFA/haKYXReQUDydoTTgl9BQNhs0lq+X0FAj0YYGfdfQUBfpaggLGBBQI5AvK5fYEFA4dkL8qBgQUCY0Dd85WBBQG9UlDgYYUFAaOif4GJhQUD0u8MAnGFBQGsOEMzRYUFAtFn1udpiQUBc3i95FmNBQCMY9MtNY0FADjoOqY9jQUCQ72W102NBQHUCmggbZEFAnXjh4VBkQUACcq+5kGRBQC0mNh/XZEFA6Ugu/yFlQUC0o0sSXmVBQP5QVvmLZkFAZWAK/M5mQUBaq2OCB2dBQHnxaxE+Z0FA29RTvnpnQUCDdnRJwmdBQPTLTcEHaEFABb1KUUFoQUDSSjRbjGhBQPe8CEDJaEFASS7/If1oQUCT2wkJK2pBQG++/hFzakFAaEeXJLxqQUCLrvhz92pBQP0D0us8a0FAANOPc4hrQUB4TTWgy2tBQJqpI1oFbEFAymyQSUZsQUBhrjJAj2xBQGyF1rDMbEFAwHgGDf1tQUDTYgP8LW5BQHr5sPFzbkFANxWpMLZuQUD9VW0k9m5BQIUlHlA2b0FAf7kp+IBvQUBl19DgyW9BQDqKhp8ScEFAU9Mb21hwQUBclNkgk3BBQLuwSCa6cUFAYzWD5fVxQUAbNyIFPHJBQOGCWY59ckFAvmVOl8VyQUAXK2owDXNBQCxlGeJYc0FAG7P/FKFzQUDnNXaJ6nNBQH93GIAzdEFABR9wSmZ0QUAh6j4AqXVBQEJYoPDsdUFAHzuV+TR2QUC1ccRafHZBQJpnEuK3dkFAaNgVIPd2QUD/GbgWQHdBQN71rH5/d0FA1lbsL7t3QUC8TDq39ndBQFJx9uEzeEFAelORCmN5QUD5549WonlBQPyk2qfjeUFAmuPv8Rx6QUDY8PRKWXpBQEQPj9eWekFAb8MVPd16QUByde34HHtBQEkhoxZde0FAiVYB0aZ7QUDi4VDS1ntBQMtS2DIGfUFATx4Wak19QUBoXDgQkn1BQL4Lbn7WfUFAoQi8php+QUBa7XT6VH5BQM5GwWaTfkFAa6K8fNh+QUCzB1qBIX9BQIF4Xb9gf0FAzs/6gZh/QUCozpAXv4BBQCRNqTj7gEFA+u3rwDmBQUC3G1c2hoFBQDawVYLFgUFAN1e6qAOCQUBWrzVuRIJBQErvG197gkFAJbwqPcCCQUBRXj5s/IJBQPevrDQpg0FAqrcGtkqEQUBCBBxClYRBQAIOoUrNhEFAyTzyBwOFQUC/r6TvSIVBQCv2l92ThUFAMLPiLtWFQUClNIj8IIZBQLhYUYNphkFAb0QKeKyGQUCoJUN74oZBQFroXc/qh0FAi7Y9VC2IQUDjcOZXc4hBQFTGv8+4iEFAokW28/2IQUA/obEJQ4lBQKaTf0B6iUFAiptA/r+JQUCzOeE4A4pBQE1XncI3ikFAVgbo0WeKQUDL1voioYtBQEyB35nji0FAGcqJdhWMQUCRJ0nXTIxBQJj6eVORjEFAHMa3itiMQUCfhoIsHo1BQFJuyCxojUFAMnIW9rSNQUB0oHQP9o1BQOC+DpwzjkFAb8gsaEePQUCMA8JhfI9BQPwlz+Kyj0FAkCkyTeuPQUAtaEeXJJBBQDpgRMhmkEFAvSAPaqyQQUDQRNjw9JBBQBeCHJQwkUFAnFjNYHmRQUD8Jc/ispFBQLEbti3KkkFAcCU7NgKTQUAnHGfARpNBQFXJ7YSEk0FAN7vIF8eTQUAnFCLgEJRBQPGAsilXlEFAfVTWSZCUQUDNzMzMzJRBQMU4fxMKlUFAuG3ybj+VQUCB5LAOWpZBQJYBevSZlkFAJuSDns2WQUBOWst3A5dBQMOzF+RBl0FA+6bDHYKXQUD0L1wwy5dBQGZzwnEGmEFA0ZFc/kOYQUCNl24Sg5hBQKnZA63AmEFAJJwWvOiZQUB2R9k1NJpBQHXN5JttmkFAUpPz2KmaQUChHV2S8JpBQI5D6mMrm0FAEg8om3KbQUB4E2kItJtBQEuwOJz5m0FAu/qefj2cQUD9KP2XfpxBQNAfrUSznUFA0uP3Nv2dQUDWoEKIPp5BQP1F42OKnkFA7qmvwdWeQUD1X/pxDp9BQH1MkWlan0FAD2JnCp2fQUArweJw5p9BQH93GIAzoEFArhIsDmegQUBBguLHmKFBQBtP8aXdoUFA58b0hCWiQUC4O2u3XaJBQL0VnNSqokFA2X+K0PWiQUBfVjudPqNBQPB9hHSLo0FAveMUHcmjQUBOC170FaRBQHiXi/hOpEFA5SzsaYelQUA3u8gXx6VBQM78ag4QpkFADSdWM1imQUCBnYhroqZBQCIa3UHspkFA09nJ4CinQUBvKlJhbKdBQK5Cyk+qp0FAJJwWvOinQUBpzufJIqhBQD3ifUJjqUFA9LvDAJypQUCNE0wi6KlBQJPbCQkrqkFAVBhbCHKqQUAbZJKRs6pBQJPeN772qkFAXFLIqEWrQUCLMhtkkqtBQJYmpaDbq0FAohMvPBysQUCLeUMHSq1BQJ2dDI6SrUFAC+9yEd+tQUC0mwYyKK5BQOE9GmFkrkFAlDDT9q+uQUAbEvdY+q5BQL2ZvsRFr0FAypG79YevQUA63CHYy69BQC457pQOsEFAms5OBkexQUA7Lr0QhbFBQMP9bTzFsUFA9fOmIhWyQUDJfgOAULJBQAWTCHqVskFAeNZuu9CyQUArySdRHLNBQJsTjjNgs0FA9u6P96qzQUDX4GqK7bNBQAoJKygftUFAbOwS1Vu1QUDnhxHCo7VBQOs56X3jtUFAgl6lqCC2QUB0sP7PYbZBQKOF3vWstkFAjqf40u62QUBX7C+7J7dBQDOny2Jit0FAsDBXGaC3QUB85VRFy7hBQMpkS2kQuUFA4Zf6eVO5QUCp7qSYlrlBQFnABG7duUFAm+5ihx66QUBdK7SGZbpBQLn0QhSmukFAZI9j/uS6QUC2OiZ4MLtBQFelBxhwu0FA155ZEqC8QUA0aOif4LxBQOQcYqkbvUFAMpxYzWC9QUDgYkUNpr1BQDT8lFDnvUFAZedaoTW+QUCoFbm6dr5BQN3nCzSyvkFAatEVf+6+QUDyg+DeIr9BQCOhLedSwEFAKEGSbIjAQUD4x3vVysBBQJD3qpUJwUFA+zIr7lLBQUCp7qSYlsFBQDwEeznZwUFAM2W66hTCQUBGlPYGX8JBQDv8NVmjwkFAP7mAquTCQUDE+4TGJsRBQJVliGNdxEFAJYJepajEQUCgEur87sRBQBFow3Q0xUFAUZ0hL37FQUD/Yw5vw8VBQMGgX24KxkFAllMVLVPGQUDl3X7mmcZBQDBHj9/bxkFAAUU/LRnIQUBIjfZlVshBQOPHmLuWyEFAf/s6cM7IQUCzwhpUCMlBQPMC7KNTyUFASr2Up5nJQUD5Zpsb08lBQCkflXUSykFAIJ268lnKQUCqZWt9kcpBQIzr8sDay0FAEqW9wRfMQUAZeO49XMxBQNaT5nyezEFAdujh8drMQUBe9BWkGc1BQK+UZYhjzUFAn+2+UK3NQUCSXP5D+s1BQAGc8ZA8zkFAk5ThZXPOQUBbOvkHpM9BQIDUJk7uz0FAWIDcay7QQUDS84H3aNBBQEVUzgSw0EFADrbruPTQQUBEk7HHMdFBQNqs+lxt0UFAqz5XW7HRQUCRUYuu+NFBQM9ekAc10kFAIDFno2DTQUA9YYkHlNNBQFaCxeHM00FA8e8zLhzUQUCG/gkuVtRBQN/DJced1EFAgEB6nefUQUBLuH18L9VBQGIIE1l+1UFADa6m2L7VQUDU3PeV9NVBQA8YEbIZ10FAcBjfKmLXQUDwt1AMo9dBQN8FNz/r10FAavZAKzDYQUAINVZ1adhBQN7VmP2n2EFAxf6ye/LYQUC7cWVjONlBQKyt2F922UFA8s02N6bZQUDuqa/B1dpBQHywn9gd20FAJF0z+WbbQUDP91PjpdtBQBdd8efu20FAFeP8TSjcQUAyTetJc9xBQIDpxznE3EFAI18cbwXdQUBZWchJTt1BQKrcMWKM3UFApbiq7LveQUAQ6bevA99BQB/sJ3ZH30FAe7W2A4jfQUBi3tCB0t9BQHfwJtIQ4EFApLqTYlrgQUDYgXNGlOBBQAM2+qva4EFAMQBnPCThQUCGal19T+FBQL6PkG5x4kFAmT+5gKriQUDJAiZw6+JBQMq7/cwz40FAMdYkZXjjQUBxC4MfwuNBQMrQnrgJ5EFAha5XazvkQUAf9GxWfeRBQEaZDTLJ5EFAykdlnQTlQUAUu6PsGuZBQBuZR/5g5kFAs6AdXZLmQUAPTcYex+ZBQFu21hcJ50FAdhVSflLnQUCRQQHujOdBQLXbLjTX50FAM2W66hToQUBpQoD5UehBQHtJY7SO6EFALFi91rjpQUCl0mID/OlBQH6U/ks/6kFAs4M3kYbqQUBcE+Xlw+pBQOr87jAA60FALCtNSkHrQUCPGaiMf+tBQHELgx/C60FALAYinv/rQUBBI+uDP+xBQIuzD59h7UFA9cY2lp3tQUDIUZPz2O1BQP1AzDgg7kFAnbKteWjuQUB9tvtCte5BQLWeNOfz7kFA1xcJbTnvQUC1BXELg+9BQK1xI1LA70FAe+ImkP/vQUCWaLYYKfFBQACZw9tw8UFAlMR/p7bxQUDnb0IhAvJBQMVAxPM/8kFAXo3Zf4ryQUDJq3MMyPJBQGgdVU0Q80FA5845ZVvzQUAtAQtzlfNBQIGaWrbW80FATXexQw/1QUD+SBEZVvVBQAxMgd+Z9UFAgZpattb1QUDLFd7lIvZBQJ69IA9q9kFAZSY+ZLf2QUBYgwoh+vZBQGFPO/w190FAqKlla333QUDx/I85vPdBQCtKHIzr+EFAPW7lEjT5QUBoBYasbvlBQJirDNCj+UFAQ2MThu75QUB7OdnzIvpBQMOedvhr+kFAmFEst7T6QUB7Tnrf+PpBQFDHYwYq+0FAELQCQ1b7QUDQ+oGYcfxBQDorj1u5/EFAsX3bJu/8QUC7cWVjOP1BQLLkF0t+/UFAtJbvBr79QUBdOBCSBf5BQCiwE3FN/kFA4bwlJpX+QUAvPBxK2v5BQF66SQwC/0FAJiaVFhsAQkB0sP7PYQBCQI3uIHamAEJALSY2H9cAQkAPGBGyGQFCQOrSrFlUAUJAEXhNNaABQkCec8q25gFCQJsLSVMqAkJAPXYq82kCQkBFGgJtmAJCQOnMUO+8A0JAhgtmOfYDQkD1SlmGOARCQB7p+cB7BEJAuycPC7UEQkDJPPIHAwVCQMGopE5ABUJA1Mxt1YgFQkCjSOSoyQVCQF1gafMSBkJARGEqEFAGQkDX0ODJgQdCQJCYs1GwB0JA8piByvgHQkBq9kArMAhCQNMQaMN0CEJAx1vBSa0IQkCBaNP+9AhCQLUvs+IuCUJARmJvT30JQkDJF8dbwQlCQIDUJk7uCUJAUdLWmysLQkAK3+hQcwtCQMX2bZu8C0JAm7SW7wYMQkA7CZJkQwxCQKpIhbGFDEJAwoanV8oMQkCXHHdKBw1CQFEpif9ODUJAJNHLKJYNQkC12y401w1CQEku/yH9DkJAzufJIjoPQkBRqJTEfw9CQBCnpje2D0JAHZQw0/YPQkCvjCCoLRBCQJ/Ik6RrEEJANxWpMLYQQkAnbgL5/xBCQBObj2tDEUJAZilsGYMRQkD3gjyosRJCQPYTu6PsEkJA5US7CikTQkDLV+9dcBNCQPf5Ao2sE0JAdIOOQ+oTQkBuF5rrNBRCQL6PkG5xFEJA/JyVx60UQkBPSFhB+RRCQGM9yMUrFUJAhv4JLlYWQkDD9ShcjxZCQHTS+8bXFkJAwz9/tBIXQkAue/8MXBdCQFYOLbKdF0JAbUHcwuAXQkDcnbXbLhhCQHTqymd5GEJABQehqcQYQkB5YO0VAxlCQNRtdpEvGkJA5nRZTGwaQkD6o5VothpCQCqE6CMDG0JA5on6N0IbQkBiJfkkihtCQKI9cRPIG0JAvHSTGAQcQkD7gZhxQBxCQP1F42OKHEJA+64I/rccQkDf6FBz3x1CQB4ery0pHkJA41MAjGceQkAJv9TPmx5CQKHjkPrYHkJApJVothgfQkApTzO3VR9CQMNs70CKH0JABbgzJtcfQkBy/iYUIiBCQFrtdPpUIEJA6ylfvXchQkBG8+1KuCFCQD98hl0BIkJADApwZ0wiQkCkLiySiSJCQAssbV7CIkJAnVO2NQ8jQkCCZuqIViNCQBy+cqqiI0JAQlig8OwjQkAa8uLXIiRCQO3LrLhLJUJAalU4b4klQkDUaF9mxSVCQO2Jm0D+JUJADwNwxkMmQkD7OnDOiCZCQGto8OTAJkJAJlgczvwmQkBTIoleRidCQHKFd7mIJ0JAmvu+kr4nQkBj5hViCClCQG/whclUKUJA+8Op6Y0pQkBIVRNE3SlCQEHMOCAcKkJA1hTbt20qQkBoKrFYsCpCQIiqhX/+KkJAQsIKykcrQkC4JsrLhytCQIVvdKi5K0JAmfiQ3fIsQkAHECvJJy1CQP5l9+RhLUJAhlKO3K0tQkAkufyH9C1CQGLj56w8LkJACmgibHguQkCaZxLity5CQJD3qpUJL0JAKSfaVUgvQkB/uSn4gC9CQGgqsViwMEJAKmcCWPcwQkDmbBRsNjFCQOHurN12MUJAxdmHz7AxQkALDFnd6jFCQLzLRXwnMkJAfxMKEXAyQkANGvonuDJCQAeckpn4MkJAvodLjjszQkD++aOVaDRCQKZ+3lSkNEJAcM6I0t40QkDHiDHWJDVCQI3J9clkNUJA89ipzKc1QkDmR+m/9DVCQKylk39ANkJA6cQLD4c2QkCPPtM4wTZCQNJ3pOcDN0JAHh6vLSk4QkAHKuPfZzhCQGb35GGhOEJAV1uxv+w4QkBQx2MGKjlCQN/YxrJzOUJAdQ/2E7s5QkAp5cjd+jlCQE+KablGOkJAxSj1Up46QkAXj3if0DpCQJE0peLsO0JAFxbJRDc8QkBbT5rzeTxCQLxPaGzCPEJAI18cbwU9QkAYx1vBST1CQHWbXeSLPUJATl35LM89QkCThFelBz5CQHBnTK5PPkJAGgJtmI4+QkA6l+Kqsj9CQHyoWvjnP0JAtH4gZhxAQkB40VeQZkBCQGoYPiKmQEJAcM6I0t5AQkB3oblOI0FCQJb5NBRkQUJAyuhtWatBQkBuaTUk7kFCQKU0iPwgQkJA/T2eg1RDQkAjqXLHiENCQDrcIdjLQ0JAEJpKLBZEQkAyEx+yW0RCQCdeeDiUREJAJPb21NdEQkBuZgdvIkVCQH106spnRUJANlmjHqJFQkCyutVz0kVCQMMFsxz7RkJA8+UF2EdHQkAtxz7bfUdCQMPgh3C5R0JAR6zFpwBIQkCN3pa1OkhCQEXDTwl1SEJAn5PeN75IQkCFsYUgB0lCQAJY96JQSUJAbWsemoxJQkAPTcYex0pCQDK0J24CS0JAVhuJvT1LQkAgiBkHhEtCQPIHA8+9S0JAEGB+lP5LQkAsohMvPExCQOnECw+HTEJA8IXJVMFMQkBB/r/X/UxCQFTovMYuTUJAvo+QbnFOQkBVtEyZrk5CQGWlSSnoTkJASaKXUSxPQkCuw76KeU9CQKxJyvCyT0JA63O1FftPQkA10lJ5O1BCQJPOrf2KUEJAbIXWsMxQQkA1rSfN+VBCQF2aNYsqUkJAQ5CDEmZSQkCyspCTnFJCQNUZ8uLXUkJAUbXwzx9TQkA/A9cCaFNCQB7xPqGxU0JAHZQw0/ZTQkAaSZU7RlRCQGrecYqOVEJArxBDmMhUQkCJBGaY7VVCQKAaL90kVkJA6GLmFWJWQkCPBAehqVZCQOKvyRr1VkJAw6GkrTdXQkBPkq6ZfFdCQHtRqJTEV0JAjWr+hQtYQkCfg1R3UlhCQEDuNReSWEJA6/8c5stZQkAl/ju1DVpCQNbaDiBWWkJAWJBmLJpaQkB7FK5H4VpCQKGu240rW0JAqZfyNHNbQkCrPldbsVtCQO2Jm0D+W0JAYuPnrDxcQkBSH1upelxCQI6CzSatXUJAfKha+OddQkCsa8fnKF5CQOd/zOFtXkJA8n7Js7heQkDOLvLF8V5CQP/80Uo0X0JAp57y1XtfQkDn01CQxV9CQGqUGzILYEJA4OZn/UBgQkD1jGr+hWFCQDm0yHa+YUJAoMN8eQFiQkCVDtb/OWJCQFI8QXWGYkJARpkNMsliQkAdRcNPCWNCQMXJ/Q5FY0JAYCz5xZJjQkDj7MNn2GNCQINMMnIWZEJAu+X9kmdlQkDNCccZsGVCQEuTUtDtZUJAzlMdcjNmQkAUrkfhemZCQCCtRLPFZkJASlZYgwpnQkA2cXK/Q2dCQOpjK1WPZ0JAayv2l91nQkDOGVHaG2hCQC2NckNmaUJAUPTTkqFpQkDg1t081WlCQKITLzwcakJAGo7UaF9qQkBnAlj3ompCQAAyh7fhakJAjjh3zilrQkBWfa62YmtCQFlMbD6ua0JAZCMQr+trQkDX3TzVIW1CQMMVPd1mbUJAjE8BMJ5tQkD/usDS5m1CQLvA0uYlbkJAS92oKHFuQkCDxeHMr25CQBSzXgzlbkJAOEIZvS1vQkCHzIJ2dG9CQHsMaWerb0JAh58S6vxwQkD7+F5WO3FCQNW6+p5+cUJACqoz5MVxQkBib099DXJCQLoXhUpJckJA7OVkz4tyQkA9ac7nyXJCQB1iqRsVc0JAYLhglmNzQkDeTF/ionNCQCtVjyHtdEJADjX3fSV1QkACksM6aHVCQGh5HtyddUJAwlQgoOh1QkB4UkzLNXZCQJzseRGAdkJA9KYiFcZ2QkCypTSI/HZCQFtHVRNEd0JAIIgZB4R3QkB7gy9MpnhCQAltOZfieEJANg9Nxh55QkACksM6aHlCQFxiUmmxeUJAOShhpu15QkC1w1+TNXpCQDBU6+p7ekJA8pA86sJ6QkBk8Yj3CXtCQNg/Ys5Ge0JA1QloImx8QkDmBdhHp3xCQDuqmiDqfEJAvDeZyyB9QkAmaKaOaH1CQPgEdiKufUJARVwT5eV9QkCKjuTyH35CQOxxzJ9cfkJAuOnPfqR+QkCKTNN60n5CQDEVCCj6f0JAmCS8Kj2AQkAUyy2thoBCQAEDLrXLgEJAKIvoxAuBQkCHddASUYFCQEyrIXGPgUJA2Kae8tWBQkAd9lXMG4JCQJFhFW9kgkJAy0JOcpqCQkCtq+/p14NCQFpc9v4ZhEJAYh20RFSEQkC92888k4RCQMjazA7ehEJAa1AhRB+FQkCcARv9VYVCQJaVJqWghUJA05e4aNuFQkB0FA0/JYZCQOAgNJVYhkJAcZfq75KHQkBYmKsM0IdCQE4LXvQViEJANAwfEVOIQkBCBBxClYhCQIppuUbeiEJAB+jRZxqJQkDkysZwYolCQO/Jw0KtiUJATJ7FZe+JQkAyn4aCLIpCQEw3iUFgi0JAhlKO3K2LQkA7M9Q774tCQOPfZ1w4jEJA1UM0uoOMQkCcmt7YxoxCQL0IQMkKjUJAmus00lKNQkBtiARmmI1CQJ45/h7PjUJA1SE3ww2OQkCbn/UDMY9CQIbBD+Fyj0JAF+lYuL+PQkBGoVIS/49CQK2wBhVCkEJA8OnXw4SQQkC4I5wWvJBCQEYqjC0EkUJAiGNd3EaRQkD2l92Th5FCQD7DrgC5kUJAwe/M8feSQkC8fNj4OZNCQEl4VXqAk0JA9xbpWLiTQkD+6RnV/JNCQHh6pSxDlEJAsYo3Mo+UQkAVoevV2pRCQBx0HFIflUJApU5AE2GVQkD99nXgnJVCQNYHf6zNlkJAaB1VTRCXQkDmw8bPWZdCQAANXAugl0JAqsRiweqXQkDJJ1EcLZhCQHoEJId1mEJA4h5LH7qYQkAqZwJY95hCQJWXDxs/mUJA7zhFR3KZQkBhyxgMm5pCQLh6TnrfmkJAV89J7xubQkD3QCswZJtCQOuoaoKom0JAOShhpu2bQkDWg1y8MpxCQNtApw10nEJAtSqct8ScQkDqGdX8C51CQFABMJ5BnUJAiGuivHyeQkAMD4eStp5CQJn4kN3ynkJARJOxxzGfQkD/qjYSe59CQBTwWFnIn0JAzfH3eA6gQkAgnbryWaBCQBEBh1CloEJAxRuZR/6gQkCXkA96NqFCQMe/z7hwokJABKV7sJ+iQkAh1Z0U06JCQKu6NGsWo0JADbsC5F6jQkDXCq1hmaNCQODzwwjho0JAx/SEJR6kQkCwCyxtXqRCQI75kwuopEJAwKqNxN6kQkCGnOQ0MaZCQDiEKjV7pkJACRaHM7+mQkAjXxxvBadCQHHeEpNKp0JAk2JarpGnQkAQ4XLPzadCQLNWxwQPqEJAb3m/5FmoQkC511xImqhCQEjM2SjYqEJA23VceiGqQkCakVS5Y6pCQNu/stKkqkJA6Kw8buWqQkD3r6w0KatCQB5gwKV2q0JAO6JVQLSrQkAC+f9e96tCQL0QhalArEJAv7fpz36sQkAJFoczv6xCQAUszFUGrkJAdXYyOEquQkAvZl4hhq5CQCzh9vG9rkJAlvQd6fmuQkDO3FaNOK9CQN/YxrJzr0JAbd+2ybuvQkDsmw53CLBCQAoRcAhVsEJAzTtO0ZGwQkC+0aHmvrFCQDt4E2kIskJAxV2qv0uyQkBfmEwVjLJCQBmIeP7HskJAJId10BKzQkDNFiMlULNCQKG+ZU6Xs0JAdUnCq9KzQkCPgOSwDrRCQJpXiCFMtEJAYeC593C1QkArMGR1q7VCQBlW8UbmtUJA9AUaWR+2QkDBiJDNaLZCQCKJXkaxtkJAHhZqTfO2QkD3zJIANbdCQCV6GcVyt0JA4oqebrO3QkDudygK9LdCQJlsKQ0iuUJAtcukc2u5QkDYMgbDprlCQHmSdM3kuUJAP9M4wSS6QkCevSAParpCQPBdcPOzukJAVHQkl/+6QkCRdrZaOrtCQDwcStp6u0JAVzaGE6u7QkAOfB8h3bxCQAoJKygfvUJArHMMyF69QkAqCAsUnr1CQPh4DlLdvUJAeSPzyB++QkB94D0aYb5CQCuct8SkvkJAIhrdQey+QkAbo3VUNb9CQLC8vulwv0JAX+/+eK/AQkAdC/e38cBCQPrt68A5wUJAtxtXNobBQkAskolu0MFCQBSevSAPwkJAKsb5m1DCQkCPyjoJksJCQAIrhxbZwkJAuiGzoB3DQkCycH8bT8NCQIuBiOd/xEJAYzixmsHEQkAIuXhlBMVCQHgD30dIxUJA8H2EdIvFQkBm4kN2y8VCQGebG9MTxkJA7HHMn1zGQkC+5kLSlMZCQPfkYaHWxkJAtM2N6QnHQkA2o/l2JchCQEBdtxtXyEJAlu8Gvo/IQkB13W5c2chCQIjvxKwXyUJAgVt381TJQkD20akrn8lCQKuy74rgyUJAgl6lqCDKQkCxFp8CYMpCQJ4xuT6ZykJA03rSnM/LQkAWtKNLEsxCQA8gVpJPzEJA/m08xZfMQkC8bE44zsxCQC+wtHkJzUJAxL6KeUPNQkC+NbBVgs1CQB0gmKPHzUJAo9lipATOQkDYtiizQc5CQKBcQFVyz0JARcuU6arPQkDmDR0o3c9CQDWYhuEj0EJAMQisHFrQQkA2xfZtm9BCQD+5gKrk0EJAbnF6BCTRQkCIug9AatFCQDM4Sl6d0UJA28f3strRQkD6sx8pItNCQI7UaF9m00JAqShxMK7TQkDkFB3J5dNCQFFmg0wy1EJAsW1RZoPUQkBHh5r7vtRCQCeAdS8K1UJAjawP/ljVQkB674Kbn9VCQAm8phrQ1UJAEuK3DvvWQkD23gU3P9dCQJx1syyF10JAdyXcPr7XQkANXAugBdhCQJQ9LwJQ2EJAPrtpIIPYQkAKIfrIwNhCQAOqktsJ2UJABVH3AUjZQkDrKV+9d9lCQK3AkNWt2kJAtqmnfPXaQkAits7SKNtCQIfMgnZ020JAXng4lLTbQkCOO6WD9dtCQD8NBVk83EJAfRoKsnjcQkChqcRiwdxCQGv5buD73EJA5US7CindQkCl4uzDZ95CQBcb4G+h3kJAJBPdoOPeQkA6HjNQGd9CQLGf2B1l30JApPyk2qffQkAXQAsc499CQCpvRzgt4EJA4Hfm+HvgQkB2o6LEweBCQAONrA/+4EJAeV2/YDfiQkAxX16AfeJCQJdGuSGz4kJA3qtWJvziQkAby861QuNCQHFdHlh740JAL26jAbzjQkD65abgA+RCQE6c3O9Q5EJALoNE7ZHkQkCWnWuF1uRCQJzc71AU5kJAKLATcU3mQkABVcnthOZCQJRNucK75kJAKoToIwPnQkAHSvdgP+dCQN3qOel950JAJltKg8jnQkAQcvHKCOhCQERhKhBQ6EJAfCx96ILoQkCOAdnr3elCQI2kyh0j6kJAZVvz0GTqQkBnHz7DrupCQFiDCiH66kJA/QPS6zzrQkCnu9ihh+tCQM1Dk7HH60JAIgU8VhbsQkD1oQvqW+xCQPI5ioaf7EJAC9KMRdPtQkCMh+RRF+5CQOlQc99X7kJArq4dn6PuQkBD2tlq6e5CQMelF6Iw70JAB9t1XHrvQkAgGZgCv+9CQK0fiBkH8EJA1bK1vkjwQkBinL8JhfBCQDdkFrSj8UJAtAqINu3xQkA1tWytL/JCQCwzkip38kJAUs2/cMHyQkBTkQpjC/NCQH9FkchR80JAEkn0MorzQkBbuQTN1PNCQLJoOjsZ9EJAwjxR/0b0QkDCCspHZfVCQC0pZNSi9UJASH1sper1QkDWg1y8MvZCQFg5tMh29kJAhuY6jbT2QkB3LSEf9PZCQHXQElE590JAdmwE4nX3QkC/vy6wtPdCQHJtqBjn90JAwyKZ6Ab5QkDQ/a9NPflCQKV2mXRu+UJAuHIJmqn5QkDQk0V04vlCQJwWvOgr+kJAqANGhGz6QkDOnXPKtvpCQJwOdwj2+kJAytjjmD/7QkDj+R9zePtCQEtRQVig/EJAXGqXSef8QkDiI2JKJP1CQObgrJtl/UJA41tFbJ39QkBoFRBt2v1CQGGeqH8j/kJAuDtrt13+QkChUhL/nf5CQINh013s/kJAjyYEmB//QkCD3bBtUQBDQEX9G6GMAENABzptoNMAQ0BrUCFEHwFDQH1MkWlaAUNAxLEubqMBQ0BWxwQP5gFDQFdj9p8iAkNAQ3OdRloCQ0D+iiKRowJDQFg+y/PgAkNAzyTEbx0EQ0DFl3ZXYwRDQCBWkk+iBENAXoB9dOoEQ0Bxh2AvJwVDQIakKRVnBUNAaqzq0qwFQ0BHj9/b9AVDQGT5zdc/BkNAHQbgjIcGQ0DwhclUwQZDQDoW7m/jB0NAN5GGQBsIQ0Ar7lL9XQhDQGPzcW2oCENA0AoMWd0IQ0AK7ERcEwlDQHo2qz5XCUNARKM7iJ0JQ0AmlRYb4AlDQG7dzVMdCkNAeJeL+E4KQ0DDbO9AigtDQI/HDFTGC0NAGa2jqgkMQ0AhbmHwQwxDQF5w87N+DENAUs2/cMEMQ0B+jLlrCQ1DQDyLy94/DUNAYf2fw3wNQ0BaaVIKug1DQMNxBmz0DUNAP0r/pR8PQ0DzH9JvXw9DQNTpU6GUD0NAW7kEzdQPQ0BC16u1HRBDQGdJgJpaEENAsLmQNKUQQ0AXt9EA3hBDQCCg6KclEUNAqG+Z02URQ0DP2m0XmhFDQCno9pLGEkNA7ii7hgYTQ0A9qLGqSxNDQKO3Za2OE0NAUmFsIcgTQ0B9MtlSGhRDQENznUZaFENAzTtO0ZEUQ0B1wIiQzRRDQHJYBy0RFUNA3WsuJE0VQ0Af9GxWfRZDQOhVigrCFkNAJGqPBAcXQ0DedqG5ThdDQAX/W8mOF0NAV404d84XQ0CRi1dGEBhDQFzmdFlMGENA+BkXDoQYQ0CrDNCjzxhDQH+XLAELGUNAnT4VSjkaQ0BOG+i0gRpDQGp6YxvLGkNAGTbdxQ4bQ0D4EdItThtDQDsuvRCFG0NA91C18M8bQ0CjAbwFEhxDQLwi+N9KHENAOL72zJIcQ0Ct+lxtxRxDQG1ewo7sHUNATkUqjC0eQ0CLR7xPaB5DQEQ36DikHkNAwt1Zu+0eQ0BAjz7TOB9DQM2Ku1R/H0NAObTIdr4fQ0DhOAM2+h9DQL7znt00IENA4mVzwnEgQ0AchKYSiyFDQFFW+YvGIUNA/ukZ1fwhQ0D9epjQNyJDQMTGz1l5IkNAbXNjesIiQ0AJxOv6BSNDQMoAPfpMI0NALgx+CJcjQ0AHzhlR2iNDQLyReeQPJENAtEyZrjolQ0AR+UFwbyVDQFE5E8C6JUNAhR3ZbwAmQ0AZPiKmRCZDQKhPhVKOJkNAba0vEtomQ0CF61G4HidDQBb2tMNfJ0NA1wqtYZknQ0AM3f/a1CdDQBIchKYSKUNA3nahuU4pQ0DV9MY2lilDQMMaVAjRKUNAAlCywhoqQ0ChtiBuYSpDQK2jqgmiKkNAK1WPIe0qQ0BW4bwlJitDQK2bZSlsK0NAxbyhA6UrQ0Cs7+nXwyxDQFBTy9b6LENAIeUn1T4tQ0BkE4bufy1DQL3jFB3JLUNATgte9BUuQ0CXXojCVC5DQO0NvjCZLkNALjGptNguQ0BKcz5PFi9DQPL3eA5SL0NA7KuYN3QwQ0ANGvonuDBDQN2D/cTuMENAfdj4OSsxQ0DyTitydTFDQIFOG+i0MUNA1PndYQAyQ0ApnqA6QzJDQNA/wcWKMkNAOkh1J8UyQ0Dir8ka9TJDQETFOH8TNENA6VBz31c0Q0D2IBevjDRDQLQ8D+7ONENAMeOAcBg1Q0BnwEZ/VTVDQEq9lKeZNUNAMNDI+uA1Q0DyDBr6JzZDQIgmY49jNkNAnDi536E2Q0DKXAaJ2jdDQKEIvKYaOENAKM35PFk4Q0DZjObblThDQKwptm/bOENAWNq8hB05Q0B+VwT/WzlDQFYOLbKdOUNAbV7Cjuw5Q0A82jhiLTpDQA4yychZOkNAgx/C5Z47Q0AAqU2c3DtDQKElonImPENAHcGgX248Q0DKjo1AvDxDQKZUnH34PENA2D9izkY9Q0DBc+/hkj1DQLfmocnYPUNA893A9xE+Q0BoNw1kUD5DQIOrKbZvP0NAqShxMK4/Q0ADBHP0+D9DQMdLN4lBQENADH4Il3tAQ0AXfQVpxkBDQBsv3SQGQUNApypapkxBQ0CLMhtkkkFDQE963/jaQUNASsKr0gNCQ0DAnTG5PkNDQIv4Tsx6Q0NAEtpyLsVDQ0DgZ1w4EERDQL5VxNZZRENA7Q2+MJlEQ0APaqzq0kRDQNKxcH8bRUNAlwSoqWVFQ0AwXDDLsUVDQIDUJk7uRUNA95LGaB1HQ0A2yCQjZ0dDQDIt18ibR0NATpfFxOZHQ0B9REyJJEhDQE/ENVFeSENAfGZJgJpIQ0Abu0T11khDQHehuU4jSUNA27dt8m5JQ0D7/XWBpUlDQHX6VCjlSkNAHooCfSJLQ0AjUsBjZUtDQEbWB3+sS0NADDSyPvhLQ0DnAMEcPUxDQBK1R4KDTENAbIXWsMxMQ0B/tBLNFk1DQPpEniRdTUNAikSOmpxNQ0AHV1Ns305DQBl7HPMnT0NAzltiUmlPQ0B4E2kItE9DQE3GHsf8T0NA5RI0U0dQQ0DaXY3Zf1BDQEeHmvu+UENAeHJgTA1RQ0ClMVpHVVFDQOdfuGCWUUNAOSAcxrdSQ0CDfrkp+FJDQJyqaJkyU0NAi/hOzHpTQ0CJkM1ovlNDQPjPwLUAVENALspskElUQ0BvCj7glFRDQCG4t0jHVENAZPGI9wlVQ0D5/173Q1VDQAU8VhZyVkNAQVBbELdWQ0B9ZGAK/FZDQLhQDKMzV0NA7Bfshm1XQ0C+tLsas1dDQHCcARv9V0NASIKD0FRYQ0CsmDd0oFhDQFxNsX3bWENAERERERFZQ0Bd8efuTVpDQIGAop+WWkNA54TjDNhaQ0AglXUSJFtDQNJ8uxJuW0NAn/8xh7dbQ0Aj1uJTAFxDQOgoGn5KXENAJFoFRJtcQ0B2Bci95lxDQBMn9zsUXUNAXANbJVheQ0CbG9MTll5DQJada4XWXkNA2OivaiNfQ0D3QCswZF9DQJe9fwauX0NAgfx/r/tfQ0A17zhFR2BDQGa9GMqJYENAvGxOOM5gQ0AAsZJ8EmFDQA8gVpJPYkNAjr/Hc5BiQ0DBmBqO1GJDQOT/e90PY0NAxvFWcFJjQ0DAaHxMkWNDQM19X0nfY0NAMImgVylkQ0CVn1T7dGRDQPeqlQm/ZENASjlyt/5kQ0Cx3NJqSGZDQLOgHV2SZkNAj1u5BM1mQ0DPczHzCmdDQKtLs2ZRZ0NAb4EExY9nQ0A755RtzWdDQGq8dJMYaENAD1oiKmdoQ0CN7iB2pmhDQBKLBavXaENAG+BvoRhqQ0BOnNzvUGpDQGoGy+ubakNAQrKACdxqQ0B5t595JmtDQLjs/TNwa0NAC5jArbtrQ0Aen6No+GtDQOkWp0dAbENAldkgk4xsQ0B6z24ayGxDQLhIx8L9bUNA703mMkhuQ0CSwzpoiW5DQFYWcpLTbkNAhs5r7BJvQ0CEVHdSTG9DQKO3Za2Ob0NA0DyTEL9vQ0BuowG8BXBDQL443gpOcENA3pvMZZBwQ0DPa+wS1XFDQPofc3gbckNAKuPfZ1xyQ0B7SWO0jnJDQH/7OnDOckNAB+jRZxpzQ0D4S57FZXNDQNQjIDmsc0NAvm2Td/tzQ0AqqRPQRHRDQKMjufyHdENAsZJ8EsV1Q0AJO7LfAHZDQM2CdnRJdkNAHRhTw5F2Q0C8iTQE2nZDQDcawFsgd0NA5845ZVt3Q0AUjjNgo3dDQJg8i8ved0NAUkmdgCZ4Q0BChRB9ZHhDQLdVI86deUNA3NJqSNx5Q0AtS2HLGHpDQLIhEphhekNAVbRMma56Q0BiodY073pDQGJarpE3e0NAOiNKe4N7Q0DuIHam0HtDQB32VcwbfENAk1oVzlt8Q0B2ieqtgX1DQELkB8G9fUNAXTgQkgV+Q0A17zhFR35DQCxtXsKOfkNAghyUMNN+Q0B7iEZ3EH9DQJ0MjpJXf0NA31fSd6R/Q0Cz/xSh639DQC5zuiwmgENAXoWUn1SBQ0APYmcKnYFDQN7A9xHSgUNAceFASBaCQ0AjoS3nUoJDQD3qwiKZgkNAJQFqatmCQ0B8k7kMEoNDQNNqSNxjg0NAHcnlP6SDQ0B8bo5g0INDQLPCGlQIhUNACX3DV06FQ0DQqxQVhIVDQCBB8WPMhUNA3GPpQxeGQ0BubkxPWIZDQCiG0ZmhhkNA4Hz9I+aGQ0DnPbtpIIdDQHpwd9Zuh0NARtYHf6yHQ0A/kSdJ14hDQEloy7kUiUNAOaQ+tlKJQ0CafLPNjYlDQAbDprvYiUNApz/7kSKKQ0CzPvhjbYpDQKW4quy7ikNAA6qS2wmLQ0Bv8IXJVItDQCzZsRGIi0NAU7tMOreMQ0D0N6EQAY1DQGZ7B1I8jUNA4/kfc3iNQ0AiEphhto1DQB/H/MkFjkNA05zPk0WOQ0BIHnVhkY5DQF9RJHLUjkNAERERERGPQ0DpqlP4Ro9DQCHi+R9zkENAVMa/z7iQQ0Dn25Vw+5BDQLdif9k9kUNAhvvbeIqRQ0BTicWC1ZFDQCtA7jUXkkNA85aYVFqSQ0CIwlQgoJJDQDSFzmvskkNAW/sVRSKTQ0BtY9m5VpRDQHRBfcuclENAT/Gl3dWUQ0C6IbOgHZVDQDbIJCNnlUNALzTXaaSVQ0C3IG5h8JVDQOHJgTE1lkNA/Sj9l36WQ0C9WtsBxJZDQAKCOXr8lkNAX6WoICyYQ0BO1qiHaJhDQHhi1ouhmENArj+cmt6YQ0Abaam8HZlDQBnvtCJXmUNAS6Cu242ZQ0CSBUzg1plDQDy9UpYhmkNAY2LzcW2aQ0AfaAWGrJpDQFFz31fSm0NAh22LMhucQ0Bocdn7Z5xDQOgbvnKqnENA2Vcxb+icQ0A0PqbINJ1DQKee8tV7nUNAg3Z0ScKdQ0Cg4GJFDZ5DQEiN9mVWnkNAUTHO34SeQ0BQ9NOSoZ9DQPyk2qfjn0NA8AGnZCagQ0CZrjqFb6BDQD0kj7qwoENAnfwD0uugQ0BrbQcQK6FDQAKSwzpooUNA2VpfJLShQ0A4He4Q7KFDQImgVykqokNA/T2eg1SjQ0AIILWJk6NDQEIB7ozJo0NAyahFV/yjQ0BwSmbiQ6RDQO7w12SNpENAhiAHJcykQ0BwQiECDqVDQETNfV9JpUNA7oSEFZSlQ0B1ScKr0qVDQDzS84H3pkNA5mwUbDanQ0BUhK5Xa6dDQDSI/CC4p0NAaoKo+wCoQ0AbVAjRR6hDQOCUzMSHqENAvnfBzc+oQ0CfaZxgEqlDQHUK3+hQqUNASZU7RoypQ0DwXXDzs6pDQE095av3qkNAw5YxGDarQ0AigRlme6tDQKQ2cXK/q0NA+/AZdgWsQ0A6GwWbTaxDQNlvABCKrENABzptoNOsQ0DDXGWAHq1DQMPt43tZrUNAjr/Hc5CuQ0BbQj7o2a5DQHSAYI4er0NAGyKBGWavQ0DFvKEDpa9DQFGQxSPer0NA0R3EzhSwQ0DufD81XrBDQMtfND6msENAkatrx+ewQ0BTy9b6IrFDQL0ta3VMskNAqVr454+yQ0DcPr6X1bJDQFfPSe8bs0NA3pOHhVqzQ0B70pzPk7NDQFi1kdjbs0NANXugFRi0Q0Da6fSpULRDQGHLGAybtENAd/NUh9y0Q0DjCaoz5LVDQKVG+zIrtkNAi0e8T2i2Q0CUMNP2r7ZDQPMau0T1tkNAddASUTm3Q0Cz0qQUdLdDQJC1mR28t0NA6pCb4Qa4Q0BRoE/kSbhDQOicsq15uENAI6lyx4i5Q0CbGKVeyrlDQHG55+YIukNAqY+tVD26Q0Ce2gbbdbpDQEVUzgSwukNAJynDy+a6Q0D70AX1LbtDQFiweq1xu0NAYHE486u7Q0AAxjNo6LtDQHZ5YO0VvUNAVThviUm9Q0BpSsXZh71DQAh3Z+22vUNAw5lfzQG+Q0B8m/7sR75DQJfSIPKDvkNAzczMzMy+Q0A+IqZEEr9DQIaHQ0lbv0NAN0cw6Je/Q0AxDcNHxMBDQBDpt68DwUNAAzsR10TBQ0AVX9pdjcFDQExk+c3XwUNANI0TTCLCQ0B22Fcxb8JDQL9IaMu5wkNA6OYIBv3CQ0DnlG3NQ8NDQERpb/CFw0NAuycPC7XEQ0DxIbvl/cRDQNg/Ys5GxUNAXyGGMJHFQ0A98gcDz8VDQCLoVYoKxkNAGWZ7B1LGQ0BGCI82jsZDQKwXQznRxkNAwyKZ6AbHQ0ALa1AhRMdDQOauJeSDyENAPWnO58nIQ0BdzLxCDMlDQCkn2lVIyUNAPz2jmn/JQ0Dip4Q6v8lDQAELc5UBykNA7DcACEXKQ0DvBr6PkMpDQKgIXa/WykNAkR8E9xbLQ0CVSKKXUcxDQHpb1uqYzENASMzZKNjMQ0C/OwzAGc1DQMcZsNFfzUNAuH18L6vNQ0CMCNmM5s1DQAF/C8UwzkNAvo+QbnHOQ0B2kS+Ot85DQOO6PLD2zkNAX6WoICzQQ0ARcAhVatBDQGb35GGh0ENAXE2xfdvQQ0A/LRnaE9FDQKldJp1b0UNAeM4p25rRQ0CL/WX35NFDQKAaL90k0kNAvo+QbnHSQ0C/DpwzotJDQNmxEYjX00NAAlCywhrUQ0D/5zBfXtRDQHuDL0ym1ENAme0dSPHUQ0DLxnBiNdVDQEuOO6WD1UNA/F+besrVQ0Ah3eL0CNZDQMFOxDVR1kNAWFaalILWQ0CxWLB6rddDQHar56T310NAyWEdtETYQ0CudFEHjNhDQGVgCvzO2ENAmj3QCgzZQ0B5KzipVdlDQCoICxSe2UNAwCFUqdnZQ0Dx7zMuHNpDQIwYY01S2kNAJNHLKJbbQ0C35qHJ2NtDQAhqC+IW3ENAwXYdl17cQ0CYNEbrqNxDQHkmIX7r3ENAFnep/i7dQ0A/PaOaf91DQNuCuIXB3UNA1QRR9wHeQ0B2ZL8BQN5DQHRWHrdy30NAJCh+jLnfQ0BzsudFAOBDQDKx+bg24ENAKRI5anLgQ0CqqqqqquBDQFZQPirr4ENAZGUhJznhQ0BCNqP5duFDQDSab1fC4UNATcYex/zhQ0DSJQmvSuNDQO+P96qV40NA4uFQ0tbjQ0Ad9lXMG+RDQCTJhkhg5ENAfpkVd6nkQ0CPlYWc5ORDQH/u3mQu5UNAyWlilHrlQ0DfroTbx+VDQMGDeaL+5UNAgiwe8T7nQ0DUzG3ViOdDQD79epjQ50NAQcw4IBzoQ0CHG/D5YehDQDfQaQOd6ENA+e/UNtjoQ0CuvqdfD+lDQJ7vp8ZL6UNA85Nqn47pQ0ClQeQHwelDQPZNhzsE60NAR+7WH07rQ0CD5fVNh+tDQMUwOjPU60NApheiMBXsQ0CD+pY5XexDQAK37uap7ENADI6SV+fsQ0DaG3xhMu1DQCBOTW9s7UNANGCjv6rtQ0AwZHWr5+5DQBI5anIe70NAflcE/1vvQ0AoDwu1pu9DQDHbO5Di70NAyxXe5SLwQ0DBiJDNaPBDQICv+6Gs8ENAEsXRQu/wQ0DX+iKhLfFDQEwao3VU8UNAagbL65vyQ0DrpTzN3PJDQC7NmkUV80NAuqC+ZU7zQ0DfHQbgjPNDQNzSakjc80NAJTgITSX0Q0BSAnXdbvRDQGgqsViw9ENAuLQaEvf0Q0DDeUtMKvVDQOu9C25+9kNAHG8FJ7X2Q0Bq0RV/7vZDQFL6L/0490NABOJ1/YL3Q0DsCpB7zfdDQNlfdk8e+ENAybjPF2j4Q0DNkgA1tfhDQDrZ8yIA+UNA0ggj4z75Q0DYgXNGlPpDQG/DFT3d+kNA8oPg3iL7Q0Bev2A3bPtDQKMOGBGy+0NAukHHIfX7Q0DMPTdHMPxDQFcRW2dp/ENAguLHmLv8Q0CfQUP/BP1DQMbUcKRG/UNAuYCq5Hb+Q0AOJW29uf5DQGjYFSD3/kNADm/DFT3/Q0DpO9Lzgf9DQHhNNaDL/0NAehGAkhUARECwCyxtXgBEQNSa5h2nAERA+z+H+fIAREDQ1VbsLwFEQP/nMF9eAkRAYcsYDJsCRED1znt20wJEQBY93WYXA0RA57FTmU8DREAtAQtzlQNEQLPiLtXfA0RAcfOzfiAEREDwkiVgYQREQF3ki+OtBERAlMFR8uoEREB7/wxcCwZEQNa9KFRKBkRAeCgK9IkGRED76NSVzwZEQBcrajANB0RARPXWwFYHRECFNagQogdEQEJYoPDsB0RAbAG0wDEIREBNEHUfgAhEQKGM3pa1CERAEBs/Z+UJREDdblzZGApEQFwDWyVYCkRAFxvgb6EKREDu43tZ7QpEQO2R4CA0C0RA5wgG/XILREDip4Q6vwtEQAlYmKsMDERAA+yjU1cMREByK5egmQxEQIRHG0esDURAOQt72uENREBJGV42Jw5EQAUfcEpmDkRAvw6cM6IOREC5hcEP4Q5EQMeIMdYkD0RA/mX35GEPREDVLpPOrQ9EQNkIxOv6D0RAMH4twicQREAyf3IBVRFEQOyLhLacEURAgLdAguIRREBTNypKHBJEQKrx0k1iEkRASkbOwp4SREDTIPKD4BJEQD9n5XErE0RAQSswZHUTREC9xi5RvRNEQEy7qzH7E0RAhetRuB4VREBE9dbAVhVEQPbRqSufFURA4PPDCOEVREA9yMUrIxZEQCXx36ltFkRAmDRG66gWREBch30V8xZEQHbbheY6F0RA4hYGP4QXREBelR5gwBdEQBG6Xq3tGERAG6N1VDUZREAxy7HPdhlEQD7DrgC5GURARG6GG/AZREAFq9caNxpEQHkWl71/GkRAl4v4TswaREBVuWPEGBtEQI3J9clkG0RAHaz/c5gbRED0iTxJuhxEQEtE5UwAHURAofMau0QdREAdcjPcgB1EQHdCwgrKHURA8tJNYhAeREBFT7fZRR5EQBfELQx+HkRABN9HSLceREDo5ggG/R5EQIg7BHs5H0RAQoUQfWQgRECurh2foyBEQOvqe/r1IERAk4ychT0hRECPGaiMfyFEQEYQ1BbEIURApOTVOQYiRED8jAsHQiJEQJPOrf2KIkRA3SxLYcsiRECXHHdKByNEQJPmfJ4sJERA2CrB4nAkREDX2CWqtyREQFuZ8Ev9JERAiGNd3EYlRECH6WhCgCVEQHY3T3XIJURAMU/UvxEmREDeCk5qVSZEQLOgHV2SJkRAgAauBdAmREAy5q4l5CdEQFA+KuskKERArCSfRHEoRED9uXuTuShEQBLXRHn5KERAVf6i8TEpRECeY0D2eilEQDee4ku7KURAjCW/WPIpREA23cUOPSpEQPkHpNd5KkRAKf2XfpwrREAeZdfQ4CtEQMUG+FsoLERAXUiaUnEsREAy+08RuixEQOXtCKcFLURA2D9izkYtREAo1T4djy1EQBD+WJvZLURAei5mXiEuREBeGUFQWy5EQCSX/5B+L0RAa9RDNLovREBfMRDx/C9EQJIV1qBCMERAoyO5/IcwREDJq3MMyDBEQBQKEXAIMURAWE5VtEwxRECWW1oNiTFEQPE2XNHTMURAKQ0iPwgyREBcGPwQLjNEQODjOUh1M0RA/ylC16szRED8pNqn4zNEQEwvRGEqNERAuHU3T3U0RECC4seYuzREQACJORsFNURAJxxnwEY1REDZA63AkDVEQBfpWLi/NURAJQFqatk2REDxW4d9FTdEQGejYLNJN0RAAcEcPX43REDE6/oFuzdEQKXSYgP8N0RAr8bsP0U4REARx7q4jThEQK4its7SOERAZwdvIg05REBM/bypSDlEQGV42ZxwOkRAZhTLLa06REASxdFC7zpEQHS6LCY2O0RA5v2SZ3E7RECk/KTapztEQNKpK5/lO0RAIj8I7i08RECWjeHEajxEQBkxxpqkPERAexSuR+E8REDXVAO6HD5EQLgehetRPkRAgm4vaYw+RECFMnpb1j5EQJIqd4wYP0RAIipnAlg/REB83Q9llT9EQBMfslveP0RAQrrF6RFAREDvh7LKX0BEQASle7CfQERAmSoYldRBREAVxhaCHEJEQLMshS1jQkRAb0QKeKxCREDHCSYR9EJEQJWXDxs/Q0RAajhSo31DREBPQBNhw0NEQDdXuqgDRERAkSdJ10xEREBbd/NUh0REQDGEiSy/RURA3SkdrP9FRECeZm6rRkZEQAuQe82FRkRAFYQFCs9GRECppE5AE0dEQFZ9rrZiR0RA76zddqFHREDXuBEp4EdEQK5kx0YgSERAIagtiFtIREAs2bERiElEQDrcIdjLSURA1DOq+RdKREAB1r0oVEpEQHM2CjabSkRA56HJ2ONKRECu+HP3JktEQKiMf59xS0RApy9x0bZLRECQY/7kAkxEQNuvKBI5TERAOsyXF2BNREBvu9Bcp01EQFK4HoXrTURAGvLi1yJOREBR9wFIbU5EQLQCQ1a3TkRAQf6/1/1ORECIY13cRk9EQBd1wIiQT0RAlzEYNt1PREAQmkosFlBEQP4ORYE+UURAbEPFOH9RREALtaZ5x1FEQJiTPS8CUkRABNowHU1SRED0MorlllJEQIUyelvWUkRAFiD3mgtTREDs3R/vVVNEQPC3UAyjU0RA3NJqSNxTRECTNeohGlVEQP09noNUVURAG7P/FKFVREDnNXaJ6lVEQHQx8woxVkRAumPEGGtWREApo7dlrVZEQJf/kH77VkRA44WHQ0lXREBnUcV6kFdEQJkqGJXUV0RAPxAzDghZRED9A9LrPFlEQNCOLkl4WURANaXi7MNZREBKwqvSA1pEQGESQa9SWkRAB6nupJhaREBN27+y0lpEQIsFq9caW0RAJDXal1lbREAEHEKVmltEQFAZ/z7jXERAsyRATS1dREDcwuCHcF1EQAmC2oK4XURA+dozSwJeREAGyL3mQl5EQBC8RyOMXkRAlp1rhdZeREDMlxdgH19EQKNDzX1fX0RAuGCWY59fREBOyUx8yGBEQJYu6oARYURA8OGS405hREBmRlLljmFEQFJhbCHIYURA4VXpAQZiREDLlOmqU2JEQCNPkq6ZYkRAFb7RoeZiREAEDLjULmNEQLfWFwltY0RAANvUU75kREAplltaDWVEQFRK4r9TZURAlnhA2ZRlREC6B/uJ3WVEQA/Joy4sZkRAslveL3lmREDSvsyKu2ZEQGG+vAD7ZkRAXWiu00hnRECcdbMshWdEQLMUtozBaERAFytqMA1pREBmmO0dSGlEQOyLhLacaURArtNIS+VpREBn1edqK2pEQEKi9khwakRA+64I/rdqRECQvd798WpEQIIsHvE+a0RAhNOCF31rREB6sohOvGxEQBsv3SQGbURAQMkKa1BtREBNwQeckm1EQKuy74rgbURAAlCywhpuREDEjAPCYW5EQBYtU6arbkRAgUvtMuluREAMPPceLm9EQFWPIe1sb0RA82Hj56xwREBkmtaT5nBEQBRE3QcgcURAX63tAGJxREArE36pn3FEQAoezBP1cURAr6kGdDlyRECIa6K8fHJEQK4F0ALHckRAUZgKBBRzREDRGpYZSXNEQMtCTnKadERAwZgajtR0RED9rB+IGXVEQJweAclhdURA5nyeLKJ1REDiJpD/73VEQGoTJ/c7dkRAISc5TYx2REACK4cW2XZEQHNjesISd0RA44WHQ0l3REAJl3tujnhEQJWS+O/UeERABcB4Bg15REAUpgIBRXlEQKbNS9iReURANs07TtF5REAnMQisHHpEQMGIkM1oekRAh/GtIrZ6REBB/r/X/XpEQLdif9k9e0RAP4wQHm18RECx4emVsnxEQNRlMbH5fERA2RAJzDB9REAyuT6ZbH1EQAVhgcKzfURAMO2uxux9REAgRgiPNn5EQGGG2d6BfkRASbpm8s1+RECsi9toAH9EQEwvRGEqgERAntoG23WAREBLloCFuYBEQCl5dY4BgURA0A8jhEeBRED8zhx/j4FEQCdmvRjKgURA54wo7Q2CREDHc5DqToJEQKVWhfOWgkRARrbz/dSCRECNTRi6/4NEQKd5xyk6hERAEarU7IGERECTQkYtuoREQF66SQwChURAG8vOtUKFREBmKWwZg4VEQNFk7HHMhURApyIVxhaGREAdpLqTYoZEQKiJUeqlhkRA4cRqBsuHREBNAOteFIhEQFjiAWVTiERAsacd/pqIREChAHfG5IhEQJE86sIiiURAkfXBH2uJREB055yyrYlEQDtbLZ38iURAhsQ9lj6KREAOiXssfYpEQBSOM2Cji0RA0HZfqNaLRECKjuTyH4xEQF9BmrFojERAPzp15bOMREAeM1AZ/4xEQJzkNDFKjURA4yF51IWNRECjK/7cvY1EQPK1Z5YEjkRASCvRbDGOREAJfcNXTo9EQBt5M32Jj0RAWaMeotGPRECi9khwEJBEQHeMGGNNkERAZtr+lZWQREAvHzZ+zpBEQAXAeAYNkURA9RjSzlaRRECzRj1Eo5FEQIbRmaHekURAZ82iivWSREChrtuNK5NEQDW9sY1lk0RA6a9qI7GTREBJpcUG+JNEQGr2QCswlERAG9MTlniUREAwAlCywpREQMQQJrL8lERABj+Eyz2VREBGV/y5e5VEQE9gJ+KalkRA+vpHzNmWREDCUfLqHJdEQMUDyqZcl0RA66hqgqiXREBb89Bk7JdEQHAQmkosmERAf/YjRWSYREDbv7LSpJhEQFA25QrvmERAOU2MUi+ZREDBTsQ1UZpEQKpIhbGFmkRA5j+k376aREB/lywBC5tEQIyEtpxLm0RA+a3DvoqbREA+/XqY0JtEQLuj7BoanERA8oslv1icREAypJ2tlpxEQPWxlarHnERAmUf+YOCdREAvYUf2G55EQM7SKDdknkRA90hwEJqeREAQkgVM4J5EQJdWQ+Ien0RAj8L1KFyfRED+Ael1np9EQAj2crLnn0RAww34/DCgRECr/EXjY6BEQDw5MKaGoURAcjPcgM+hREDEtkWZDaJEQBhbCHJQokRAqoJRSZ2iREAxUgJ13aJEQH/R+Jgio0RAqnoMaWejREDKBVQlt6NEQBlz1xLyo0RAg4b+CS6kREC+wRcmU6VEQDlAMEePpURABJDaxMmlREB+FfOGDqZEQIjslvdLpkRAzkbBZpOmREDFxObj2qZEQKGcaFchp0RAO9cKrWGnREDysFBrmqdEQGsOEMzRp0RAcRPI//eoRECoDXTaQKlEQHSQ6k6KqURAWHvFQMSpREDcRgN4C6pEQEiCg9BUqkRAoEefaZyqREDL08xt1apEQADOeEgeq0RA9CpFBWGrREAA++jUlatEQNbNshS2rERAY8kvlvysRECLP3dvMq1EQCqxWLB6rURA8uocA7KtRED0rmf1+61EQMpskElGrkRALFB49oKuREBgND6myK5EQEQ8/2MOr0RAZY16iEavRECXmFRabLBEQA4Ih/GtsERA6bevA+ewREC+TX/2I7FEQFqeB3dnsURAfPr1MKGxRECG7n9t6rFEQAKKfloyskRA1CZO7neyREBtc2N6wrJEQHlg7RUDs0RAjukJSzy0REDsq5g3dLREQAgLFJ69tERAR0ByWAe1REBhiQeUTbVEQJRFdOKFtURAyAxUxr+1REBfTva8CLZEQM6qz9VWtkRAoSq5nZC2RED7y+7Jw7ZEQGd+NQcIuERA6j4AqU24REA92E/sjrhEQLddaK7TuERALNSa5h25REC62or9ZblEQCQLmMCtuURAUL8eJvS5REAQ8fyPObpEQPT4vU1/ukRAhw6U7sG6REB2q+ek97tEQP6FC2Y5vERARuuoaoK8REBgND6myLxEQBQKEXAIvURAkKUPXVC9REDsi4S2nL1EQCzMVQbovURAtaZ5xym+REBFpmk9ab5EQIbJVMGovkRAx4Ds9e6/REBFCnisLMBEQA53CPZywERAPSSPurDAREBNPeWr98BEQHr83qY/wURACyQofozBREBRVvmLxsFEQI+A5LAOwkRAMP04h1jCREAqOpLLf8JEQP9jDm/Dw0RAYm9PfQ3EREBd8efuTcREQAV2Iq6JxERAtjUPTcbEREA+6Nms+sREQJrOTgZHxURArOek943FREApmYkP2cVEQEb4BHYixkRAeJeL+E7GREDZA63AkMdEQJT+Sz/Ox0RAunuTuQzIREA7CZJkQ8hEQHIOsdSNyERAm6xRD9HIREC/OwzAGclEQEQHSvdgyURAPqbINK3JREBGhGxG88lEQMwrxBAmykRAasS5c07LREAdrP9zmMtEQJ9hV4Dcy0RAwsi4zxfMREBzpYs6YMxEQCR36w+nzERAbL+iSOTMREAits7SKM1EQLr3cMlxzURAhnrnPbvNREBNxh7H/M1EQENOcpoYz0RAE9VbA1vPRECVirMPn89EQIXjDNjoz0RAZL8BQCjQREBR2ht8YdBEQJk/uYCq0ERArlyCZurQREC+TX/2I9FEQISZtn9l0URASc8H3qPRRECcmt7YxtJEQDCeQUP/0kRAkp4PvEfTREDImLuWkNNEQJ5W5Ora00RALUthyxjUREAr7lL9XdREQEZCW86l1ERAYoTwaOPUREBIlyS8KtVEQMMVPd1m1URAIgpTgYDWRECMRdPZydZEQOPXInwC10RA67XGjUjXREDPoKF/gtdEQAOFZy/I10RACmMLQQ7YRECVK7zLRdhEQHwsfeiC2ERA97wIQMnYREC5ygA9+thEQGebG9MT2kRA6VBz31faREA30GkDndpEQGNyfTLZ2kRACxSevSDbREAJt4/vZdtEQJCYs1Gw20RA5Tx2KvPbREAoWWENKtxEQJKJbtBx3ERAVKnZA63cRED0Os/FzN1EQHgGDf0T3kRAwWuqAV3eREDgzphcn95EQIt0LNzf3kRAIJV1EiTfREBqG2zXcd9EQKUHGHCp30RAwWaT1vLfREAbNyIFPOBEQAs5yWli4ERA3N/GU3zhRECvX7AbtuFEQP/0jGr+4URA2cGbSEPiREA+u2kgg+JEQHmnFbm64kRAzkvYkf3iREBmmO0dSONEQJFMdIOO40RAHT1+b9PjREDUFsQtDOREQJ612y405URAHmDApXblREDyBwPPveVEQNT53WEA5kRAe5CLV0bmREBhrjJAj+ZEQGqXSefW5kRAxErySRTnRECcARv9VedEQBmojH+f50RApHA9CtfnREALoAWO8ehEQKoGdDk46URAPxVKOXLpREAi9bGVqulEQBY1mIbh6URAFeP8TSjqREBYHM78aupEQGD6cQ6x6kRA14aKcf7qREBw05/9SOtEQEZib09960RALZW3I5zsREAXj3if0OxEQIjvxKwX7URAJi7a9lDtREBa9bnaiu1EQEIMYSLL7URArir7rgjuREAFvUpRQe5EQO7w12SN7kRAvnfBzc/uREDuHUjxBO9EQIu2PVQt8ERA+9hK1WPwRECxpx3+mvBEQFYWcpLT8ERAVqfwjQ7xREAf7Cd2R/FEQJhUWmyA8URAOtwh2MvxRECnIhXGFvJEQNb39Oth8kRAZexxzJ/yREAARyijt/NEQMBbIEHx80RAdDHzCjH0REDHv8+4cPREQPZa40ak9ERAAiuHFtn0REBkDm/DFfVEQE5Nb2xj9URACD2bVZ/1RED3bZu82/VEQAhqC+IW9kRAqPsApDb3REAbP2flcfdEQNNABgW490RANkHUfQD4REA2+qvaSPhEQBn3+QKN+ERAwZgajtT4RECaPdAKDPlEQCMY9MtN+URANRRk8Yj5REBB9nr3x/lEQLSTwVHy+kRAJMFBaCr7REAL6lvmdPtEQK5UPYa0+0RArvAuF/H7REBewo7sN/xEQGRtZgdv/ERADRr6J7j8RECJtfgUAP1EQB3WQUtE/URAvCo9wID9REDatD89o/5EQJjQN3zl/kRAOU2MUi//REC03Reqdf9EQB3mywuw/0RAxWoGy+v/REA+8B6NMABFQLqLHXp4AEVAQ2ZBO7oARUCjUCmJ/wBFQH7ja88sAUVAPR94j0YCRUBZfvP1jwJFQGuivHzYAkVAiwWr1xoDRUDUWNWlWQNFQEmyIRKYA0VAN9iu49IDRUBXKSoICwRFQJMgSTZEBEVA5LUlhYwERUAo3YP9xARFQO5aQj7oBUVADZbXNx0GRUDQwLUAWgZFQMtCTnKaBkVA7qmvwdUGRUARLvfcHAdFQF6FlJ9UB0VACD2bVZ8HRUCNE0wi6AdFQGnrzZUuCEVAfgiXe24IRUAPYmcKnQlFQD0s1JrmCUVANbVsrS8KRUDExs9ZeQpFQBVKOXK3CkVAcx47lfkKRUA8gFhJPgtFQLgmysuHC0VAemMby84LRUAbw4nVDAxFQHeMGGNNDEVAS1RvDWwNRUBVPYa0sw1FQGtlwi/1DUVAUoNpGD4ORUA0gLdAgg5FQGJKJNHLDkVAvBqz/xQPRUAnVjNYXg9FQA1pZ6ulD0VAJaeJUeoPRUCnIhXGFhBFQOF6FK5HEUVADS+bE44RRUAbJ5hE0BFFQBCaSiwWEkVA/ty9yVwSRUDKVMGopBJFQLqtGnHuEkVAv3XYVzETRUBoBYasbhNFQGSSkbOwE0VAMuauJeQTRUBYvda4ERVFQINJBL1KFUVAuUOwl5MVRUCofyOU0RVFQG7dzVMdFkVAF4phdGYWRUDjAWVTrhZFQJ0Z6p33FkVA20PVwj8XRUCv6xfshhdFQLiaYvu2F0VAvc5zMfMYRUDCi76CNBlFQNzfxlN8GUVAa/EpAMYZRUB/IGYcEBpFQA8gVpJPGkVAxwQP5okaRUAvHzZ+zhpFQKFinL8JG0VAh3XQElEbRUBKg8gPghtFQI8+0zjBHEVA/GfgWgAdRUA6kst/SB1FQIw9jvmTHUVAPhphZNwdRUBTNypKHB5FQLpRUeJgHkVAPwCpTZweRUD22e4L1R5FQJhhtncgH0VAoxt0HFIfRUBvvv4RcyBFQJpnEuK3IEVA1nsX3PwgRUA5anIeOyFFQNvxOYqGIUVAVXdSTMshRUDlkyiOFiJFQN4KTmpVIkVAbf/KSpMiRUCYqN4a2CJFQKmkTkATI0VATkUqjC0kRUCe2gbbdSRFQH3Ibnm/JEVAsbenvgYlRUDD23BFTyVFQJZ4QNmUJUVApmk9ac4lRUApKggLFCZFQFf0dJtdJkVAy0JOcpomRUBiZwqd1yZFQKr+LlkCKEVA6TONE0woRUDXdgCxkihFQG2tLxLaKEVAS36x5BcpRUALiDbtTylFQEFl/PuMKUVAt8m7/cwpRUAl/ju1DSpFQGYsms5OKkVAO7f2K4oqRUBgcTjzqytFQFnd6jnpK0VAyP/3uh8sRUCFLWMwbCxFQIwAlKywLEVAwt1Zu+0sRUAJQ/e/Ni1FQOk70vOBLUVArIOWiMotRUA7lfk0FC5FQCrG+ZtQLkVAyjoJkmQvRUCTdM3kmy9FQFGQxSPeL0VAtH4gZhwwRUDfFcH/VjBFQI/KOgmSMEVAqAhdr9YwRUBjIOL5HzFFQHVEq4BoMUVAY4ceHq8xRUC0Cog27TFFQJ020GkDM0VA78SsF0MzRUA1930lfTNFQBoKsnjEM0VAuGWtjgk0RUB4eqUsQzRFQLuzdtuFNEVAOVroXc80RUCy3wAgFDVFQABf90NZNUVAWActEZU1RUBGX0GasTZFQCk/qfbpNkVAaGmUGzI3RUCliAyreDdFQKVB5AfBN0VAk4RXpQc4RUBLhvbETThFQGzXcemFOEVA5FEXFsk4RUDDP3+0EjlFQH06HjNQOUVAovtfm3o6RUC+PfU1uDpFQDCeQUP/OkVAACUrrEE7RUBd3EYDeDtFQLes1THBO0VA/gYAoQg8RUDwO3P8PTxFQA2mYfiIPEVArBdDOdE8RUAH1l4xED1FQGwBtMAxPkVAx7/PuHA+RUAWLVOmqz5FQPs/h/nyPkVAxIS+4Ss/RUAcLfSuZz9FQKLmvq+kP0VAdpl0bu0/RUCT5nyeLEBFQPCvCyxtQEVAvAopP6lARUCDdnRJwkFFQIghTGT5QUVAKJMtpUFCRUDgd+b4e0JFQPm1CJ/AQkVAvODmZ/1CRUBZPOJ9QkNFQG1rHpqMQ0VAVXdSTMtDRUAe5OKVEURFQK67eapDREVAbdqfnlFFRUDoTUUqjEVFQLGSfBLFRUVADT8l1PlFRUADlfHvM0ZFQLNJa/luRkVAJ7UqnLdGRUAU+J05/kZFQJi4aNtDR0VAeqpDboZHRUD+WJvZwUdFQPfkYaHWSEVAV7JjIxBJRUBehZSfVElFQHCpXSadSUVAXuzQw+NJRUAZBFYOLUpFQOmKP3dvSkVAf6SIDKtKRUACZVOu8EpFQBiNjykyS0VAg45D6mNLRUBmoDL+fUxFQNfYJaq3TEVAxwkmEfRMRUCPYNAvN01FQHV+dxiATUVATUcTAsxNRUDytWeWBE5FQEp7gy9MTkVAO7f2K4pORUAzQI8+005FQCN8AjsRT0VAvda4ESlQRUBV+3Q8ZlBFQMEHnJKZUEVAlZL479RQRUBGb8taHVFFQHVEq4BoUUVA/RNcrKhRRUCTSosN8FFFQCE0lVgsUkVAqPjS7mpSRUD3SHAQmlJFQB0Dste7U0VACRNZfvNTRUBCEXhNNVRFQA1slWBxVEVADA+HkrZURUCT8Kr0AFVFQIZNd7FDVUVAWvW52opVRUDdtYR80FVFQOybDncIVkVAFzOvEENWRUAY5EGNVVdFQOlYuL+NV0VAHkjxBNVXRUAfAclhHVhFQIlOvPBwWEVAUaVmD7RYRUBp44i1+FhFQFgUiRw1WUVA71UrE35ZRUA/6wdixllFQFkXt9EAWkVAxGfYFSBbRUAtcIx3WltFQPWpUMqRW0VAU4nFgtVbRUB/IGYcEFxFQI4G8BZIXEVAusXpEZBcRUA9hrSz1VxFQF//iDkbXUVAFwEoWWFdRUBoeR7cnV1FQGc8JI+6XkVAHjNQGf9eRUDso1NXPl9FQE18yG55X0VA+CFc7rlfRUBwkY6F+19FQG0pDSI/YEVAeiEKU4FgRUChqcRiwWBFQJ4kXTP5YEVAXhH8byVhRUBO1qiHaGJFQOYivhOzYkVAHSjdg/1iRUCTqYJRSWNFQLYtymyQY0VAvxbhE9hjRUAzZbrqFGRFQO58PzVeZEVAQAsc451kRUBD2tlq6WRFQHrCEg8oZUVA18ib6UtmRUD1AzHjgGZFQIQVlI/KZkVAPAzAGQ9nRUAzbf/KSmdFQJ6ofyOUZ0VAEhQ/xtxnRUD7R8zZKGhFQHr5sPFzaEVAhgMhWcBoRUCOp/jS7mhFQJGLV0YQakVACQb9clNqRUACcq+5kGpFQC4xqbTYakVAeqUsQxxrRUD8WoRPYGtFQNMYraOqa0VAbV7CjuxrRUCfNxWpMGxFQJe1OiZ4bEVAMwbDprtsRUCzHPts921FQBUdyeU/bkVAj6Lhp4RuRUDjKb60u25FQIvL3j8Db0VAeOb4ezxvRUAgiBkHhG9FQGoDnTbQb0VARMU4fxNwRUDRyyiWW3BFQAi0YTqacEVA5/up8dJxRUC4gpNaFXJFQCKzoB1dckVALKcqWqZyRUByAVXJ7XJFQAYFuDMmc0VAr7FLVG9zRUCAQ6hSs3NFQNkIxOv6c0VA/oULZjl0RUCpICxQeHRFQMrLh42fdUVAhtGZod51RUAuc7osJnZFQErSNZNvdkVAS4sN8Ld2RUCT8Kr0AHdFQNg/Ys5Gd0VA4jPsCpB3RUA8BHs52XdFQMoKa1AheEVAEl6VHmB4RUCEDU+vlHlFQMhRk/PYeUVAdPcmcxl6RUCns5PBUXpFQHYvCpWSekVAvp8aL916RUBb07zjFHtFQOjZrPpce0VA+vIC7KN7RUDfBTc/63tFQA2zvQMpfEVAvLakkFF9RUC4JsrLh31FQEc4LXjRfUVA8e8zLhx+RUD90Uo0W35FQO0NvjCZfkVA9tnuC9V+RUASOWpyHn9FQD8D1wJof0VAbc1Dk7F/RUBCWKDw7H9FQAbL65sOgUVApTFaR1WBRUDXCq1hmYFFQB5l19DggUVATzO3VSOCRUCGONbFbYJFQJlcn0y2gkVAmhV3qf6CRUDpqlP4RoNFQG52kS+Og0VAw/1tPMWDRUBH+zIr7oRFQHrf+NozhUVAKJtyhXeFRUB6O8JpwYVFQLlwICQLhkVAMOBSu0yGRUCLu1R/l4ZFQOy7IvjfhkVAh9negRSHRUAqbBmDYYdFQBKDwMqhh0VAw5Ea7cuIRUAAsZJ8EolFQB0QDuNbiUVAsTvKrqGJRUCrz9VW7IlFQBwlr84xikVAhUpJ/HeKRUBAReh6tYpFQImYEkn0ikVAgQTFjzGLRUDRVGKxYItFQKRo+CmhjEVA0j3YT+yMRUBLuH18L41FQIrQ9WptjUVA/TBCeLSNRUCerZZO/o1FQAr0iTxJjkVAXZ9MtpSORUC4aNtD1Y5FQN33lfQdj0VAa+GfP1qPRUBclNkgk5BFQPbZ7gvVkEVAOh4zUBmRRUCLsw+fYZFFQPnnj1aikUVAkTSl4uyRRUDPXpAHNZJFQIhrorx8kkVAguLHmLuSRUBSeyQ4CJNFQPfMkgA1k0VA443MI3+URUCKJHoZxZRFQAS1BXELlUVAM4rlllaVRUBkWMUbmZVFQKJ3PavflUVAwuWemyOWRUCWjeHEapZFQKemN7axlkVAQ/e/NvWWRUCl2qfjMZdFQJG4x9KHmEVA5j+k376YRUAbEvdY+phFQD+hsQlDmUVADS+bE46ZRUAxvlXE1plFQAmSZEMkmkVAUw3ocnCaRUAcbwUntZpFQG8ayKAAm0VAQog+MjCbRUCBHn2mcZxFQNOsWVSxnEVAwwWzHPucRUCl942vPZ1FQBIhm9F8nUVASzygbMqdRUAwRGEqEJ5FQAj7id1RnkVA1pPmfJ6eRUBK/6Uf555FQGpilHopn0VADk+vlGWgRUB6eLy2pKBFQGnGounsoEVA8bI54TihRUCAxJyNgqFFQMQI4dHGoUVAdL1a2wGiRUDj/E0oRKJFQNRgGoaPokVA31SkwtiiRUA7KablGqNFQCu0hmVGpEVAl9Ig8oOkRUDmP6TfvqRFQH2BRtYHpUVAzywJUFOlRUCq+RcumKVFQG9MT1jipUVAFNiJuCamRUDO5JttbqZFQIfxrSK2pkVAMGR1q+emRUAiBTxWFqhFQBqDYdNdqEVApVaF85aoRUBvwxU93ahFQBVawzIjqUVAwRw9fm+pRUCvX7AbtqlFQCnTVafwqUVAWKg1zTuqRUBF4DXVgKpFQHR7SWO0qkVAq7LviuCrRUC+udJFHaxFQOpb5nRZrEVAVpdmzaKsRUAb2CrB4qxFQKjTp0IprUVAAJnD23CtRUAsWL3WuK1FQA5KmGn7rUVA39v0Zz+uRUC+rHY6fa5FQLWhYpy/r0VArir7rgiwRUD6sPFzVrBFQKNLEl6VsEVAiV5GsdywRUDwiuB/K7FFQE1f4qJtsUVAaqzq0qyxRUDAeAYN/bFFQJhMFYxKskVA/Sj9l36yRUC+l9VOp7NFQKzaSOzts0VAXsKO7De0RUBF4DXVgLRFQPndYQDOtEVAst8AIBS1RUALsI9OXbVFQGR1q+ektUVAQlig8Oy1RUCvqQZ0ObZFQIUtYzBstkVAWUxsPq63RUASMSWS6LdFQBLNFiMluEVAHLYtymy4RUB8q4its7hFQHMeO5X5uEVAJ/QNXzm5RUA1930lfblFQCZbSoPIuUVAffgMuwK6RUAZPiKmRLpFQEI2o/l2u0VA5rZqxLm7RUA9ZqAy/rtFQLj2K4pEvEVAOKEQAYe8RUBhP7E7yrxFQJhE0KsUvUVAiYu2PVS9RUAvF/GdmL1FQDjjIXnUvUVAQ6hSswe+RUA0PqbINL9FQFCAO2Nyv0VALWMwbLq/RUBItzg9AsBFQHaBpc1LwEVAUlknQZLARUCdwjc61MBFQIsFq9cawUVAmPI0c1vBRUDmfJ4sosFFQNmxEYjXwUVAbvJuP/PCRUDYInwCO8NFQOxRuB6Fw0VAoj1xE8jDRUDI4hHvE8RFQIwN8LdQxEVAciuXoJnERUAd0Sog2sRFQNzsIl8cxUVAafMSdmTFRUCEKjV7oMVFQBR5knTNxkVAcU2Ulw/HRUBgm3rKV8dFQMvW+iKhx0VAeIcBOOPHRUApR+7WH8hFQJ69IA9qyEVAR2q0L7PIRUBYZiRV7shFQI1VXZo1yUVAuvdwyXHJRUDHBA/micpFQJhuEoPAykVAMJ5BQ//KRUDjhYdDSctFQL1vfO2Zy0VA5/up8dLLRUAd9lXMG8xFQDpgRMhmzEVAUIiAQ6jMRUDDy+aE48xFQLHUjYoSzUVApz/7kSLORUB1kxgEVs5FQBP6hq+czkVA8vJh4+fORUAs8YCyKc9FQHMuxVVlz0VAa7ddaK7PRUAF8v+97s9FQPUtc7os0EVAsEX4BHbQRUDsPBczr9BFQHdfqNbV0UVAW2dplBvSRUD6u2QJWNJFQCBWkk+i0kVAg2HTXezSRUAUbDZpLdNFQO4t0rFw00VAw+CHcLnTRUATdmS/AdRFQOQHwb1F1EVA2EenrnzURUDQyPrgj9VFQHQ+TxbR1UVAbMfnKBrWRUBfJLTlXNZFQNKEAPOj1kVAs3bbhebWRUAbkQIeK9dFQFqeB3dn10VAHebLC7DXRUB2q+ek99dFQPEpAMYz2EVAYJt6ylfZRUCKJ6jOkNlFQBD+WJvZ2UVAjJlXiCHaRUCXmFRabNpFQMlxp3Sw2kVAWIMKIfraRUAXnwJgPNtFQOIWBj+E20VAhoxadMXbRUBaIipnAtxFQB6n6Egu3UVAAq+pBnTdRUCjK/7cvd1FQB28iTQE3kVA4PjaM0veRUDGFoIclN5FQFMS/53a3kVAxXJLqyHfRUCztb5IaN9FQGzC0P2v30VAVbyReeTfRUCH2d6BFOFFQI+anMdO4UVAosnY45jhRUAfU2Sa1uFFQIJBv9wU4kVAVswbOlDiRUDfpj/7keJFQK8QQ5jI4kVAFPidOf7iRUCk7BoaPONFQDLhl/p540VAYN2LQqXkRUD3Hi457uRFQDdUjPM35UVAht71rH7lRUBSYWwhyOVFQH8gZhwQ5kVAQmgqsVjmRUAmcOtunuZFQPTg7qzd5kVAHHQcUh/nRUA1oMvBWedFQKU5nyeL6EVAuGjbQ9XoRUCD1WuNG+lFQCVATS1b6UVAJO6x9KHpRUBSmzi53+lFQFZYgwoh6kVAhS1jMGzqRUAG9S1zuupFQPlR+i/96kVAQ6Uk/jvrRUBzmhilXuxFQHZXY/af7EVANVZ1adbsRUBDMYzODO1FQA2eHBhT7UVA5SzsaYftRUB6YxvLzu1FQEa+ON4K7kVA08Qo9VLuRUAcNTmPne5FQDl3zinb7kVAJxQi4BDwRUBJcBCaSvBFQDCOt4KT8EVAz/+Yw9vwRUCYYbZ3IPFFQFqeB3dn8UVA3V7SGK3xRUAC3BmT6/FFQGS/AUAo8kVAd+PKxnDyRUDYuz/eq/JFQKqnfPXe80VA46WbxCD0RUBqh78ma/RFQGsjsben9EVAaLsvVOv0RUCWaLYYKfVFQAGkNnFy9UVAfT81Xrr1RUB9+Ay7AvZFQNa9KFRK9kVAOY+dynz2RUA8kOIJqvdFQAj2crLn90VAcv4mFCL4RUAPWiIqZ/hFQIjfOuyr+EVAEtdEefn4RUBGxn2+QPlFQF8PE/qG+UVAro4JHsz5RUAiBTxWFvpFQLYIn8BO+kVATHFV2Xf7RUA+w64AuftFQPnaM0sC/EVAqKEgi0f8RUBs9Fe1kfxFQDdPdcjN/EVAERERERH9RUAGeVBjVf1FQA5X9HSb/UVA4+zDZ9j9RUDdblzZGP5FQNMwfERM/0VA1OlToZT/RUCIvyZr1P9FQFpc9v4ZAEZAEl6VHmAARkCTCHqVogBGQHH24TPsAEZAEF1Q3zIBRkCVMwGsewFGQPMSdmS/AUZAguoMefEBRkAAwwWzHANGQPMf0m9fA0ZAkWlaT5oDRkCxzEiq3ANGQH0y2VIaBEZAZmZmZmYERkDAGQ/JowRGQN2D/cTuBEZAO2NyfTIFRkAK3+hQcwVGQC0pZNSiBUZAQW1B3MIGRkAOtuu49AZGQF1ortNIB0ZAaFw4EJIHRkBNb2xj2QdGQKMeotEdCEZAKfVSnmYIRkAUIuAQqghGQLu4jQbwCEZAFGw2aS0JRkAdOGdEaQlGQPYgF6+MCkZAVOOlm8QKRkBe1y/YDQtGQL/MirtUC0ZAKPIk6ZoLRkDyQc9m1QtGQG3SWr4bDEZAqvHSTWIMRkDOY6cynwxGQCAE9xbpDEZAnY2CzSYNRkBW6QEGXA5GQLWrkPKTDkZA2DpLo9wORkDJdr6fGg9GQGfdLEthD0ZACWX0tqwPRkBLk1LQ7Q9GQDfLUtgyEEZAVkC0aX8QRkD+z2G+vBBGQOnxe5v+EEZAbMfnKBoSRkB0sP7PYRJGQEZCW86lEkZAH/mDgecSRkBkSDtbLRNGQEdFiYNxE0ZAphKLBasTRkBZ+tAF9RNGQHh6pSxDFEZA+i/9OIcURkC7Jw8LtRRGQODW3TzVFUZAxcwrxBAWRkAFAop+WhZGQCyKRI6aFkZAp/3pGdUWRkCQFJFhFRdGQPHsBXlQF0ZAE2ba/pUXRkCyutVz0hdGQPgJjU0YGEZAfcNXTlUYRkBxNcX2bRlGQHw0wsi4GUZANkHUfQAaRkBGWipvRxpGQIh9FfOGGkZAeNZuu9AaRkAmnVv7FRtGQOzdH+9VG0ZA1v85zJcbRkDUoiv+3BtGQDVeukkMHEZAwtD9r00dRkB7tbYDiB1GQE5d+SzPHUZA4IRCBBweRkBJqtwxYh5GQKOF3vWsHkZAPNLzgfceRkB7B1I8QR9GQM+9h0uOH0ZAbzrcIdgfRkBbZ2mUGyBGQIevnKpoIUZA9PWPmLMhRkDJqEVX/CFGQKaWrfVFIkZAiH0V84YiRkDMwVk3yyJGQEloy7kUI0ZAdhVSflIjRkCckpn4kCNGQDCz4i7VI0ZAxLZFmQ0kRkC9mb7ERSVGQERpb/CFJUZA6ek2u8glRkCl70jPByZGQKOSOgFNJkZAaOVxK5cmRkCObSw71yZGQJlsKQ0iJ0ZAPu3w12QnRkDN/lOEridGQMZ1eWDtJ0ZApLJOgiQpRkAYHg4lbSlGQL+/LrC0KUZAhzO/mgMqRkA9H3iPRipGQABKVliDKkZAKQXdXtIqRkAz+WabGytGQHMuxVVlK0ZAogOle7ArRkDYw4S+4StGQMlZ2NMOLUZAeCDFE1QtRkBwqV0mnS1GQKV7sJ/YLUZAK1JhbCEuRkBPxDVRXi5GQDnmTy6gLkZA0jJluuouRkDDoaStNy9GQKzVMcGDL0ZA9QADLrUvRkAb9RCN7jBGQJaFnOQ0MUZAnUZaKm8xRkAsWL3WuDFGQCwGIp7/MUZAEy88HEoyRkDk0gtRmDJGQNg6S6PcMkZAQFVyOyEzRkAdOGdEaTNGQHwX3PysM0ZAPJgn6t80RkDW0sk/IDVGQF2iemtgNUZAewxpZ6s1RkDU3PeV9DVGQKd5xyk6NkZA4Hfm+Hs2RkDpYP2fwzZGQCqhzu8ON0ZAgT6RJ0k3RkDezVMdcjdGQLocnHWzOEZAozNDvfM4RkChrtuNKzlGQBIPKJtyOUZAmOXYZ7s5RkCGKEwFAjpGQI7pCUs8OkZA9RWkGYs6RkDjOzHrxTpGQCl5dY4BO0ZAccEsxz47RkB1zeSbbTxGQKixqkuzPEZAkNrEyf08RkBtoNMGOj1GQAKvqQZ0PUZAKiXx36k9RkCSIjKs4j1GQAWDfrkpPkZARLjcc3M+RkAYYB+duj5GQOTFr0X4PkZAFu5v4ylARkDgWgAtcEBGQG9sY9m5QEZAT2U+DQVBRkBH7tYfTkFGQH3ogvqWQUZAZRGdeOFBRkCHinH+JkJGQFMN6HJwQkZAjB16eLxCRkDUZTGx+UJGQGGeqH8jREZAobYgbmFERkAzzPYOpERGQHw8B6nuREZA/Nt4ii9FRkCvzjEge0VGQLCHCX3DRUZAjnVxGw1GRkA9PF5bUkZGQPU9/XqYRkZAe/fHe9VGRkD52jNLAkhGQE9tg+06SEZAqD0SHIRIRkBshdawzEhGQMEMs70DSUZA/zae4ktJRkD51RwgmElGQDkLe9rhSUZAeEDZlCtKRkDke1ntdEpGQHqVooKwSkZAcm2oGOdLRkD+XbIELExGQDJN60lzTEZAK8QQJrJMRkB0DMhe70xGQH8LxTA6TUZA2dtTX4NNRkDgufdwyU1GQFP9XbIETkZAXOZ0WUxORkAUyy2thk5GQL3GLlG9T0ZA+M/AtQBQRkCih8drS1BGQAaeew+XUEZA44BwGN9QRkD1mcYJJlFGQC2qWA9yUUZASOF6FK5RRkAu/yH99lFGQG40gLdAUkZAFpzUqnBSRkAD9OgzjVNGQBL3WPrQU0ZArE7hGx1URkAPWiIqZ1RGQDkDNvqrVEZADrbruPRURkBoke18P1VGQMh71cqEVUZAwQRu3c1VRkCvUlQQFlZGQBE2PL1SVkZA9VKeZm5XRkCXvX8GrldGQMaSXyz5V0ZATHSDjkNYRkAMm+5ih1hGQKsM0KPPWEZATpSXDxtZRkDQSe8bX1lGQH8bT/GlWUZAtyBuYfBZRkB+T78eJlpGQPCnxks3W0ZAMOiXm4JbRkDkvWplwltGQIU6vzsMXEZA5SSniVFcRkCY+nlTkVxGQIg27U/PXEZAs+pztRVdRkAwhnKiXV1GQFs6+QekXUZAzFUG6NFdRkDOS9iR/V5GQIUlHlA2X0ZA7DTSUnlfRkBPIy2Vt19GQFgMRDz/X0ZA930lfUdgRkCxijcyj2BGQOZ5cHfWYEZAXtcv2A1hRkD7MivuUmFGQL5dCbePYUZABeq63bhiRkDyBNUZ8mJGQEByWActY0ZAuMSk0mJjRkBolgSoqWNGQM+wK0DuY0ZAyxXe5SJkRkAi0IbpaGRGQJxgEkGvZEZA/TiHWOpkRkCfhoIsHmVGQDTkxa9FZkZAlLw6x4BmRkCepVFuyGZGQOT/e90PZ0ZAUz9vKlJnRkBcKIbRmWdGQNGeuAnkZ0ZAIRevjCBoRkBKmGn7V2hGQCuct8SkaEZA8soIgtpoRkDNtyvh9mlGQGG7jksvakZAjnqIRndqRkBDZkE7umpGQIGQLGACa0ZATP28qUhrRkCafLPNjWtGQG4vaYzWa0ZAFcYWghxsRkBvlqWwZWxGQG0csRafbEZATUcTAsxtRkDFzCvEEG5GQNCjzzRObkZAjMbHFJluRkBjcn0y2W5GQKGcaFchb0ZALY1yQ2ZvRkBlnQRJsm9GQPfETSD/b0ZAs8pfND5wRkBsuosdenBGQIn/Tm2DcUZA6+I2GsBxRkAWb2Qe+XFGQNertR1AckZAmvN5sohyRkAD/C0Uw3JGQBYg95oLc0ZAOaQ+tlJzRkCILqhvmXNGQG863CHYc0ZAGcqJdhV0RkDQ/a9NPXVGQJ9Rzb9wdUZAYHE486t1RkDuWkI+6HVGQMlEN+g4dkZA2VIaRH52RkCSVLljxHZGQNm5VmgNd0ZAJzlNjFJ3RkDCfmJ3lHdGQD7glMzEd0ZAexSuR+F4RkAkpFucHnlGQN2wbVFmeUZAJhYLVq95RkD1kYEp8HlGQLWmeccpekZAQJeDs256RkBiEFg5tHpGQKZUnH34ekZARsZ9vkB7RkAu0rFwf3tGQNyQWdCOfEZAgfQ6z8V8RkDQYb68AH1GQOzAOSNKfUZAIKX/0o99RkDsJ3ZH2X1GQBnKiXYVfkZAwXYdl15+RkD/eK9amX5GQOisPG7lfkZA6ja7yBd/RkBuF5rrNIBGQMjKQk5ygEZAiQeUTbmARkALvetZ/YBGQOif4GJFgUZAhfBo44iBRkCMzgz1zoFGQKgQoo8MgkZAWOIBZVOCRkDUYBqGj4JGQAs+4JTMgkZA4hsdau6DRkDBFPidOYRGQNlSGkR+hEZAJbwqPcCERkB6fdPhDoVGQAyTqYJRhUZAG5YZSZWFRkAmlRYb4IVGQLzLRXwnhkZAhxvw+WGGRkAnXng4lIZGQO/Jw0Kth0ZAEzyYJ+qHRkB/dxiAM4hGQKL7X5t6iEZA8n7Js7iIRkCBkCxgAolGQKYf5xBLiUZAZilsGYOJRkBCDGEiy4lGQK0fiBkHikZABsi95kKKRkCZ/acIXYtGQPXjHGKpi0ZAWO9dcPOLRkC+857dNIxGQOmKP3dvjEZANgo2m7SMRkCV6apT+IxGQEW7Cik/jUZAYRqGj4iNRkBqA5020I1GQJqpI1oFjkZApsg0rSePRkBangd3Z49GQPgEdiKuj0ZAjTAy7vOPRkBGIF7XL5BGQHLU5Dx2kEZAw2nBi76QRkAZ/BAu95BGQBqGj4gpkUZA7i3SsXCRRkARlTMBrJFGQL+CNGPRkkZATYkkehmTRkB4PavfX5NGQLIpV3iXk0ZA0HZfqNaTRkALbn7WD5RGQBczrxBDlEZA6KclQ3uURkBpNSTusZRGQAmKH2PulEZA3h/vVSuVRkCeZm6rRpZGQLWZHbyJlkZADElTKs6WRkDQm4pUGJdGQEUSvYxil0ZAvpfVTqeXRkBOl8XE5pdGQLi8X/IsmEZAViPOnXOYRkAzBsOmu5hGQNFPS4b2mEZASxJelR6aRkBBep3nYppGQI8EB6GpmkZASOm/9OOaRkAs8YCyKZtGQIOrKbZvm0ZAS+XtCKebRkDQk0V04ptGQMLlnpsjnEZAARCKwGucRkCGyVTBqJxGQKt4I/PInUZAc7LnRQCeRkAjhEcbR55GQE8mW0qDnkZA9KYiFcaeRkBdr9Z2AJ9GQB/sJ3ZHn0ZAA9cCaIGfRkCQtZkdvJ9GQKwUFYQFoEZAj/R84D2gRkDWi6GcaKFGQC8012mkoUZAJJwWvOihRkBKB+v/HKJGQG2LMhtkokZAS24nJKyiRkBv/eHU9KJGQHr83qY/o0ZAr+sX7IajRkDzEnZkv6NGQMysuEv1o0ZA09nJ4CilRkC47P0zcKVGQFYrE36ppUZAV+Tq2vGlRkA6xFI3KqZGQCDXhopxpkZAnYhrorymRkBfxbyhA6dGQB/sJ3ZHp0ZAiieozpCnRkCBYI4ev6dGQI+ya2jwqEZADDz3Hi6pRkDwQ7jcc6lGQKlFV/y5qUZAEmvxKQCqRkDTilxdO6pGQL7JXAaJqkZAKvNpKMiqRkCx1I2KEqtGQEkhoxZdq0ZAnJKZ+JCrRkCjhd71rKxGQIaCLB7xrEZA1xcJbTmtRkCQJBsiga1GQO0VAxHPrUZAX072vAiuRkBEYSoQUK5GQBC8RyOMrkZAulZoDcuuRkDm+Hs8B69GQPGyOeE4r0ZA0egOYmewRkB5ii/trrBGQPceLjnusEZAFGw2aS2xRkDnCAb9crFGQPcW6Vi4sUZAByXMtP2xRkAcQpWaPbJGQFIfW6l6skZAZEMkMMOyRkBWigrCArNGQPIMGvontEZAi0e8T2i0RkCx4emVsrRGQEDh2QvytEZA+u3rwDm1RkAcStp6c7VGQEns7amvtUZA2wHESvK1RkBj7lpCPrZGQDihEAGHtkZATLNmUcW2RkDvgpuf9bdGQFR8aXc1uEZA+xIXbXu4RkBJnYAmwrhGQJo90AoMuUZAdOKFh0O5RkBudpEvjrlGQGTpQxfUuUZAS+oENBG6RkD1hCUeULpGQFI8QXWGukZA8d+pbbC7RkBLsDic+btGQA/mifo3vEZAIeL5H3O8RkCv81zMvLxGQACJORsFvUZAZ6Ngs0m9RkAk0csolr1GQBk5C3vavUZAu6PsGhq+RkCy50UASr5GQNOkFHR7v0ZAfDTCyLi/RkAG/XJT8L9GQHU8ZqAywEZA1CZO7nfARkBGX0GascBGQGfNoor1wEZAMkWmaT3BRkBRnSEvfsFGQHo7wmnBwUZA0uP3Nv3BRkAXSFD8GMNGQHH7+F5Ww0ZA2w4gVpLDRkBGLbriz8NGQHfwJtIQxEZAEyTJhkjERkDfpj/7kcRGQJiWa+TNxEZA3uUivhPFRkCzmNh8XMVGQJlxQDiMxUZAJbwqPcDGRkCR5Tdf/8ZGQG+2uTE9x0ZA4QuTqYLHRkDNQ5Oxx8dGQPPdwPcRyEZA2ftn4FrIRkCN0TqqmshGQJrbqhHnyEZASaKXUSzJRkAnVjNYXslGQKJAn8iTykZAC2Y59tnKRkAglXUSJMtGQKhvmdNly0ZAmsHy+qbLRkD1fw7z5ctGQNuSQkYtzEZArCSfRHHMRkAZa5IyvMxGQNyyVscEzUZA65jgwTzNRkDApXaZdM5GQF4Bcq+5zkZAzzllW/PORkDyoMaqLs9GQMlpYpR6z0ZARhDUFsTPRkBxp3Sw/s9GQGklmi1G0EZACZd7bo7QRkAlAWpq2dBGQG1JIaMW0UZAhMs9N0fSRkDckFnQjtJGQOJYF7fR0kZAtfXmShfTRkALsI9OXdNGQMW8oQOl00ZAR3L5D+nTRkDl2Ge7L9RGQLtuN65s1EZAL+Vp5rbURkCjM0O989RGQFWH3Aw31kZAg1FJnYDWRkCWgIW5ytZGQKyowTQM10ZA/zae4kvXRkACBlxql9dGQAO/M8ff10ZAySdRHC3YRkDDu1zEd9hGQKnZA63A2EZAny/QyPrYRkABRT8tGdpGQCGoLYhb2kZAg7NulqXaRkCgEur87tpGQMOhpK0320ZAPSe9b3zbRkDMOCAcxttGQLuGBk8O3EZAaFTzL1zcRkBo8OTAmNxGQAhF4DXV3EZAwo7sNwDeRkAjhEcbR95GQLqdkLCC3kZAGnYFyL3eRkADjawP/t5GQO65OYJB30ZAjSCoLYjfRkAdPX5v099GQOSItfgU4EZAAMtKk1LgRkBKDAIrh+BGQLVcI2+m4UZA3e9QFOjhRkC1pnnHKeJGQNEF9S1z4kZAETtT6LziRkCHnxLq/OJGQAM7EddE40ZA+rg2VIzjRkDpBh2H1ONGQL650kUd5EZAU9Mb21jkRkCVUOd3h+VGQP1qDhDM5UZAMU/UvxHmRkCw7kWhUuZGQBLSLU6P5kZA8soIgtrmRkBnTK5PJudGQEY6Fu5v50ZAY6QE6rrnRkBZF7fRAOhGQKiEOr876EZAw+3je1npRkBvnuqQm+lGQPBIzwfe6UZAvda4ESnqRkAp9VKeZupGQA7roCWi6kZA4pLjTunqRkBvjmDQL+tGQPRkEZ1460ZAv9wUfMDrRkCq/i5ZAuxGQIXrUbge7UZALXCMd1rtRkBjajhSo+1GQPOGDpTu7UZA2ZlC5zXuRkC3h6qFf+5GQK4F0ALH7kZAkxgEVg7vRkDcYLuOS+9GQF0WE5uP70ZA6N7DJcfvRkDvtCJX1/BGQLHxc1Ye8UZAutqK/WXxRkBI4XoUrvFGQKbA78zx8UZA3LqbpzryRkAsUHj2gvJGQDtT6LzG8kZA39OvhwnzRkBH7tYfTvNGQDX3fSV980ZALbKd76f0RkDMI38w8PRGQFXzL1ww9UZAtvP91Hj1RkAFfmeOv/VGQAgwP0r/9UZAmjqiVUD2RkAJhQg4hPZGQIERIZvR9kZANefzZBH3RkDbQ9XCP/dGQLg7a7dd+EZAn1kSoKb4RkDC3Vm77fhGQESTsccx+UZAHVVNEHX5RkA3gfx/r/lGQADjGTT0+UZANt3FDj36RkCoPRIchPpGQJeL+E7M+kZALaVB5Af7RkCeIS9+LfxGQBurujRr/EZAaTUk7rH8RkDVcKRG+/xGQJKeD7xH/UZAEDMOCIf9RkAYEbIZzf1GQNMoN2QW/kZAiRTwWFn+RkAO66Alov5GQMCqjcTe/kZAbsDnhxEAR0D0ebKITgBHQLODN5GGAEdAbpu8288AR0BFR3L5DwFHQCD3mgtJAUdAtSJX144BR0AJvKYa0AFHQDaGE6sZAkdAXCBB8WMCR0DGFoIclAJHQDaTb7a5A0dAIsD8KP0DR0B5Xb9gNwRHQJKJbtBxBEdAAtTUsrUER0AcHWru+wRHQM35PFlEBUdAKeCxspAFR0B5WKg1zQVHQIIk2RAJBkdAwjxR/0YGR0Ay8woxhAdHQLCHCX3DB0dAecxAZfwHR0C49iuKRAhHQM80TjCJCEdAgfQ6z8UIR0BXsmMjEAlHQKMJAeZHCUdABf9byY4JR0DxGXYFyAlHQBZvZB75CUdAKMW0XCMLR0Bl5CzsaQtHQJKRs7CnC0dAEDglM/ELR0AfO5X5NAxHQBjPoKF/DEdAVtEyZboMR0Dk4pURBA1HQDJijDVJDUdA6mMrVY8NR0ClXsrTzA1HQEn0MorlDkdAy6mKlikPR0DyPLg7aw9HQGu3XWiuD0dA6UDpHuwPR0A4rmwMJxBHQCfq3whlEEdAitg6S6MQR0CET2An4hBHQAX6RJ4kEUdApCbnsVMRR0Abq7o0axJHQNi7P96rEkdAFNBE2PASR0Bqiu3bNhNHQCV6GcVyE0dAow4YEbITR0DnUlxV9hNHQGwBtMAxFEdAjFIv5WkUR0AbR6zFpxRHQG/DFT3dFEdAODrU3PcVR0D9epjQNxZHQH8w8Nx7FkdAAL7uh7IWR0CaAwRz9BZHQNgFljYvF0dAf5xDLHUXR0AvbqMBvBdHQNYPxIwDGEdAQktE5UwYR0D0+L1NfxhHQE/pYP2fGUdA5zV2ieoZR0AgKSLDKhpHQCoAxjNoGkdAOQM2+qsaR0ANq3gj8xpHQDJFpmk9G0dA9pfdk4cbR0DdtYR80BtHQBvDidUMHEdASXAQmkocR0CcHgHJYR1HQPsI6RanHUdA2evdH+8dR0BKQbeXNB5HQFU1QdR9HkdAQGLORsEeR0CW9B3p+R5HQMGopE5AH0dAIp7/MYcfR0CjSOSoyR9HQOqQm+EGIEdAkmRDJDAhR0CyqkuzZiFHQO6+UK2rIUdAlmvkzfQhR0CWGUmVOyJHQMLNz/qBIkdAloCFucoiR0BZyElOEyNHQIaHQ0lbI0dANEO9854jR0AaRH4Q3CNHQBUVhAUKJUdAcNOf/UglR0DqRkWJgyVHQNZW7C+7JUdA1QRR9wEmR0AK16NwPSZHQOrPfqSIJkdAAg6hSs0mR0Cqr8HVFCdHQFuMlEBdJ0dAhyM12pcnR0CI/CC4tyhHQM85ZVvzKEdAHqfoSC4pR0Di3DmnbClHQCgPC7WmKUdATJ7FZe8pR0DdqChxMCpHQES43HNzKkdATaHzGrsqR0A+BcB4BitHQD+Eyz03K0dAfNXKhF8sR0Ane14EoCxHQHYFyL3mLEdAF2U2yCQtR0CS2NtTXy1HQOJtuKKnLUdAZRGdeOEtR0CjO4idKS5HQL2EHdlvLkdAb2xj2bkuR0AU0ETY8C5HQLpere0AMEdAz3t200AwR0AV1qBCiDBHQFslWBzOMEdAh9negRQxR0DjreCkVjFHQGAs+cWSMUdA7Cd2R9kxR0BpzufJIjJHQA89PF5bMkdAeEXwv5UyR0DdQexMoTNHQIXjDNjoM0dAlwfWXjE0R0Bllb9ofDRHQLD+z2G+NEdAh58S6vw0R0DOBLDuRTVHQKO3Za2ONUdAHDIL2tE1R0Bt0lq+GzZHQJQ9LwJQNkdAoWez6nM3R0AV03KNvDdHQMavRfgEOEdA6yyNckM4R0D+UFb5izhHQHK8FZzUOEdAPj+MEB45R0AiR03OYzlHQDRDvfOeOUdAugf7id05R0DF3p76GjpHQOif4GJFO0dABf9byY47R0BMZPnN1ztHQEHMOCAcPEdANz/rB2I8R0AkZXjZnDxHQBzjnVbkPEdAFGw2aS09R0BvRzgteD1HQA2jM0O9PUdAH6oW/vk9R0DNhaQpFT9HQBXrQS5eP0dAQYLix5g/R0DOYHl90z9HQO7O2m0XQEdAl3tujmBAR0AUIuAQqkBHQFRXPsvzQEdAF58CYDxBR0A8OTCmhkFHQNRd7NDDQUdAgUvtMulCR0DR4MmBMUNHQFzR0212Q0dAziat5btDR0A/fIZdAURHQHaBpc1LREdAkdWtnpNER0BL4r9T20RHQNnzIgAlRUdAVY8h7WxFR0BgcTjzq0VHQNDtJY3RRkdA9V/6cQ5HR0AiKmcCWEdHQByhjN6WR0dALJKJbtBHR0CThFelB0hHQJMgSTZESEdAV2gNy4xIR0BO5jJI1EhHQDP5ZpsbSUdAGvonuFhJR0BH9hsAhEpHQPWUr967SkdAykdlnQRLR0ABTYQNT0tHQFff06+HS0dAEc//mMNLR0A1XrpJDExHQJ5mbqtGTEdA+Db92Y9MR0Am5IOezUxHQAXAeAYNTUdATC9EYSpOR0DeRBoCbU5HQN798V61TkdAPNLzgfdOR0A9lj50QU9HQMh71cqET0dATVKGl81PR0C2dyDFE1BHQOxJcz5PUEdAVXqAAZdQR0ArEFD001BHQLUV+8vuUUdA2qS1fDdSR0C3h6qFf1JHQHCUvDrHUkdAKIvoxAtTR0DhehSuR1NHQKq02AB/U0dA3Xu45LhTR0Aafkqo81NHQArXo3A9VEdA1zw0GXtUR0Dsi4S2nFVHQE6XxcTmVUdAE+r87jBWR0CPhfvbeFZHQH/eVKTCVkdAR0ByWAdXR0Dx7AV5UFdHQLtZlsKWV0dABMqmXOFXR0CZ9WIoJ1hHQMSMA8JhWEdANh/XhopZR0CLprOTwVlHQDtbLZ38WUdAKqkT0ERaR0CfH0YIj1pHQFo3y1LYWkdAZTbIJCNbR0DMRXwnZltHQKoz5MWvW0dAj0YYGfdbR0C+/hFzNlxHQDSVWCxYXUdA2ysGIp5dR0CZKhiV1F1HQCcUIuAQXkdAL/LF8VZeR0A1qBCij15HQGmM1lHVXkdAA6qS2wlfR0CkJuexU19HQID+aCWaX0dA/Yf029dfR0CRHwT3FmFHQHcyOEpeYUdA3kxf4qJhR0D4lfQd6WFHQI/XlhQyYkdAzQGCOXpiR0BqUgq6vWJHQBgZ9/kCY0dATx4Wak1jR0A2PL1SlmNHQH+P5yDVY0dAyTzyBwNlR0DK9clkS2VHQLETcU2UZUdA6S526OFlR0Bow3Q0IWZHQPfU1+BqZkdA+I2vPbNmR0CZ+JDd8mZHQP0D0us8Z0dA9pfdk4dnR0ABUps4uWdHQLWBThvoaEdABAy41C5pR0B4lF1Dg2lHQELkB8G9aUdAlHLkbv1pR0ClizpgRGpHQNItTo+AakdA7YFWYMhqR0DLb77+EWtHQE4wiaBXa0dAbYgEZphrR0DfGtgqwWxHQCV1ApoIbUdAvsEXJlNtR0BFkchRk21HQNOXuGjbbUdA+THmriVuR0A6YETIZm5HQNnGsnOtbkdAbvJuP/NuR0B45vh7PG9HQOMEkwh6b0dAFi1TpqtwR0DYdBc79HBHQNDVVuwvcUdAMuGX+nlxR0D5LM+Du3FHQOl6tbYDckdA18ib6UtyR0AaH1NkmnJHQBWh69XackdAbnF6BCRzR0AeG4F4XXNHQGm2GCmBdEdAgOnHOcR0R0BB/r/X/XRHQB/sJ3ZHdUdATKshcY91R0A32K7j0nVHQBry4tcidkdAwYiQzWh2R0CfdvhrsnZHQHw8B6nudkdA8Irgfyt3R0CMNUkZXnhHQLHEA8qmeEdAhlrTvON4R0DcFHzAKXlHQJ9Rzb9weUdAin5aMrR5R0AJE1l+83lHQPdgP7E7ekdAAmA8g4Z6R0BwlLw6x3pHQEYYGff5ekdAdE7Z1jx8R0AlK6xBhXxHQEm6ZvLNfEdAJp1b+xV9R0CBW3fzVH1HQMiYu5aQfUdAKIOj5NV9R0AnMQisHH5HQMuU6apTfkdAiKVuVJR+R0DlXIqryn5HQAlNJRYLgEdAC//80UqAR0Blz4sAlIBHQBzGt4rYgEdAzqKK9SCBR0Deu+DmZ4FHQBm6/7WpgUdAHZQw0/aBR0C9EIWpQIJHQBvlhsyCgkdAza/mAMGCR0DmR+m/9INHQBIH47o8hEdA670Lbn6ER0CUTbnCu4RHQL72zJIAhUdAgzeRhkCFR0A0CfFbh4VHQJYJv9TPhUdAYWTc5wuGR0B7kItXRoZHQAh6laKChkdAIx0L97eHR0C8TDq39odHQNeOz1E0iEdAPZMQv3WIR0BIkg2RwIhHQCV1ApoIiUdAEpAc1kGJR0BY6kZFiYlHQKygfFTWiUdAVTAqqROKR0Ar0WwxUopHQOAAIBSBi0dA3I0rG8OLR0Cl+rtkCYxHQHFV2XdFjEdAlu8Gvo+MR0AwKqkT0IxHQG1JIaMWjUdAiJ0pdF6NR0AXr4wgqI1HQLUV+8vujUdAygprUCGOR0CY8jRzW49HQA9iZwqdj0dATW9sY9mPR0BKB+v/HJBHQONTAIxnkEdArLUdQKyQR0AxjM4M9ZBHQHLMn1xAkUdAkzoBTYSRR0AgGZgCv5FHQK/eu+DmkUdAH3iPRhiTR0A6r7FLVJNHQIk5GwWbk0dARFGgT+STR0BYgNxrLpRHQPHXZI16lEdAElE5E8CUR0CgTLaUBpVHQC5eGUFQlUdAdsO2RZmVR0D/gPQ6z5VHQPgMuwLklkdA51qhNSyXR0A48H2EdJdHQHgTaQi0l0dA7H4oq/yXR0CskyBJNphHQCc2H9eGmEdAOVroXc+YR0CrujRrFplHQGOxYPVamUdAJNHLKJaZR0AowJ0xuZpHQFyHfRXzmkdA4DXVgC6bR0BNfMhueZtHQC11o6LEm0dAO3gTaQicR0AQK8knUZxHQKQuLJKJnEdAgREhm9GcR0CPCR7ME51HQPL3eA5SnUdAjV2iemueR0AjlNHbsp5HQNBE2PD0nkdAa6fTp0KfR0AXO/TweJ9HQOnMUO+8n0dAv4p5QwegR0C1/SsrTaBHQI20VN6OoEdAhBWUj8qgR0Akao8EB6FHQEUKeKwsokdADEQ8/2OiR0AXG+BvoaJHQFtfJLTlokdAvV/yLC6jR0D8lFDnd6NHQJHADLO9o0dAE1l+8/WjR0BsAbTAMaRHQDiEKjV7pEdAvDKCoLakR0BpPWnO56VHQBsaPDkwpkdAsVBrmnemR0BiLT4FwKZHQFiDCiH6pkdAR9HwU0KnR0BrYKsEi6dHQD8I7i3Sp0dATxbRiReoR0CYhuEjYqhHQDnmTy6gqEdAv/n6R8ypR0AOZ341B6pHQIPAyqFFqkdAe0ljtI6qR0ALPuCUzKpHQJccd0oHq0dAR9HwU0KrR0D6uDZUjKtHQNqfnlHNq0dAKAKvqQasR0DPXpAHNaxHQEYASlZYrUdASKeufJatR0DNfV9J361HQDm536EorkdA8sXxVnCuR0DyfsmzuK5HQJHlN1//rkdAUAEwnkGvR0BW1GAahq9HQFV3UkzLr0dA4VXpAQawR0Ay7vMFGrFHQC1TpqtOsUdAlW3NQ5OxR0AJxxmw0bFHQJvuYoceskdAnKc65GayR0BNhA1Pr7JHQAh/rM3sskdAZVOu8C6zR0CbTVrLd7NHQOzFUE60s0dAlIeFWtO0R0DtVxSJHLVHQIidKXRetUdAxbyhA6W1R0CaUnH24bVHQPc45k8utkdA78F+Yne2R0Bg+nEOsbZHQFhmJFXutkdA98ySADW3R0DwQ7jcc7dHQLGnHf6auEdAPaOaf+G4R0DDXGWAHrlHQBkMm+5iuUdAIwAlK6y5R0A8Sbpm8rlHQFedwjc6ukdAl9Ig8oO6R0BzjbyZvrpHQPYwoW/4ukdAnrXbLjS7R0CWUxUtU7xHQEH5qKyTvEdA0RV/7t68R0AkpFucHr1HQNRY1aVZvUdASKeufJa9R0CRF78W4b1HQJLQlnMpvkdAQqL2SHC+R0D/lZUmpb5HQAAyh7fhvkdA+/AZdgXAR0Bd8efuTcBHQCA5rIOWwEdAPYa0s9XAR0AdYqkbFcFHQKldJp1bwUdAwptIQ6DBR0A+N0cw6MFHQKdc4V0uwkdAb77+EXPCR0C4BrZKsMJHQOT3Nv3Zw0dATxbRiRfER0DQo880TsRHQFl+8/WPxEdAjm0sO9fER0BSwGNlIcVHQA3Y6K9qxUdAuHIJmqnFR0BMnsVl78VHQJQDY2o4xkdAnMQgsHLGR0D3+QKNrMdHQAoezBP1x0dARQp4rCzIR0Ak5mwUbMhHQIfxrSK2yEdAXKRj4f7IR0BCwgrKR8lHQOIz7AqQyUdA6xwDstfJR0AY3PysH8pHQC4EOShhykdAht71rH7LR0Dehit6ustHQCbsyH4DzEdAbEbz7UrMR0B2LwqVksxHQPTg7qzdzEdANBZNZyfNR0AAmcPbcM1HQIyUQF23zUdAsQYVQvTNR0BsAbTAMc5HQP82nuJLz0dAnqh/I5TPR0AYS36x5M9HQPkx5q4l0EdAPoGdiGvQR0D1d8kSsNBHQK55aDL20EdAM1AZ/z7RR0DsUbgehdFHQNl3RfC/0UdAVfZdEfzRR0A+P4wQHtNHQFJuyCxo00dALSlk1KLTR0BKiN867NNHQGKpGxUl1EdAjkC8rl/UR0DMaqfTp9RHQGvciBTw1EdAfOprcDXVR0CE04IXfdVHQMHKoUW21UdAdLUV+8vWR0A3/dmPFNdHQGO804pc10dAd+sPp6bXR0AknBa86NdHQJ4sohMv2EdAgzRj0XTYR0Da7gvVuthHQKVmD7QC2UdAC2tQIUTZR0BBSBYwgdlHQIi34Yqe2kdA1A5/TdbaR0At3w18H9tHQPAbX3tm20dALSlk1KLbR0Aw0Mj64NtHQEHpHuwn3EdAfxMKEXDcR0Cy7FwrtNxHQC926OHx3EdAbYPtOi7dR0Ckna2WTt5HQOwCS5uX3kdAbpu828/eR0DMXUvIB99HQBe86CtI30dA3x0G4IzfR0BvOtwh2N9HQIFTMhMf4EdA4UiN9mXgR0AgVpJPouBHQFQdcjPc4EdAZWhP3ATiR0AbVAjRR+JHQHo+8B6N4kdAXynLEMfiR0CVBpEfBONHQP4rK01K40dAjkgBj5XjR0Cidz2r3+NHQEcDeAsk5EdACUDJCmvkR0ACt+7mqeRHQAKiTfvT5UdAwsi4zxfmR0BsgL+FYuZHQBofU2Sa5kdA1TbYruPmR0AVT1CdIedHQA7GdXlg50dAQ7WuvqfnR0AnoImw4edHQIqryr4r6EdAnKc65GboR0BPzHoxlOlHQNB2X6jW6UdAs3Ot0BrqR0B0sP7PYepHQL0gD2qs6kdAvMMAnPHqR0B1xZ+7N+tHQFvjRqSA60dAkNJ/6cfrR0B/IGYcEOxHQDLrxVBO7EdAIE5Nb2ztR0Dibbiip+1HQAvvchHf7UdACXV+dxjuR0CG/gkuVu5HQFSM8zeh7kdA5ajJeezuR0DEhL7hK+9HQOj2ksZo70dAwrguD6zvR0BtXsKO7O9HQK7QGpYZ8UdA7hDs5WTxR0Ah6j4AqfFHQBFDmMjy8UdAJHLU5DzyR0AMm+5ih/JHQA5fOVXR8kdAeqUsQxzzR0DVgC4HZ/NHQNtI7O2p80dAi/1l9+TzR0BYoPDsBfVHQBTD6MxQ9UdAvW987Zn1R0Aog6Pk1fVHQNASUTkT9kdAXyS05Vz2R0BclNkgk/ZHQGE/sTvK9kdAsMka9RD3R0BortNIS/dHQAHeAgmK90dAtxgpgbr4R0A80vOB9/hHQDNQGf8++UdAp7vYoYf5R0BYmKsM0PlHQJ7nYuYV+kdAYTqaEGD6R0AuvRCFqfpHQNEVf+7e+kdAPlxy3Cn7R0Dp5B+QXvtHQCti6yyN/EdATdu/stL8R0AfeI9GGP1HQM8sCVBT/UdAiTkbBZv9R0C35qHJ2P1HQJfCljEY/kdAR3cQO1P+R0AW84YOlP5HQBmw0V/V/kdAUoaXzQn/R0B3qf4uWQBIQE9gJ+KaAEhA0RV/7t4ASEBrUCFEHwFIQNduu9BcAUhAdbhDsJcBSEB/rM3s4AFIQKM7iJ0pAkhAb7OLfHECSEBg+nEOsQJIQC926OHxAkhAz0GqOykESECl/9KPcwRIQAXN1BGtBEhANKK0N/gESEBjd5RdQwVIQNftxpWNBUhAOe6UDtYFSEDH9IQlHgZIQHTCcQZsBkhA6SYxCKwGSEA6nyeL6AZIQL/ERdseCEhA9b7xtWcISEDSoea+rwhIQC196IL6CEhAxtRwpEYJSECWeEDZlAlIQHlYqDXNCUhAHOviNhoKSEDZ+2fgWgpIQOX6ZLKlCkhAl8XE5uMKSEBhZNznCwxIQIfhI2JKDEhAU2Sa1pMMSEANcayL2wxIQMVyS6shDUhAmBqO1GgNSEAb21h2rg1IQAspP6n2DUhAxDVRXj4OSEAWubp2fA5IQJEPejarDkhA4hsdau4PSEAmYGGuMhBIQNc8NBl7EEhAMQ3DR8QQSEAbL90kBhFIQGaY7R1IEUhAdZtd5IsRSEC79YdT0xFIQJjYfFwbEkhAf/YjRWQSSECkaPgpoRJIQCR/MPDcE0hASxJelR4USEDaI8FBaBRIQGwuJE2pFEhA+yKhLecUSED823iKLxVIQMH/VrJjFUhAHL5yqqIVSEDSqSuf5RVIQAzFMDozFkhAqg65GW4WSECh+DHmrhdIQN3vUBToF0hAplFuyCwYSEDTG9tYdhhIQEBF6Hq1GEhATU9Y4gEZSEDFyf0ORRlIQH3LnC6LGUhAUXPfV9IZSEB8J2a9GBpIQBVXlX1XGkhA+dUcIJgbSEBAMEeP3xtIQLmNBvAWHEhAxXqQi1ccSEAhfuuwrxxIQCU7NgLxHEhAOWpyHjsdSEC2EOSghB1IQISezarPHUhAEX1kYAoeSED/rWTHRh5IQPMf0m9fH0hAiEuOO6UfSEAknBa86B9IQMIChWcvIEhAsVBrmncgSEDoVYoKwiBIQF2v1nYAIUhAcNOf/UghSECt8heNjyFIQDjjIXnUIUhAmsYJJhEiSEAXghyUMCNIQCmm5Rp5I0hASx+6oL4jSEBM2JH9BiRIQHV2MjhKJEhAoTUsM5IkSECJXkax3CRIQKGcaFchJUhA4dHGEWslSECsScrwsiVIQB9wSmbiJUhA6fF7m/4mSEDG1HCkRidIQGEaho+IJ0hAPv16mNAnSEDCyLjPFyhIQJZw+/heKEhAWbi/jacoSECCVmDI6ihIQD+Eyz03KUhAMOiXm4IpSEBlnQRJsilIQCHVnRTTKkhAL7C0eQkrSEBlqmBUUitIQG2Td/uZK0hA+470fOArSECjO4idKSxIQAImcOtuLEhAo4Xe9awsSECaAwRz9CxIQGeGeuc9LUhAgr2c7HktSEAOJW29uS5IQK6WTv4BL0hArSfN+TwvSECfi5lXiC9IQDrcIdjLL0hAjHxxvBUwSEDV7IFWYDBIQG0csRafMEhAs06CJNkwSEChnGhXITFIQCAxZ6NgMUhAFdagQogySEA0LhwIyTJIQK6+p18PM0hA4XoUrkczSED7psMdgjNIQIB9dOrKM0hATeMEkwg0SEBNkWlaTzRIQLjM6bKYNEhATgMZFOA0SEBOnwqlHDVIQEuG9sRNNkhAD866WZY2SEBvpi9x0TZIQA4NnhwYN0hA9CpFBWE3SEAg38tqpzdIQLcgbmHwN0hAS0wqLTY4SEDK/Q5FgThIQNkAfwvFOEhA4syv5gA5SEACbZiOJjpIQHzVyoRfOkhA/5WVJqU6SED9OIdY6jpIQFXzL1wwO0hAJ5D/73U7SEA5jG8VsTtIQKz3Lrj5O0hAFBJWUD48SECNl24SgzxIQAHmR+m/PEhASWv5buA9SEADeAskKD5IQG2dpVFuPkhAHZdeiMI+SEAP3kQaAj9IQAtrUCFEP0hAiieozpA/SEDxGXYFyD9IQBSevSAPQEhA3xXB/1ZASEC6xekRkEBIQGjbQ9XCQUhAeN6zmwZCSEAsohMvPEJIQDihEAGHQkhAGYh4/sdCSEC143MUDUNIQJbnwd1ZQ0hAeeQPBp5DSED+r0095UNIQMj/97ofREhA7nw/NV5ESEBX39Ovh0VIQC6Lic3HRUhAGpswdP9FSECM+3yBRkZIQCxtXsKORkhAABWh69VGSECx1I2KEkdIQGvhnz9aR0hAdsO2RZlHSEDNfV9J30dIQARbJVgcSEhAygA9+kxJSECWW1oNiUlIQOXlw8bPSUhANXugFRhKSEBcIEHxY0pIQPNh4+esSkhA/C0Uw+hKSECbn/UDMUtIQF3cRgN4S0hAXYqryr5LSEB5zEBl/EtIQLkEzdQRTUhAygA9+kxNSEBGnDvnlE1IQOUCqpLbTUhAdBQNPyVOSEBfJLTlXE5IQNNyjbyZTkhAyvCyOeFOSEAZexzzJ09IQO0iXxxvT0hAcMZD8qhPSEAQWDm0yFBIQLkEzdQRUUhAsY1l51pRSEAReE01oFFIQIXGJgzdUUhAlMmW0iBSSEBqh78ma1JIQGQJWJirUkhA5ZZWQ+JSSEB7zYWkKVNIQPEm0hBoU0hAC8pHZZ1USECya2jw5FRIQCfimigvVUhAd3d3d3dVSEBq5rZqxFVIQGJvT30NVkhAzJ9cQFVWSEDwI6RbnFZIQAuDH8LlVkhAZl4hhjBXSEAwrssDa1dIQN64sjGcWEhAvKYa0OVYSED5xZJfLFlIQD8D1wJoWUhAADW1bK1ZSEAirony8llIQAviFgY/WkhAsnjE+4RaSEB1wIiQzVpIQCmzQSYZW0hAX5AHNVZbSEBmg0wyclxIQGtdfU+/XEhAFAoRcAhdSEBqxLlzTl1IQCPGWJOUXUhA9Ve1kdhdSEArUmFsIV5IQMGIkM1oXkhAEzRTR7ReSEDXaaSl8l5IQBNhw9MrX0hA+55+PUxgSEAbDeAtkGBIQJmzUbDZYEhA19081SFhSEBuH9/LamFIQFU9hrSzYUhAtj1ULfxhSEClgMfKQmJIQOONzCN/YkhAOzYC8bpiSECOxN6e+mJIQLOQk5wmZEhAY2LzcW1kSEChjN6WtWRIQLOwpx3+ZEhAWVnISU5lSECJORsFm2VIQLn8h/TbZUhAfURMiSRmSEDNx7WhYmZIQPI5ioafZkhA7JPJltJmSEC1T8djBmhIQEJLROVMaEhAXYJm6ohoSED76NSVz2hIQNCbilQYaUhA7PoFu2FpSEArMGR1q2lIQCS5/If0aUhAbjSAt0BqSEDVQzS6g2pIQMuZANa9akhAX9pdjdlrSEC3lAaRH2xIQKPMBplkbEhAMdP2r6xsSEC2qad89WxIQKsR5845bUhAH32mcYJtSECbGKVeym1IQLyReeQPbkhAvUpRQVhuSEBo5XErl25IQGGOHr+3b0hAMRUIKPpvSEAUElZQPnBIQKtT+EaHcEhAgfQ6z8VwSEB4cmBMDXFIQDB0/2tTcUhA2RUg95pxSECA1CZO7nFIQEMc6+I2ckhAtFTejnBySECXg7NulnNIQDb1lK/ec0hA6NFnGid0SECsJJ9EcXRIQENmQTu6dEhABaOSOgF1SEAXvOgrSHVIQHzAKZmJdUhA3KoR5851SEDuztptF3ZIQNXPm4pUdkhALapYD3J3SEAWwf9WsndIQOdSXFX2d0hAuu8r6Tt4SEDfiVkvhnhIQMR/p7bBeEhAQf6/1/14SED+DkWBPnlIQO1cK7SGeUhAXrIELMx5SEBEi2zn+3lIQDsppuUae0hAeD2r3197SECZtn9lpXtIQEuTUtDte0hAdDHzCjF8SEDvwX5id3xIQGto8OTAfEhAAZSssAZ9SEAVzltiUn1IQKXC2EKQfUhA5eXDxs99SED6eVORCn9IQBe86CtIf0hAvjWwVYJ/SEC94xQdyX9IQB/H/MkFgEhAzYJ2dEmASEBzGSRqj4BIQBmlXsrTgEhA1cdWqh6BSEBmtdPpU4FIQK3yF42PgUhAIqZEEr2CSEBh0C83BYNIQOam4ANOg0hAPFYWcpKDSECutmJ/2YNIQH4V84YOhEhA3PRnP1KESEDJLGhHl4RIQL6fGi/dhEhAv1jyiyWFSED8WoRPYIVIQLqdkLCChkhAklS5Y8SGSEDBNAwfEYdIQEcLvetZh0hAFHzAKZmHSECVGzIL2odIQJGzsKcdiEhAVft0PGaISEA7GRwlr4hIQNttF5rriEhA7GmHvyaJSEBPimm5RopIQHMZJGqPikhA9tnuC9WKSEB8sJ/YHYtIQODGU3xpi0hAkaMm57GLSEDkTulg/YtIQP+tZMdGjEhAQNFPS4aMSEBraPDkwIxIQOCkVoXzjEhAnBa86CuOSEAdwaBfbo5IQFGlZg+0jkhAvc5zMfOOSED0tqzVMY9IQG48xZd2j0hABZtNWsuPSEBvy1odE5BIQFj/5zBfkEhARzDol5uQSEDP/5jD25BIQEvqBDQRkkhA4xk09E+SSEAAhCLwmpJIQAAyh7fhkkhAjjh3zimTSECI1/ULdpNIQDKP/MHAk0hAM2W66hSUSEBPxDVRXpRIQDwHqe6klEhAIwhqC+KUSEA7eBNpCJZIQKF8VNZJlkhAPbD2ioGWSEBpb/CFyZZIQCFmHBAOl0hA0Dd85VSXSEAZgDMekpdIQIKwQOHZl0hAsYUgByWYSECjzAaZZJhIQHEgJAuYmEhAzHLss92ZSEB9REyJJJpIQJijx+9tmkhA1cI/f7SaSEDA5Flc9ppIQKYCAUU/m0hAR39VG4mbSECrlQm/1JtIQD2gbMoVnEhAV/R0m12cSEAbKsb5m5xIQMk0rSfNnUhAX2vciBSeSECdlcetXJ5IQMMv9fOmnkhAEsXRQu+eSEDEhL7hK59IQG0xUgJ1n0hAMo/8wcCfSECFOr87DKBIQLDuRaFSoEhACZd7bo6gSEBD73pWv6FIQL5tk3f7oUhAOwmSZEOiSEDD9Shcj6JIQHLHiDHWokhATXexQw+jSEDLHSPGWKNIQIQNT6+Uo0hAqqd89d6jSEAAV7JjI6RIQIofY+5apEhA2Pg5K4+lSECIvyZr1KVIQJO+Iz0fpkhAsyyFLWOmSECFvuErp6ZIQHQMyF7vpkhApsg0rSenSEAQ7s7abadIQAh3Z+22p0hATak4+/CnSEAW7m/jKahIQDaD5fVNqUhAWRKgppapSEAdWmQ736lIQK5kx0YgqkhAAAUXK2qqSEB8q4its6pIQG3n+6nxqkhAo+GnhDqrSEDiFgY/hKtIQO0VAxHPq0hA4mBclwesSEDBgEvtMq1IQBlGZ4Z6rUhATTWgy8GtSEAWb2Qe+a1IQN/b9Gc/rkhAUjxBdYauSEDO1z9izq5IQOcVYggTr0hAbOwS1VuvSEBfSd+Rnq9IQCd4ME/Ur0hAIEk2RAKxSEAOjKnhSLFIQOxRuB6FsUhA7vgcRcOxSEAfqhb++bFIQKFfbgo+skhA4JTMxIeySEDChqdXyrJIQCV1ApoIs0hATBqjdVSzSEBW8UbmkbNIQCKJXkaxtEhAlvQd6fm0SECyU5lPQ7VIQOY3X/+ItUhAp3Sw/s+1SEBG2x6qFrZIQCGoLYhbtkhA2anMp6G2SEBLChm16LZIQOlwh2Avt0hAnDvnlG23SEBm9+RhobhIQB/5g4HnuEhALgdn3Sy5SED3aISRcblIQGGOHr+3uUhA5E7pYP25SECL8AnsRLpIQImIiIiIukhAbpu828+6SEBe1y/YDbtIQK5PJltKu0hAnvfspoG8SEBcE+Xlw7xIQMtS2DIGvUhANFuMlEC9SEBAWolmi71IQLvqFL7RvUhA8NlNAxm+SEDyiyW/WL5IQMo329yYvkhAADKHt+G+SEDuYoceHr9IQCKWulFRwEhAGOyGbYvASEBWFnKS08BIQJ57D5ccwUhAYcPTK2XBSEC2Z5YEqMFIQIDUJk7uwUhAX6WoICzCSEC4WFGDacJIQKWQUYuuwkhAv8dzkOrCSECEV6UHGMRIQHFyv0NRxEhAM68QQ5jESECUh4Va08RIQME0DB8RxUhAzCiWW1rFSEABGM+gocVIQBtP8aXdxUhA/y5ZAhbGSEDeJzQ2YcZIQFqmTFedxkhAYtNd7NDHSECzc63QGshIQJFEL6NYyEhAUENBFo/ISECYqN4a2MhIQFnISU4TyUhA/1OErlfJSEDaIJOMnMlIQPVXtZHYyUhA5ZMojhbKSEClizpgRMpIQFJuyCxoy0hA8uocA7LLSED83qY/+8tIQAfTMHxEzEhAw/UoXI/MSEDVGfLi18xIQPFbh30VzUhAp0dAcljNSEACI0I2o81IQH6+QCPrzUhAGQRWDi3OSEDw4ZLjTs9IQIXwaOOIz0hAfXkB9tHPSEB4GIAzHtBIQBeKYXRm0EhA3NyYnrDQSEDUZTGx+dBIQD55WKg10UhAajhSo33RSEDn01CQxdFIQFTr6nv60UhAS5uXsCPTSECEmbZ/ZdNIQI+NQLyu00hAhQDzo/TTSECzyl80PtRIQOONzCN/1EhAVe4YMcbUSEDzVIfcDNVIQPUY0s5W1UhAmI4mBJjVSEAneDBP1NVIQM8cf4/n1khAG2mpvB3XSEAJt4/vZddIQM3+U4Su10hAc5UBevTXSEClblSUONhIQHjuPVxy2EhAxm00gLfYSECCc0aU9thIQD2WPnRB2UhA6BN5knTZSEAAhCLwmtpIQL6fGi/d2khAOzsZHCXbSEAZKYG6bttIQOKKnm6z20hAizcyj/zbSEDkB8G9RdxIQIuebrOL3EhAriK2ztLcSEA3/dmPFN1IQLSGZUZS3UhAB1I8QXXeSED2nyJ0vd5IQDbVgC4H30hAmNVOp0/fSEBbHRM8mN9IQLXtoWrh30hAcRsN4C3gSEAHUjxBdeBIQOdKF3XA4EhAPxAzDgjhSEDfZC6DROFIQOdXc4Bg4khAc1PwAafiSEA0hc5r7OJIQB6n6Egu40hAU5YhjnXjSEDjsvfPwONIQGhswtD940hAuQGfH0bkSEDv+0r6juRIQOeE4wzY5EhAx2tLChnlSECaHbyJNOZIQHTCcQZs5khA+Zgi07TmSEACgjl6/OZIQNUpfKND50hATqQh0IbnSED7QrWuvudIQESzxUgJ6EhAp7OTwVHoSEBF/RuhjOhIQDIjqXLH6EhA/KTap+PpSEAU2Im4JupIQO2ZJQFq6khAvAopP6nqSEBOIP/f6+pIQNLOVksn60hAKH6MuWvrSEBfg6sptutIQJ6QsILy60hAYdh0FzvsSECayyBRe+xIQE/pYP2f7UhA6znpfePtSEAnMQisHO5IQPzjvWpl7khAA8JhfKvuSEDF1lka5e5IQM2/cMEs70hArbhL9XfvSEBPIy2Vt+9IQO6UDtb/70hA1ZXP8jzwSED5OSuPW/FIQAIjQjaj8UhAwFsgQfHxSEDCH2szO/JIQIRcvDKC8khA+Md71crySEChdA/2E/NIQOjZrPpc80hAqvkXLpjzSECqp3z13vNIQOCEQgQc9EhAFrF1lkb1SECu4KRWhfVIQIq4JsrL9UhAgTZMRxP2SEDJm+lLXPZIQOv31wWW9khAkpn4kN32SEDkOUh1J/dIQFaalIJu90hAiGh0B7H3SECkqgmi7vdIQCmzQSYZ+UhAB6GpxGL5SEApGn5KqPlIQOtWz0nv+UhA9lXMGzr6SECnMp+GgvpIQGJKJNHL+khAaijI4hH7SEBQRm/LWvtIQH4Q3Fuk+0hAArTAMd77SEDg8JVTFf1IQCVATS1b/UhAPHP8PZ79SEAQJrL85v1IQNNiA/wt/khAhUpJ/Hf+SEDOnXPKtv5IQLOwpx3+/khAzgSw7kX/SEDDbO9Aiv9IQFuRq2vH/0hAHB1q7vsASUCg6KclQwFJQFLFepCLAUlAJltKg8gBSUAxT9S/EQJJQNThDsFeAklAdF5jl6gCSUBTTMs18gJJQNIII+M+A0lARGlv8IUDSUA+4JTMxANJQJ1TtjUPBUlAZJ/tvlAFSUALQQ5KmAVJQKJ3PavfBUlA+0fM2SgGSUCxUGuadwZJQIHXVAO6BklA0WwxUgIHSUBSNPyUUAdJQKr5Fy6YB0lARSJHTc4HSUC9JSaVFglJQOG04EVfCUlA0ALHeKcJSUAXXfHn7glJQOwPp6Y3CklAx+coGn4KSUAyI6lyxwpJQP2PObwNC0lACY82jlgLSUAft3IJmgtJQEIe1FjVC0lAI0I2o/kMSUByzJ9cQA1JQCaiciaADUlAE+Xlw8YNSUAyPWGJBw5JQBhbCHJQDklA8S4X8Z0OSUAgBPcW6Q5JQJuf9QMxD0lArZtlKWwPSUCRhkAbpg9JQEbwv5XsEElAuVt/ODURSUDUkqE9cRFJQCpC16u1EUlAByXMtP0RSUB0a7+iSBJJQKEquZ2QEklAb8MVPd0SSUBMpgpGJRNJQNJ8uxJuE0lAmtNlMbETSUCaAwRz9BRJQG+2uTE9FUlA7FG4HoUVSUAzt1UjzhVJQHT3JnMZFklA+c3XP2IWSUD7kSIyrBZJQAyOklfnFklAGoaPiCkXSUCZN3SgdBdJQNYcIJijF0lAY8kvlvwYSUBSFxbJRBlJQBtcTbF9GUlA8A4DcMYZSUB25bM8DxpJQGg3DWRQGklAwfwo/ZcaSUAb2CrB4hpJQF0jb6YvG0lAIGszO3gbSUDu5qkOuRtJQB1Fw08JHUlAG8vOtUIdSUA2H9eGih1JQEH2evfHHUlAJOFV6QEeSUCYTBWMSh5JQPMnF1CVHklAcbGiBtMeSUDg+wjpFh9JQEPqYytVH0lAXyGGMJEfSUBddQrf6CBJQMFu2LYoIUlAoFxAVXIhSUALmMCtuyFJQC8ne14EIklADwNwxkMiSUC/1M+biiJJQOyTyZbSIklACxSevSAjSUA79PB4bSNJQCMAJSusI0lAHjNQGf8kSUAJVWr2QCVJQFS+eu+CJUlA0Fl53MolSUBvy1odEyZJQFrtdPpUJklAWHOAYI4mSUDGpwAYzyZJQIjvxKwXJ0lAHThnRGknSUCqFv75oydJQKEdXZLwKElAkGtDxTgpSUAB3gIJiilJQHxujmDQKUlAWlz2/hkqSUBvlqWwZSpJQJIa7cusKklAlvQd6fkqSUDTE5Z4QCtJQDYf14aKK0lAFPBYWcgrSUAeUDblCi1JQBKtAqJNLUlA+MqpipYtSUD7mWcS4i1JQL7hK6cqLklAiENJW28uSUBESVtvri5JQDzS84H3LklA1B4JDkIvSUCKCsIChS9JQIN2dEnCL0lAvvbMkgAxSUANZFCAOzFJQEqDyA+CMUlAcB32VcwxSUBOC170FTJJQIYQfWRgMklAC/KgxqoySUDs9e6P9zJJQO65OYJBM0lAoo8MTIEzSUCOgs0mrTNJQBn8EC73NElAbYPtOi41SUBbxmDYdDVJQImQzWi+NUlAaImonAk2SUDVz5uKVDZJQEALHOOdNklA5rM8D+42SUCjxMG4LjdJQBIhm9F8N0lA58HdWbs3SUBbmfBL/ThJQIdY6kZFOUlAGGNNUoY5SUAnZr0YyjlJQCkflXUSOklANjR4cmA6SUAmjdE6qjpJQEP3vzb1OklAT/a8CEA7SUC1IlfXjjtJQEIMYSLLO0lAZvz7jAs9SUDqxznEUj1JQOtunuqQPUlAlgm/1M89SUCBGWZ7Bz5JQNWytb5IPklAAVXJ7YQ+SUCq9ul4zD5JQIr6N0IZP0lAMpxYzWA/SUBJsiESmD9JQIN+uSn4QElAPZY+dEFBSUCOKxvDiUFJQKqKlinTQUlAUzcqShxCSUAZoEefaUJJQCvEECayQklAJ2OPY/5CSUBZWchJTkNJQMmjLiySQ0lAsKTvSM9DSUAVFYQFCkVJQEDJCmtQRUlAG3kzfYlFSUBqA5020EVJQEjxBNUZRklASIKD0FRGSUAbKsb5m0ZJQPr6R8zZRklAoJH1wR9HSUD0RyvRbEdJQETAIVSpR0lAz/+Yw9tISUBWxNZZGklJQLnPF2hkSUlAWUxsPq5JSUAUZPGI90lJQKd5xyk6SklAEJ9hV4BKSUCDCiH6yEpJQDTcgM8PS0lA1FjVpVlLSUCsIXGPpUtJQLxPaGzCTElAx0PyqAtNSUAfCQ5CU01JQBeSplScTUlAaTL2OOZNSUCyogbTME5JQGSKTNN6TklAcoJJBL1OSUA9+kzjBE9JQDR4cmBMT0lAZBOG7n9PSUC1q5Dyk1BJQK00KQXdUElATKYKRiVRSUBoBYasblFJQK5Cyk+qUUlAeZJ0zeRRSUAHfH4YIVJJQJ69IA9qUklAPi8CULJSSUDNQGX8+1JJQK4K5y0xU0lAWMUbmUdUSUB0JJf/kFRJQPWxlarHVElA4syv5gBVSUDy2pJCRlVJQG+BBMWPVUlA4+zDZ9hVSUDaaunkH1ZJQF42JxxnVklA06xZVLFWSUALeKws5FZJQJ/V768LWElA+ZMLqEpYSUBXaA3LjFhJQKf96RnVWElAw1xlgB5ZSUAkXTP5ZllJQMrobVmrWUlAdKB0D/ZZSUDoCzSyPlpJQJ4U03KNWklAYT+xO8paSUCVYHE481tJQJgkvCo9XElA5aOyToJcSUAtCVBTy1xJQCWS6GUUXUlAVlVVVVVdSUAk7rH0oV1JQLHpLnboXUlAY7SOqiZeSUAVkWEVb15JQPNh4+esXklAmxilXspfSUBHyatzDGBJQAPso1NXYElAkfKTap9gSUAX8Z2Y9WBJQHnxaxE+YUlAgtqCuIVhSUAGidojwWFJQNIA3gIJYklAPTxeW1JiSUBIEwLMj2JJQJm2f2WlY0lA07SeNOdjSUDKMsSxLmRJQBeKYXRmZElA5iK+E7NkSUCEiSy/+WRJQEXY8PRKZUlAKNU+HY9lSUCsoHxU1mVJQKMeotEdZklAZ0mAmlpmSUA48H2EdGdJQC1jMGy6Z0lASaXFBvhnSUB3bzKXQWhJQDzCacGLaElACEXgNdVoSUDNhaQpFWlJQPIUX9pdaUlAUwq6vaRpSUAjkaMm52lJQHMJmqkjaklARbsKKT9rSUBmKWwZg2tJQFycHgHJa0lAiD4yMAVsSUDqPgCpTWxJQMYWghyUbElAJwzd/9psSUDW0sk/IG1JQKdkJj5kbUlA7r5QrattSUAt18ib6W1JQLj5WT8Qb0lAIBSB11RvSUC/hWIYnW9JQKuy74rgb0lAh4px/iZwSUB1zeSbbXBJQOAIZfS2cElAkNrEyf1wSUAnHGfARnFJQF8hhjCRcUlAFALMj9JxSUCVzMSH7HJJQP/80Uo0c0lACObo8XtzSUB9XBsqxnNJQDZB1H0AdElAL9XfJUt0SUCV2SCTjHRJQFgsWL3WdElAYyDi+R91SUA305e4aHVJQFs6+QekdUlAm8k329x2SUCt7QBiJXdJQJQLqEpud0lAO63I1bV3SUD1udqK/XdJQP6XfpxDeElAjbRU3o54SUDS+Jgi03hJQGpFrq4deUlACbeP72V5SUAIPZtVn3lJQCT29tTXeklAjPM3oRB7SUAIclDCTHtJQHCpXSade0lAXNbqmOB7SUBmynTVKXxJQNcfTk1vfElACfmgZ7N8SUChOkNe/HxJQNg/Ys5GfUlAif9ObYN9SUAwAlCywn5JQPE+obEJf0lALl4ZQVB/SUArzj58hn9JQOXlw8bPf0lAPaBsyhWASUD2rH5/XYBJQOX6ZLKlgElA35nj7/GASUDlYaHWNIFJQPJOK3J1gUlAm1Wfq62CSUCkW5weAYNJQDNt/8pKg0lAhA1Pr5SDSUD4WyiG0YNJQL650kUdhElAD1oiKmeESUAJ+aBns4RJQB0o3YP9hElAXFLIqEWFSUAs2bERiIVJQOw8FzOvhklAfFntdPqGSUB6GcVyS4dJQF8PE/qGh0lAhrSz1dKHSUA/wcWKGohJQJZTFS1TiElA1pPmfJ6ISUBSL+Vp5ohJQPKgxqouiUlAVISuV2uJSUACcq+5kIpJQHLHiDHWiklAp7bBdh2LSUBagSGrW4tJQKHbSxqji0lAZCMQr+uLSUBOYhBYOYxJQDN1RKuAjElA3CHYy8mMSUB7iEZ3EI1JQLiK2DpLjUlAOIQqNXuOSUAdl16Iwo5JQFuZ8Ev9jklADm/DFT2PSUCCvZzseY9JQKhXyjLEj0lAmLAj+w2QSUAy2VIaRJBJQIyp4UiNkElAe/fHe9WQSUD/pR/nEJFJQNPEKPVSkklAYcsYDJuSSUCiC+pb5pJJQFTovMYuk0lADwu1pnmTSUAUyP/3upNJQF0mnVv7k0lAznADPj+USUBMIuhVipRJQOlg/Z/DlElAn0FD/wSVSUBAGHjuPZZJQD/G3LWElklA++jUlc+WSUCcZSlsGZdJQIy+gjRjl0lAfSJPkq6XSUB2mXRu7ZdJQDLZUhpEmElASSno9pKYSUANcayL25hJQHBfB84ZmUlA6RanR0CaSUCFZy/Ig5pJQN0sS2HLmklADAIrhxabSUAxkeU3X5tJQNACx3inm0lAXxQqJfGbSUDKT6p9OpxJQJ8CYDyDnElAsiYpw8ucSUChYpy/CZ1JQGG7jksvnklAnKc65GaeSUAUIuAQqp5JQD/L8+DunklAYU87/DWfSUBBKzBkdZ9JQA2jM0O9n0lAAhbmKgOgSUDpM40TTKBJQAqi7gOQoElATLNmUcWgSUD9+4wLB6JJQEJLROVMoklAXZ9MtpSiSUAh8oPg3qJJQBMn9zsUo0lAkc1ovl2jSUDP91PjpaNJQL5FOhbuo0lAV53CNzqkSUA+u2kgg6RJQGto8OTApElAizcyj/ylSUDAJmvUQ6ZJQGrecYqOpklAJPb21NemSUCaT0NBFqdJQIqonAlgp0lAuH18L6unSUC4K+H28adJQNy6m6c6qElAsnjE+4SoSUANGvonuKhJQFsQtzD4qUlA8SkAxjOqSUB9GgqyeKpJQBJGxn2+qklAFPidOf6qSUAYqnX1PatJQKzVMcGDq0lAnRGlvcGrSUCJSaXFBqxJQEd3EDtTrElAMHHRtoesSUCoV8oyxK1JQKX6u2QJrklAfaZxgkmuSUCNtFTejq5JQG2tLxLarklA6Ugu/yGvSUDHNpada69JQPT1j5izr0lAIJijx++vSUDOUx1yM7BJQDJN60lzsElA/gHpdZ6xSUASMSWS6LFJQP5dsgQssklAcrf+cGqySUD4U+Olm7JJQM70JS7asklAHX+P5yCzSUCldpl0brNJQBz4PkK6s0lAbI0bkQK0SUBxVdl3RbRJQHRWHrdytUlAvLu7u7u1SUCHM7+aA7ZJQENWt3pOtklA/m08xZe2SUBnk9by3bZJQN4f71Urt0lAqIx/n3G3SUDEzhQ6r7dJQNXnaiv2t0lAxRhrkjK4SUBUEBYoPLlJQKee8tV7uUlAWHvFQMS5SUCwQOHZC7pJQDYXkqZUuklAQO41F5K6SUCi0R3EzrpJQNCbilQYu0lARgBKVli7SUC6awn5oLtJQDoW7m/ju0lAJ4B1Lwq9SUD08HhtSb1JQIHs9e6PvUlAeE01oMu9SUAHX5hMFb5JQEifaZxgvklAX9IYraO+SUDKDZkF7b5JQBBdUN8yv0lA5A8Gnnu/SUAJZfS2rL9JQAEgFIHXwElAswdagSHBSUA2qz5XW8FJQNURrQKiwUlAn2FXgNzBSUDyDBr6J8JJQB3BoF9uwklAx3inFbnCSUDo5ggG/cJJQOzAOSNKw0lAzYq7VH/DSUAT+oavnMRJQHbL+yXPxElAmk9DQRbFSUCjQ819X8VJQAxMgd+ZxUlAg80mreXFSUCxhSAHJcZJQL2EHdlvxklAbmHwQ7jGSUC30QDeAsdJQEKasWg6x0lAYh20RFTISUBdn0y2lMhJQK4/nJreyElA9HFtqBjJSUC4xKTSYslJQLBNPeWryUlAL+I7MevJSUAVAOMZNMpJQPLi1yJ8yklA50oXdcDKSUCrgGjT/spJQMsV3uUizElAUdobfGHMSUAbR6zFp8xJQBKdeOHhzElAYz3IxSvNSUBj9p8idM1JQLy7u7u7zUlAzsKedvjNSUAWKDx7Qc5JQHkzfYmLzklAyrbmocnOSUC5NlSM889JQDXSUnk70ElAv7fpz37QSUDHeKcVudBJQClcj8L10ElA20PVwj/RSUAinv8xh9FJQI/k8h/S0UlA1yyqWA/SSUDiK6cqWtJJQMb5m1CI0klAGbr/tanTSUAr3sg88tNJQMIfazM71ElALVvri4TUSUAo+mnJ0NRJQBlBUFsQ1UlASPlJtU/VSUC+eu+Cm9VJQKFsyhXe1UlApz/7kSLWSUDIkHa2WtZJQDAFfmeO10lA7iB2ptDXSUAb4G+hGNhJQDQMHxFT2ElA9T39epjYSUA0aOif4NhJQGAn4poo2UlAAYdQpWbZSUCa02UxsdlJQBuJvT312UlAdTxmoDLaSUCb2cGbSNtJQKq02AB/20lAoSCLR7zbSUCXiMqZANxJQI8RY6xJ3ElAiYiIiIjcSUCJQWDl0NxJQNnWPDQZ3UlAQObwNlzdSUCh20sao91JQFSmq07h3UlAWqtjggffSUD+KytNSt9JQKbNS9iR30lAEQnMMNvfSUAX0YkXHuBJQNDdm8xl4ElA0IsAlKzgSUCZ+JDd8uBJQAtOalU44UlAaCJseHrhSUBqrOrSrOFJQDIjqXLH4klArKjBNAzjSUDWUdUEUeNJQEOYyPKb40lA05e4aNvjSUCweq1xI+RJQGqHvyZr5ElAuAa2SrDkSUBZjn22++RJQECsJJ9E5UlAFUL0kYHlSUColMR/p+ZJQN5xio7k5klAhx4ery3nSUBkARO4dedJQEgJ1HW750lAPEm6ZvLnSUD8byU7NuhJQGGRTHSD6ElAwoanV8roSUDQm4pUGOlJQHYVUn5S6UlAfxMKEXDqSUA7GRwlr+pJQMsYDJvu6klA/Nt4ii/rSUDQji5JeOtJQLWhYpy/60lAVx63cgnsSUDRrkLKT+xJQAaeew+X7ElApg9dUN/sSUC4FkALHO1JQG4Xmus07klAKygflXXuSUAr1oNcvO5JQPhGh5r77klA32Qug0TvSUBHf1Ubie9JQKd0sP7P70lASPEE1RnwSUCAAZfaZfBJQPqGr5yq8ElAu5unOuTwSUChzu8OA/JJQCaaLUZK8klAELxHI4zySUBWFnKS0/JJQJRAXbcb80lAPeJ9QmPzSUCoHf6arPNJQLpBxyH180lAqY+tVD30SUBabIC/hfRJQFPYMgbD9ElAo5+WDO31SUD7gZhxQPZJQN5+5pmE9klA1xLyQc/2SUDGYNh0F/dJQF+t7QBi90lA1RGtAqL3SUALDFnd6vdJQEEGBbgz+ElAvqx2On34SUDlNDFKvfhJQAfr/xzm+UlAr4wgqC36SUB6IQpTgfpJQKHGqi7N+klAZRniWBf7SUBC/NZhX/tJQP0TXKyo+0lAXxQqJfH7SUA0x9/jOfxJQJ737KaB/ElAMwbDprv8SUCnrnyW5/1JQI7MI38w/klAYXRmqHf+SUBDZkE7uv5JQHlg7RUD/0lAyepWz0n/SUBYBy0Rlf9JQBtP8aXd/0lAHRM8mCcASkCGONbFbQBKQB5dkvCqAEpAyy2thsQBSkAXl71/BgJKQI/0fOA9AkpAOKEQAYcCSkCRcZ8v0AJKQAYFuDMmA0pAOul942sDSkDSNZNvtgNKQByxFp8CBEpAkSdJ10wESkAxfERMiQRKQJFpWk+aBUpAZfS2rNUFSkCToT1xEwZKQOtmWQpbBkpAMLYQ5KAGSkA5lLT15gZKQGttBxArB0pAOgZkr3cHSkD9TShEwAdKQJOEV6UHCEpAbyINgTYISkCY8jRzWwlKQPnnj1aiCUpAakjcY+kJSkAmYGGuMgpKQMfnKBp+CkpAiBkHhMMKSkBWp/CNDgtKQLecS3FVC0pAG5YZSZULSkC48RRf2gtKQLFdx6UXDEpAIgIOoUoNSkC5Q7CXkw1KQI32ZVbcDUpA1VsDWyUOSkDLzrVCaw5KQHR7SWO0DkpAY8kvlvwOSkDhehSuRw9KQDUxSr2UD0pAc1s14twPSkAEWyVYHBBKQO/+eK9aEUpApQcYcKkRSkBFefmw8RFKQIKYcUA4EkpAfkJjE4YSSkDT5iXsyBJKQPyhrPIXE0pA5dU5BmQTSkAANbVsrRNKQDMr7lL9E0pAn0mI3zoUSkARBLUFcRVKQGGOHr+3FUpAcad0sP4VSkAI3qMRRhZKQHMZJGqPFkpANVZ1adYWSkD4nTn+HhdKQLGf2B1lF0pAn8Vl758XSkCE2JlC5xdKQGrZWl8kGEpAHThnRGkZSkCsScrwshlKQP7pGdX8GUpAnFCIgEMaSkDvBr6PkBpKQDl3zinbGkpAoJH1wR8bSkBk2blWaBtKQOB0uEOwG0pA1PndYQAcSkCFucoAPRxKQGoQ+UFwHUpALWMwbLodSkDWD8SMAx5KQKOSOgFNHkpAtsF2HZceSkCMf59x4R5KQGgvyIMaH0pArHMMyF4fSkC+l9VOpx9KQG1ewo7sH0pAfloytCcgSkAfJvQNXyFKQJKRs7CnIUpAXgm3j+8hSkAhUXskOCJKQOugJaJyIkpAvSAPaqwiSkAoURwt9CJKQIpR6qU8I0pA7FG4HoUjSkAZHCWvziNKQD2O+ZMLJEpA40u7qzElSkD3aISRcSVKQJ//MYe3JUpAzMmeFwEmSkAGyL3mQiZKQHo+8B6NJkpAlZL479QmSkAH6NFnGidKQNqPFJFhJ0pAPZtVn6snSkCnrnyW5ydKQPu+kr4jKUpAWIghTGQpSkAb21h2rilKQLQnbgL5KUpAaBonmEQqSkA4oRABhypKQKjrduPKKkpACuxEXBMrSkB/YneUXStKQD1+b9OfK0pAHT1+b9MrSkBCQ/8EFy1KQLzTilxdLUpALTvXCq0tSkDnUlxV9i1KQEEj64M/LkpAKVd4l4suSkCn/ekZ1S5KQDYPTcYeL0pAsZ/YHWUvSkCmEosFqy9KQEuTUtDtL0pA0eDJgTExSkA6BmSvdzFKQKQ2cXK/MUpAVCW3ExIySkDQwLUAWjJKQHpb1uqYMkpACGLGAeEySkAt/PNHKzNKQIi6D0BqM0pAZJKRs7AzSkAoyOIR7zNKQMvGcGI1NUpAP/hjbWY1SkA3gfx/rzVKQDMOCIfxNUpA5era8Tk2SkDlo7JOgjZKQM3MzMzMNkpAOAhNJRY3SkDr+gW7YTdKQK5Cyk+qN0pAfbPNjek3SkCQPOrCIjlKQBP9tGRoOUpA78nDQq05SkBiGJ0Z6jlKQCZr1EM0OkpAPKWD9X86SkCjv6qNxDpKQB1Fw08JO0pABGNqOFI7SkD61RwgmDtKQF3Ed2LWO0pAZiRV7hg9SkCHkrbeXD1KQDJVMCqpPUpAg9iZQuc9SkAAfwvFMD5KQO22C811PkpA+8vuycM+SkBWp/CNDj9KQPQNXzlVP0pABzIowJ0/SkAidL1a2z9KQHqaua0aQUpA7hDs5WRBSkAa0OXgrEFKQBFOC170QUpAoWrhnz9CSkC1jqomiEJKQJ7CNzrUQkpAjRAebRxDSkBRbsgsaENKQBS2jMGwQ0pA2/ZQtfBDSkASm49rQ0VKQO5yEd+JRUpAQBNhw9NFSkBUQp3fHUZKQDY0eHJgRkpAyl80PqZGSkBPNuUK70ZKQPCnxks3R0pA94VqXX1HSkC2j+9ltUdKQHzFQMTzR0pALTbA30JJSkBtMVICdUlKQK1msLy+SUpAz+r31wVKSkAG5aOyTkpKQDvU3PeVSkpAwcBz7+FKSkDiQEgWMEtKQC21y6RzS0pAXH84Nb1LSkC9V61M+EtKQOVWLkEzTUpA/6o2EntNSkCdHBhTw01KQEjJq3MMTkpAw28d9lVOSkBLXLTtoU5KQJO23lzpTkpAPW7lEjRPSkBLcVXZd09KQHgTaQi0T0pAukHHIfVPSkCMVV2aNVFKQGDyLC57UUpAfT81XrpRSkDzo/Rf+lFKQKaWrfVFUkpAlOuTyZZSSkBgeX3T4VJKQH3Y+DkrU0pAOPvwGXZTSkBdiqvKvlNKQE7GHsf8U0pAFGw2aS1VSkAtqlgPclVKQAds9Fe1VUpAYTyDhv5VSkDHSzeJQVZKQETyqAuLVkpACEXgNdVWSkDTvOMUHVdKQC57/wxcV0pAXVDfMqdXSkAF1Rny4ldKQIoXHg4lWUpAM8SxLm5ZSkCd9L7xtVlKQESW33z9WUpAwTxR/0ZaSkCFhBWUj1pKQFs3y1LYWkpAQmDl0CJbSkArgv+tZFtKQIExNRypW0pA2ryEHdlbSkBGUuWOEV1KQFdrO4BYXUpAFoczv5pdSkBoFRBt2l1KQOSwDloiXkpAdM3km21eSkAv2vZQtV5KQA3IXu/+XkpAQsIKykdfSkCC92iEkV9KQGHTXezQX0pA/8IFsxxhSkCzhmVGUmFKQOMz7AqQYUpA15srXdRhSkAnPHtBHmJKQHG3/nBqYkpAF0M50a5iSkCEiSy/+WJKQPrieCs4Y0pAeJRdQ4NjSkBp20PVwmNKQET3vzb1ZEpAn7XbLjRlSkCL+E7MemVKQCEvfi3CZUpAEGB+lP5lSkAQDuNbRWZKQMoa9RCNZkpAoe4DkNpmSkAXZTbIJGdKQB1K2npzZ0pAUzITH7JnSkCq9ul4zGhKQMRK8kkUaUpALVOmq05pSkCq7qSYlmlKQKFsyhXeaUpAHhM8mCdqSkBTDehycGpKQLUNtuu4akpAd0oH6/9qSkDPDyOER2tKQD0cStp6a0pAzGqn06dsSkCmN7ax7GxKQE7Z1jw0bUpApp7y1XttSkCdHBhTw21KQD+ZbCkNbkpAxXqQi1duSkAwq51On25KQL6xjWXnbkpAb3F6BCRvSkCkQ819X29KQETyqAuLcEpAcbGiBtNwSkCdcJwBG3FKQJweAclhcUpAHcnlP6RxSkA5KGGm7XFKQGbyzTY3ckpAQr/cFHxySkBEjpqcx3JKQFiyYyMQc0pAYH6U/ktzSkD31NfganRKQE2PgOSwdEpAaeOItfh0SkCRgSnwO3VKQKWl8naEdUpA5eXDxs91SkA0cC2AFnZKQH/rsK9idkpAay4kTal2SkAtQxzr4nZKQPJm+hIXd0pAGzciBTx4SkCKdhVSfnhKQJya3tjGeEpAi+jECw95SkDB4nDmV3lKQO+s3XaheUpASH1spep5SkAVAOMZNHpKQG3F/rJ7ekpATslMfMh6SkCfTLaUBntKQCcxCKwcfEpAAOgwX158SkAbH1NkmnxKQGq0L7PifEpALgdn3Sx9SkD6id1Rdn1KQANogWO8fUpA1QRR9wF+SkAMCnBnTH5KQG3/ykqTfkpAY3J9Mtl+SkAA9Yxq/n9KQMx3A99HgEpAP+PCgZCASkDEuXNO2YBKQNbSyT8ggUpAApLDOmiBSkAdyeU/pIFKQGQjEK/rgUpAZudaoTWCSkA9noNUd4JKQFrgGO+0gkpAoVpX39ODSkDJ4hHvE4RKQFf0dJtdhEpA7zUXkqaESkABWuAY74RKQK8gzVg0hUpAEPlBcG+FSkABUps4uYVKQNj9UFb5hUpA9FzMvEKGSkDke1ntdIZKQAdagSGrh0pA/temnvKHSkC55LhTOohKQIVnL8iDiEpA8KKvIM2ISkBSo32ZFYlKQBrdQexMiUpAFFRnyIuJSkAyychZ2IlKQDy9UpYhikpATKPckFmKSkACzI/Sf4tKQKI9cRPIi0pA1w/EjAOMSkA4EJIFTIxKQH91LwqVjEpAcM6I0t6MSkCTUtDtJY1KQOv6BbthjUpA9+6P96qNSkDIi1+L8I1KQMj/97ofjkpAGXsc8yePSkDk56w8bo9KQC071wqtj0pAG4m9PfWPSkBGPUSjO5BKQAdkr3d/kEpApdWQuMeQSkCZMl11CpFKQKMm57FTkUpALhfxnZiRSkCslQm/1JFKQPAL1br6kkpACkP3vzaTSkDc1FO+epNKQKdMV53Ck0pAc8/NEQyUSkDVz5uKVJRKQHhi1ouhlEpA9P3UeOmUSkC9X/IsLpVKQKmMf59xlUpASOztqa+VSkCaod55z5ZKQJxIQ6ANl0pAEcrobVmXSkALXvQVpJdKQFK4HoXrl0pAOdbFbTSYSkC+rHY6fZhKQF4eWHvFmEpAtuNzFA2ZSkCQsILyUZlKQEyrIXGPmUpA2NglqreaSkBsBOJ1/ZpKQGN3lF1Dm0pA8Yj3CY2bSkBh013s0JtKQOeXm4IPnEpA1toOIFacSkCWKdNVp5xKQKhCKUfunEpAI94nNDadSkDMYmLzcZ1KQO0CS5uXnkpA0yDyg+CeSkDjLtXfJZ9KQF7K08xtn0pAJAuYwK2fSkCwBhVC9J9KQMZAxPM/oEpAY4pM03qgSkAs4fbxvaBKQMdD8qgLoUpAN3Fyv0OhSkBxrIvbaKJKQDoOqY+tokpAMYFbd/OiSkC1OiZ4MKNKQPJZngd3o0pAOpfiqrKjSkCkx+9t+qNKQPVnP1JEpEpAzgGCOXqkSkClyh0jxqRKQAyreCPzpEpAePuZZxKmSkCF85aYVKZKQJcXYB+dpkpAnt8dBuCmSkBNsX3bJqdKQKJVQLRpp0pAhl0Bcq+nSkDNtyvh9qdKQPI0c1s1qEpAbqgY52+oSkC+K4L/rahKQKB+PUzoqUpAbwUntSqqSkDqlbIMcapKQCSfRHG0qkpAoTpDXvyqSkDOBLDuRatKQD9aiWaLq0pAKGa9GMqrSkBbSoPID6xKQAHhML5VrEpALoNE7ZGsSkAO1v85zK1KQHgGDf0TrkpAuDD4IVyuSkCkc2u/oq5KQBfUt8zprkpAXBj8EC6vSkAdVU0Qda9KQKpQypG7r0pAcbnn5giwSkC5KfiAU7BKQFl+8/WPsEpAmg0yycixSkAoAq+pBrJKQGUWtKNLskpAQwQcQpWySkAQkgVM4LJKQGIg4vkfs0pAuuX9kmezSkCk/KTap7NKQAfr/xzms0pAPuWr9y60SkBvlqWwZbRKQF8hhjCRtUpAML5VxNa1SkAyZbrqFLZKQEaJg3FdtkpALacqWqa2SkC6rRpx7rZKQCgK9Ik8t0pAUqiUxH+3SkB0LNzfxrdKQJiwI/sNuEpAL9XfJUu4SkCz0qQUdLlKQId65z27uUpAScKr0gO6SkDZ0w5/TbpKQHlQY1WXukpAGMJElt+6SkCKFx4OJbtKQAzqW+Z0u0pAcwSDfrm7SkAA4xk09LtKQMDsnjwsvEpARgBKVli9SkAdrP9zmL1KQLPiLtXfvUpAvctFfCe+SkCvHZ+jaL5KQIPQVGKxvkpANKK0N/i+SkDUHgkOQr9KQBlGZ4Z6v0pAwL8usLS/SkDV52or9r9KQCbXJ5MtwUpADfXOe3bBSkDjsvfPwMFKQMevRfgEwkpAvjjeCk7CSkCKu1R/l8JKQNxQMc7fwkpAG4aPiCnDSkB+kdCWc8NKQLBqI7G3w0pAqNbV9/TDSkCBBMWPMcVKQDsR10R5xUpAcQuDH8LFSkDngbVXDMZKQM6qz9VWxkpAApoIG57GSkDceIov7cZKQFkf/LE2x0pA3vWsfn/HSkDm01CQxcdKQEnCq9IDyEpAx9/jOUjJSkC4OD0CkslKQFi1kdjbyUpAu8DS5iXKSkCJTrzwcMpKQE2PgOSwykpAE+K3DvvKSkDEvop5Q8tKQAsZteiKy0pAML5VxNbLSkCNh+RRF8xKQH0SxdFCzUpAANOPc4jNSkBpA5020M1KQPHkwJgazkpAvFzEd2LOSkCI3zrsq85KQET3vzb1zkpAet/42jPPSkCoqWVrfc9KQEYtuuLPz0pAUPnqvQvQSkC5lUvQTNFKQK8I/reS0UpAB8Omu9jRSkBnuAGfH9JKQEamaT1p0kpAGlkf/LHSSkCX9B3p+dJKQNxOSFhB00pAcnoEJIfTSkB0ScKr0tNKQAVJsiES1EpAaKNgs0nVSkBlHvmDgdVKQHdCwgrK1UpAfiBmHBDWSkB1nouZV9ZKQM9uGsig1kpAIhrdQezWSkAWghyUMNdKQOopX71310pARhDUFsTXSkC1MuGX+tdKQFHvvGc32UpA9W+EMnrZSkDWVuwvu9lKQLpTOlj/2UpASnuDL0zaSkDtAkubl9pKQFg+y/Pg2kpAFnep/i7bSkBQgDtjcttKQD/OIZa620pAsxz7bPfbSkChf4KLFd1KQMP4VhFb3UpAS9p6c6XdSkARJrL85t1KQD7wHo0w3kpAViPOnXPeSkD2lK/eu95KQACJORsF30pAbb250kXfSkAxEPH8j99KQAamwO/M30pA+lH6L/3gSkAVsXWWRuFKQDlAMEeP4UpAZv8pQtfhSkAITSUWC+JKQO5qzP5T4kpASDtbLZ3iSkDVGfLi1+JKQGpQIUQf40pAsqpLs2bjSkD6/XWBpeNKQEmSDZHA5EpAzF1LyAflSkDnlG3NQ+VKQIX723iK5UpA7yB2ptDlSkBNAOteFOZKQFjiAWVT5kpAX6O/qo3mSkBGwWaT1uZKQEdvy1od50pAJEBNLVvnSkDBzc/6gehKQNX8CxfM6EpA3NqvKBLpSkDjv1PbYOlKQHsMaWer6UpAnZCwgvLpSkB0TtnWPOpKQAx+CJd76kpArQXQAsfqSkDap+MxA+tKQP0ORYE+60pA0ugOYmfsSkAXOMY7rexKQMgfDDz37EpAd8kSsDDtSkAaNPRPcO1KQOar9y647UpAUcqRu/XtSkCWGUmVO+5KQJW8OseA7kpAfNrhr8nuSkBsBOJ1/e5KQDJ3LSEf8EpAmpFUuWPwSkCI3zrsq/BKQEocjOvy8EpATs5jpzLxSkByXR5Ye/FKQFl7xUDE8UpAZGhP3ATySkBCS0TlTPJKQFZ6gAGX8kpABSSHddDySkAfjTAy7vNKQP5oJZot9EpAKh2s/3P0SkCC4seYu/RKQK+sNCkF9UpAReNjikz1SkACBlxql/VKQOcYkL3e9UpASiTRyyj2SkB248rGcPZKQMdbwUmt9kpAmUf+YOD3SkDF+4TGJvhKQPr1MKFv+EpAH4XrUbj4SkALsnjE+/hKQKcNdNpA+UpAzaehIIv5SkBRc99X0vlKQKMTLzwc+kpAj0svRGH6SkCO+ZMLqPpKQA7LjKTK+0pADXnxaxH8SkCF85aYVPxKQClp682V/EpAd9Zuu9D8SkACx3inFf1KQOjZrPpc/UpAC170FaT9SkCr2kjs7f1KQFeA3Gsu/kpAYTqaEGD+SkDvrN12of9KQJhZcZfq/0pAyidRHC0AS0DAiJDNaABLQHZ0ScKrAEtA2Vcxb+gAS0Cs/3OYLwFLQMle7/54AUtANrBVgsUBS0BQBF5TDQJLQF3mdFlMAktANypKHIwDS0AwvlXE1gNLQOGPtZkdBEtA2ftn4FoES0D1WuNGpARLQBGv6xfsBEtAF58CYDwFS0AwwD46dQVLQOCcEaW9BUtAeN6zmwYGS0AQDuNbRQZLQMh71cqEB0tA8iTpmskHS0Cn6Egu/wdLQDTkxa9FCEtAV3OAYI4IS0ArEFD00whLQIsFq9caCUtAkrv1h1MJS0DysFBrmglLQEdnhnrnCUtANqP5diUKS0D8ILi3SAtLQOhNRSqMC0tAh78ma9QLS0CQqD0SHAxLQBV0e0ljDEtAVbRMma4MS0AZB4TD+AxLQF5WO50+DUtAB/hbKIYNS0BOUoaXzQ1LQIMvTKYKDktAqsynoSAPS0DgxlN8aQ9LQM4UOq+xD0tA86P0X/oPS0DyUVknQRBLQDqaEGB+EEtAGXYFyL0QS0CkW5weARFLQNMwfERMEUtAGYums5MRS0D4WyiG0RFLQMXzP+bwEktANlSM8zcTS0AE1wJogRNLQG4HECvJE0tA+/AZdgUUS0BLhvbETRRLQMLqtcaNFEtACEXgNdUUS0AWWsMyIxVLQLrPF2hkFUtAdtUpfKMVS0ATeZJ0zRZLQFKjfZkVF0tA+C64+VkXS0BO6WD9nxdLQFCFUo7cF0tAja89syQYS0AlDsZ1eRhLQJdjn+2+GEtAsbenvgYZS0ALiDbtTxlLQBZf2l2NGUtAfauIrbMaS0BH+zIr7hpLQDQ+psg0G0tAuRRXlX0bS0DwGXYFyBtLQLFLVG8NHEtAYign2lUcS0A20GkDnRxLQBjCRJbfHEtA7GmHvyYdS0A84n1CYx1LQE0FAop+HktAo7+qjcQeS0BNbD6uDR9LQLinvgZXH0tAMzhKXp0fS0Ay8SG75R9LQLCXkz0vIEtAGr0ta3UgS0D0iTxJuiBLQISmEosFIUtAoeinJUMhS0AzO3gTaSJLQKamN7axIktAwwWzHPsiS0Dxzx+tRCNLQKvnpPeNI0tAbi9pjNYjS0Drymd5HiRLQHGhGEZnJEtAW8MyI6kkS0AsVY8h7SRLQPeSxmgdJUtAGkmVO0YmS0AqOpLLfyZLQAD4uh/KJktAvBqz/xQnS0DgqW2wXSdLQJvB8vqmJ0tAcoqO5PInS0Dgvg6cMyhLQDqaEGB+KEtAMRg23cUoS0BzOyFhBSlLQIm9PfU1KktAfRoKsngqS0DeGtgqwSpLQJxIQ6ANK0tA/lOErlcrS0ASg8DKoStLQEqI3zrsK0tAJmBhrjIsS0BNBQKKfixLQJV1EiTJLEtAp3z13gUtS0AfWHvFQC5LQOGfP1qJLktA4lgXt9EuS0AijnVxGy9LQPhLnsVlL0tAc+ecsq0vS0BaBUSb9i9LQIGYcUA4MEtA+zpwzogwS0CPUEZvyzBLQJkyXXUKMUtA3NeBc0YyS0CjI7n8hzJLQFwT5eXDMktA/Y85vA0zS0CNrA/+WDNLQAIjQjajM0tAd5l0bu0zS0CmblSUODRLQPkZFw6ENEtALhTD6Mw0S0A7AU2EDTVLQLi8X/IsNktAewQkh3U2S0DvXXDzszZLQAKCOXr8NktAP6GxCUM3S0AktOVcijdLQCqZiQ/ZN0tAm9F8uxI4S0Dc9Gc/UjhLQDzqwiKZOEtAmZZr5M04S0Co1tX39DlLQOfj2lAxOktAYnRmqHc6S0C6OYJBvzpLQJH3qpUJO0tAs3vysFA7S0BmbqtGnDtLQHuoWvjnO0tA1YNcvDI8S0BtuosdejxLQEqLDfC3PEtAIF7XL9g9S0CDaRg+Ij5LQBWc1KpwPktAd5Evjrc+S0CFlJ9U+z5LQKkjWgVEP0tAA/ToM40/S0BdxHdi1j9LQP0j5mwUQEtAsiESmGFAS0AmcOtunkBLQK1msLy+QUtAO22g0wZCS0Apu4YGT0JLQPUyiuWWQktA/yYUIuBCS0CIDKt4I0NLQBDuztptQ0tAqzPkxa9DS0D5vU1/9kNLQFWkwthCREtABVk84n1ES0BE3QcgtUVLQNoTN4H8RUtAFSg8e0FGS0AXxC0MfkZLQK0F0ALHRktAlhEEtQVHS0AWzltiUkdLQBqojH+fR0tA5xiQvd5HS0AmQ3viJkhLQEGFEH1kSEtAjSCoLYhJS0D9ag4QzElLQPXzpiIVSktAw4GQLGBKS0DpJjEIrEpLQET3vzb1SktArCfN+TxLS0C6MT1hiUtLQCZ4ME/US0tAkJ3KfBpMS0B6v+RZXExLQH3LnC6LTUtAhrSz1dJNS0AvVtRgGk5LQCjq3whlTktAVanZA61OS0DKKn/R+E5LQKcNdNpAT0tAPUSjO4hPS0C97oeyyk9LQCxA7jUXUEtA6EUASlZQS0CAzw8jhFFLQJT+Sz/OUUtAi3H+JhRSS0BU3o5wWlJLQGYCWPeiUktAL1kCFuZSS0Dre/r1MFNLQDj78Bl2U0tAjZ+z8rhTS0Bxp3Sw/lNLQOXq2vE5VEtAPvhjbWZVS0ASoKaWrVVLQPKYgcr4VUtAaBonmERWS0C4pJBRi1ZLQJ7CNzrUVktA5ifVPh1XS0BIMxZNZ1dLQFpMbD6uV0tAAwRz9PhXS0CX/GLJL1hLQB4m9A1fWUtAoea+r6RZS0C2IG5h8FlLQNqvKBI5WktASgwCK4daS0BW+YvGx1pLQCSHddASW0tAyyiWW1pbS0DfTF/ioltLQF3+Q/rtW0tAwOyePCxcS0Cb2cGbSF1LQG+Md1qRXUtA7Cd2R9ldS0A0mIbhI15LQOBaAC1wXktAyY6NQLxeS0DtEtVbA19LQHDTn/1IX0tA5UnSNZNfS0A1366E219LQLFoOjsZYEtA/isrTUphS0BHf1UbiWFLQE5ShpfNYUtABUmyIRJiS0CC7yOkW2JLQFuxv+yeYktA9P3UeOliS0AB9tGpK2NLQFiweq1xY0tA2TIGw6ZjS0DJbnm/5GNLQJp3nKIjZUtAicWC1WtlS0CrM+TFr2VLQB+NMDLuZUtApVFuyCxmS0CvHZ+jaGZLQDT0T3CxZktAHgv3t/FmS0DyyB8MPGdLQPFrET6BZ0tARAVhgcJnS0DzD0iv82hLQEvVY0g7aUtArdUxwYNpS0D1RUJbzmlLQPkUAOMZaktAVPABp2RqS0AwyIMaq2pLQNBE2PD0aktAqSNaBURrS0DIoy4skmtLQI7Zf4rQa0tANJBBAe5sS0A7Y3J9Mm1LQMt01Sl8bUtAw+v6BbttS0C8dJMYBG5LQKaLOmBEbktAwuq1xo1uS0AlAWpq2W5LQERZ5S8ab0tAGAEoWWFvS0DaKwYinm9LQNUZ8uLXcEtA5jJI1B5xS0DYhKH7X3FLQFYDuhyccUtAig/ZLe9xS0BgzQGCOXJLQJbHrVyCcktAG55eKctyS0Bb07zjFHNLQIidKXRec0tAn8Vl759zS0CMRdPZyXRLQBIchKYSdUtALnv/DFx1S0DcNnm3n3VLQOcNHSjddUtAZLSOqiZ2S0AdzBP1b3ZLQNCzWfW5dktA3LJWxwR3S0BortNIS3dLQPmbUIiAd0tA3tWY/ad4S0BXUD4q63hLQBBdUN8yeUtAg72c7Hl5S0AIlE25wnlLQLlwICQLektA84slv1h6S0CL2DpLo3pLQMsNmQXtektAl5APejZ7S0DEPZY+dHtLQOkmMQisfEtA4Ydwued8S0AJJhH0Kn1LQJk3dKB0fUtAq1s9J719S0A7baDTBn5LQBdQldxOfktA26LMBpl+S0A3fs7K435LQOpwh2Avf0tArqbYvm1/S0D9f6/7oYBLQCQww2zvgEtAFYkcNTmBS0DGZe+fgYFLQJLoZRTLgUtArjxu5RKCS0Ap499nXIJLQLfpz36kgktAYqHWNO+CS0DEoaStN4NLQLwNV/R0g0tASDtbLZ2ES0B9KpRy5IRLQM2/cMEshUtAOPB9hHSFS0Dx/I85vIVLQIk+MjAFhktAOhsFm02GS0DivCUmlYZLQDJSAnXdhktAEEBqEyeHS0Cwn9gdZYdLQB4G4IyHiEtALvfcHMGIS0Bk1KIr/ohLQM8PI4RHiUtAvl0Jt4+JS0D9kmdx2YlLQNE6qpogiktA/e4wAGeKS0Bf7/54r4pLQCE3ww34iktA7YZtizKLS0DQwLUAWoxLQOPSC1GYjEtAB1dTbN+MS0CE/cTuKI1LQAKkNnFyjUtAfSJPkq6NS0AUZPGI941LQJk6olVAjktANYsq1oOOS0DlXIqryo5LQOXtCKcFj0tAigJ9Ik+QS0DQXKeRlpBLQCLyg+DekEtAuj6ZbCmRS0Bh4Ln3cJFLQOar9y64kUtAA/n/XveRS0DwO3P8PZJLQE8mW0qDkktARqSAx8qSS0CZMl11CpNLQBxfe2ZJlEtALnjRV5CUS0Dtqa/B1ZRLQIXrUbgelUtAApLDOmiVS0BCxyH1sZVLQCnlyN36lUtARU+32UWWS0Cwijcyj5ZLQLyJNATalktA2cvJnheXS0Almi1GSphLQBn3+QKNmEtARsFmk9aYS0DZy8meF5lLQNqPFJFhmUtACWX0tqyZS0DgIh0L95lLQInaI8FBmktA69rxOYqaS0C3XWiu05pLQIzWUdUEm0tAyxXe5SKcS0AABRcrapxLQJ52+GuynEtA1XCkRvucS0BVLfzzR51LQCa/WPKLnUtA4NbdPNWdS0Dpv/TjHJ5LQL1nNw1knktAH2gFhqyeS0DhkuNO6Z5LQC057pQOoEtAq99fF1igS0CfR59pnKBLQCxVjyHtoEtAet/42jOhS0C3/nBqeqFLQGTB6rXGoUtAwaBfbgqiS0CprJMgSaJLQJj6eVORoktAkWYsms6iS0BX5Ora8aNLQO0aGjw5pEtA/z7jwoGkS0BqemMby6RLQHNjesISpUtAs5jYfFylS0DFvKEDpaVLQAwXzHLspUtAGBbJRDemS0AHZK93f6ZLQJdjn+2+pktAPyXU+d2nS0ATzRYjJahLQC0hH/RsqEtA8WjjiLWoS0BRXj5s/KhLQIYwkeU3qUtAORjX5YGpS0DzL1wwy6lLQBrV/AsXqktAZT4NBVmqS0DA/Cj9l6pLQGGrBIvDq0tAccRafAqsS0A8MevFUKxLQK+cqmiZrEtAunNO2dasS0De95X0Ha1LQBsigRlmrUtAJCh+jLmtS0CEHdlvAK5LQGD1WuNGrktALVvri4SuS0DH0ocuqK9LQBdLfrHkr0tAX6WoICywS0DUG9tYdrBLQIoHlE25sEtAcSU7NgKxS0BVOG+JSbFLQLoxPWGJsUtANcLIuM+xS0BqsQH+FrJLQA4yychZsktAiOloQoCzS0DixGoGy7NLQCcUIuAQtEtAZ0mAmlq0S0CDs26WpbRLQJ4Hd2fttEtAzdxWjTi1S0C+GMqJdrVLQANogWO8tUtAmZ6wxAO2S0AN7YmbQLZLQEQSvYxit0tAgTE1HKm3S0Cw+6Gs8rdLQHx+GCE8uEtAiH0V84a4S0BcMMuxz7hLQBdTw5EauUtAp2QmPmS5S0BTCrq9pLlLQOAQqtTsuUtAxukRkBy6S0BDiD4yMLtLQKSIDKt4u0tAJB0L97e7S0CZnrDEA7xLQDLO34RCvEtAFtagQoi8S0D/CS5W1LxLQFan8I0OvUtAjKGcaFe9S0AaqIx/n71LQIzr8sDavUtAlAaRHwS/S0BTIoleRr9LQNjtxpWNv0tAMsnIWdi/S0BE7ZHgIMBLQGl8TJFpwEtAP0XoerXAS0ALvetZ/cBLQLiK2DpLwUtAetKcz5PBS0BB9nr3x8FLQDm8DVf0wktA7ZHgIDTDS0CWPnRBfcNLQK98lufBw0tAPY75kwvES0CNI9biU8RLQEEWj3ifxEtAbdWIc+fES0DIsIo3MsVLQPVHK9FsxUtANXaJ6q3FS0DAcMEsx8ZLQJxIQ6ANx0tAIR/0bFbHS0ArCAsUnsdLQBIJzDDbx0tAtpQGkR/IS0DdHMGgX8hLQNSa5h2nyEtANpu0lu/IS0BuoNMGOslLQMxiYvNxyUtABE7JTHzKS0AcjOvywMpLQFF7JDgIy0tAC4g27U/LS0C0NMoNmctLQK6r7+nXy0tAyP/3uh/MS0DHrVyCZsxLQF3ZGE6szEtAZcIv9fPMS0BvmdNlMc1LQLHRX9VGzktAGff5Ao3OS0B57FTm085LQJVAXbcbz0tAirMPn2HPS0CDPKixqs9LQGpaT5rzz0tAd1JMyzXQS0DkmD+5gNBLQAgo+mnJ0EtACMTr+gXRS0D4JnMZJNJLQBBwCFVq0ktAcFrwoq/SS0CCfrkp+NJLQDdxcr9D00tA4B0G4IzTS0D8fIFG1tNLQFRCnd8d1EtAgxd9BWnUS0AJ+aBns9RLQNx4ii/t1EtANkxHEwLWS0ChfFTWSdZLQEkedWGR1ktAGJrrNNLWS0BVxNZZGtdLQOv6Bbth10tAB1qBIavXS0CE9X8O89dLQBDUFsQt2EtAHNMTlnjYS0Cz98/AtdhLQIjcDDfg2UtACYfxrSLaS0BEfhDcW9pLQDvxwsOh2ktApje2sezaS0DLqYqWKdtLQLTdF6p120tA+SzPg7vbS0DywNorBtxLQGYEQW1B3EtApRy5W3/cS0AzQ73znt1LQE2MUi/l3UtA5LAOWiLeS0AzO3gTad5LQH2riK2z3ktAeDiUtPXeS0CvIM1YNN9LQKipZWt930tAusK7XMTfS0BGvjjeCuBLQEBA0U9L4EtA9Ucr0WzhS0ClJP47teFLQF8UKiXx4UtA7RoaPDniS0DLCILaguJLQGRDJDDD4ktAMMaapAzjS0AEbt3NU+NLQH/+aCWa40tAmUf+YODjS0BKB+v/HORLQLWjSxJe5UtAzc/6gZjlS0AaRH4Q3OVLQOa7ge8j5ktAG7YtymzmS0BtSwoZteZLQM1L2JH95ktAcumFKEznS0AxEPH8j+dLQDsEeznZ50tAB1+YTBXoS0B/RZHIUelLQPO7wwCc6UtAV8cED+bpS0DD5Z6bI+pLQFMN6HJw6ktACQsUnr3qS0BuLDvXCutLQHo2qz5X60tAZmM4sZrrS0CK8vJh4+tLQGKpGxUl7EtAUlHiYFztS0Abs/8Uoe1LQJhZcZfq7UtAlfHvMy7uS0AtM5Iqd+5LQAssbV7C7ktAMMaapAzvS0BMGqN1VO9LQO2hauGf70tAH40wMu7vS0BMOrf2K/BLQMUgsHJo8UtAjoLNJq3xS0A7Wy2d/PFLQJYrvMtF8ktAQuc1donyS0AYpV7K0/JLQD8/jBAe80tANsgkI2fzS0CMd1qRq/NLQC7/If3280tAAFeyYyP0S0AyYow1SfVLQIPl9U2H9UtACLymGtD1S0CNh+RRF/ZLQPi38RRf9ktAAqx7Uaj2S0CaAwRz9PZLQHbbheY690tA1sVtNID3S0DLBVQlt/dLQMFmk9by90tAJId10BL5S0AJmqkjWvlLQOd8niyi+UtA5zV2ier5S0AT6vzuMPpLQC9mXiGG+ktA+t1hAM76S0AfbRyxFvtLQKRDzX1f+0tAi2F0Zqj7S0APGz9n5ftLQG4sO9cK/UtAs3vysFD9S0Am57FTmf1LQOUCqpLb/UtAWW5pNST+S0C8eapDbv5LQDQcqdG+/ktA39Ovhwn/S0CQsILyUf9LQBV8wCmZ/0tAZv8pQtf/S0AZ/BAu9wBMQIYwkeU3AUxAkBmojH8BTEA755RtzQFMQPLSTWIQAkxAf9k9eVgCTECTCHqVogJMQJrbqhHnAkxA1e+vCywDTED/jVBGbwNMQGaAHn2mA0xAg+06Lr0ETEDl4pURBAVMQPcGX5hMBUxAAPB1P5QFTEAIvKYa0AVMQI+A5LAOBkxAA+yjU1cGTEDHM2jonwZMQEr0MorlBkxAZFOu8C4HTEDsF+yGbQdMQAaBlUOLCExAMCqpE9AITEAdUDblCglMQGSf7b5QCUxAOV0WE5sJTEB4knTN5AlMQBkPyaMuCkxAefmw8XMKTEB1o6LEwQpMQGwhyEEJC0xApgIBRT8LTEALHOOdVgxMQLOgHV2SDExAHdEqINoMTEBa5S8aHw1MQIm6D0BqDUxAH/yxNrMNTEAxIHu9+w1MQNm2KLNBDkxAZ70YyokOTEAIReA11Q5MQPRUh9wMD0xAJX1Hej4QTEC7qANGhBBMQLIJQ/e/EExAAp8fRggRTEB+KKv8RRFMQNjtxpWNEUxAKpmJD9kRTEBSSZ2AJhJMQBWRYRVvEkxAMvtPEboSTEAhN8MN+BJMQL3WuBEpFExAVRhbCHIUTEAPMOBSuxRMQBokao8EFUxALVOmq04VTED5uDZUjBVMQEEe1FjVFUxA5sb0hCUWTED66r0LbhZMQNbCP3+0FkxAglZgyOoWTEDbdVx6IRhMQMrDQq1pGExANPRPcLEYTEDgtsm7/RhMQF1ortNIGUxAgvdohJEZTED9h/Tb1xlMQETiHksfGkxA2iPBQWgaTEDh9vG9rBpMQJO23lzpGkxAVU0QdR8cTEAOWiIqZxxMQGo1JO6xHExA7gBiJfkcTEAk+w0AQh1MQPB9hHSLHUxATl35LM8dTEBPFtGJFx5MQD5kt7xfHkxAWK1M+KUeTECIeyx96B5MQK1ZVLEeIExAKfVSnmYgTEBYuL+NpyBMQEHh2QvyIExAeOb4ezwhTEBNma46hSFMQMg0rSfNIUxA/znMlxciTEDgPRphZCJMQDsZHCWvIkxAxfM/5vAiTECV1AloIiRMQGuSMrxsJExAoYzelrUkTECJtfgUACVMQNxgu45LJUxAFmpN844lTEBNb2xj2SVMQGjDdDQhJkxAys61QmsmTEBEZkE7uiZMQCc0NmHoJkxAMWy6ix0oTEDT1psrXShMQNSPc4ilKExA1VO+eu8oTECyNrODNylMQIcGTw6MKUxAtNC7ntUpTEBdctwpHSpMQHGhGEZnKkxAajUk7rEqTEDeg/3E7ipMQINBv9wULExAbW5MT1gsTEDqCUs8oCxMQHYFyL3mLExAxY8xdy0tTEBwUqvCeS1MQAWbTVrLLUxAVjudPhUuTEBHdxA7Uy5MQCh7XgSgLkxAoe4DkNouTEBUQp3fHTBMQLVCa1hmMExADwiH8a0wTEClPrZS9TBMQJebgg84MUxAfrkp+IAxTEBesgQszDFMQGB2Tx4WMkxAUdobfGEyTECDs26WpTJMQJ4Hd2ftMkxA47cO+yo0TEAQgnuLdDRMQFfnGJC9NExAnDbQaQM1TEDsy6y4SzVMQDY8vVKWNUxAFCol8d81TEC+xEXbHjZMQPCvCyxtNkxAZzwkj7o2TEDo8Xub/jZMQDX6q9pIOExAWolmi5E4TEAXrF5r3DhMQIsFq9caOUxABpY2L2E5TEDv1DbYrjlMQDlFR3L5OUxAt/YrikQ6TEAYCW05lzpMQO7GlY3hOkxAyp4XASg7TEBEc51GWjxMQBD2E7ujPExAltc3He48TEDM0eP3Nj1MQLHkF0t+PUxAUVb5i8Y9TED8DQBCET5MQG95v+RZPkxAMI63gpM+TEAnDN3/2j5MQA8jhEcbP0xARH4Q3FtATECBnYhrokBMQJvxkDzqQExAuzeZyyBBTEDgxlN8aUFMQHgTaQi0QUxAEmvxKQBCTEBYxRuZR0JMQJW8OseAQkxA8riVS9BCTEBDMYzODENMQFXMGzpQRExA1WAaho9ETEASgJIV1kRMQMmBMTUcRUxAITzaOGJFTEBH1gd/rEVMQIcLZjn2RUxAax6ajD1GTECzeMT7hEZMQK8tKWTURkxAArwFEhRHTEAMCnBnTEhMQNiBc0aUSExAvp8aL91ITEAB2evdH0lMQG33hWpdSUxAZouREqhJTEBvdKi570lMQHdSTMs1SkxAcOZXc4BKTECGIAclzEpMQEhL5e0IS0xA7CyNckNMTECKnm6zi0xMQOyTyZbSTExAKr60uxpNTECCg9BUYk1MQG3NQ5OxTUxABQ/mifpNTECL8AnsRE5MQLi6dnyOTkxAzOmymNhOTEBKcz5PFk9MQMei6exkUExAaRg+IqZQTEAeC/e38VBMQIlGdxA7UUxAyHvVyoRRTEC97oeyylFMQA+P15YUUkxAZFCAO2NSTEDsPBczr1JMQDStJ835UkxAKfiAUzJTTECLZKIbdFRMQOU0MUq9VExA4d4iHQtVTEBVVVVVVVVMQN4veRaXVUxA7DnpfeNVTEAukKD4MVZMQP8+48KBVkxAlIeFWtNWTECkeILqDFdMQBrdQexMV0xAw/UoXI9YTEDlbv3h1FhMQE13sUMPWUxAso1l51pZTEAl7rH0oVlMQJpvV8LtWUxAyBzehitaTEB5+bDxc1pMQFfcpfq7WkxAVH+XLAFbTEBhbCHIQVtMQEamaT1pXExAXQFyr7lcTEAgPsOuAF1MQH4dOGdEXUxAxYLVa41dTEDJUZPz2F1MQAdUJbcTXkxAoLYgbmFeTECI3zrsq15MQLWpp3z1XkxAgg84JTNfTEA5Sl6dY2BMQAzyoMaqYExARPe/NvVgTEBWG4m9PWFMQDX3fSV9YUxAJEVkWMVhTEBI1B4JDmJMQK3q0qxZYkxATWcng6NiTEDbbRea62JMQEzD8BExY0xATuEbHWpkTED5o5VotmRMQAWYH6X/ZExA1zTvOEVlTEA5QDBHj2VMQO0y6dzaZUxA/ks/ziFmTEAIQMkKa2ZMQH22+0K1ZkxAVHQkl/9mTEA3cXK/Q2dMQHgAsZJ8aExAYi0+BcBoTEBThpfNCWlMQNxgu45LaUxAsgH+FoppTECjZcp01WlMQJO+Iz0fakxAjFIv5WlqTECaZxLit2pMQG4sO9cKa0xAvq+k70hrTEAeBuCMh2xMQKoBXQ7ObExAm1q21hdtTEA0sj74Y21MQBrFckurbUxAE1l+8/VtTEC04EVfQW5MQEYIjzaObkxA0gMMuNRuTEABznhIHm9MQBDR6A5ib0xAm+EGfH5wTECyCUP3v3BMQBokao8EcUxATf28qUhxTEB5vLakkHFMQNN60pzPcUxA1j4djxlyTECFEH1kYHJMQHh/vFetckxAKVEcLfRyTEDjS7urMXNMQNDdm8xldExAtvDPH610TEDp1JXP8nRMQHbbheY6dUxAxnBiNYN1TEA73CHYy3VMQGqxAf4WdkxA09abK112TECplMR/p3ZMQBwAhCLwdkxA1e+vCyx3TEBoNw1kUHhMQHEgJAuYeExAXmOXqN54TEBMpgpGJXlMQEY6Fu5veUxAhlKO3K15TECgppat9XlMQKaLOmBEekxABnYirol6TEBeOz5H0XpMQMRK8kkUe0xA9Wc/UkR8TEDu8NdkjXxMQOV5cHfWfExA1tLJPyB9TEAxnFjNYH1MQB3UWNWlfUxAlk7+Ael9TEDdnbXbLn5MQJ/leXB3fkxAqM6QF79+TEB/b9Of/X5MQEgr0WwxgExAW0+a83mATEAmx53SwYBMQGb8+4wLgUxAPMWXdleBTEAwNNdppIFMQB+NMDLugUxAl/xiyS+CTEAMfgiXe4JMQH7wx9rMgkxAVpV9VwSDTEDENVFePoRMQPcOpHiChExAC0lTKs6ETEBrMzt4E4VMQLWuvqdfhUxA7KhqgqiFTECVYHE484VMQAW9SlFBhkxAgmO804qGTED1znt204ZMQKF0D/YTh0xAVcGopE6ITECnYfiImIhMQGq0L7PiiExAAfbRqSuJTECDyA+Ce4lMQHQhaUrFiUxABD4/jBCKTEBvhDJ6W4pMQJw4ud+hikxAVUXLlOmKTEDX+iKhLYtMQCsAxjNojExAaCqxWLCMTECMuWsJ+YxMQDAvwD46jUxArLhL9XeNTEA0mm9Xwo1MQLIubqMBjkxAsdzSakiOTEBUbw1slY5MQGq0L7PijkxAJK/OMSCPTEB4l4v4TpBMQJwb0xOWkExARchmNN+QTEBNsX3bJpFMQOO/U9tgkUxAwa27eaqRTEATWX7z9ZFMQO8wAGc8kkxAAjjjIXmSTEDpYP2fw5JMQGj1++sCk0xApFhuaTWUTEC0ccRafJRMQHeuFVrDlExAaQviFgaVTECpQEDRT5VMQPKl3dWYlUxAiNwMN+CVTEC9y0V8J5ZMQI9oFRBtlkxAtQ2267iWTEAX8Z2Y9ZZMQE5FKowtmExAB0fJq3OYTEBiLT4FwJhMQLz9zDMJmUxAbc8sCVCZTEBcKIbRmZlMQFW8kXnkmUxAFuP8TSiaTEBVGFsIcppMQFfnGJC9mkxAUkzLNfKaTECAK9mxEZxMQEeCg9BUnExAvPi1CJ+cTEA1c1s14pxMQAsxhIksnUxASFtvrnSdTECCawG0wJ1MQOV2QsIKnkxAP0fR8FOeTECyspCTnJ5MQNckZXjZnkxA+LLa6fSfTEApZNSiK6BMQKwkn0RxoExADiVtvbmgTEBo9fvrAqFMQAdn3SxLoUxAQYLix5ihTEBLdmwE4qFMQPw1WaMeokxAKws5yWmiTEChb/jKqaJMQEZKoK7bo0xAiJXkkyikTEDFl3ZXY6RMQMdbwUmtpExAbwhVavakTEDso1NXPqVMQNz8rB+IpUxASDgteNGlTED+QMw4IKZMQCPb+X5qpkxAvAopP6mmTEBMRxMCzKdMQKQML5sTqExAeq1xI1KoTEBGMOiXm6hMQBzjnVbkqExAqumNbSypTEBCNqP5dqlMQFdwUqvCqUxA54G1VwyqTEAJBv1yU6pMQHohClOBqkxApST+O7WrTEAG/XJT8KtMQOsPp6Y3rExA3n7mmYSsTEBXBP9byaxMQDbVgC4HrUxAs3B/G0+tTEAboYzelq1MQH2W58HdrUxAK3q6zS6uTECmCkYlda5MQFkvhnKir0xAscxIqtyvTECdBEmyIbBMQJ2Vx61csExAGjw5MKawTEAU0ETY8LBMQMGopE5AsUxAjzaOWIuxTEBLThOj1LFMQP85zJcXskxACxzjnVayTEAK3+hQc7NMQFI5E8C6s0xAtERUzgS0TECZV4ghTLRMQNt6c6WLtExAgRyUMNO0TEC5IbOgHbVMQE9Y4gFltUxAm97YxrK1TECKNzKP/LVMQCtvRzgttkxAatYsqli3TEC9b3ztmbdMQDoW7m/jt0xAaMN0NCG4TECvHZ+jaLhMQEh1J8W0uExAzUvYkf24TEDcYLuOS7lMQBNm2v6VuUxAvihUSuK5TEBVTRB1H7pMQECPPtM4u0xA4QuTqYK7TEC4t0jHwrtMQJ/V768LvExAEkGvUlS8TEAkPR94j7xMQEjXTL7ZvExAiAE44yG9TEBoBYasbr1MQL7Roea+vUxAhQDzo/S9TECiuU4jLb9MQPBDuNxzv0xAaqzq0qy/TEBBahMn979MQMxlkKg9wExA2UenrnzATEAOQlOJxcBMQP59xoUDwUxAe/zepj/BTEBU5tNQkMFMQE5ShpfNwUxA0nek5wPDTEB7JDgITcNMQCbnsVOZw0xAfZbnwd3DTECiMBUIKMRMQPr1MKFvxExAmFyfTLbETEAiVKnZA8VMQGrEuXNOxUxAVPhGh5rFTEBg2l2N2cVMQDLRDToOx0xAF+RBjVXHTEA2RzDol8dMQIjnf8zhx0xAeUDZlCvITED69TChb8hMQKGM3pa1yExAuJc0RuvITEBZAhbmKslMQGP2nyJ0yUxAUiegibDJTECza2jw5MpMQIceHq8ty0xA0baHqoXLTEDtCpB7zctMQEjJq3MMzExA5CSniVHMTEDTco28mcxMQAltOZfizExAT8djBirNTEASDyibcs1MQHgTaQi0zUxAB1dTbN/OTEBSwGNlIc9MQDvpfeNrz0xAW1ff06/PTEASa/EpANBMQKBx4UBI0ExAC7jULpPQTECJXkax3NBMQKCu240r0UxAgKe2wXbRTEA6l+KqstFMQP59xoUD00xAYokHlE3TTEDHjUgBj9NMQK2OCR7M00xA2FQDuhzUTECn7V9ZadRMQN7yfsmz1ExAS0TlTADVTECuTyZbStVMQLhDsJeT1UxAhJ7Nqs/VTECI5FEXFtdMQAOAUARe10xAcbTQu57XTEDc5N1+5tdMQPI0c1s12ExA3GgAb4HYTECwG7YtythMQAHOeEge2UxAUIA7Y3LZTEDLEMe6uNlMQMqzuOz92UxA+NcFljbbTEDBOSNKe9tMQE0NR2q020xAFm9kHvnbTEAyzt+EQtxMQE5KQbeX3ExAaJ5JiN/cTEClvcEXJt1MQOX9kmdx3UxAzBs6ULrdTEDymIHK+N1MQPv4XlY730xAkyiOFnrfTEAxhIksv99MQL1/Bq4F4ExA4xk09E/gTECsmDd0oOBMQJLIUZPz4ExAMEymCkbhTEACBlxql+FMQN/oUHPf4UxACZJkQyTiTEDyMUWmaeNMQHsMaWer40xA9qdnVPPjTEDf0IHSPeRMQG/tVxSJ5ExAZnbwJtLkTEAH80T9G+VMQD4VSjly5UxAnyeL6MTlTEDnjCjtDeZMQB91YZFM5kxABNcCaIHnTEALtaZ5x+dMQH4V84YO6ExAhuEjYkroTEDivCUmlehMQJav3rvg6ExAVgkWhzPpTEDmGnkzfelMQO4DkNrE6UxAAihZYQ3qTEAB1r0oVOpMQPeFal1960xAekY1/8LrTEAQfWRgCuxMQI0j1uJT7ExA+3Q8ZqDsTEAa2CrB4uxMQCbMtP0r7UxA+n5qvHTtTEDLBVQlt+1MQM3UEa0C7kxAZgRBbUHuTEDJaWKUeu9MQPtCta6+70xA1fndYQDwTEAUOq+xS/BMQCNPkq6Z8ExADXGsi9vwTED723iKL/FMQPp+arx08UxA24K4hcHxTEASiNf1C/JMQN/42jNL8kxA+EuexWXzTED5BHYirvNMQCfaVUj580xAXt90uEP0TECIiIiIiPRMQKwM0KPP9ExAoX+CixX1TEC1rr6nX/VMQHj2gjyo9UxAOjPUO+/1TEB0MfMKMfZMQPMC7KNT90xAtT89o5r3TEDkFB3J5fdMQOXN9CUu+ExA+Qek13n4TECKJHoZxfhMQHBCIQIO+UxAyx0jxlj5TEDtoWrhn/lMQMNUIKDo+UxAA3gLJCj6TEDr0qxZVPtMQBBt2p+e+0xAeIcBOOP7TEC4x9KHLvxMQC0zkip3/ExALOxph7/8TECP7DcACP1MQGSf7b5Q/UxAf/5oJZr9TEClmJZr5P1MQMPwETEl/kxApRR0e0n/TECYZs2iiv9MQOC593DJ/0xAye2EhBUATUCVcPv4XgBNQIjfOuyrAE1ABpEfBPcATUA+hMs9NwFNQHiUXUODAU1AGyeYRNABTUBttXTyDwJNQBrAWyBBA01Auzyw9ooDTUCyne+nxgNNQBGaSiwWBE1ACBhwqV0ETUASDPrlpgRNQLOITrzwBE1ARqmX8jQFTUDmGnkzfQVNQDzVITfDBU1AdavnpPcFTUC6PplsKQdNQLG8vulwB01AHg4lbb0HTUAQfWRgCghNQC3KbJBJCE1AJ154OJQITUDuxpWN4QhNQAb6RJ4kCU1AK5Ry5G4JTUCoRVf8uQlNQJyXsCP7CU1AgNxrLiQLTUAiKmcCWAtNQN5pRa6uC01A+9MzqvkLTUD4Tsx6MQxNQEjkqMl5DE1ArfpcbcUMTUBxTZSXDw1NQABf90NZDU1Aj1N0JJcNTUA57pQO1g1NQE8rcnXtDk1AG6N1VDUPTUC8DVf0dA9NQEEB7ozJD01AZYU1qBAQTUBU0xvbWBBNQH58L6udEE1Adt1uXNkQTUAMHxFTIhFNQKyQ8pNqEU1AgBtP8aURTUAMgx/C5RJNQDxR/0YoE01ABbMc+2wTTUARshnNtxNNQCbsyH4DFE1AiOyW90sUTUD3SHAQmhRNQKwptm/bFE1Apb3BFyYVTUBOalU4bxVNQECfyJOkFU1AWRrlhswWTUCQFJFhFRdNQP1ahE9gF01ARcAhVKkXTUAp01Wn8BdNQBghPNo4GE1Awc3P+oEYTUBU7hgxxhhNQAnh0cYRGU1A001iEFgZTUD4yqmKlhlNQK8QQ5jIGk1ANfJm+hIbTUCa/acIXRtNQJ2dDI6SG01A5xiQvd4bTUBUX4OrKRxNQCgSOWpyHE1ACQsUnr0cTUCDm5/1Ax1NQHoZxXJLHU1AqMZLN4kdTUDo/temnh5NQEr0MorlHk1Az8rjVi4fTUCBsilXeB9NQIiQzWi+H01A5GvPLAkgTUAs3N/GUyBNQDm+9sySIE1A2TpLo9wgTUCsxacAGCFNQK5sDCdWIU1ALFB49oIiTUDV/AsXzCJNQBIRERERI01ARPXWwFYjTUCcr3/EnCNNQJZDi2znI01AaevNlS4kTUD3/DBCeCRNQKKpxGLBJE1Ao20PVQslTUAHXGqXSSVNQOXAmBqOJk1ACEXgNdUmTUCotsF2HSdNQBDcW6RjJ01AsViweq0nTUDwgpuf9SdNQDjzqzlAKE1AHgbgjIcoTUBWC//80ShNQF30FaQZKU1AXYWUn1QpTUAR0i1OjypNQC0mNh/XKk1AW94veRYrTUD9WoRPYCtNQFUgoOinK01AP0K6xekrTUCBjf6qNixNQF97ZkmALE1AfNrhr8ksTUAM97fxFC1NQAJY96JQLU1A+0zjBJMuTUDlbv3h1C5NQBleNiccL01Alw8bP2cvTUBI7O2pry9NQL1XrUz4L01Ax0s3iUEwTUD2K4pEjjBNQE3bv7LSME1AFETdByAxTUAdLfSuZzFNQNq0Pz2jMk1AaJ5JiN8yTUCq6Y1tLDNNQPJZngd3M01ABn5njr8zTUDpog4YETRNQJRaFc5bNE1AiaVuVJQ0TUDP4rL3zzRNQDoeM1AZNU1AZbXT6VM1TUBvFbF1ljZNQNEVf+7eNk1ACSYR9Co3TUBm+hIXbTdNQETdByC1N01A9bnaiv03TUDczA7eRDhNQLCKNzKPOE1AvH7Bbtg4TUBlNsgkIzlNQF6iemtgOU1ARjDol5s6TUAPh5K23jpNQEdvy1odO01Ar5RliGM7TUASlTMBrDtNQE+/Hib0O01AWbOoYj08TUDx/73uhzxNQAs+4JTMPE1A6StIMxY9TUCGal19Tz1NQLB/xJyNPk1A3D6+l9U+TUCF4N4iHT9NQJcPGz9nP01Am97YxrI/TUBDnd8dBkBNQBx8YTJVQE1ArKOqCaJATUDGCSYR9EBNQEOlJP47QU1ARUyJJHpBTUDUt8zpskJNQCl5dY4BQ01A4XoUrkdDTUBnXDgQkkNNQCuk/KTaQ01Au8DS5iVETUANYSLLb0RNQBE7U+i8RE1A+m7g+whFTUD8PZ6DVEVNQBEzDgiHRU1AVNgyBsNGTUD6buD7CEdNQMwLsI9OR01ANjy9UpZHTUAnlRYb4EdNQNhUA7ocSE1AXCBB8WNITUA9EhyEpkhNQDabtJbvSE1A+NcFljZJTUCZN3SgdElNQFCIgEOoSk1AUkFYoPBKTUDP8jy4O0tNQPN2hNOCS01AOdGuQspLTUCDQb/cFExNQFf0dJtdTE1ABbDuRaFMTUCa26oR50xNQLU6JngwTU1AY+ssjXJNTUDFFoIclE5NQG2tLxLaTk1AcnXt+BxPTUAyf3IBVU9NQMeqLs2aT01Ai+B/K9lPTUDcgM8PI1BNQApLPKBsUE1ApqY3trFQTUAT7Sqk/FBNQAUpnqA6UU1AGLK61XNSTUAfkF7nuVJNQIeqhX/+Uk1AIgIOoUpTTUDAc+/hklNNQJYxGDbdU01AK29HOC1UTUB4ALGSfFRNQK0F0ALHVE1ANefzZBFVTUCQpQ9dUFVNQFAU6BN5Vk1AlVgsWL1WTUAAlKywBldNQOSQ+thKV01ArA/+WJtXTUB2fI6i4VdNQJLbCQkrWE1At2rEuXNYTUDub+MpvlhNQJ9MtpQGWU1ATQgwP0pZTUDH5ygaflpNQGdZClvGWk1AInwCOxFbTUCX58HdWVtNQHbVKXyjW01AdY4B2etbTUDarygSOVxNQE8b6LSBXE1A3SxLYctcTUAnqM6QF11NQCEf9GxWXU1AvJaQD3peTUBa/f66wF5NQGsWVawHX01AG8vOtUJfTUB+uSn4gF9NQHdCwgrKX01AaJsb0xNgTUBGiYNxXWBNQENJW2+uYE1AekMHSvdgTUBjWq6RN2FNQLpjxBhrYk1APSSPurBiTUCwZ/X762JNQDMzMzMzY01AMuGX+nljTUCuVD2GtGNNQNPuasz+Y01AxFI3KkpkTUC/8bVnlmRNQMHAc+/hZE1AkDzqwiJlTUCms5PBUWZNQAi0YTqaZk1ACnisLORmTUBiPcjFK2dNQFvGYNh0Z01AoQOle7BnTUB5zEBl/GdNQEBA0U9LaE1AK3/R+JhoTUCxYPVa42hNQKKcaFchaU1APE7RkVxqTUCxxAPKpmpNQAmVkvjvak1Al5APejZrTUAUQvSRgWtNQDjjIXnUa01AvctFfCdsTUD8AKQ2cWxNQKabxCCwbE1AE+0qpPxsTUCnDXTaQG1NQB/0bFZ9bk1AlU25wrtuTUCymsHy+m5NQCT7DQBCb01AA/ToM41vTUDFMDoz1G9NQMj/97ofcE1AI9v5fmpwTUAkvCo9wHBNQPdqbQcQcU1A/kgRGVZxTUB4KAr0iXJNQL+CNGPRck1A2dY8NBlzTUBxGN8qYnNNQNIYraOqc01ADxDM0eNzTUCEkXGfL3RNQFIfW6l6dE1AoqnEYsF0TUD6eVORCnVNQHDTn/1IdU1Am+EGfH52TUAD/C0Uw3ZNQMdD8qgLd01AF+RBjVV3TUCcuvJZnndNQAK/M8ffd01Avda4ESl4TUANYSLLb3hNQBdVrAe5eE1AyjzyBwN5TUC6W384NXlNQLFF+AR2ek1Avkhoy7l6TUDj1yJ8AntNQD2zJEBNe01AOUAwR497TUAgXtcv2HtNQMsV3uUifE1AdthXMW98TUDY2CWqt3xNQLLCGlQIfU1A57FTmU99TUBR9wFIbX5NQGgfPsOufk1A+TQUZPF+TUA+hMs9N39NQGUe+YOBf01A4K6E28d/TUCIWxj8EIBNQB+duvJZgE1AS1y07aGATUDpwiKZ6IBNQJVAXbcbgU1Ac2BMDUeCTUAueNFXkIJNQMS5c07Zgk1AH5V1EiSDTUC/EcrobYNNQLFYsHqtg01A5kfpv/SDTUDXjs9RNIRNQOF35vh7hE1Ad7mI78SETUAiVKnZA4VNQNa9KFRKhk1AkdWtnpOGTUAoF1CV3IZNQBNhw9Mrh01AHVVNEHWHTUCSy39Iv4dNQDVeukkMiE1AXQ7OulmITUDKVMGopIhNQFpxl+rviE1AR5ckvCqJTUBWI86dc4pNQCGb0Xy7ik1ARB8ZmAKLTUB4DlLdSYtNQL5dCbePi01AWMAEbt2LTUCASL99HYxNQJ/Ik6RrjE1Ad5EvjreMTUCkW5weAY1NQOV+h6JAjU1AksM6aImOTUD1wwjh0Y5NQHqaua0aj01Af23qKV+PTUALXvQVpI9NQMVqBsvrj01AcS2AFjiQTUB6IQpTgZBNQA434PPDkE1AzWi+XQmRTUC2f2WlSZFNQJUBevSZkk1AexSuR+GSTUDudPpUKJNNQMQ9lj50k01A1lbsL7uTTUDaMB1NCJRNQHiMGGNNlE1AlQF69JmUTUDuxpWN4ZRNQDQhwPwolU1AAIdQpWaVTUChjN6WtZZNQA3IXu/+lk1AtnTyD0iXTUCfqH8jlJdNQBUYsrrVl01ATBJelR6YTUD9CxfMcphNQGRDJDDDmE1AYb68APuYTUD8ILi3SJlNQO5nnkmImU1A8soIgtqaTUAONfd9JZtNQBLnzjllm01AGtDl4KybTUB0oHQP9ptNQHhvMpdBnE1AqDKfhoKcTUB+8MfazJxNQHNjesISnU1AcRjfKmKdTUDri4S2nJ1NQAVM4Nbdnk1AOTCmhiOfTUD3XRH8b59NQCQz8SG7n01AgQ7z5QWgTUAlmi1GSqBNQOXAmBqOoE1AunNO2dagTUBStfDPH6FNQCZopo5ooU1AIvWxlaqhTUD39tTX4KJNQNv+lZUmo01AJEBNLVujTUCZqwzQo6NNQNjgaorto01AeV2/YDekTUD2AzHjgKRNQCndg/3EpE1ADxgRshmlTUBxI1LAY6VNQEa5IbOgpU1A6bevA+emTUD+8V61MqdNQFOhlCN3p01ACJRNucKnTUC/lezYCKhNQLDuRaFSqE1AW7G/7J6oTUAFTODW3ahNQCO2ztIoqU1A3uo56X2pTUDgroTbx6lNQNWNihIHq01AfToeM1CrTUCyHuTilatNQLwSbh/fq01ATzO3VSOsTUBhTA1HaqxNQCSU0duyrE1AHSjdg/2sTUDOBLDuRa1NQIocNTmPrU1AM6zijcytTUAInJKZ+K5NQHPXEvJBr01AAd4CCYqvTUDPdl+o1q9NQK1ZVLEesE1A5V5zIWmwTUCDs26WpbBNQKhCKUfusE1AWR/8sTaxTUAy4Zf6ebFNQBfB/1aysU1A8w9Ir/OyTUDqjW0sO7NNQHJ6BCSHs01AhJ7Nqs+zTUAvVtRgGrRNQA1EPP9jtE1Avj31Nbi0TUCfL9DI+rRNQKkjWgVEtU1AakrF2Ye1TUA6vzsMwLVNQCx96IL6tk1AiVHqpTy3TUDZ21Nfg7dNQPVFQlvOt01Ao/ZIcBC4TUCn0HmNXbhNQGgNy4ykuE1AkL3e/fG4TUCxK0DuNblNQAHBHD1+uU1A+hpcTbG5TUC4oqfb7LpNQDtjcn0yu01A5ASTCHq7TUBXcFKrwrtNQBvDidUMvE1AbWPZuVa8TUAwq51On7xNQBfJRDfovE1AMR1NCDC9TUC28/3UeL1NQINZjn22vU1A3FukY+G+TUDKnhcBKL9NQDbIJCNnv01Afi3CJ7C/TUDFh+yW979NQB9Ye8VAwE1AQtzC4IfATUDHsnOt0MBNQNzsIl8cwU1AqnoMaWfBTUDHqi7NmsFNQLP3z8C1wk1A3aDjkPrCTUA9i8veP8NNQCSpcseIw01AhJ7Nqs/DTUDL+PcZF8RNQLpG3kxfxE1Aju4gdqbETUC4oqfb7MRNQMShpK03xU1A3vWsfn/FTUAeeni8tsZNQHQprir7xk1AzgSw7kXHTUAORYE+kcdNQMpcBonax01AjaTKHSPITUCakVS5Y8hNQMZtNIC3yE1A3b3JXAbJTUCLXF07PslNQCSX/5B+yU1Aq8eQdrbKTUAAbFNP+cpNQN5Zu+1Cy01ArfIXjY/LTUASCcww28tNQNNQkMUjzE1Ahi1jMGzMTUAE6rrduMxNQIGFucoAzU1A8tqSQkbNTUDxiPcJjc1NQJqh3nnPzk1ApqtO4RvPTUBcjJRAXc9NQHbVKXyjz01A+avaSOzPTUAVAOMZNNBNQBfELQx+0E1ADl85VdHQTUAijnVxG9FNQAm3j+9l0U1AZouREqjRTUCxOJz51dJNQM6FpCkV001Ah5K23lzTTUBL5e0Ip9NNQHKKjuTy001ArIitszTUTUCIYC8ne9RNQDQRNjy91E1ASEvl7QjVTUCrVib8UtVNQBV8wCmZ1U1Azp1zyrbWTUAJpwUv+tZNQFABMJ5B101APUSjO4jXTUAVDT8l1NdNQClH7tYf2E1A5V5zIWnYTUC2+0K1rthNQGnjiLX42E1AzPk8WUTZTUCz+v11gdlNQDXXaaSl2k1AyxgMm+7aTUDP58kiOttNQHV+dxiA201AxRNUZ8jbTUDifUJjE9xNQGpN845T3E1Adldj9p/cTUAfBPcW6dxNQGdBO7ok3U1AuMSk0mLdTUDwETElkt5NQMS5c07Z3k1AwVHy6hzfTUB0LsVVZd9NQE370zOq301AnYU97fDfTUCGucoAPeBNQJOmVJx94E1Af+nHOcTgTUBoEuK3DuFNQINUd1JM4U1AtElr+W7iTUA/Reh6teJNQLzg5mf94k1As14M5UTjTUB/1g/EjONNQDCz4i7V401ACYfxrSLkTUDdHMGgX+RNQJYp01Wn5E1ALmt1TPDkTUDtkeAgNOVNQERhKhBQ5k1Av/G1Z5bmTUAFTODW3eZNQOMu1d8l501A9VKeZm7nTUCDWY59tudNQJ+4CeT/501A3NeBc0boTUDXdgCxkuhNQMS5c07Z6E1ArtAalhnpTUDFGGuSMupNQOmnJUN76k1AnX34DLvqTUCvocGTA+tNQJa/aHxM601AhA1Pr5TrTUAkfzDw3OtNQPEMGvon7E1AydW143PsTUBa4BjvtOxNQAFlU67w7E1Ak6ywBhXuTUBgEkGvUu5NQMxNwQec7k1Ant8dBuDuTUAkwUFoKu9NQKmX8jRz701AZZKRs7DvTUAs6TvS8+9NQKZuVJQ48E1AoxFGxn3wTUAkvCo9wPBNQCnlyN368U1Avhv4PkLyTUA9sPaKgfJNQEJbzqW48k1AFfidOf7yTUA7gFhJPvNNQJNFdOKF801A5/A2XNHzTUCIbYsyG/RNQCjq3whl9E1A4uR+h6L0TUAIlE25wvVNQJ/V768L9k1A8HU/lFX2TUD4XlY7nfZNQART4Hfm9k1Afdj4OSv3TUD6id1RdvdNQDSab1fC901Ax7q4jQb4TUAH0zB8RPhNQCIKU4GA+E1A0vBTQp35TUCsvWIg4vlNQIiV5JMo+k1AtFTejnD6TUCdffgMu/pNQLfRAN4C+01ABVH3AUj7TUC9UpYhjvtNQGTX0ODJ+01AzANrrxj8TUBtbkxPWPxNQPmbUIiA/U1AbgcQK8n9TUC6e5O5DP5NQFrtdPpU/k1A+mnJ0J7+TUB6JiF+6/5NQAAIReA1/01Aht71rH7/TUALtaZ5x/9NQNlCkIMSAE5AF1CV3E4ATkBrJt9scwFOQBTTco28AU5AIMf8yQUCTkBwZ0yuTwJOQHEgJAuYAk5AzPslz+ICTkB0qLnvKwNOQEAgvc5zA05As4AJ3LoDTkCzHPts9wNOQHZH2TU0BE5AbwL5/14FTkAi2MvJngVOQMFJrQrnBU5ATyhEwCEGTkDU/vSMagZOQOw8FzOvBk5A8w9Ir/MGTkBpf3pGNQdOQHZsBOJ1B05AY4ceHq8HTkB/ybO47AdOQESBPpEnCU5A16iHaHQJTkBSRIZVvAlOQEi3OD0CCk5AkzK8bE4KTkDmywuwjwpOQI5tLDvXCk5AsfFzVh4LTkCwn9gdZQtOQJjI8puvC05AtRX7y+4LTkCTUtDtJQ1OQGTZuVZoDU5AUzITH7INTkDrfiir/A1OQDOfhoIsDk5AXUiaUnEOTkAbgXhdvw5OQG43rmwMD05ALVOmq04PTkDP2m0Xmg9OQIGlzUvYD05A92ptBxARTkBNJRYLVhFOQHGpXSadEU5AJKeJUeoRTkBv+rMfKRJOQHjuPVxyEk5AxWLB6rUSTkA9+kzjBBNOQHX/a1NPE05ABRxClZoTTkAXIyVQ1xNOQCtyde34FE5A1BOWeEAVTkClsGUMhhVOQF+gkfXBFU5AwaBfbgoWTkB9uOS4UxZOQC2VtyOcFk5AIghqC+IWTkB0nUZaKhdOQBDuztptF05APZtVn6sXTkD8EC733BhOQJpsKQ0iGU5Awv9WsmMZTkBjhx4erxlOQH3bJu/2GU5ATkUqjC0aTkDtmSUBahpOQFKw2aS1Gk5AozNDvfMaTkC/kr4jPRtOQKae8tV7G05ATkpBt5ccTkCuSg8w4BxOQHGHYC8nHU5A0ocuqG8dTkCrPldbsR1OQNj9UFb5HU5Atuu49EIeTkDeiVkvhh5OQDNLAtTUHk5APTQZexwfTkA2oMvBWR9OQE8mW0qDIE5AABWh69UgTkDOrf2KIiFOQBYTm49rIU5ABFYOLbIhTkBvkY6F+yFOQHEtgBY4Ik5AUBToE3kiTkALLG1ewiJOQLTNjekJI05A8tqSQkYjTkDyun7BbiROQLwygqC2JE5AmiDqPgAlTkCuRLPFSCVOQP7kAqqSJU5AYNpdjdklTkCVyZbSICZOQHrKV+9dJk5A9U9wsaImTkDkqMl57CZOQGx4eqUsJ05AAeEwvlUoTkBLNFuMlChOQF1YJBPdKE5A614UKiUpTkAidqbQeSlOQNZW7C+7KU5AxaTSYgMqTkCjkjoBTSpOQFZ6gAGXKk5AphrQ5eAqTkCYVkPiHitOQAsc451WLE5AJnDrbp4sTkA1c1s14ixOQN4f71UrLU5AMMA+OnUtTkClNnFyvy1OQBito6oJLk5AUr01sFUuTkB0QX3LnC5OQLubpzrkLk5AJ8W0XCMvTkABuddcSDBOQCZIkg2RME5A8L+V7NgwTkBPgiTZEDFOQLiyMZxYMU5A1RGtAqIxTkCL/WX35DFOQIy2PVQtMk5AderKZ3kyTkBmTpfFxDJOQMIimegGM05A+ENZ5S80TkA9noNUdzROQI0zYKO/NE5AWatjggc1TkBKBL1KUTVOQLQ0yg2ZNU5A17gRKeA1TkCcFrzoKzZOQP8h/fZ1Nk5AXwzlRLs2TkBK9DKK5TZOQPoCjawPOE5AfcNXTlU4TkBk4f42njhOQEwKGbXoOE5A5VYuQTM5TkD6id1RdjlOQB8ZmAK/OU5A5GvPLAk6TkDTubVfUTpOQMISDyibOk5A8L+V7Ng6TkBElt98/TtOQO5Cc51GPE5AWolmi5E8TkDRCgxZ3TxOQK3tAGIlPU5AFQgo+mk9TkCFb3SouT1OQGyNG5ECPk5A8kbmkT8+TkBNBQKKfj5OQBlrkjK8Pk5AFEcLves/TkAFoGSFNUBOQPT4vU1/QE5AwoanV8pATkDJWdjTDkFOQIWHQ0lbQU5A1xwgmKNBTkCG7n9t6kFOQOjuTeYyQk5APbD2ioFCTkB4nKIjuUJOQKWYlmvkQ05AJDgITSVETkBpfEyRaUROQI0LB0KyRE5AYb68APtETkB2+GuyRkVOQA5FgT6RRU5Ac1DCTNtFTkC1mwYyKEZOQGZ42ZxwRk5ADwiH8a1GTkDl5cPGz0dOQL650kUdSE5A0N2bzGVITkCBum43rkhOQIyu+HP3SE5Apw102kBJTkCzF+RBjUlOQOLhUNLWSU5AC6hKbidKTkB/EwoRcEpOQD86deWzSk5AXBC3MPhLTkAfWHvFQExOQG/4yqmKTE5ARpkNMslMTkAJ4dHGEU1OQHpBHtRYTU5AHb5yqqJNTkDY4GqK7U1OQLwFEhQ/Tk5AOayDlohOTkDMwVk3y05OQIo3Mo/8T05ARURERERQTkD+W8mOjVBOQHbL+yXPUE5AbjeubAxRTkDvxKwXQ1FOQPB9hHSLUU5AgZpattZRTkCTviM9H1JOQCC6oL5lUk5AjvmTC6hSTkDPTgZHyVNOQLFdx6UXVE5AWf/nMF9UTkAQAYdQpVROQJLTxCj1VE5AiVHqpTxVTkAE4nX9glVOQP1qDhDMVU5A5JMojhZWTkBMyzXyZlZOQDDT9q+sVk5AyDStJ81XTkAHX5hMFVhOQDQekkddWE5AO/w1WaNYTkD8LRTD6FhOQLIZzbcrWU5A5wgG/XJZTkDIDFTGv1lOQF5DgycHWk5A4Q7BXk5aTkAnQZJsiFpOQETvela/W05AmZ6wxANcTkCAx8pCTlxOQHxxvBWcXE5A+yKhLedcTkBeLuI7MV1OQMZl75+BXU5A/nWBpc1dTkCoLYhbGF5OQFLljhFjXk5ADuugJaJeTkAF1Rny4l9OQFRfg6spYE5AiVkvhnJgTkAs4fbxvWBOQCaAdS8KYU5AyRKwMFdhTkC3cgmaqWFOQFHKkbv1YU5A39v0Zz9iTkAX4RPYiWJOQHrPbhrIYk5AMyvuUv1jTkAO2xZlNmROQPLi1yJ8ZE5Agv+tZMdkTkAUJ/c7FGVOQOjZrPpcZU5AJAuYwK1lTkDgIh0L92VOQHtzpYs6Zk5AvKEDpXtmTkByjbyZvmZOQJpvV8LtZ05AIz8I7i1oTkC8lpAPemhOQOM7MevFaE5AyVnY0w5pTkDZoYfHa2lOQGCOHr+3aU5AhB3ZbwBqTkD0ebKITmpOQLKykJOcak5AH9ydtdtqTkD5H3N4G2xOQH/2I0VkbE5Ao3prYKtsTkDG4cyv5mxOQH/u3mQubU5AQlOJxYJtTkArkolu0G1OQFI3Kkocbk5APXYq82luTkC7Jw8LtW5OQD/zTEL8bk5AiJXkkyhwTkBU+3Q8ZnBOQCKJXkaxcE5ArVEP0ehwTkCWhZzkNHFOQGMThu5/cU5AZMHqtcZxTkBDxTh/E3JOQCnj32dcck5Ac1PwAadyTkD8LRTD6HJOQKYXojAVdE5A9aEL6lt0TkCTCHqVonROQGewvL7pdE5AVv6i8TF1TkB+uSn4gHVOQLGvYt7QdU5AfSdmvRh2TkCpA0aEbHZOQO5kcJS8dk5AJE2pOPt2TkD/LlkCFnhOQEGFEH1keE5ArsCQ1a14TkBKHIzr8nhOQItcXTs+eU5A/7Wpp3x5TkCoV8oyxHlOQI+A5LAOek5AuSn4gFN6TkCJwlQgoHpOQGBRJHLUek5AFnrXs/p7TkCjdVQ1QXxOQMb5m1CIfE5AvXfBzc98TkC8GrP/FH1OQIeStt5cfU5ASM8H3qN9TkCbXeSL431OQGOXqN4afk5AmpzHTmV+TkC10+lToX5OQCol8d+pf05AeIcBOON/TkAGmWTkLIBOQHsEJId1gE5AWfKLJb+ATkB/lywBC4FOQNNC73pWgU5AysuHjZ+BTkCOHr+36YFOQC6bE44zgk5Ap+1fWWmCTkDjIXnUhYNOQK+ZfLPNg05AuY0G8BaETkAnwoanV4ROQHltSSGjhE5AmOKqsu+ETkB58WsRPoVOQO5nnkmIhU5AC9KMRdOFTkCVyZbSIIZOQNXsgVZghk5A+8Op6Y2HTkB4ahts14dOQCQtlbcjiE5AEHAIVWqITkDOkgA1tYhOQCA+w64AiU5AFLh1N0+JTkA2RzDol4lOQGP7tk3eiU5A0leQZiyKTkBS5Y4RY4pOQOqd9+ymi05A6UDpHuyLTkALxTA6M4xOQJOmVJx9jE5AuEv1d8mMTkB9niyiE41OQL3TilxdjU5AEqCmlq2NTkDY/VBW+Y1OQEM50a5Cjk5A5cCYGo6OTkD3ULXwz49OQBSevSAPkE5AhAUKz16QTkD/lZUmpZBOQCdGqZfykE5AHdZBS0SRTkDteRGAkpFOQDcSe3vqkU5Ake18PzWSTkDu0/GYgZJOQKzv6dfDkk5A6oUoTAWUTkCC0j3YT5ROQEQPj9eWlE5AwbUAWuCUTkARS92oKJVOQKVZs6hilU5AUiegibCVTkAIJcy0/ZVOQFvbAcRKlk5AutdcSJqWTkBAnJre2JZOQM23K+H2l05Ad1JMyzWYTkBVNUHUfZhOQL9lTpfFmE5AGDbdxQ6ZTkBZdq4VWplOQFkvhnKimU5ARG6GG/CZTkAS/G8lO5pOQDWLKtaDmk5AHIzr8sCaTkAu/yH99ptOQJw+FUo5nE5A+zpwzoicTkDaKNhs0pxOQIXg3iIdnU5Ad1qRq2udTkB6KU8zt51OQH74DLsCnk5AakKA+VGeTkDtDb4wmZ5OQDA8HErank5Ansp8GgqgTkCjh8drS6BOQA7DR8SUoE5As3bbheagTkDQ4MmBMaFOQPRkEZ14oU5AzTggHMahTkBI1B4JDqJOQIL6ljldok5APSSPurCiTkC7wwCc8aJOQF+wG7YtpE5AEo3uIHakTkCD7TouvaROQGsWVawHpU5APLok4VWlTkBIzwfeo6VOQK3lu4HvpU5AGyWvzjGmTkAUwLoXhaZOQGRVl2bNpk5ALbe0GhKnTkCNI9biU6hOQGsGy+ubqE5AXXUK3+ioTkB/7t5kLqlOQAwvmxOOqU5AVqoeQ9qpTkAAV7JjI6pOQAtWrzVuqk5Ahw6U7sGqTkCjivUgF6tOQA+0AkNWq05A+Db92Y+sTkCpCF2v1qxOQEJD/wQXrU5ADqmPrVStTkASg8DKoa1OQNbKhF/qrU5AXsKO7DeuTkBt4uR+h65OQOM7MevFrk5A3/CVUxWvTkDsy6y4S69OQOv31wWWsE5AOoJBv9ywTkDyZvoSF7FOQBb2tMNfsU5ATNN60pyxTkDLhF/q57FOQM1Iqtwxsk5Aoftfm3qyTkA2OY+dyrJOQDoeM1AZs05AB4TD+FazTkDXdgCxkrROQDqCQb/ctE5AXQaJ2iO1TkA2yCQjZ7VOQGaAHn2mtU5AXiadW/u1TkDmEjRTR7ZOQLTIdr6ftk5A6cIimei2TkDvnFO2NbdOQHE1xfZtt05A/qcIXa+4TkBxE8j/97hOQB3WQUtEuU5AvVKWIY65TkC22y4017lOQE8oRMAhuk5AIu1stXS6TkBqemMby7pOQCq+tLsau05A0HFIfWy7TkAa7cusuLtOQEr/pR/nvE5Ad76fGi+9TkBg1UZib71OQId65z27vU5A1w/EjAO+TkBCS0TlTL5OQGHLGAybvk5AqTC2EOS+TkDaG3xhMr9OQNGZod55v05A7ts2ebe/TkBgbgo+4MBOQEmFsYUgwU5Adk8eFmrBTkAZ1+WBtcFOQEeP39v0wU5AS2kQ+UHCTkAf9GxWfcJOQCG4t0jHwk5AGDbdxQ7DTkBhpu1fWcNOQCbnsVOZw05AarQvs+LETkDrXhQqJcVOQAe+j5BuxU5AR/PtSrjFTkB0sudFAMZOQE2RaVpPxk5A5d1+5pnGTkCWulFR4sZOQCj/gPQ6x05ANOwKkHvHTkBzBIN+ucdOQFD8GHPXyE5AzJcXYB/JTkCyqkuzZslOQOeZhPityU5A2evdH+/JTkAQ8fyPOcpOQPkZFw6Eyk5A6HJw1s3KTkBNiSR6GctOQEYoo7dly05AHcnlP6TLTkDaf4rQ9cxOQC0rTUpBzU5AP1qJZovNTkAVGLK61c1OQCQtlbcjzk5Aa5IyvGzOTkB3kS+Ot85OQOLplbIMz05AGe+0IlfPTkChA6V7sM9OQNzk3X7mz05ApFucHgHRTkCbzk4GR9FOQHem0HmN0U5Ao2XKdNXRTkAMltc3HdJOQCjq3whl0k5AQyECDqHSTkD/Tm2D7dJOQM/nySI6005A9IH3aITTTkAZ/z7jwtNOQIJ+uSn41E5AzPk8WUTVTkA2MUq9lNVOQOQfkF7n1U5A+lk/EDPWTkBDrWnecdZOQFwIclDC1k5ALZrOTgbXTkAg95oLSddOQB6ajD2O105AnED+v9fXTkB7k7kMEtlOQBsFm01a2U5AZouREqjZTkAp01Wn8NlOQKywBhVC2k5AsH/EnI3aTkCxQw+P19pOQJuCDzgl205A2aGHx2vbTkC1eQk7sttOQIghTGT5205AND6myDTdTkAkjIz7fN1OQABvgQTF3U5AqRsVJQ7eTkAp499nXN5OQOcF2Een3k5AWnwKgPHeTkAHSvdgP99OQERpb/CF305AXs/q99ffTkDTKDdkFuBOQGSf7b5Q4U5AYiX5JIrhTkBTicWC1eFOQIBTMhMf4k5AI+ZsFGziTkBSu0w6t+JOQMIXJlMF405AOpLLf0jjTkDY+Dkrj+NOQLbbLjTX405AsV3HpRfkTkDD0P2vTeVOQJVtzUOT5U5AfZbnwd3lTkCoP/uRIuZOQKLMBplk5k5AKq4q+67mTkA7x4Ds9eZOQDqHWOpG505AzcSH7JbnTkCutmJ/2edOQFhRg2kY6E5AY4IH80TpTkAu75c8i+lOQFmjHqLR6U5AlrcjnBbqTkDKplzhXepOQIa+4Sun6k5AJCVQ1+3qTkC0QSYZOetOQDLzCjGE605ArY4JHszrTkCm+rtkCexOQFg84n1C7U5AoKF/govtTkAlbb250u1OQB32Vcwb7k5AFXR7SWPuTkCAr/uhrO5OQOXFr0X47k5AlqKCsEDvTkBEaW/whe9OQEMMYSLL705AKxiV1AnwTkBDsJeTPfFOQG9kHvmD8U5A9UVCW87xTkCuR+F6FPJOQDY/6wdi8k5AEhdte6jyTkDF8z/m8PJOQBrAWyBB805Ag+X1TYfzTkCFjFp0xfNOQA1cC6AF9E5A9cEfazP1TkBFV/y5e/VOQOzFUE609U5A2P1QVvn1TkBnLJrOTvZOQG8VsXWW9k5AUQeMCNn2TkCA3GsuJPdOQGkQ+UFw905AcwSDfrn3TkAzK+5S/fdOQESBPpEn+U5A/41QRm/5TkDy6hwDsvlOQByUMNP2+U5AgJ9x4UD6TkDA30IxjPpOQFDxpd3V+k5A3gIJih/7TkDek4eFWvtOQOyoaoKo+05A+ZX0Hen7TkBWlX1XBP1OQPb76wJL/U5AK+skSJL9TkArpPyk2v1OQObG9IQl/k5AUOyOsmv+TkB3kS+Ot/5OQJ0Z6p33/k5APZY+dEH/TkBnXDgQkv9OQJYJv9TP/05AzhEM+uUAT0BOzmOnMgFPQCy8y0V8AU9AE9pyLsUBT0CRi1dGEAJPQBRXlX1XAk9ABbth26ICT0DI97La6QJPQIxK6gQ0A09AhdOCF30DT0D5LM+DuwNPQPTg7qzdBE9AheDeIh0FT0CfP1qJZgVPQJGjJuexBU9AsAYVQvQFT0DEKt7IPAZPQGSnMp+GBk9Azdc/Ys4GT0CTKneMGAdPQE5Nb2xjB09AvW987ZkHT0BRwkzbvwhPQIrAa6oBCU9AuIrYOksJT0B96IL6lglPQJg8i8veCU9AkMUj3icKT0DOAYI5egpPQLc1D03GCk9Ali7qgBELT0Bt94VqXQtPQOJQ0tabC09AOxkcJa8MT0CdGeqd9wxPQBrAWyBBDU9AZDBsuosNT0D6cQ6x1A1PQJCdynwaDk9ApeLsw2cOT0DJZjTfrg5PQMs18mb6Dk9AtnTyD0gPT0A0FGTxiA9PQIePiCmREE9A8L+V7NgQT0ALFJ69IBFPQFupegxpEU9A2U/sjrIRT0DaEzeB/BFPQIGq5HZCEk9AejN9iYsST0CDJwfG1BJPQN4CCYofE09AkM1ovl0TT0DJ8puvfxRPQDxeW1LIFE9A5P973Q8VT0CdARv9VRVPQCLYy8meFU9AYhidGeoVT0C0uOz9MxZPQGN/2T15Fk9AZk6XxcQWT0BPgiTZEBdPQJClD11QF09A1EM0uoMYT0ChxqouzRhPQOk2u8gXGU9Axxmw0V8ZT0BolgSoqRlPQEh9bKXqGU9AXKyowTQaT0BE1cI/fxpPQCXZEAnMGk9A3OwiXxwbT0DLHSPGWBtPQJjdk4eFHE9AXDDLsc8cT0DOhaQpFR1PQP1ahE9gHU9APZDiCaodT0D2p2dU8x1PQEAYeO49Hk9AQtzC4IceT0Agyip/0R5PQOxph78mH09AUWNVl2YfT0C4unZ8jiBPQN1JMS3XIE9AtRLNFiMhT0BWmpSCbiFPQGiz6nO1IU9At1o6+QciT0AJBv1yUyJPQMUo9VKeIk9AeiYhfusiT0CfwE7ENSNPQA31znt2I09AGU6sZrAkT0CX9B3p+SRPQHbt+BxFJU9AXyGGMJElT0D5g4Hn3iVPQCQ4CE0lJk9AZG1mB28mT0AquZ2QsCZPQLrVc9L7Jk9AW0dVE0QnT0DJhkhghidPQJRqn47HKE9AcEIhAg4pT0CCW3fzVClPQGZuq0acKU9APSzUmuYpT0AthS1jMCpPQHbYVzFvKk9AVdEyZboqT0CXHHdKBytPQIBQBF5TK09AyKMuLJIrT0Aa2CrB4ixPQGI9yMUrLU9ATXzIbnktT0AT2nIuxS1PQKD9SBEZLk9AdLD+z2EuT0Bd2RhOrC5PQKhfDxP6Lk9Ao/6NUEYvT0AGFUL0kS9PQI7Zf4rQL09AJoB1LwoxT0C7qzH7TzFPQF4z+WabMU9AoH49TOgxT0CS+O/UNjJPQOONzCN/Mk9AQ5WaPdAyT0BjA/wtFDNPQEkhoxZdM09AdusPp6YzT0Ba3eo56TNPQP/CBbMcNU9AQAPXAmg1T0BSJ6CJsDVPQLtMOrf2NU9AoWrhnz82T0Dx/73uhzZPQLlo20PVNk9A8XhtSSE3T0CiVUC0aTdPQBfB/1ayN09ALv8h/fY3T0BPHhZqTTlPQPa0w1+TOU9ALa9vOtw5T0AW4/xNKDpPQMnym69/Ok9A3SHYy8k6T0AUJ/c7FDtPQMcZsNFfO09AzgnHGbA7T0BcGyrG+TtPQFmzqGI9PE9AUqiUxH89T0Csg5aIyj1PQKwUFYQFPk9Acn0y2VI+T0DVa40bkT5PQDuNtFTePk9AE2HD0ys/T0AMErVHgj9PQI7Zf4rQP09AsG863CFAT0Ch0wY6bUBPQJa9fwauQU9A5kfpv/RBT0DOcAM+P0JPQL2+6XCHQk9A9cMI4dFCT0Ay44BwGENPQIF4Xb9gQ09AWEH5qKxDT0C6Qcch9UNPQKmPrVQ9RE9AQspPqn1ET0ADkNrEyUVPQP0j5mwURk9A6VBz31dGT0BSWSdBkkZPQDqCQb/cRk9AqfsApDZHT0Ba2NMOf0dPQKRTVz7LR09AKB+VdRJIT0BcA1slWEhPQLB/xJyNSE9A91C18M9JT0BYUYNpGEpPQBmDYdNdSk9ACr/Uz5tKT0AEXlMN6EpPQDMzMzMzS09AdX53GIBLT0A755RtzUtPQPHkwJgaTE9AfeA9GmFMT0BtOZfiqkxPQFOJxYLVTU9AF9GJFx5OT0BLwMJcZU5PQE2PgOSwTk9AAHfG5PpOT0CQiCmRRE9PQEyrIXGPT09AdWaod95PT0ApWWENKlBPQAdSPEF1UE9APzp15bNQT0Cjn5YM7VFPQDCmhiM1Uk9A/Cj9l35ST0Abk+uTyVJPQALHeKcVU09Av+lwh2BTT0Dkg57NqlNPQBuJvT31U09AkyBJNkRUT0DA1M+bilRPQBuT65PJVE9A5XZCwgpWT0CZOqJVQFZPQLrF6RGQVk9AQYonqM5WT0A6E8C6F1dPQJweAclhV09AKiXx36lXT0CPO6WD9VdPQFOZT0NBWE9APM3cVo1YT0BAf7QSzVhPQFUltxMSWk9Ap9B5jV1aT0CqglFJnVpPQOnCIpnoWk9ACC0RlTNbT0AdVU0QdVtPQOvXw4S+W09AKxiV1AlcT0AB1r0oVFxPQBQi4BCqXE9AcOtunupcT0C7wNLmJV5PQMrOtUJrXk9ABc3UEa1eT0A7x4Ds9V5PQGFsIchBX09AXAugBY5fT0D+dYGlzV9PQD2gbMoVYE9ANj/rB2JgT0D5o5VotmBPQKAdXZLwYE9AyxXe5SJiT0COXaJ6a2JPQJhRLLe0Yk9A4syv5gBjT0CLeUMHSmNPQCbnsVOZY09A0akrn+VjT0DVg1y8MmRPQPwo/Zd+ZE9AT9S/EcpkT0BAG6ajCWVPQBosr286Zk9AUjHO34RmT0D63WEAzmZPQC/NmkUVZ09A/VqET2BnT0BkdavnpGdPQD5ULfzzZ09AHUKVmj1oT0Dhnz9aiWhPQKwM0KPPaE9AD/sq5g1pT0CJvT31NWpPQB/p+cB7ak9ArO/p18NqT0CJ3VF2DWtPQAeEw/hWa09ARrkhs6BrT0AfcEpm4mtPQKM7iJ0pbE9ADloiKmdsT0ARHm0csWxPQPk0FGTxbE9Ap4Q6vztuT0CoMp+Ggm5PQE7JTHzIbk9ACeHRxhFvT0A2qz5XW29PQJzMZZCob09ARHn5sPFvT0CM3pa1OnBPQFhWmpSCcE9ACCj6aclwT0DfyDzyB3FPQB91YZFMck9AA4iV5JNyT0BbQj7o2XJPQOAY77Qic09AnDvnlG1zT0AiEphhtnNPQO6UDtb/c09AK7SGZUZ0T0DFCw+HknRPQMnazA7edE9AnY2CzSZ1T0BAl4OzbnZPQHV7SWO0dk9AhIksv/l2T0BjggfzRHdPQDtLo9yQd09Ai+B/K9l3T0D2EI3uIHhPQGl8TJFpeE9ApZBRi654T0DKPPIHA3lPQKHopyVDeU9AH+n5wHt6T0BSzb9wwXpPQDbVgC4He09ALVOmq057T0BWDi2ynXtPQAfgjIfke09AGQ/Joy58T0CRm+EGfHxPQKzv6dfDfE9A16NwPQp9T0CWv2h8TH1PQHb1Pf16fk9AMB82fs5+T0BVuWPEGH9PQDvXCq1hf09ARcuU6ap/T0BRypG79X9PQOkWp0dAgE9A5ssLsI+AT0CAI5TR24BPQDkwpoYjgU9AnzTn82SBT0Dw6dfDhIJPQCPDKt7Igk9AxC0MfgiDT0AnOU2MUoNPQCsTfqmfg09Ag9iZQueDT0BGFetBLoRPQHPfV9J3hE9A8ZA86sKET0CIx2tLCoVPQP82nuJLhU9AJvxSP2+GT0BSk/PYqYZPQKtjggfzhk9AvqQxWkeHT0DFd2LWi4dPQMIP4XLPh09AyeIR7xOIT0DFjAPCYYhPQCSU0duyiE9A/mDgufeIT0Cq9AADLolPQNDAtQBaik9AW6ZMV52KT0AvWQIW5opPQLpJDAIri09A5f2SZ3GLT0CzgAncuotPQAIW5ioDjE9Am2L7tk2MT0CElojKmYxPQGGWY5/tjE9AZEg7Wy2NT0BqTfOOU45PQLfBdh2Xjk9Ai3Qs3N+OT0A+XHLcKY9PQO84RUdyj09As4AJ3LqPT0BdVfZdEZBPQOtb5nRZkE9Ag6j7AKSQT0BH+zIr7pBPQAsxhIkskU9AR59pnGCST0B+mRV3qZJPQBTbt23ykk9AZnCUvDqTT0DzdoTTgpNPQK2OCR7Mk09ADItkohuUT0BGiYNxXZRPQOcQS92olE9A5cWvRfiUT0CEGqu6NJVPQJFhFW9klk9APQep7qSWT0BiodY075ZPQFHvvGc3l09AFDeB/H+XT0BJJrpBx5dPQB3ZbwAQmE9AAOgwX16YT0BlCViYq5hPQG/94dT0mE9AZ2mUGzKZT0Cb4QZ8fppPQBZnHz7Dmk9ADQ2eHBibT0AbIoEZZptPQO7bNnm3m09ACmMLQQ6cT0A2F5KmVJxPQLW2A4iVnE9Acdn7Z+CcT0AIECvJJ51PQCAxZ6NgnU9ADuugJaKeT0DJAiZw655PQGyVYHE4n09Ag+X1TYefT0C89YdT059PQOnc2q8ooE9AUAl1fnegT0AA+LofyqBPQKvXGjcioU9A1JKhPXGhT0D3FulYuKFPQCQlUNftok9AaXQHsTOjT0A7EddEeaNPQK1xI1LAo09Apvq7ZAmkT0DTxCj1UqRPQN/DJcedpE9Ab+D7COmkT0CWhZzkNKVPQJhUWmyApU9AuLdIx8KlT0DIFJmm9aZPQMGdMbk+p09Aw2F8q4inT0DyNlzR06dPQDmc+dUcqE9AKfVSnmaoT0D/snvysKhPQB0o3YP9qE9Ak54PvEepT0DLnC6LialPQI28mb7EqU9Ah4IsHvGqT0DVDJbXN6tPQLbz/dR4q09AZ8Vdqr+rT0C3Za2OCaxPQLkp+IBTrE9AgZIV1qCsT0DG7D9F6KxPQGNarpE3rU9AL9KxcH+tT0CrWz0nva1PQFhmJFXurk9AKw5nfjWvT0DUr4cJfa9PQEcbR6zFr09AP5lsKQ2wT0DrW+Z0WbBPQAOle7CfsE9A7M2VLuqwT0AKQ/e/NrFPQOELk6mCsU9A/lib2cGxT0DI97La6bJPQJqUgm4vs09AFzCBW3ezT0DQRwamwLNPQNILUZgKtE9ASY32ZVa0T0BQiIBDqLRPQPEE1RnytE9AbJVgcTi1T0Cz+v11gbVPQJoNMsnItU9AkshRk/O2T0CasWg6O7dPQEJIFjCBt09AC8AZD8m3T0AoH5V1ErhPQJ2Vx61cuE9AK5y3xKS4T0Blwi/187hPQPXTkqE9uU9A3gcgtYm5T0BJMS3XyLlPQIGFucoAu09AZpjtHUi7T0DHjUgBj7tPQBcjJVDXu09A3m5c2Ri8T0ALOclpYrxPQAKse1GovE9AvtnmxvS8T0A1W4yUQL1PQIsVNZiGvU9AdjdPdci9T0BbwUmtCr9PQEj5SbVPv09AfN0PZZW/T0AAqU2c3L9PQFp53MolwE9AmaPH723AT0DFYsHqtcBPQDnZ8yIAwU9AIPeaC0nBT0A+YYkHlMFPQKFaV9/TwU9AatEVf+7CT0DKxnBiNcNPQMt01Sl8w09AekY1/8LDT0BoiaicCcRPQPmlft5UxE9ASDtbLZ3ET0BdapdJ58RPQPvQBfUtxU9AMrk+mWzFT0BPBkfJq8VPQAIgFIHXxk9ANyUz8SHHT0BvKlJhbMdPQKAKpRy5x09Ax7q4jQbIT0CC0j3YT8hPQNuizAaZyE9AN37OyuPIT0DYBZY2L8lPQHNzBIN+yU9AC5jArbvJT0Ca+JDd8spPQOyjU1c+y09AQlOJxYLLT0C94xQdyctPQHgGDf0TzE9An6A6Q17MT0DBQWgqscxPQB4zUBn/zE9AD7QCQ1bNT0CEKjV7oM1PQJAMTIHfzU9AZgdvIg3PT0A6r7FLVM9PQK8wVxmgz09Afb5AI+vPT0BGPUSjO9BPQJv+7EeK0E9APYa0s9XQT0A9NBl7HNFPQIGVQ4ts0U9Am97YxrLRT0AG/XJT8NFPQFf3olAp009AwiewE3HTT0Bv2LYos9NPQDQ2Yej+009A5wDBHD3UT0C1mR28idRPQPTg7qzd1E9AEUvdqCjVT0Bj6yyNctVPQIqbQP6/1U9A+NozSwLWT0DW3TzVIddPQIm6D0Bq109AVT2GtLPXT0DTxhFr8ddPQBosr2862E9A1jHBg3nYT0AGEhQ/xthPQAGxknwS2U9AFODOmFzZT0AwNNdppNlPQHiSdM3k2U9AEAaeew/bT0B6KzipVdtPQBaHM7+a209AaCeDo+TbT0CKoFcpKtxPQNk1NHhy3E9AuC4PrL3cT0DUghd9Bd1PQNA3fOVU3U9A2BUg95rdT0B2fI6i4d1PQJ9pnGAS309AWoEhq1vfT0BTFS1Tpt9PQO5stXTy309AsbR5CTvgT0ABVcnthOBPQKHjkPrY4E9AMQBnPCThT0B5cHfWbuFPQGiz6nO14U9A0+5qzP7hT0C1OiZ4MONPQIO9nOx5409A3ZiesMTjT0Dsmw53CORPQKCOxwxU5E9AY9aLoZzkT0DOHH+P5+RPQPK9rHY65U9Ab4EExY/lT0DBLMc+2+VPQGrO58ki5k9Aql0mnVvnT0AVpBmLpudPQILfmePv509AO+yrmDfoT0B4Fpe9f+hPQDMjqXLH6E9AInGPpQ/pT0AZ+ie4WOlPQB3J5T+k6U9Ad8HNz/rpT0CDwMqhRepPQCBOTW9s609Ag1mOfbbrT0CCB/NE/etPQP+i8TFF7E9A7OVkz4vsT0Dlbv3h1OxPQLPfACAU7U9AZMdGIF7tT0D14xxiqe1PQNXc95X07U9A8jRzWzXuT0D6YYTwaO9PQNlP7I6y709Acad0sP7vT0Cz50UASvBPQPIcpLqT8E9ArCm2b9vwT0D0mcYJJvFPQJ5GWipv8U9Als/yPLjxT0B++Ay7AvJPQEdaKm9H8k9A+EuexWXzT0AUqxksr/NPQNPGEWvx809AbyINgTb0T0BF4DXVgPRPQCvzaSjI9E9AB9ZeMRD1T0CFh0NJW/VPQAIutcuk9U9AdYOOQ+r1T0Bcj8L1KPZPQGTHRiBe909A7LPdF6r3T0ApyOIR7/dPQDnhOAM2+E9A443MI3/4T0CPUEZvy/hPQCWS6GUU+U9AbwL5/175T0BN+9MzqvlPQJdr5M30+U9AQPuRIjL6T0AfCQ5CU/tPQPWpUMqR+09AnED+v9f7T0A8vVKWIfxPQOd0WUxs/E9ASosN8Lf8T0CBkCxgAv1PQF9zIWlK/U9AetKcz5P9T0BoFRBt2v1PQBKwMFcZ/k9AWypvRzj/T0D5kN3yfv9PQJoYpV7K/09AevSZxgkAUED/aCWaLQBQQARjajhSAFBAW0+a83kAUEDNWDSdnQBQQAP8LRTDAFBA94qBiOcAUEAS/53aBgFQQB/C5Z6bAVBApDZxcr8BUEB4hwE44wFQQDI9YYkHAlBAeEDZlCsCUEAuXhlBUAJQQBQamzB0AlBA0mcaJ5gCUEAs4fbxvQJQQLXtoWrhAlBARB8ZmAIDUEA2PL1SlgNQQFJEhlW8A1BAZRGdeOEDUECVmj3QCgRQQL5qZcIvBFBAuzRrFlUEUEAYz6ChfwRQQFm4v42nBFBARBfUt8wEUECNMDLu8wRQQLLfACAUBVBA8s02N6YFUED4x3vVygVQQPkpoc7vBVBApheiMBUGUEAACEXgNQZQQAcYcKldBlBAPz2jmn8GUEBUjPM3oQZQQCrzaSjIBlBAf8mzuOwGUEDL2xFOCwdQQNB5jV2iB1BAAvG6fsEHUEA/uYCq5AdQQJD3qpUJCFBAI0p7gy8IUEAF9xbpWAhQQDFfXoB9CFBAvpfVTqcIUEC7YduizAhQQKW1fDfwCFBAtGE6mhAJUECAkhXWoAlQQELkB8G9CVBAhE9gJ+IJUEDVITfDDQpQQHKvuZA0ClBAIJ268lkKUED9KP2XfgpQQFovhnKiClBAGxUlDsYKUEDwZbXT6QpQQAAd5ssLC1BAC/KgxqoLUEC636Eo0AtQQFDKkbv1C1BAUzcqShwMUEAWKDx7QQxQQONTAIxnDFBAcg6x1I0MUEDWzbIUtgxQQJ9hV4DcDFBAWiIqZwINUECY6u+SJQ1QQD86deWzDVBAZwqd19gNUECDB/NE/Q1QQKxZVLEeDlBADwNwxkMOUEDWi6GcaA5QQIyp4UiNDlBAuhycdbMOUEDcPr6X1Q5QQFsQtzD4DlBA9HFtqBgPUEBLbickrA9QQO4gdqbQD1BA2X+K0PUPUEAuVtRgGhBQQBrAWyBBEFBAI1LAY2UQUEBdgmbqiBBQQJtVn6utEFBAyshZ2NMQUEBdJp1b+xBQQHiPRhgZEVBA5IOezaoRUEB/+zpwzhFQQFfk6trxEVBAsUtUbw0SUEBoaZQbMhJQQE87/DVZElBAvJaQD3oSUEBfSd+RnhJQQASQ2sTJElBAoBLq/O4SUEAhZhwQDhNQQBakGYumE1BAc6qiZcoTUEAF8v+97hNQQL2c7HkRFFBAuFAMozMUUECnR0ByWBRQQAHBHD1+FFBA/5WVJqUUUECiPXETyBRQQFdbsb/sFFBAqJnbqhEVUEBdUN8ypxVQQEwqLTbAFVBA2DpLo9wVUECYkz0vAhZQQB0TPJgnFlBAZiyazk4WUEDjcOZXcxZQQLM0yg2ZFlBAWPKLJb8WUEB9KpRy5BZQQC+wtHkJF1BAL6udTp8XUEC+ZU6XxRdQQCAPaqzqF1BAy2++/hEYUECbKC8fNhhQQBLK6G1ZGFBAuJIdG4EYUECfWRKgphhQQJPz2KnMGFBAL3bo4fEYUECjAbwFEhlQQOqd9+ymGVBAloCFucoZUEAcAIQi8BlQQJhE0KsUGlBAp3nHKToaUEA+ZLe8XxpQQD/G3LWEGlBAm1Wfq60aUEC79YdT0xpQQBoHhMP4GlBA7mKHHh4bUEDa0SUJrxtQQLv1h1PTG1BAq8/VVuwbUEBFR3L5DxxQQIFwGN8qHFBAfC+rnU4cUEBy1OQ8dhxQQBuWGUmVHFBATyMtlbccUEBSmzi53xxQQN40kEEBHVBAipP7HYodUECf7b5QrR1QQGvxKQDGHVBACQHmR+kdUEBrn47HDB5QQCNKe4MvHlBAhfOWmFQeUEAUhu5/bR5QQC140VeQHlBA+Zgi07QeUEBDoA3T0R5QQIYQfWRgH1BA0KsUFYQfUEDvQIonqB9QQJwui4nNH1BArGOCB/MfUEBqvHSTGCBQQIKYcUA4IFBA/+cwX14gUECBzw8jhCBQQH2OouGnIFBASK/zXMwgUECm0HmNXSFQQHohClOBIVBAAy61y6QhUEAmW0qDyCFQQJApMk3rIVBAEfQqRQUiUEDEhL7hKyJQQHwvq51OIlBArS8S2nIiUEA2PL1SliJQQOYivhOzIlBAA0aEbEYjUECjYLNJayNQQHMZJGqPI1BAHXp4vLYjUEC5/If02yNQQPjPwLUAJFBAJC2VtyMkUECyU5lPQyRQQPAbX3tmJFBArF5r3IgkUEDBrbt5qiRQQDTH3+M5JVBA7HHMn1wlUEC3h6qFfyVQQHXVKXyjJVBASzygbMolUEDv7u7u7iVQQOskSJINJlBARJOxxzEmUEBkM5pvVyZQQLkJ5P97JlBAS8gHPZsmUED/3+t+KCdQQAnpFqdHJ1BAnzTn82QnUEDPNE4wiSdQQFARul6tJ1BAVQv//NEnUECmVJx9+CdQQH89TOgbKFBANFuMlEAoUEBDkIMSZihQQJfSIPKDKFBAxVVl3xUpUECZpvWkOSlQQKpomTJdKVBA1sVtNIApUEAaPDkwpilQQO+XPIvLKVBAGGhkffApUEAqvrS7GipQQAjBvUU6KlBAh5K23lwqUEAWubp2fCpQQJ/V768LK1BAeKws5CQrUEC/r6TvSCtQQKV2mXRuK1BAiieozpArUEAPnDOitCtQQMhRk/PYK1BAsqU0iPwrUEAlr84xICxQQOif4GJFLFBAlwSoqWUsUECtAqJN+yxQQHywn9gdLVBAteBFX0EtUEDR6A5iZy1QQCfKy4eNLVBAygVUJbctUEBPDoyp4S1QQBL/ndoGLlBAoa7bjSsuUEDa6fSpUC5QQJ9Rzb9wLlBA/GfgWgAvUEDUUJDFIy9QQI4G8BZIL1BALSEf9GwvUEDImLuWkC9QQJzpS1y0L1BAOGxblNkvUEAr+64I/i9QQG5mB28iMFBAS/JJFEcwUECYDxs/ZzBQQKhfDxP6MFBA6b/04xwxUEA0W4yUQDFQQAm3j+9lMVBAa2CrBIsxUECzbpalsDFQQOoRkBzWMVBAFm9kHvkxUEA5nPnVHDJQQK2wBhVCMlBAtrkxPWEyUEDlPHYq8zJQQGUZ4lgXM1BAkXa2WjozUECBeF2/YDNQQM4eaAWGM1BAWsMyI6kzUEBlYAr8zjNQQNwMN+DzM1BAR3o+8B40UEDpqlP4RjRQQPts94VqNFBAy9sRTgs1UECDhv4JLjVQQELUfQBSNVBA9/G9rHY1UEC2SrA4nDVQQD1M6Bu+NVBACGLGAeE1UEA5Yi0+BTZQQHjJErAwNlBAgVt381Q2UEAkA1PgdzZQQK9SVBAWN1BAV53CNzo3UEBGlPYGXzdQQIVnL8iDN1BAuv+1qac3UECT89ipzDdQQPo0FGTxN1BA7s7abRc4UEASB+O6PDhQQNyahyZjOFBAo5p/4YI4UEDudPpUKDlQQJMyvGxOOVBAfpHQlnM5UEAZFODOmDlQQOY/pN++OVBAKrZv2+Q5UECzwhpUCDpQQAik13kuOlBAhfOWmFQ6UEBc0dNtdjpQQN0kBoGVOlBAHU0IMD87UEA3P+sHYjtQQCUrrEGFO1BA1aVZs6g7UEDWB3+szTtQQLD7oazyO1BAh22LMhs8UECazk4GRzxQQGr+hQtmPFBAipP7HYo8UEBsLiRNqTxQQE+nT4VSPVBAPp6DVHc9UEABj5WFnD1QQLes1THBPVBAEBs/Z+U9UEARERERET5QQDTH3+M5PlBAMpxYzWA+UEDPKduahz5QQHsMaWerPlBAxh7H/Mk+UEC8eapDbj9QQLg4PQKSP1BArNIDDLg/UEDVGfLi1z9QQPEhu+X9P1BAuywmNh9AUEBRDKMzQ0BQQPAbX3tmQFBAWHOAYI5AUEATNFNHtEBQQLddaK7TQFBAtXHEWnxBUEC10+lToUFQQLKd76fGQVBAU8ORGu1BUEBmkKg9EkJQQG8iDYE2QlBA62ZZCltCUED9KP2XfkJQQCR36w+nQlBAcShp681CUEA2m7SW70JQQHIOsdSNQ1BAwUFoKrFDUEDGO63I1UNQQGCzSWv5Q1BArFlUsR5EUEBjd5RdQ0RQQMSp6Y1tRFBApti+bZNEUEAXVawHuURQQMnlP6TfRFBAFw6EZAFFUEDqCUs8oEVQQDENw0fERVBA1b8RyuhFUEBdzLxCDEZQQCntDb4wRlBAHHxhMlVGUEAXO/TweEZQQKXqMaSdRlBA3I0rG8NGUEDv7u7u7kZQQD2gbMoVR1BAab5dCbdHUEA0SwLU1EdQQDa4mmL7R1BAM4KgtiBIUEBNf/YjRUhQQJswdP9rSFBAcoV3uYhIUEBI4XoUrkhQQKHjkPrYSFBANkHUfQBJUECqzKehIElQQKMr/ty9SVBAiOd/zOFJUEBi26LMBkpQQL1f8iwuSlBAULLCGlRKUEC03ReqdUpQQE3TetKcSlBAdqOixMFKUEA5lLT15kpQQHFNlJcPS1BAKHZH2TVLUEB0LNzfxktQQBfUt8zpS1BAdNpApw1MUEAcJa/OMUxQQMoSsDBXTFBACfFbh31MUECGQBumo0xQQJZ1EiTJTFBA+jQUZPFMUEA+q99fF01QQIKYcUA4TVBAv4I0Y9FNUEDKltIg8k1QQKzFpwAYTlBAqpog6j5OUED72ErVY05QQLODN5GGTlBAZAlYmKtOUEC8bE44zk5QQFC/Hib0TlBAKDx7QR5PUEDXq7UdQE9QQDv5B6TXT1BAkL3e/fFPUEDbWHauFVBQQCgK9Ik8UFBAHq8tKWRQUEAC6XWei1BQQHFlYzixUFBAR8Fmk9ZQUEAQYH6U/lBQQINpGD4iUVBAkhXWoEJRUEAUlnhA2VFQQK4NFeP8UVBAWvCiryBSUEATm49rQ1JQQGhx2ftnUlBAqtwxYoxSUEBWv78usFJQQH/7OnDOUlBAgNQmTu5SUEA5fxMKEVNQQDpY/+cwU1BAYt7QgdJTUEAbib099VNQQKWg20saVFBAqIQ6vztUUEDgMqfLYlRQQFr1udqKVFBAupNiWq5UUEB67FTm01RQQJqMPY75VFBAPL1SliFVUEA1Zv8pQlVQQII5evzeVVBAC0YldQJWUECTviM9H1ZQQK2wBhVCVlBABR9wSmZWUEChoX+Ci1ZQQHFlYzixVlBAdlQ1QdRWUEA80vOB91ZQQB1/j+cgV1BAOPOrOUBXUEB+oVpX31dQQCLA/Cj9V1BApLJOgiRYUEDoKBp+SlhQQGoQ+UFwWFBANTFKvZRYUED9uXuTuVhQQMXWWRrlWFBAncp8GgpZUEDXjs9RNFlQQIJm6ohWWVBAUkFYoPBZUEDVteNzFFpQQNYMltc3WlBAmn/hgllaUEDJ8puvf1pQQBo8OTCmWlBAF494n9BaUEDvgpuf9VpQQPRxbagYW1BA65jgwTxbUEByBmz0V1tQQMLdWbvtW1BA5XZCwgpcUEBxGw3gLVxQQIt5QwdKXFBA1hTbt21cUECckpn4kFxQQKs+V1uxXFBAVJQ4GNdcUECpaoKo+1xQQBx0HFIfXVBAefFrET5dUEAAPfpM411QQCf3OxQFXlBAWQIW5ipeUEBKe4MvTF5QQB7ME/VvXlBAlW3NQ5NeUEAUyP/3ul5QQGaIY13cXlBA5Vlc9v5eUEB4rCzkJF9QQPd9JX1HX1BAQkYtuuJfUEB0RpT2BmBQQAsxhIksYFBAMwGse1FgUECtLxLacmBQQB+3cgmaYFBAyAxUxr9gUEBpPWnO52BQQAtuftYPYVBAbhea6zRhUEDTxCj1UmFQQMuhRbbzYVBAKjV7oBViUEDTf+nHOWJQQPCSJWBhYlBALNmxEYhiUEDM8+DurGJQQI3Zf4rQYlBAU+B35vhiUEBY2ryEHWNQQHLMn1xAY1BAIJ268lljUEDw+WGE8GNQQGMD/C0UZFBAMC/APjpkUEBLLBasXmRQQAh6laKCZFBA3DZ5t59kUEA5PQKSw2RQQCQT3aDjZFBAv4p5QwdlUED70AX1LWVQQP6/1/1QZVBAxWoGy+tlUEClg/V/DmZQQNgFljYvZlBALedSXFVmUEBsuosdemZQQODOmFyfZlBARpkNMslmUECxfdsm72ZQQCkqCAsUZ1BAddASUTlnUEC0o0sSXmdQQAeRHwT3Z1BA7Eyh8xpoUEDZLe+XPGhQQDi2sexcaFBAoo8MTIFoUECIS447pWhQQMYex/zJaFBADSI/CO5oUEBzY3rCEmlQQN481SE3aVBAGORBjVVpUEAw7a7G7GlQQBOTSosNalBAdDHzCjFqUECpyXnsVGpQQLbz/dR4alBAI+M+X6BqUEAJn8BOxGpQQBIxJZLoalBArr6nXw9rUEDBgEvtMmtQQLH5uDZUa1BAg80mreVrUECGvPi1CGxQQGttBxArbFBAdhVSflJsUEBc0dNtdmxQQOJQ0tabbFBAjSjtDb5sUEDF1lka5WxQQOV2QsIKbVBAF4IclDBtUEC4HoXrUW1QQOIbHWrubVBAOX8TChFuUECEGqu6NG5QQNyIFPBYblBAvCo9wIBuUEBni5ESqG5QQF0wy7HPblBAV3iXi/huUEAFcQuDH29QQPn/XvdDb1BAK4L/rWRvUECV6apT+G9QQDsppuUacFBAPIBYST5wUECeKXReY3BQQJVQ53eHcFBArTdXuqhwUEDm8DZc0XBQQHAIVWr2cFBAQcw4IBxxUEClgMfKQnFQQBkMm+5icVBA9K5n9ftxUEApR+7WH3JQQITLPTdHclBAeFqRq2tyUECKsOHplXJQQPH8jzm8clBAx+w/RehyUEDAKZmJD3NQQNgifAI7c1BANjR4cmBzUEDx9EpZhnNQQNxj6UMXdFBAjukJSzx0UECjQ819X3RQQFlhDSqEdFBAuHIJmql0UECk5wPv0XRQQJZr5M30dFBAKr60uxp1UECe0sH6P3VQQGnzEnZkdVBAWWENKoR1UEBlNsgkI3ZQQMbUcKRGdlBApXaZdG52UEB2LwqVknZQQJ//MYe3dlBAqCVDe+J2UEBuowG8BXdQQJdzKa4qd1BAZrXT6VN3UEBNfMhueXdQQFFrmnecd1BAWipvRzh4UECTWhXOW3hQQHcAsZJ8eFBA76zddqF4UEB+0+EOwXhQQKo7KableFBAbsDnhxF5UEB99d4FN3lQQNBJ7xtfeVBAqD0SHIR5UECLbOf7qXlQQDNt/8pKelBAWZOU4WV6UEBPr5RliHpQQKOF3vWselBALZ38A9J6UEBWbST29npQQMuMpMode1BANvqr2kh7UEDfT42XbntQQLEe5OKVe1BAjZ+z8rh7UEBSvTWwVXxQQD+p9ul4fFBA7qFq4Z98UEAgrUSzxXxQQKSqCaLufFBA9OgzjRN9UECJ2iPBQX1QQJaN4cRqfVBAaFw4EJJ9UEAjHQv3t31QQL8W4RPYfVBADfXOe3Z+UECA/mglmn5QQELkB8G9flBAyvCyOeF+UEDuHUjxBH9QQG76sx8pf1BAK9FsMVJ/UEDYR6eufH9QQGDdi0Klf1BAcJS8Osd/UEAihjCR5X9QQP1F42OKgFBAIX7rsK+AUED6cQ6x1IBQQOLMr+YAgVBA7/YzzySBUEDiDsFeToFQQMxiYvNxgVBA9T39epiBUEAksbenvoFQQAXVGfLigVBAjNZR1QSCUEDBJIJepYJQQE/UvxHKglBAqdbV9/SCUEA/wcWKGoNQQFKDaRg+g1BAsyyFLWODUEAB3gIJioNQQKixqkuzg1BACdmM5tuDUEAnbgL5/4NQQNpq6eQfhFBACAsUnr2EUEDCwHPv4YRQQAnE6/oFhVBADr4wmSqFUEBmLJrOToVQQGP2nyJ0hVBAnzws1JqFUECIGQeEw4VQQNlXMW/ohVBA81SH3AyGUEBAclgHLYZQQMoFVCW3hlBAoVpX39OGUEBNPeWr94ZQQJRAXbcbh1BAQSPrgz+HUEB6U5EKY4dQQBAzDgiHh1BATwZHyauHUECMzgz1zodQQO53KAr0h1BATQDrXhSIUED9E1ysqIhQQNFk7HHMiFBAQlig8OyIUEB9niyiE4lQQFR8aXc1iVBAmPI0c1uJUEC6nZCwgolQQAdagSGriVBAjdl/itCJUEAOtuu49IlQQPyhrPIXilBA94I8qLGKUEBdOz5H0YpQQHOVAXr0ilBArtAalhmLUEA8i8veP4tQQG2LMhtki1BAYiX5JIqLUEC2+0K1rotQQJgfpf/Si1BApUkp6PaLUEBkDm/DFYxQQJjI8puvjFBAkO9ltdOMUEDkxa9F+IxQQJrj7/EcjVBAMc7fhEKNUEABh1ClZo1QQFPQ7SWNjVBAmtNlMbGNUECDJwfG1I1QQNoTN4H8jVBA6Ugu/yGOUEDLmQDWvY5QQDuNtFTejlBAu2kggwKPUEBucXoEJI9QQHqFGMJEj1BAZNm5VmiPUEAwBX5njo9QQG/Ytiizj1BAQJya3tiPUEBgPIOG/o9QQNnWPDQZkFBAIx0L97eQUEDk9zb92ZBQQO2Jm0D+kFBAwdorBiKRUEBw05/9SJFQQLtuN65skVBArnRRB4yRUEAx0/avrJFQQPzzRyvRkVBAsxz7bPeRUECyaDo7GZJQQAJdDs66klBAGTkLe9qSUEDXhopx/pJQQDglM/Ehk1BAtXTyD0iTUEDEqemNbZNQQC0BC3OVk1BAQuQHwb2TUECxVYLF4ZNQQGqUGzILlFBAplFuyCyUUEDMpHNrv5RQQGgng6PklFBAfoy5awmVUED3OOZPLpVQQMNkqmBUlVBAiu3bNnmVUEBoeR7cnZVQQPrAezTClVBAOZS09eaVUEB43rObBpZQQEDeq1YmllBAc428mb6WUECbXeSL45ZQQBQKEXAIl1BATTq39iuXUEDVO+/ZTZdQQEhQ/Bhzl1BAw4nVDJaXUEChIItHvJdQQMZYk5Thl1BArir7rgiYUECmUW7ILJhQQJ//MYe3mFBAnlbk6tqYUEDp8Xub/phQQLB6rXEjmVBAG1QI0UeZUECNXaJ6a5lQQFNkmtaTmVBA8nNWHreZUEBUHXIz3JlQQHQprir7mVBADqFKzR6aUEAHWoEhq5pQQDla6F3PmlBAGn5KqPOaUEARLvfcHJtQQCBj7lpCm1BAnKc65GabUEAH+FsohptQQCol8d+pm1BAkGYsms6bUEA3pics8ZtQQApjC0EOnFBAghRPUJ2cUED9TShEwJxQQPgMuwLknFBAiD4yMAWdUEASVlA+Kp1QQMwLsI9OnVBAtN0XqnWdUECN0Tqqmp1QQLMUtozBnVBAUi/laeadUEDqkJvhBp5QQA7DR8SUnlBAyxDHurieUEBuuKKn255QQPCfgWsBn1BA9ZnGCSafUEAqMk3rSZ9QQA3Y6K9qn1BAGw3gLZCfUEAmqrcGtp9QQG2tLxLan1BAqWqCqPufUECzNMoNmaBQQIkHlE25oFBAJpUWG+CgUECtH4gZB6FQQH5Pvx4moVBA/61kx0ahUEDeRBoCbaFQQB4jxliToVBAiQeUTbmhUEAQkgVM4KFQQFkXt9EAolBAT2An4pqiUEDIDFTGv6JQQIZa07zjolBAKQ0iPwijUEAUbDZpLaNQQOdFAEpWo1BA0Zmh3nmjUEBP6WD9n6NQQLzYoYfHo1BAPLUNtuujUEDBoF9uCqRQQESjO4idpFBAi6azk8GkUECu00hL5aRQQGsWVawHpVBAa20HECulUEB/RZHIUaVQQAx+CJd7pVBA54cRwqOlUEAQWDm0yKVQQAFa4BjvpVBAqRsVJQ6mUEDqnffspqZQQAkzbf/KplBAIJijx++mUECYRNCrFKdQQHJDZkE7p1BA9CpFBWGnUECv6xfshqdQQLBNPeWrp1BAYt7QgdKnUED70zOq+adQQC1LYcsYqFBA6a9qI7GoUEB3X6jW1ahQQG+GG/D5qFBAzJcXYB+pUEBsskY9RKlQQBmgR59pqVBAw/UoXI+pUED+O7UNtqlQQNcv2A3bqVBAcad0sP6pUEByde34HKpQQNbNshS2qlBAeoABl9qqUEDmZM+LAKtQQI+6sEgmq1BAIxj0y02rUED4/DBCeKtQQEpGzsKeq1BA/NZhX8WrUEDaYqQE6qtQQPZqbQcQrFBAPnlYqDWsUEBSzb9wwaxQQHX6VCjlrFBA2jAdTQitUEBWdWnWLK1QQH06HjNQrVBAf6e2wXatUED5XlY7na1QQPafInS9rVBARdPZyeCtUEDhVekBBq5QQEkZXjYnrlBAziat5buuUEAuxVVl365QQF66SQwCr1BAihceDiWvUECXQaL2SK9QQPx3ahtsr1BAbPRXtZGvUED1AAMuta9QQF/aXY3Zr1BAmyDqPgCwUECPJgSYH7BQQARz9Pi9sFBApxrQ5eCwUEA3V7qoA7FQQPtHzNkosVBAKbuGBk+xUEBnjr/Hc7FQQF0z+WabsVBAyAxUxr+xUECE2JlC57FQQCX+O7UNslBA0NVW7C+yUEAL0oxF07JQQNuK/WX3slBA5SfVPh2zUEDcTkhYQbNQQHChGEZns1BAcxkkao+zUEDnLTGptLNQQJKZ+JDds1BAz+r31wW0UEAaD8mjLrRQQB+A1CZOtFBAmWTkLOy0UECWpbBlDLVQQH/u3mQutVBAyol2FVK1UEBhdGaod7VQQCoICxSetVBAjryZvsS1UEATPJgn6rVQQKaOaBUQtlBAPW7lEjS2UECJFPBYWbZQQIJWYMjqtlBAFJ69IA+3UECm5Rp5M7dQQClPM7dVt1BAOY+dyny3UEC6awn5oLdQQDIYNt3Ft1BAEjElkui3UEC12AB/C7hQQPOrOUAwuFBASgS9SlG4UEDyXrUy4bhQQMGgX24KuVBAT1CdIS+5UECIgEOoUrlQQCQDU+B3uVBAzE3BB5y5UEBelR5gwLlQQA8QzNHjuVBAVx63cgm6UECjxMG4LrpQQGMLQQ5KulBAEhQ/xty6UECsi9toALtQQGS/AUAou1BAzAuwj067UEBvvv4Rc7tQQJT2Bl+Yu1BAO787DMC7UEBEUaBP5LtQQOybDncIvFBAySdRHC28UEA6GwWbTbxQQPgMuwLkvFBARLPFSAm9UECLtj1ULb1QQKMbdBxSvVBAS2biQ3a9UECyspCTnL1QQLtE9dbAvVBATO0y6dy9UEAUgddUA75QQGEyVTAqvlBAdXYyOEq+UEBBxPM/5r5QQDRTR7QKv1BABAy41C6/UECpyXnsVL9QQJ5jQPZ6v1BAG7P/FKG/UEBMs2ZRxb9QQE0VjErqv1BAdG7tVxTAUECRdrZaOsBQQOCpbbBdwFBAT0hYQfnAUEDpv/TjHMFQQHLMn1xAwVBAi0e8T2jBUEAU6BN5ksFQQATfR0i3wVBAKBdQldzBUEAcsRafAsJQQFfsL7snwlBApRR0e0nCUEDaI8FBaMJQQIMvTKYKw1BADDz3Hi7DUEDa3oEUT8NQQOcIBv1yw1BAU4GAop/DUEB4xPuExsNQQH6+QCPrw1BAG1c2hhPEUEALTmpVOMRQQIeStt5cxFBA5aOyToLEUEAgoOinJcVQQOif4GJFxVBA3C4012nFUECBY7zTisVQQIphdGaoxVBARhDUFsTFUED3ioGI58VQQH0KgPEMxlBAvvOe3TTGUEB94D0aYcZQQG1OOM6AxlBAAFeyYyPHUEBas6hiPcdQQOO/U9tgx1BAJzYf14bHUED/KULXq8dQQLxsTjjOx1BAnRnqnffHUECASL99HchQQN5Zu+1CyFBAHThnRGnIUEDStoeqhchQQGKpGxUlyVBAEhlW8UbJUEBTeTvCaclQQEJwb5GOyVBAuycPC7XJUECPDEyB38lQQBL/ndoGylBAcJnTZTHKUEDwdT+UVcpQQDBU6+p7ylBAczYKNpvKUECunpPeN8tQQGdJgJpay1BAc2iR7XzLUECNWnTFn8tQQF0eWHvFy1BAHHdKB+vLUED/pR/nEMxQQE1XncI3zFBAjDVJGV7MUEAJhQg4hMxQQL8OnDOizFBAMVcZoEfNUEAFqKlla81QQG+BBMWPzVBAdpEvjrfNUECyYPVa481QQOiXm4IPzlBAkoEp8DvOUEAKLlbUYM5QQBdNZyeDzlBAb7vQXKfOUEAW+8vuyc5QQG2dpVFuz1BAvNBcp5HPUEASKeCxss9QQOZ5cHfWz1BA+sjAFPjPUECUQF23G9BQQJEKYwtB0FBAaXxMkWnQUEB2ptB5jdBQQEuWgIW50FBAq7LviuDQUEAppuUaedFQQLdVI86d0VBAAeZH6b/RUEA2fs7K49FQQEhL5e0I0lBAvOgrSDPSUECxgvJRWdJQQAVZPOJ90lBAnUMsdaPSUECaDTLJyNJQQE0VjErq0lBAIgpTgYDTUED/lZUmpdNQQGlv8IXJ01BAea9amfDTUEBSo32ZFdRQQGRlISc51FBAaF9mxV3UUEDdc3MEg9RQQFQgoOin1FBA1YVFMtHUUEA3pics8dRQQIYGTw6M1VBA9XfJErDVUEAdPX5v09VQQAw0sj741VBA95LGaB3WUEBjd5RdQ9ZQQI/f2/Rn1lBAZ1HFepDWUECH8a0ittZQQOkudujh1lBADFGYCgTXUECgR59pnNdQQJhuEoPA11BAdfpUKOXXUEA462ZZCthQQCNKe4Mv2FBAqcl57FTYUEBwUqvCedhQQPNE/Ruh2FBAQW1B3MLYUECE2JlC59hQQNIA3gIJ2VBAxz7bfaHZUEDMOCAcxtlQQKrEYsHq2VBAi+jECw/aUEAZmAK/M9pQQC1wjHda2lBA6DBfXoDaUECqFv75o9pQQLhAguLH2lBAkTSl4uzaUEDVqnDeEttQQJMlYGGu21BA42OKTNPbUEBGGBn3+dtQQNAvNwUf3FBA/pd+nEPcUECAAZfaZdxQQChMBQKK3FBA78nDQq3cUED4WyiG0dxQQPKYgcr43FBA2MvJnhfdUEAbZJKRs91QQMdGIF7X3VBAf2/Tn/3dUEBuZgdvIt5QQBMkyYZI3lBAs0lr+W7eUEBFGgJtmN5QQGEiy2++3lBAn349TOjeUECTGARWDt9QQHazLIUt31BAUVb5i8bfUEB+vkAj699QQIvoxAsP4FBAEWjDdDTgUECcARv9VeBQQOUaeTN94FBAARjPoKHgUEBCAe6MyeBQQChRHC304FBAO7LfACDhUEDH3+M5SOFQQP+6wNLm4VBAB0KygAniUEBNOrf2K+JQQCm7hgZP4lBAuwLkXnPiUEBFGgJtmOJQQDGEiSy/4lBAE6jrduPiUECcvwmFCONQQHrf+Noz41BAaUKA+VHjUEAOBVk84uNQQKdxgkkE5FBAqmBUUifkUEDDsxfkQeRQQCn1Up5m5FBAv9TPm4rkUEAuRkqgruRQQL4Lbn7W5FBAh58S6vzkUEC1HUCsJOVQQDFXGaBH5VBAgLdAguLlUECfQUP/BOZQQNdx6YUo5lBAq8J5S0zmUEBOalU4b+ZQQL3bzzyT5lBAK01KQbfmUEA16iEa3eZQQDliLT4F51BA4rcO+yrnUEBLhvbETedQQF6AfXTq51BA5P973Q/oUECriK2zNOhQQO/+eK9a6FBAgUbWB3/oUEA3ZBa0o+hQQHva4a/J6FBA5rM8D+7oUEDVteNzFOlQQEi/fR046VBAAlj3olDpUEB4hwE44+lQQLdaOvkH6lBAgnuLdCzqUECrS7NmUepQQB1VTRB16lBAeNmccJzqUEB0mC8vwOpQQNrZaunk6lBAmj3QCgzrUEDjwoGQLOtQQNfIm+lL61BAh2VGUuXrUEB7/wxcC+xQQCwOZ3417FBAwGA3bFvsUEA0gLdAguxQQA1pZ6ul7FBAXrIELMzsUECQvd798exQQGYkVe4Y7VBAi/AJ7ETtUED4S57FZe1QQDnOgI3+7VBA2OivaiPuUEAqMk3rSe5QQIlOvPBw7lBAl4OzbpbuUEB/3lSkwu5QQC5Oj4Dk7lBAkg2RwAzvUECzuOz9M+9QQCnYbNJa71BAhNOCF33vUEAmnVv7FfBQQAIeKws58FBAMIZyol3wUEDpspjYfPBQQOeHEcKj8FBAbQcQK8nwUEDa9lC18PBQQPuWOV0W8VBA1ZXP8jzxUEAcLfSuZ/FQQLEB/haK8VBAECOERxvyUEDENVFePvJQQK6J8vJh8lBAiH0V84byUEBPBkfJq/JQQIlBYOXQ8lBAi674c/fyUEAVxhaCHPNQQN3i9AhI81BAdc3km23zUEBQQ0EWj/NQQINpGD4i9FBAK7SGZUb0UEB65z27afRQQPcrikSO9FBA+CFc7rn0UEBnk9by3fRQQIYoTAUC9VBAUD4q6yT1UEA/NV66SfVQQG2dpVFu9VBAMAV+Z471UEC/WPKLJfZQQC2/+fpH9lBAZu+fgWv2UECSV+cYkPZQQD24O2u39lBA+HgOUt32UEDDmV/NAfdQQNwJCSso91BAeJeL+E73UEDI1bXjc/dQQG2Td/uZ91BAjswjfzD4UECtYZmRVPhQQKaTf0B6+FBAONvcmJ74UEBq5rZqxPhQQDuqmiDq+FBAALGSfBL5UEDmbBRsNvlQQDITH7Jb+VBA5Jg/uYD5UEDCm0hDoPlQQLC0eQk7+lBAtKNLEl76UECEXLwygvpQQFrDMiOp+lBAqwFdDs76UEA4sZrB8vpQQBvgb6EY+1BAfYmLtj37UEBFpmk9aftQQOlYuL+N+1BA+AR2Iq77UEC1aX96RvxQQCwWrF5r/FBAGw3gLZD8UEC/vy6wtPxQQBSWeEDZ/FBA5Vlc9v78UECSR11YJP1QQEz9vKlI/VBAIE5Nb2z9UEA9YYkHlP1QQDb/wgWz/VBAcn0y2VL+UEDzWZ4Hd/5QQP32deCc/lBAHZdeiML+UECEbEbz7f5QQPBQFOgT/1BAAh4rCzn/UECkupNiWv9QQETVwj9//1BAvpfVTqf/UECWdRIkyf9QQCvuUv1dAFFAFUL0kYEAUUDUmuYdpwBRQMKGp1fKAFFA6UDpHuwAUUCi9khwEAFRQJaFnOQ0AVFASywWrF4BUUAY7IZtiwFRQFa/vy6wAVFArBdDOdEBUUDJuM8XaAJRQOhNRSqMAlFAYPpxDrECUUA44yF51AJRQDWtJ835AlFAtH4gZhwDUUDqIRrdQQNRQBLnzjllA1FAO7f2K4oDUUBESVtvrgNRQIIclDDTA1FA+N9KdmwEUUDMMNs7kARRQEsC1NSyBFFAMsnIWdgEUUCYCgQU/QRRQCIiIiIiBVFAMEymCkYFUUB9/SPmbAVRQOx5EYCSBVFApy9x0bYFUUDfVKTC2AVRQGf6EhdtBlFA/tmPFJEGUUBE3QcgtQZRQDTUO+/ZBlFAcad0sP4GUUDY6K9qIwdRQF1ortNIB1FAY2LzcW0HUUBpZ6ulkwdRQK9fsBu2B1FAQylH7tYHUUAWMIFbdwhRQIu7VH+XCFFAQGLORsEIUUCu00hL5QhRQDjrZlkKCVFA86s5QDAJUUCJFPBYWQlRQMPYQpCDCVFAcMZD8qgJUUBOXfkszwlRQGdEaW/wCVFA1GAaho8KUUCjDhgRsgpRQInKmQDWClFAzUBl/PsKUUC3n3kmIQtRQGH1WuNGC1FAqANGhGwLUUBED4/XlgtRQMiDGqu6C1FAh2VGUuULUUDytWeWBAxRQBmojH+fDFFA2PULdsMMUUCRq2vH5wxRQMOr0gMMDVFArgrnLTENUUCKlinTVQ1RQHBSq8J5DVFAQhaPeJ8NUUDhML5VxA1RQLL0oQvqDVFAnL8JhQgOUUCoABjPoA5RQJbs2AjEDlFAvrwA++gOUUD6Ao2sDw9RQBujdVQ1D1FAX5AHNVYPUUC6FFeVfQ9RQA3gLZCgD1FAus0u8sUPUUCCVmDI6g9RQIxfi/AJEFFAimF0ZqgQUUBesgQszBBRQLu4jQbwEFFAjwkezBMRUUDePNUhNxFRQKOvIM1YEVFA5Rp5M30RUUCzRj1EoxFRQGA0PqbIEVFAFVJ+Uu0RUUAJTSUWCxJRQDBcMMuxElFAvAD76NQSUUD/a1NP+RJRQEZvy1odE1FApYs6YEQTUUCIug9AahNRQAutYZmRE1FAce6cU7YTUUAHzhlR2hNRQNPuasz+E1FAmnecoiMUUUBdiqvKvhRRQB9wSmbiFFFAEv+d2gYVUUClRvsyKxVRQLqgvmVOFVFAGz9n5XEVUUCU9gZfmBVRQNdhX8W8FVFAF0ALHOMVUUCqktsJCRZRQJVdQ4MnFlFAuqXVkLgWUUCYPIvL3hZRQKsJou4DF1FA09nJ4CgXUUDa6fSpUBdRQLRU3o5wF1FAbf/KSpMXUUBqydCeuBdRQAvvchHfF1FAeWDtFQMYUUCB3GsuJBhRQPJ+ybO4GFFAo/l2JdwYUUAEmB+l/xhRQJp3nKIjGVFAms5OBkcZUUAZoEefaRlRQJJX5xiQGVFAaLPqc7UZUUCh45D62BlRQPOj9F/6GVFAZiRV7hgaUUD0bFZ9rhpRQN21hHzQGlFAzzllW/MaUUBBzDggHBtRQHHBLMc+G1FANz/rB2IbUUDmN1//iBtRQDsZHCWvG1FAGRwlr84bUUCC6gx58RtRQPXzpiIVHFFAUaVmD7QcUUDoj1ai2RxRQDnOgI3+HFFAHAjJAiYdUUAQK8knUR1RQK0vEtpyHVFAlgF69JkdUUD7QrWuvh1RQC1DHOviHVFAZPGI9wkeUUAoWWENKh5RQDawVYLFHlFAjx6/t+keUUDwx9rMDh9RQBujdVQ1H1FAlWWIY10fUUCRL463gh9RQLHEA8qmH1FA2Im4JsofUUAF8v+97h9RQG1JIaMWIFFApGPh/jYgUUCNYrml1SBRQO4AYiX5IFFA6b/04xwhUUCFQgQcQiFRQBPyQc9mIVFAgVhJPokhUUBd5IvjrSFRQPVFQlvOIVFAjCW/WPIhUUDlkyiOFiJRQKd5xyk6IlFA48/dm8wiUUCpTZzc7yJRQAVJsiESI1FADtsWZTYjUUAT1VsDWyNRQBjPoKF/I1FAC8pHZZ0jUUAaCrJ4xCNRQNAn8iTpI1FAvhOzXgwkUUB6S0wqLSRRQHtGNf/CJFFAI5GjJuckUUBPZT4NBSVRQBf54ngrJVFA2un0qVAlUUDPg7uzdiVRQCRaBUSbJVFAUs2/cMElUUB/NQcI5iVRQCqE6CMDJlFAldQJaCImUUAgkF7nuSZRQCgXUJXcJlFAtsaNSAEnUUCdBEmyISdRQAM7EddEJ1FAMK7LA2snUUDjPl+gkSdRQOg4pD62J1FAZH3wx9onUUD8Z+BaAChRQCe6QcchKFFALFi91rgoUUCxzEiq3ChRQOZkz4sAKVFALF3UASMpUUBqMA3DRylRQJaN4cRqKVFAJ8rLh40pUUAI7i3SsSlRQE7mMkjUKVFAtj1ULfwpUUCIeP7HHCpRQBjX5YG1KlFAqh5D2tkqUUBU6+p7+ipRQAwfEVMiK1FAB9MwfEQrUUA7a7ddaCtRQDWoEKKPK1FA0B+tRLMrUUDM6bKY2CtRQMQQJrL8K1FAVU0QdR8sUUAzfYmLtixRQGoggwLcLFFAXa/WdgAtUUCOrz2zJC1RQNWytb5ILVFAwBHK6G0tUUARx7q4jS1RQNS3zOmyLVFAZfS2rNUtUUAZkL3e/S1RQJRAXbcbLlFAOYxvFbEuUUB54eFQ0i5RQFLVBFH3LlFABFslWBwvUUCJ2iPBQS9RQG+WpbBlL1FASxd1wIgvUUDw1DbYri9RQM5geX3TL1FAYKjW1fcvUUC6mHmFGDBRQO1kcJS8MFFAKi02wN8wUUCQY/7kAjFRQHvNhaQpMVFAPrMkQE0xUUDlhsyCdjFRQEYldQKaMVFADrkZbsAxUUCc8ZA86jFRQMAeJvQNMlFAuLxf8iwyUUDECOHRxjJRQMNfkzXqMlFAZwdvIg0zUUALMYSJLDNRQLH5uDZUM1FAURToE3kzUUC8+LUInzNRQCCtRLPFM1FA3OTdfuYzUUAVFYQFCjRRQPakOZ8nNFFAmAK/M8c0UUBNFYxK6jRRQOT/e90PNVFAk2+2uTE1UUDFepCLVzVRQPiFal19NVFAqAAYz6A1UUCPPtM4wTVRQLok4VXpNVFAsEDh2Qs2UUDNv3DBLDZRQOAlS8DCNlFAqLnvK+k2UUBe1y/YDTdRQCsD9OgzN1FA3IgU8Fg3UUCAO2NyfTdRQBEBh1ClN1FAo0jkqMk3UUAYaGR98DdRQG/LWh0TOFFADMUwOjM4UUD8X5t6yjhRQF+dY0D2OFFASgfr/xw5UUA1Zv8pQjlRQAm3j+9lOVFAksM6aIk5UUCh+DHmrjlRQK8tKWTUOVFAZUtpEPk5UUCsWVSxHjpRQAnMMNs7OlFASsXZh886UUCJmBJJ9DpRQKxO4RsdO1FAVq81bkQ7UUCIug9AajtRQB0YU8ORO1FANIj8ILg7UUD04O6s3TtRQIrAa6oBPFFAGXsc8yc8UUDZStVjSDxRQPb21NfgPFFAZuqIVgE9UUDlsA5aIj1RQELCCspHPVFAR0WJg3E9UUDB/Cj9lz1RQKfDHYK9PVFAiOd/zOE9UUDIxSsjCD5RQK4K5y0xPlFAnXjh4VA+UUDTtJ405z5RQI/sNwAIP1FARQp4rCw/UUCv49ILUT9RQFcuQTN1P1FARKM7iJ0/UUA9TOgbvj9RQIZa07zjP1FAM0jUHglAUUB7Vr+/LkBRQJxtbkxPQFFAZaVJKehAUUAEtQVxC0FRQE9QnSEvQVFAP1JEhlVBUUCHzIJ2dEFRQLM0yg2ZQVFABHP0+L1BUUBCz2bV50FRQOBnXDgQQlFACDiEKjVCUUDRyyiWW0JRQDsz1DvvQlFA662BrRJDUUDwp8ZLN0NRQAkj4z5fQ1FA5SzsaYdDUUBN+9MzqkNRQPGtIrbOQ1FAV3iXi/hDUUDy+qbDHURRQJpFFetBRFFAutqK/WVEUUCPz1E0/ERRQOOlm8QgRVFAdXYyOEpFUUD2XRH8b0VRQFsdEzyYRVFA7m/jKb5FUUCOihIH40VRQO4ou4YGRlFAS7h9fC9GUUB0iKVuVEZRQOcIBv1yRlFAmCfq3whHUUAUbDZpLUdRQPsyK+5SR1FAXdxGA3hHUUAUcU2Ul0dRQKAVGLK6R1FAh2VGUuVHUUDxPqGxCUhRQNRtdpEvSFFA7N0f71VIUUB1YZFMdEhRQPDH2swOSVFAAop+WjJJUUB6v+RZXElRQN3qOel9SVFAYN2LQqVJUUCbGKVeyklRQKpYD3LxSVFA07zjFB1KUUA1Zv8pQkpRQGhx2ftnSlFAMOiXm4JKUUBijDVJGUtRQKFfbgo+S1FAzce1oWJLUUAvZl4hhktRQGBxOPOrS1FAQ6AN09FLUUAMNLI++EtRQDglM/EhTFFAqA102kBMUUAEFP20ZExRQJM6AU2ETFFA4pooLx9NUUDvxKwXQ01RQESb9qdnTVFAsH/EnI1NUUAu2vZQtU1RQNzSakjcTVFAWy2d/ANOUUCtdjp9Kk5RQJrrNNJSTlFAynTVKXxOUUBl7HHMn05RQDbA30IxT1FApTFaR1VPUUBvRzgteE9RQF9J35GeT1FAXR5Ye8VPUUAw7a7G7E9RQMx6MZQTUFFA9UpZhjhQUUDYeS5mXlBRQF8PE/qGUFFAgSbChqdQUUD1SlmGOFFRQJ0MjpJXUVFAGlHaG3xRUUCkaPgpoVFRQPzWYV/FUVFAjx6/t+lRUUCjAbwFElJRQGRlISc5UlFAqNvsIl9SUUBLjjulg1JRQAGse1GoUlFAUHj2gjxTUUDBdh2XXlNRQDsuvRCFU1FAwa27eapTUUCFqUBA0VNRQJwOdwj2U1FA1kmQJBtUUUDYtiizQVRRQJgPGz9nVFFAK2LrLI1UUUA+psg0rVRRQDLZUhpEVVFAFP20ZGhVUUAZ9/kCjVVRQLNulqWwVVFAoNgdZddVUUCA8Qwa+lVRQNC4cCAkVlFA2UrVY0hWUUAk5mwUbFZRQIYYwkSWVlFAn/8xh7dWUUCazk4GR1dRQAAFFytqV1FAg3mi/o1XUUC1eQk7sldRQNB2X6jWV1FAvm2Td/tXUUCBUzITH1hRQEfR8FNCWFFAByrj32dYUUAchKYSi1hRQL0VnNSqWFFASVMqzj5ZUUB+67CvYllRQC9mXiGGWVFAdmnWLKpZUUAzt1UjzllRQDixmsHyWVFAm1q21hdaUUAcQpWaPVpRQMetXIJmWlFATCLoVYpaUUDjAWVTrlpRQIyEtpxLW1FAd+PKxnBbUUBCBBxClVtRQKStN1e6W1FAaJ5JiN9bUUCn6Egu/1tRQFhuaTUkXFFAuPYrikRcUUAyMAV+Z1xRQFZdmjWLXFFAADW1bK1cUUD08HhtSV1RQIrQ9WptXVFAQO41F5JdUUDOnXPKtl1RQFxNsX3bXVFAaXc1Zv9dUUDqU6GUI15RQPwguLdIXlFA6Yo/d29eUUDGFoIclF5RQIBDqFKzXlFA1zTvOEVfUUCYGo7UaF9RQJFBAe6MX1FAmtNlMbFfUUBpjNZR1V9RQEUNpmH4X1FAiHj+xxxgUUBUmU9DQWBRQLGf2B1lYFFAFV/aXY1gUUA3gfx/r2BRQHqFGMJEYVFA1ouhnGhhUUChNSwzkmFRQLiaYvu2YVFAYfBDuNxhUUBaIipnAmJRQKvXGjciYlFAxtRwpEZiUUBdtO2hamJRQPxiyS+WYlFAeR7cnbViUUCzXgzlRGNRQItHvE9oY1FAnQlg3YtjUUCqM+TFr2NRQH6EdIvTY1FA2P1QVvljUUCIeP7HHGRRQExpEPlBZFFAnbKteWhkUUCMqeFIjWRRQEbWB3+sZFFA3sUOPTxlUUBZClvGYGVRQPH0SlmGZVFAcdG2h6plUUD22e4L1WVRQPOj9F/6ZVFAv8RF2x5mUUA5/h7PQWZRQJd7bo5gZlFAfMApmYlmUUDvQIonqGZRQBrAWyBBZ1FA/3BqemNnUUAH+FsohmdRQK5Cyk+qZ1FAtDwP7s5nUUASTgte9GdRQL87DMAZaFFA1qBCiD5oUUB+67CvYmhRQDUUZPGIaFFAePaCPKhoUUApgbpuN2lRQA4yychZaVFAiGuivHxpUUAKU4GAomlRQH5njr/HaVFAv8dzkOppUUB4cmBMDWpRQHnUhUUyalFAqFKzB1pqUUB3ALGSfGpRQDpdFhObalFAh6dXyjJrUUArWqZMV2tRQGWVv2h8a1FAlpUmpaBrUUA1peLsw2tRQKxRD9Hoa1FAteNzFA1sUUB2R9k1NGxRQIgJfcNXbFFAHun5wHtsUUAp/Zd+nGxRQIqryr4rbVFAeaL+jVBtUUBxyXGndG1RQFuJZouRbVFAThi6/7VtUUAlAWpq2W1RQOC2ybv9bVFAELcw+CFuUUAQDuNbRW5RQMUgsHJoblFAlVDnd4duUUC0fiBmHG9RQEIuXhlBb1FATk1vbGNvUUCBWEk+iW9RQDLeaUWub1FAN9iu49JvUUBFDaZh+G9RQELXq7UdcFFAW0dVE0RwUUCKPEm6ZnBRQPFrET6BcFFA1SE3ww1xUUD85usfMXFRQDOK5ZZWcVFA9W+EMnpxUUDaIJOMnHFRQGfQ0D/BcVFAB1dTbN9xUUALRiV1AnJRQLq1X1EkclFA/qLxMUVyUUDFl3ZXY3JRQGXfFcH/clFAMQBnPCRzUUCx3NJqSHNRQFonQZJsc1FAcIx3WpFzUUBtVn2utnNRQGJnCp3Xc1FA0uP3Nv1zUUDmMkjUHnRRQOLx2pJCdFFAUdobfGF0UUCBaNP+9HRRQH6pnzcVdVFAX80Bgjl1UUCEBQrPXnVRQPgZFw6EdVFAbTmX4qp1UUBNUoaXzXVRQJ6QsILydVFAYHZPHhZ2UUAcrujpNnZRQGMoJ9pVdlFA3qtWJvx2UUAOoUrNHndRQBUdyeU/d1FAEufOOWV3UUCJiIiIiHdRQMdbwUmtd1FAgREhm9F3UUDxIbvl/XdRQCQtlbcjeFFAQktE5Ux4UUDm/ZJncXhRQLoPQGoTeVFAnDOitDd5UUBA5vA2XHlRQO3T8ZiBeVFAQqo7KaZ5UUBbkatrx3lRQPqr2kjseVFA431CYxN6UUDyvax2OnpRQCJHTc5jelFA57mYeYV6UUCB3GsuJHtRQA6MqeFIe1FAykx8yG57UUAQUPTTkntRQNPJPyC9e1FAfB8h3eJ7UUCgTLaUBnxRQMSEvuErfFFAswQszFV8UUBZRCdeeHxRQEQPj9eWfFFAiJXkkyh9UUDZ0w5/TX1RQGaDTDJyfVFAf2q8dJN9UUC3GCmBun1RQI8MTIHffVFA9k2HOwR+UUAwiaBXKX5RQB+A1CZOflFAEg8om3J+UUDfHQbgjH5RQOepDrkZf1FA+WuyRj1/UUDs+gW7YX9RQJRFdOKFf1FAtOVciqt/UUCwpO9Iz39RQMqW0iDyf1FA/KGs8heAUUChX24KPoBRQMkvlvxigFFA7dPxmIGAUUBTkQpjC4FRQH/u3mQugVFA5S8aH1OBUUDL65sOd4FRQG+e6pCbgVFA+bUIn8CBUUCMCNmM5oFRQCFmHBAOglFAq4itszSCUUAVV5V9V4JRQHPfV9J3glFArBQVhAWDUUAeHq8tKYNRQN1rLiRNg1FA+wCkNnGDUUD1xjaWnYNRQM/FzCvEg1FAwlQgoOiDUUAFSbIhEoRRQFqWwpYxhFFAZ8BGf1WEUUB+kdCWc4RRQL72zJIAhVFAvEIMYSKFUUDFyf0ORYVRQBwt9K5nhVFAmXFAOIyFUUAMhk13sYVRQE963/jahVFAJ24C+f+FUUBQPirrJIZRQFKrwnlLhlFA8sXxVnCGUUAS/53aBodRQDGUE+0qh1FAN45Yi0+HUUAL6lvmdIdRQJqZmZmZh1FAn5PeN76HUUD8pNqn44dRQDLRDToOiFFAbQwnVjOIUUCRRC+jWIhRQDHWJGV4iFFAiUmlxQaJUUCT2wkJK4lRQAuINu1PiVFAJXoZxXKJUUDk0gtRmIlRQEDZlCu8iVFAQDBHj9+JUUD65abgA4pRQAuoSm4nilFAFkUiR02KUUBR9wFIbYpRQCBJNkQCi1FAh4px/iaLUUBF2PD0SotRQCJkM5pvi1FAYTdsW5SLUUDVS3mauYtRQE34pX7ei1FAPxAzDgiMUUDs/TNwLYxRQOGX+nlTjFFAyMpCTnKMUUCIx2tLCo1RQDSq+RcujVFAoxt0HFKNUUB6BCSHdY1RQG2IBGaYjVFAfchueb+NUUB9KpRy5I1RQHZceiEKjlFA86s5QDCOUUAY5EGNVY5RQJ1GWipvjlFA+dozSwKPUUCt7QBiJY9RQN3i9AhIj1FAGB4OJW2PUUB0JJf/kI9RQAds9Fe1j1FAOXfOKduPUUDwn4FrAZBRQGO0jqomkFFAIgIOoUqQUUCUgm4vaZBRQPtcbcX+kFFAnw+8RyORUUCjCQHmR5FRQAEb/VVtkVFARZHIUZORUUBPIy2Vt5FRQDXqIRrdkVFAmJM9LwKSUUBiqRsVJZJRQGMLQQ5KklFATtaoh2iSUUCVBpEfBJNRQOChKNAnk1FAXOZ0WUyTUUCwvL7pcJNRQC4MfgiXk1FA3Xu45LiTUUCOAdnr3ZNRQNLj9zb9k1FAFU9QnSGUUUBPimm5RpRRQPzjvWpllFFArPcuuPmUUUBKB+v/HJVRQKylk39AlVFAd8bk+mSVUUDr2vE5ipVRQA4Ih/GtlVFA7JPJltKVUUAhLFB49pVRQDP5ZpsbllFA9t4FNz+WUUBjRQ2mYZZRQJPeN772llFAOymm5RqXUUB224XmOpdRQEQHSvdgl1FAUTHO34SXUUATF217qJdRQPnS7mrMl1FAYqHWNO+XUUB4Bg39E5hRQM7cVo04mFFAOTjrZlmYUUDt2AjE65hRQJ1TtjUPmVFAE+r87jCZUUBa7XT6VJlRQNnJ4Ch5mVFAX0nfkZ6ZUUBCeLRxxJlRQGawvL7pmVFAwCmZiQ+aUUCgy8FZN5pRQDYXkqZUmlFAKT+p9umaUUDqGdX8C5tRQBPq/O4wm1FA0kLvelabUUDhglmOfZtRQLprCfmgm1FAa/EpAMabUUC6JOFV6ZtRQHFNlJcPnFFAgQTFjzGcUUBfB84ZUZxRQK3I1bXjnFFANMoNmQWdUUCtdjp9Kp1RQDmkPrZSnVFAj4X723idUUA0Q73znp1RQKXKHSPGnVFAmm9Xwu2dUUBZyElOE55RQCyXoJk6nlFA4zYawFueUUCuDRXj/J5RQGjDdDQhn1FAPBQF+kSfUUCldpl0bp9RQOtunuqQn1FAtAJDVrefUUAg5xBL3Z9RQECH+fICoFFAUkmdgCagUUAOFeP8TaBRQMzZKNhsoFFAAhbmKgOhUUD9yQVUJaFRQLHc0mpIoVFAiLoPQGqhUUBdn0y2lKFRQKW4quy7oVFA9ethQt+hUUDBDLO9A6JRQBXj/E0oolFAAEIReE2iUUApif9ObaJRQF66SQwCo1FAU8vW+iKjUUBoGieYRKNRQNojwUFoo1FAat5xio6jUUApyxDHuqNRQPcBSG3io1FAyMUrIwikUUAyKMCdMaRRQNlnuy9UpFFAGb0ta3WkUUCPWItPAaVRQCQtlbcjpVFAALnXXEilUUCzSWv5bqVRQLlDsJeTpVFAsXWWRrmlUUAAPfpM46VRQDptoNMGplFApUb7MiumUUD9tGRoT6ZRQNcfTk1vplFAiKqFf/6mUUD+Sz/OIadRQHf4a7JGp1FADuNbRWynUUAiu+X9kqdRQLql1ZC4p1FALk6PgOSnUUAoAq+pBqhRQA/Joy4sqFFAuB6F61GoUUDXH05Nb6hRQLbGjUgBqVFAJC2VtyOpUUBXJvxSP6lRQAs5yWliqVFAuCbKy4epUUDnmYT4ralRQHGxogbTqVFAyR8MPPepUUBSLLe0GqpRQLVpf3pGqlFAu+X9kmeqUUDceIov7apRQBERERERq1FAUFsQtzCrUUAQK8knUatRQEbOwp52q1FA3KLMBpmrUUANozNDvatRQF3hXS7iq1FA4mBclwesUUA0qvkXLqxRQOxJcz5PrFFAFRiyutWsUUCpTZzc76xRQAK8BRIUrVFA/XqY0DetUUBagSGrW61RQLeHqoV/rVFA9U9wsaKtUUBV7hgxxq1RQLP/FKHrrVFAcU2Ulw+uUUDKMsSxLq5RQLQCQ1a3rlFA6ZrJN9uuUUDU+d1hAK9RQA41930lr1FAX3MhaUqvUUArlHLkbq9RQC6DRO2Rr1FAjJRAXbevUUAAqU2c3K9RQGbqiFYBsFFAygprUCGwUUAgc3gbrrBRQOhycNbNsFFA/TiHWOqwUUDnjCjtDbFRQMKLvoI0sVFAYJt6ylexUUB29T39erFRQCDNWDSdsVFAPEF1hryxUUDTIPKD4LFRQNHYhKH7sVFAw08JdX6yUUD1T3CxorJRQFb5i8bHslFAU8ORGu2yUUCIWxj8ELNRQCBGCI82s1FAK+5S/V2zUUD0gfdohLNRQBMXbXuos1FA/WoOEMyzUUA8tQ2267NRQOqVsgxxtFFAsRNxTZS0UUB9tvtCtbRRQJUbMgvatFFAGpswdP+0UUB4rCzkJLVRQK1Es8VItVFA/HdqG2y1UUBZEqCmlrVRQA0a+ie4tVFAx0YgXte1UUBvlqWwZbZRQPeiUCmJtlFA9/kCjay2UUC/gjRj0bZRQI47pYP1tlFArtAalhm3UUCCLB7xPrdRQGZmZmZmt1FA8H2EdIu3UUAUtozBsLdRQDfYruPSt1FAu+X9kme4UUBqVThvibhRQI8EB6GpuFFAgAauBdC4UUB+2ybv9rhRQEZvy1oduVFABsi95kK5UUDDnnb4a7lRQJJX5xiQuVFA+qOVaLa5UUAhaUrF2blRQEQvo1huulFAe9Kcz5O6UUBYXt90uLpRQMnlP6TfulFAlhEEtQW7UUDcFHzAKbtRQKSdrZZOu1FAvo+QbnG7UUCvnKpombtRQAaJ2iPBu1FA+YOB5967UUCgP1qJZrxRQG7tVxSJvFFAIHN4G668UUCCHJQw07xRQBRk8Yj3vFFA95LGaB29UUD5/173Q71RQMKTA2NqvVFAXRYTm4+9UUBw4ym+tL1RQPlmmxvTvVFACqUcuVu+UUCLgYjnf75RQGb35GGhvlFAKN2D/cS+UUDVvxHK6L5RQHp90+EOv1FAWBSJHDW/UUBHC73rWb9RQLoUV5V9v1FA5nyeLKK/UUCYbhKDwL9RQFEpif9OwFFAoFxAVXLAUUBfIYYwkcBRQIfxrSK2wFFA6ZrJN9vAUUDyLC57/8BRQH5Pvx4mwVFAablG3kzBUUB9GgqyeMFRQOPv8RykwVFAJ9IQaMPBUUC1dPIPSMJRQBBllb9owlFAa2CrBIvCUUBRHC30rsJRQC+ob5nTwlFAyip/0fjCUUDqymd5HsNRQO65OYJBw1FAbRRsNmnDUUAxEPH8j8NRQK/WdgCxw1FAKAr0iTzEUUCEBQrPXsRRQBvlhsyCxFFAY/NxbajEUUDsCpB7zcRRQDYvYUf2xFFAAMMFsxzFUUCRCmMLQcVRQKhvmdNlxVFACyQofozFUUDyVnBSq8VRQCXpmsk3xlFARH4Q3FvGUUCz74rgf8ZRQDPM9g6kxlFAzk4GR8nGUUA1kEEB7sZRQFu21hcJx1FAYTJVMCrHUUAkI2dhT8dRQCaFjFp0x1FAT8x6MZTHUUDCUfLqHMhRQPuBmHFAyFFAvWc3DWTIUUDqz36kiMhRQAPCYXyryFFAI1fXjs/IUUB/XWBp88hRQIyH5FEXyVFACcww2zvJUUDl1TkGZMlRQEf2GwCEyVFAOZz51RzKUUDQ/a9NPcpRQP5l9+RhylFAVtRgGobKUUDCuC4PrMpRQG6bvNvPylFADrbruPTKUUBhgcKzF8tRQGiR7Xw/y1FAuc8XaGTLUUAw6JebgstRQBlBUFsQzFFAmh28iTTMUUC6vaQxWsxRQLPviuB/zFFA7Sqk/KTMUUAyI6lyx8xRQFdbsb/szFFAwTQMHxHNUUDPXpAHNc1RQLGNZedazVFAkZvhBnzNUUBqlBsyC85RQOXYZ7svzlFAPDHrxVDOUUBnjr/Hc85RQKPUS3mazlFAsQlD97/OUUCu00hL5c5RQFo/EDMOz1FAtcNfkzXPUUDmw8bPWc9RQNWdFNNyz1FA0uP3Nv3PUUD5qKyTINBRQHRrv6JI0FFAaAWGrG7QUUAPRYE+kdBRQAds9Fe10FFAjm0sO9fQUUA3TEcTAtFRQEHpHuwn0VFAYH6U/kvRUUCcO+eUbdFRQAL5/1730VFAdPcmcxnSUUCl942vPdJRQJweAclh0lFA7meeSYjSUUCGUo7crdJRQL+CNGPR0lFAiqOF3vXSUUCloNtLGtNRQNUpfKND01FAZVvz0GTTUUCWQ4ts59NRQNMLUZgK1FFASq0K5y3UUUBpQoD5UdRRQPuJ3VF21FFAtT89o5rUUUCkNnFyv9RRQJQ4GNfl1FFAYWTc5wvVUUDvExqbMNVRQCrG+ZtQ1VFAGBGyGc3VUUDnySI68dVRQCIFPFYW1lFAqxHnzjnWUUBcA1slWNZRQN3qOel91lFAUPTTkqHWUUBKMS3XyNZRQK7wLhfx1lFAGtX8CxfXUUD1wR9rM9dRQKcvcdG211FAuPEUX9rXUUCEEmba/tdRQJE86sIi2FFAk6mCUUnYUUA8/2MOb9hRQAaeew+X2FFAPEF1hrzYUUBpMvY45thRQHJYBy0R2VFAh6dXyjLZUUDh9vG9rNlRQAUv+grS2VFACyk/qfbZUUD+t5IdG9pRQH+fceFA2lFARyijt2XaUUDeByC1idpRQK0s5CSn2lFAeE01oMvaUUBW2XdF8NpRQEXQqxQV21FAhqxu9ZzbUUBQwkzbv9tRQAO/M8ff21FA0nek5wPcUUDKnhcBKNxRQOWbbW5M3FFAViPOnXPcUUBwqV0mndxRQK58lufB3FFABF5TDejcUUBmc8JxBt1RQFl+8/WP3VFA55mE+K3dUUB798d71d1RQIaUn1T73VFAB+jRZxreUUB3bzKXQd5RQNR1u3Fl3lFAKEGSbIjeUUDN/lOErt5RQMUwOjPU3lFAHZQw0/beUUBC3MLgh99RQBvQ5eCs31FAFALMj9LfUUDRT0uG9t9RQAfo0Wca4FFAIeUn1T7gUUCzLIUtY+BRQHzAKZmJ4FFAaCqxWLDgUUA7+Qek1+BRQLhIx8L94FFAiKVuVJThUUB8NMLIuOFRQGHwQ7jc4VFA1PndYQDiUUCMLQQ5KOJRQNCjzzRO4lFAAq+pBnTiUUDbKwYinuJRQPIHA8+94lFAOYJBv9ziUUAnbgL5/+JRQHF6BCSH41FAPSSPurDjUUAM3f/a1ONRQLCPTl3541FAdIBgjh7kUUBrp9OnQuRRQBeKYXRm5FFAWX7z9Y/kUUDSvsyKu+RRQEbeTF/i5FFA3jSQQQHlUUCW7wa+j+VRQOctMam05VFAvIk0BNrlUUBHrMWnAOZRQNdmdvAm5lFAuqC+ZU7mUUBEuNxzc+ZRQGTh/jae5lFApcodI8bmUUCI+fIC7OZRQCTzyB8M51FAQ5jI8pvnUUBraPDkwOdRQHX6VCjl51FAPY75kwvoUUDR4MmBMehRQBZiCBNZ6FFA3eo56X3oUUBxPQrXo+hRQPe8CEDJ6FFAeSYhfuvoUUCfaZxgEulRQBy+cqqi6VFA9KYiFcbpUUBSuB6F6+lRQDBEYSoQ6lFAq4itszTqUUCoUrMHWupRQHDb5N1+6lFAlinTVafqUUBHpIDHyupRQG3n+6nx6lFA3M88kxDrUUB9cbwVnOtRQJr7vpK+61FAqCVDe+LrUUCXHHdKB+xRQLdFmQ0y7FFApjzN3FbsUUAUrkfheuxRQD1+b9Of7FFA3ZiesMTsUUAb9RCN7uxRQMlZ2NMO7VFAGjw5MKbtUUCxG7Ytyu1RQKW1fDfw7VFA7s7abRfuUUAK16NwPe5RQJcEqKll7lFAkUEB7ozuUUAkn0RxtO5RQPJBz2bV7lFA9zsUBfruUUAv6oARIe9RQJve2May71FA0HZfqNbvUUCA8Qwa+u9RQImDcV0e8FFAjXJDZkHwUUAhWcAEbvBRQHSt0BqW8FFAHYzr8sDwUUAI9nKy5/BRQAIzzPYO8VFAHzuV+TTxUUCaDTLJyPFRQKSqCaLu8VFAO5X5NBTyUUC32UW+OPJRQJ6gOkNe8lFAoJYM7YnyUUDIZjTfrvJRQLho20PV8lFA2QjE6/ryUUAAV7JjI/NRQMhWqh5D81FAEx+yW97zUUC+9sySAPRRQHMJmqkj9FFANWb/KUL0UUDWi6GcaPRRQPg2/dmP9FFAbmHwQ7j0UUBRkMUj3vRRQNiu49IL9VFARiBe1y/1UUBqxLlzTvVRQAltOZfi9VFAtU/HYwb2UUBznUZaKvZRQAl9w1dO9lFAa68YiHj2UUDQ5eCsm/ZRQLQfKSLD9lFAXGqXSef2UUCSDZHADPdRQLOteWgy91FAmGn7V1b3UUDOiNLe4PdRQHprYKsE+FFA6dzaryj4UUA5EJIFTPhRQL2EHdlv+FFAPmz8nJX4UUB9PzVeuvhRQOcYkL3e+FFASLc4PQL5UUAr5g0dKPlRQITLPTdH+VFAeuxU5tP5UUDymIHK+PlRQLDmAMEc+lFAXMmOjUD6UUAp9VKeZvpRQKGhf4KL+lFAi/UgF6/6UUCdwjc61PpRQP/Xpp7y+lFAbMfnKBr7UUANZFCAO/tRQHMhaUrF+1FAWd3qOen7UUCzOeE4A/xRQKElonIm/FFALb/5+kf8UUDmdFlMbPxRQObLC7CP/FFARtYHf6z8UUCRcZ8v0PxRQBuJvT31/FFAHWKpGxX9UUC/hWIYnf1RQGM4sZrB/VFAPq4NFeP9UUDwMy4cCP5RQGnrzZUu/lFAOq+xS1T+UUBvRzgteP5RQAUntSqc/lFAYKsEi8P+UUBgArfu5v5RQBiiMBUI/1FA9T39epj/UUCC4seYu/9RQPTg7qzd/1FAcCU7NgIAUkCqYFRSJwBSQATaMB1NAFJAZ46/x3MAUkD4U+OlmwBSQMgMVMa/AFJAEBs/Z+UAUkCzOeE4AwFSQBsqxvmbAVJAHg4lbb0BUkCI53/M4QFSQHjes5sGAlJAAvbRqSsCUkD1hCUeUAJSQHHJcad0AlJAJFoFRJsCUkCLprOTwQJSQEZnhnrnAlJA3b3JXAYDUkDR0212kQNSQAh3Z+22A1JADXGsi9sDUkBRXj5s/ANSQIb2xE0gBFJArrt5qkMEUkD97jAAZwRSQH3LnC6LBFJAsmMjEK8EUkDBmBqO1ARSQOU8dirzBFJAviM9H3gFUkCKRI6anAVSQMgMVMa/BVJAsVWCxeEFUkDcslbHBAZSQBqGj4gpBlJAsnB/G08GUkDApXaZdAZSQEcw6JebBlJA0UcGpsAGUkBfY5eo3gZSQP9wanpjB1JAMHHRtocHUkAJZfS2rAdSQKC7N5nLB1JA4iaQ/+8HUkBopo5oFQhSQHbbheY6CFJAJMmGSGAIUkCC2oK4hQhSQLZnlgSoCFJAY8HqtcYIUkBlISc5TQlSQGoQ+UFwCVJAk+uTyZYJUkBoR5ckvAlSQHsUrkfhCVJALJrOTgYKUkDIHN6GKwpSQL9DUaBPClJATfOOU3QKUkDMuRRXlQpSQFnVpVmzClJAJ4i6D0ALUkDZhKH7XwtSQCCIGQeEC1JAyd36w6kLUkBxKGnrzQtSQI0wMu7zC1JADxgRshkMUkCqmiDqPgxSQKTXeS5mDFJAcQM+P4wMUkD6hq+cqgxSQDvsq5g3DVJAIrOgHV0NUkDTOMEkgg1SQNk9eVioDVJAB6bA78wNUkB6us0u8g1SQGQOb8MVDlJAQpqxaDoOUkA5wSSCXg5SQMb5m1CIDlJATWcng6MOUkCaHbyJNA9SQLmyMZxYD1JAPz2jmn8PUkBtOZfiqg9SQKwXQznRD1JArPcuuPkPUkBCYOXQIhBSQAv//NFKEFJAYGnzEnYQUkDhRV9BmhBSQEeHmvu+EFJAs/K4lUsRUkAwNwUfcBFSQKbYvm2TEVJAwcqhRbYRUkCtNCkF3RFSQBWMSuoEElJAEEBqEycSUkDG8VZwUhJSQMrgKHl1ElJAkfKTap8SUkALLG1ewhJSQHsHUjxBE1JAJt9sc2MTUkAYY01ShhNSQNxTX4OrE1JARi264s8TUkDV52or9hNSQCvJJ1EcFFJAcsyfXEAUUkAQ3FukYxRSQPs6cM6IFFJAiEuOO6UUUkBixgHhMBVSQO9qzP5TFVJA0I4uSXgVUkAqCAsUnhVSQAP8LRTDFVJAr9674OYVUkB9gUbWBxZSQI9OXfksFlJAzywJUFMWUkAlDsZ1eRZSQHIrl6CZFlJAJcy0/SsXUkD2j5izURdSQHPfV9J3F1JABzIowJ0XUkBjOLGawRdSQBM8mCfqF1JAh1ClZg8YUkAXC1avNRhSQClhpu1fGFJAxOO1JYUYUkCfxWXvnxhSQF+lqCAsGVJADJOpglEZUkAgazM7eBlSQDIt18ibGVJAluzYCMQZUkB2Bci95hlSQBq4FkALGlJAC7q9pDEaUkDA1/1QVhpSQP6fw3x5GlJAYcsYDJsaUkBgRMhmNBtSQGQzmm9XG1JAI4yM+3wbUkB5bUkhoxtSQESDJwfGG1JAH40wMu4bUkCif4KLFRxSQDhf/4g5HFJAtKNLEl4cUkB5n9DYhBxSQEKqOymmHFJAAJF++zodUkBzpYs6YB1SQDQJ8VuHHVJA3mlFrq4dUkDyQc9m1R1SQAMEc/T4HVJAhvbETSAeUkCDwMqhRR5SQCdzGSRqHlJAvdvPPJMeUkCWO0aMsR5SQFavNW5EH1JAzltiUmkfUkB2ptB5jR9SQLkRKeCxH1JAIF7XL9gfUkAXhUpJ/B9SQIqO5PIfIFJAzfk8WUQgUkAj2/l+aiBSQJySmfiQIFJAOYxvFbEgUkC/kr4jPSFSQC3nUlxVIVJAw7tcxHchUkABj5WFnCFSQNNSeTvCIVJAOp8ni+ghUkDAHib0DSJSQCwOZ341IlJAzj58hl0iUkB4lF1DgyJSQE1nJ4OjIlJAVnVp1iwjUkCycH8bTyNSQBiyutVzI1JAHL5yqqIjUkBnWQpbxiNSQJTBUfLqI1JAAjPM9g4kUkDZmULnNSRSQL5VxNZZJFJASG3i5H4kUkDp/temniRSQEgr0WwxJVJAuzRrFlUlUkCCvZzseSVSQB1ArCSfJVJAhIHn3sMlUkDKDZkF7SVSQNzPPJMQJlJA3jzVITcmUkCo2+wiXyZSQF35LM+DJlJAMD9K/6UmUkAukKD4MSdSQBjkQY1VJ1JAQbRpf3onUkBePmz8nCdSQOhVigrCJ1JAO6qaIOonUkCToT1xEyhSQMpPqn06KFJAsAssbV4oUkBxb5GOhShSQH2OouGnKFJAI9O0njQpUkAiKmcCWClSQL+36c9+KVJADlf0dJspUkBMKi02wClSQPDce7jkKVJAHUXDTwkqUkCYEkn0MipSQIP6ljldKlJAM/59xoUqUkDEOmiJqCpSQJWXDxs/K1JAcBjfKmIrUkCIfRXzhitSQGk1JO6xK1JAw64AudcrUkAzK+5S/StSQCIiIiIiLFJAb8gsaEcsUkC1y6RzayxSQLtZlsKWLFJA1lbsL7ssUkD7FUUiRy1SQAlAyQprLVJA9J7dNJAtUkAId2ftti1SQEztMuncLVJAJuzIfgMuUkD3r6w0KS5SQA8gVpJPLlJAbjzFl3YuUkCRaVpPmi5SQKtbPSe9LlJAUaBP5EkvUkAVkWEVby9SQDrU3PeVL1JAfT81XrovUkCZR/5g4C9SQMrQnrgJMFJAtS+z4i4wUkBTP28qUjBSQPPtSrh9MFJAdMq25qEwUkAhJAuYwDBSQOgoGn5KMVJAHLYtymwxUkBW8UbmkTFSQMLVFNu3MVJA2DpLo9wxUkB9+Ay7AjJSQPo8WUQnMlJAvS1rdUwyUkCFtpxLcTJSQEQPj9eWMlJAuJpi+7YyUkBcXTs+RzNSQN05p2xrM1JA0Mj64I8zUkBbdMWfuzNSQKkwthDkM1JA16NwPQo0UkAaD8mjLjRSQOUkp4lRNFJAKJtyhXc0UkDlZrgBnzRSQCAZmAK/NFJAziGWulE1UkBxyXGndDVSQLU/PaOaNVJAYzixmsE1UkA1kEEB7jVSQH8gZhwQNlJAhhOrGSw2UkBWVVVVVTZSQDFfXoB9NlJAWsMyI6k2UkD8X5t6yjZSQIP6ljldN1JAAsyP0n83UkD2ZVbcpTdSQNoo2GzSN1JAub+Np/g3UkD4nTn+HjhSQKL+jVBGOFJAcTXF9m04UkBt/8pKkzhSQL499TW4OFJAEQnMMNs4UkCYGo7UaDlSQFsALXCMOVJAOYxvFbE5UkD22e4L1TlSQLY9VC38OVJAOCUz8SE6UkAmmi1GSjpSQFCAO2NyOlJAVXqAAZc6UkA9TOgbvjpSQII5evzeOlJAxbRcI287UkCLMhtkkjtSQGm+XQm3O1JAInS9Wts7UkC+9sySADxSQJjq75IlPFJAtn9lpUk8UkCfUc2/cDxSQPKwUGuaPFJAXBPl5cM8UkC8phrQ5TxSQEwFAop+PVJA2Yzm25U9UkAowJ0xuT1SQCWKo4XePVJAS7A4nPk9UkAbaam8HT5SQE/2vAhAPlJAB6GpxGI+UkAhk4ychT5SQC5GSqCuPlJA7iB2ptA+UkDu8wUaWT9SQFzR0212P1JAklfnGJA/UkDMh42fsz9SQFSUOBjXP1JAo8fvbfo/UkBnuAGfH0BSQO9N5jJIQFJAmzB0/2tAUkDR0212kUBSQEG8rl+wQFJAyDnEUjdBUkAMk6mCUUFSQHPfV9J3QVJA38Mlx51BUkBGENQWxEFSQOKS407pQVJA9V/6cQ5CUkAU9W+EMkJSQGrWLKpYQlJAAcEcPX5CUkAvq51On0JSQFj3olApQ1JA+55+PUxDUkDi3DmnbENSQFXm01CQQ1JAi4nNx7VDUkCI53/M4UNSQHjes5sGRFJAniyiEy9EUkAI+4ndUURSQFg5tMh2RFJAiTkbBZtEUkABYiX5JEVSQKMJAeZHRVJA4tw5p2xFUkBW8UbmkUVSQCk3ZBa0RVJAUgeMCNlFUkBwnAEb/UVSQGGeqH8jRlJAv6+k70hGUkCVFhvgb0ZSQHCMd1qRRlJAgL+FYhhHUkDvMABnPEdSQMSMA8JhR1JAf03WqIdHUkCERxtHrEdSQB09fm/TR1JAvODmZ/1HUkDHfb5AI0hSQOOFh0NJSFJAxKnpjW1IUkALrWGZkUhSQCeozpAXSVJArBxaZDtJUkAjvhOzXklSQPgZFw6ESVJA93DJcadJUkAr/ty9yUlSQJI/GHjuSVJA3uUivhNKUkDqBDQRNkpSQIaHQ0lbSlJAe5jQN3xKUkDeyDzyB0tSQB2cdbMsS1JA8vd4DlJLUkDonLKteUtSQM5jpzKfS1JApcodI8ZLUkAPpHiC6ktSQIdQpWYPTFJARZ4kXTNMUkA7Q178WkxSQOWjsk6CTFJAA6qS2wlNUkD70AX1LU1SQH9FkchRTVJAKJtyhXdNUkC2SrA4nE1SQCMdC/e3TVJAz/+Yw9tNUkCAekY1/01SQFdj9p8iTlJAK7SGZUZOUkBU8AGnZE5SQNTc95X0TlJAC4DxDBpPUkAk+w0AQk9SQLdN3u1nT1JAVNtgu45PUkAxZ6Ngs09SQJvJN9vcT1JAPgXAeAZQUkB6S0wqLVBSQEZsnaVRUFJAJoWMWnRQUkComduqEVFSQGyVYHE4UVJA7nw/NV5RUkBd+SzPg1FSQPBL/bypUVJAZdfQ4MlRUkD+zDMJ8VFSQJfNCccZUlJAZw+0AkNSUkDNUO+8Z1JSQEX9G6GMUlJAKDx7QR5TUkD8jAsHQlNSQESb9qdnU1JA24XmOo1TUkC9qUiFsVNSQLXbLjTXU1JAOc6Ajf5TUkANKoToI1RSQGaY7R1IVFJADuNbRWxUUkCRTHSDjlRSQFbE1lkaVVJAax6ajD1VUkAgMWejYFVSQI0gqC2IVVJAVKnZA61VUkBeRrHc0lVSQFiDCiH6VVJAdIBgjh5WUkD49OthQlZSQA9aIipnVlJAaUrF2YdWUkB+qZ83FVdSQL8JhQg4V1JAzTMJ8VtXUkBNEHUfgFdSQMtfND6mV1JAt8m7/cxXUkBgH5268ldSQO7O2m0XWFJA1ZXP8jxYUkDdHMGgX1hSQKg9EhyEWFJA/Y85vA1ZUkBGIF7XL1lSQCc5TYxSWVJARs7CnnZZUkBLyAc9m1lSQFPYMgbDWVJAYhidGepZUkCAK9mxEVpSQGRlISc5WlJAEl6VHmBaUkBlHvmDgVpSQLREVM4EW1JAc51GWipbUkC8tqSQUVtSQDHWJGV4W1JA38Mlx51bUkDLLa2GxFtSQNttF5rrW1JAmbuWkA9cUkAXFslEN1xSQPUNXzlVXFJApYgMq3hcUkCvocGTA11SQJ6Y9WIoXVJAmleIIUxdUkDThy6ob11SQA7DR8SUXVJAwFPbYLtdUkB+oVpX311SQHI7IWEFXlJAo880TjBeUkDluFM6WF5SQD+p9ul4XlJAwwWzHPteUkAhF6+MIF9SQAx2w7ZFX1JAAAUXK2pfUkAT3aDjkF9SQB16eLy2X1JA31SkwthfUkCWfVcE/19SQLssJjYfYFJATHSDjkNgUkAm32xzY2BSQL/Hc5DqYFJAjnVxGw1hUkCl2qfjMWFSQDu6JOFVYVJAYggTWX5hUkBCqjsppmFSQBHs5WTPYVJAEk4LXvRhUkA7KablGmJSQHVZTGw+YlJAIDFno2BiUkCz/xSh62JSQNOUirMPY1JAKwP06DNjUkBveb/kWWNSQH2utmJ/Y1JAiEuOO6VjUkDykDzqwmNSQDBkdavnY1JAG1c2hhNkUkAXFslEN2RSQM0zCfFbZFJA89V7F9xkUkB4VXqAAWVSQMBjZSEnZVJAVLY1D01lUkA48H2EdGVSQBofU2SaZVJAjjNgo79lUkDzaSjI4mVSQGd+NQcIZlJAplFuyCxmUkClizpgRGZSQAV+Z46/ZlJACW05l+JmUkB43rObBmdSQBbub+MpZ1JAVcGopE5nUkDwQ7jcc2dSQD93bzKXZ1JAN57iS7tnUkAFQW1B3GdSQNUEUfcBaFJAvEIMYSJoUkDDprvYoWhSQJNfLPnFaFJAM3pb1upoUkDTlIqzD2lSQBJzNgo2aVJAE9VbA1tpUkChhJm2f2lSQGuad5yiaVJAgv+tZMdpUkDmszwP7mlSQF7XL9gNalJARpw755RqUkAOJW29uWpSQPcBSG3ialJA88DaKwZrUkARS92oKGtSQCs9wIBLa1JArS8S2nJrUkBFkchRk2tSQCnLEMe6a1JA2UW+ON5rUkBm6ohWAWxSQDWoEKKPbFJAqLGqS7NsUkCPeJ/Q2GxSQBBgfpT+bFJAhXSL0yNtUkAtU6arTm1SQDoGZK93bVJAMi3XyJttUkCCawG0wG1SQKEAd8bkbVJAKAKvqQZuUkAhsHJokW5SQBQ/xty1blJAg7uzdttuUkCxI/sNAG9SQENrWGYkb1JA+BHSLU5vUkBvvv4Rc29SQLbBdh2Xb1JAdyXcPr5vUkD3AUht4m9SQIIk2RAJcFJAo0sSXpVwUkAc+D5CunBSQKYPXVDfcFJA4VXpAQZxUkAkwUFoKnFSQIoCfSJPcVJAOfvwGXZxUkCbpAwvm3FSQIqbQP6/cVJAPq4NFeNxUkBo9fvrAnJSQLMMcayLclJAwDb1lK9yUkCTfBLF0XJSQLpBxyH1clJABFslWBxzUkDqIRrdQXNSQDbIJCNnc1JAswxxrItzUkAb21h2rnNSQE9obMLQc1JAtAqINu1zUkBHRYmDcXRSQKG+ZU6XdFJAr/NczLx0UkApq/xF43RSQDt4E2kIdVJAGxo8OTB1UkCmPM3cVnVSQNhHp658dVJA+eePVqJ1UkCsg5aIynVSQNpipATqdVJABcWPMXd2UkB42ZxwnHZSQBTI//e6dlJAyvCyOeF2UkAyPWGJB3dSQEL0kYEpd1JAhOgjA1N3UkCx2aS1fHdSQPt0PGagd1JAn7DEA8p3UkBiodY073dSQE+Srpl8eFJAAA1cC6B4UkDdmJ6wxHhSQBbJRDfoeFJAQKTfvg55UkDunFO2NXlSQPWhC+pbeVJAiPTb14F5UkBAKAKvqXlSQC4Uw+jMeVJA5Tx2KvN5UkCFZy/Ig3pSQDA/Sv+lelJAkNJ/6cd6UkDF1lka5XpSQNMLUZgKe1JAND6myDR7UkBu5RI0U3tSQIPID4J7e1JAqQuLZKJ7UkBIG0esxXtSQFAZ/z7je1JADgBCEXh8UkCRaVpPmnxSQMcB4TC+fFJAjAjZjOZ8UkBhZNznC31SQMMN+PwwfVJAELQCQ1Z9UkDd6jnpfX1SQOeHEcKjfVJACTNt/8p9UkBuaTUk7n1SQPwdigJ9flJAckh9bKV+UkDMwVk3y35SQFNMyzXyflJARFnlLxp/UkCspZN/QH9SQAKSwzpof1JAyyVopo5/UkDjlREEtX9SQMM3OtTcf1JACDA/Sv9/UkBXaA3LjIBSQLaEfNCzgFJAPAR7OdmAUkBYDEQ8/4BSQE+88HAogVJAYYkHlE2BUkB9/SPmbIFSQD3qwiKZgVJAtJbvBr6BUkAbbNdx6YFSQBmto6oJglJArpE305eCUkAsWL3WuIJSQLh6TnrfglJAwhcmUwWDUkAxHU0IMINSQNpyLsVVg1JAJySsoHyDUkB1TPBgnoNSQLnCu1zEg1JA2mKkBOqDUkAQcvHKCIRSQLB/xJyNhFJAwUFoKrGEUkAXIyVQ14RSQFykY+H+hFJAbe9AiieFUkBPHhZqTYVSQF1ImlJxhVJAtsF2HZeFUkCdEaW9wYVSQPLyYePnhVJAH8f8yQWGUkAk0csoloZSQEoURwu9hlJAxliTlOGGUkC78lmeB4dSQNV46SYxh1JAtzD4IVyHUkCw9oqBiIdSQFvri4S2h1JApQTqut2HUkBAh/nyAohSQKrpjW0siFJAw2nBi76IUkAqtm/b5IhSQDjrZlkKiVJAQog+MjCJUkCPLkl4VYlSQA8LtaZ5iVJAwy/186aJUkABAy61y4lSQHctIR/0iVJArFlUsR6KUkDgb6EYRopSQIB9dOrKilJAG4m9PfWKUkAbaam8HYtSQPsVRSJHi1JAcrf+cGqLUkBA7jUXkotSQEJbzqW4i1JA8FNCnd+LUkCj2WKkBIxSQNwm7/YzjFJAsO5FoVKMUkClBOq63YxSQOwHYsYBjVJA8AGnZCaNUkB/seQXS41SQBcTm49rjVJAHRhTw5GNUkCoOuRmuI1SQAZM4NbdjVJAxq9F+ASOUkA82jhiLY5SQOm8xi5RjlJAKBdQldyOUkAKHswT9Y5SQPDkwJgaj1JAy+NWLkGPUkCjVUC0aY9SQGlnq6WTj1JAbmHwQ7iPUkC7m6c65I9SQCX+O7UNkFJAxreK2DqQUkAyEx+yW5BSQKFsyhXekFJAdcjNcAORUkDONjemJ5FSQJAc1kFLkVJA5fIf0m+RUkA1MUq9lJFSQBuBeF2/kVJA+JX0HemRUkAhZhwQDpJSQC+bE44zklJAXANbJViSUkAd0Sog2pJSQGFH9hsAk1JA12Z28CaTUkAy68VQTpNSQPp+arx0k1JATdN60pyTUkAFB6GpxJNSQCay/Obrk1JACeHRxhGUUkBWkk+iOJRSQEWJg3FdlFJAmm9Xwu2UUkC6D0BqE5VSQCXpmsk3lVJAhhB9ZGCVUkBOpCHQhpVSQNUuk86tlVJAB84ZUdqVUkDWD8SMA5ZSQLMkQE0tllJALXCMd1qWUkBllb9ofJZSQOLMr+YAl1JAtyizQSaXUkCmH+cQS5dSQHt76mtwl1JAf/P1j5iXUkDvela/v5dSQLcDiJXkl1JAIWYcEA6YUkCskyBJNphSQFbpAQZcmFJA+JDd8n6YUkAVqTC2EJlSQJR6KU8zmVJAvUpRQViZUkBoq6WTf5lSQLjpz36kmVJAYkok0cuZUkD5vU1/9plSQPqzHykimlJArk8mW0qaUkCHYC8ne5pSQNzKJWimmlJAoMvBWTebUkDYeS5mXptSQO7eZC6Dm1JA9GxWfa6bUkCVGzIL2ptSQLPCGlQInFJAAop+WjKcUkBn3SxLYZxSQDF8REyJnFJAvrS7GrOcUkA7jbRU3pxSQJQLqEpunVJAAd4CCYqdUkAf/LE2s51SQP+d2gbbnVJAkG5xegSeUkCS0JZzKZ5SQLH5uDZUnlJAmtaT5nyeUkCf7b5QrZ5SQNQOf03WnlJAE1l+8/WeUkBpthgpgZ9SQJw4ud+hn1JAUmFsIcifUkDX4GqK7Z9SQDuV+TQUoFJAckNmQTugUkDMsc92X6BSQCCIGQeEoFJAW86luKqgUkAS91j60KBSQHw8B6nuoFJA6JyyrXmhUkChUhL/naFSQBoKsnjEoVJAiXssfeihUkDl7QinBaJSQOdaoTUsolJAbM8sCVCiUkD6fmq8dKJSQAUntSqcolJA2xZlNsiiUkBmsLy+6aJSQMxiYvNxo1JAMqSdrZajUkDF9m2bvKNSQFEkctTko1JA9dbAVgmkUkAOvjCZKqRSQL1KUUFYpFJA0SLb+X6kUkDoG75yqqRSQCJMZPnNpFJAQ2MThu6kUkB6IQpTgaVSQPv9dYGlpVJAZdfQ4MmlUkCfmyMY9KVSQBhTw5EaplJAiuWWVkOmUkD5VhFbZ6ZSQGba/pWVplJAzp1zyramUkA0aOif4KZSQIm1+BQAp1JAN0cw6JenUkDb+X5qvKdSQNMg8oPgp1JAwyKZ6AaoUkD823iKL6hSQMsdI8ZYqFJA6ylfvXeoUkDHPtt9oahSQLpWaA3LqFJAJcRvHfaoUkBIhbGFIKlSQPFo44i1qVJA6ZrJN9upUkCMQqUk/qlSQG5mB28iqlJAFDqvsUuqUkDjcOZXc6pSQLriz92bqlJAO+eUbc2qUkAZ/BAu96pSQEkZXjYnq1JAifcJjU2rUkDbUDHO36tSQPrlpuADrFJAf+7eZC6sUkCDcV0eWKxSQIFG1gd/rFJAiEuOO6WsUkBGtvP91KxSQFgMRDz/rFJAEs0WIyWtUkC1kdjbU61SQHgLJCh+rVJAC25+1g+uUkCMSuoENK5SQJp/4YJZrlJALtKxcH+uUkDTj3OIpa5SQO+XPIvLrlJA/swzCfGuUkA/wcWKGq9SQJ/dNJBBr1JABrMc+2yvUkDB/Cj9l69SQAd8fhghsFJA28wO3kSwUkDQcUh9bLBSQKEquZ2QsFJA1cI/f7SwUkBrorx82LBSQNT53WEAsVJANSHA/CixUkBKBL1KUbFSQLBF+AR2sVJAHKGM3paxUkDyg+DeIrJSQOmqU/hGslJAXbTtoWqyUkCJHDU5j7JSQDVrFlWsslJAt11ortOyUkDVBFH3AbNSQG8FJ7Uqs1JAq0uzZlGzUkCyW94vebNSQEcw6Jebs1JA6dzaryi0UkDhA07JTLRSQCHtbLV0tFJA6XWei5m0UkAyI6lyx7RSQI+ya2jwtFJAtwvNdRq1UkCuu3mqQ7VSQFN5O8JptVJAYTdsW5S1UkDQPJMQv7VSQB3+mqxRtlJAMMA+OnW2UkC8ZAlYmLZSQOrXw4S+tlJApCHQhum2UkCRi1dGELdSQI7MI38wt1JASphp+1e3UkCH6WhCgLdSQCF+67Cvt1JAZFWXZs23UkB0HFIfW7hSQOgwX16AuFJAvgMpnqC4UkCX90uexbhSQCzpO9LzuFJAAUU/LRm5UkA5/h7PQblSQPphhPBouVJAFV/aXY25UkAv5WnmtrlSQCT29tTXuVJA5UwA6166UkB8LH3ogrpSQCDfy2qnulJAcjPcgM+6UkClSSno9rpSQImDcV0eu1JABlxql0m7UkBkbWYHb7tSQMYWghyUu1JAtIt8cby7UkDzaSjI4rtSQF/K08xtvFJAlu8Gvo+8UkAJ+aBns7xSQK9KDzDgvFJAaImonAm9UkATfqmfN71SQAuwj05dvVJAjKnhSI29UkBeeDiUtL1SQFAZ/z7jvVJAKxiV1Am+UkBfmEwVjL5SQHFlYzixvlJA8kHPZtW+UkCA8Qwa+r5SQJTJltIgv1JAfaZxgkm/UkA8/2MOb79SQIilblSUv1JA+jdCGb2/UkCK8vJh479SQB/H/MkFwFJAVNtgu47AUkCx4emVssBSQP2H9NvXwFJAibX4FADBUkA/0zjBJMFSQHFV2XdFwVJA7Bfshm3BUkCOSAGPlcFSQG7qKV+9wVJAMuauJeTBUkBT/V2yBMJSQGdRxXqQwlJA7ds2ebfCUkBtQdzC4MJSQAAd5ssLw1JAQxzr4jbDUkBangd3Z8NSQAy41C6Tw1JADaMzQ73DUkBvTE9Y4sNSQAdCsoAJxFJANSwzkirEUkAOkcAMs8RSQPfkYaHWxFJALohbGPzEUkBRIUQfGcVSQIjPsCtAxVJAgAGX2mXFUkCxAf4WisVSQD24O2u3xVJA/yYUIuDFUkB2XHohCsZSQB2cdbMsxlJAm97YxrLGUkBYLFi91sZSQM85ZVvzxlJAXvQVpBnHUkBVh9wMN8dSQHQcUh9bx1JA4QuTqYLHUkCMd1qRq8dSQCmZiQ/Zx1JAQxSmAgHIUkB5I/PIH8hSQFaXZs2iyFJATb7Z5sbIUkB0g45D6shSQAtuftYPyVJAzNHj9zbJUkCZ/acIXclSQM6VLuqAyVJAgSbChqfJUkBi013s0MlSQIN+uSn4yVJAl80JxxnKUkDeTF/iospSQJ+wxAPKylJA1VO+eu/KUkAkpFucHstSQLoMErVHy1JAUIA7Y3LLUkDbKwYinstSQF+9d8HNy1JA/N6mP/vLUkDxeG1JIcxSQNWytb5IzFJA1gd/rM3MUkBhKhBQ9MxSQJZL0EwdzVJAlq31RULNUkC0wDHeac1SQEN74iaQzVJAcvkP6bfNUkAQGz9n5c1SQIZFMtENzlJAjVVdmjXOUkBwhDJ6W85SQJYmpaDbzlJA2ZH9BgDPUkDyDBr6J89SQLqgvmVOz1JAyMpCTnLPUkB1uEOwl89SQKMr/ty9z1JAky2lQeTPUkBgWWlSCtBSQB+yW94v0FJAo68gzVjQUkCXxcTm49BSQKXvSM8H0VJAjMGw6S7RUkAgnbryWdFSQMb5m1CI0VJAwDb1lK/RUkBiZwqd19FSQAGUrLAG0lJAP4TLPTfSUkDn6x8xZ9JSQD3YT+yO0lJAPaBsyhXTUkB45vh7PNNSQFwgQfFj01JABoGVQ4vTUkAlM/Ehu9NSQOWWVkPi01JAncp8GgrUUkBtoNMGOtRSQI3J9clk1FJAftYPxIzUUkCqM+TFr9RSQCr4gFMy1VJAHYfUx1bVUkAE4nX9gtVSQNdEefmw1VJA8soIgtrVUkCn6Egu/9VSQLcos0Em1lJAFc5bYlLWUkBCyk+qfdZSQNKEAPOj1lJAvE9obMLWUkB9EsXRQtdSQPEm0hBo11JANJ2dDI7XUkAHbPRXtddSQIO7s3bb11JAAoI5evzXUkDrXhQqJdhSQP20ZGhP2FJAXNHTbXbYUkDBJIJepdhSQB0gmKPH2FJAWE5VtEzZUkC3asS5c9lSQMafuzeZ2VJAR4ea+77ZUkA3iUFg5dlSQNGJFx4O2lJA4tT0xjbaUkB/YneUXdpSQMTjtSWF2lJA8WjjiLXaUkC9lKeZ29pSQF+t7QBi21JAruCkVoXbUkDh9vG9rNtSQN21hHzQ21JAZsIv9fPbUkAebRyxFtxSQMdLN4lB3FJApGsm32zcUkAr9pfdk9xSQOMpvrS73FJAECay/ObcUkBqG2zXcd1SQKVWhfOW3VJAHg4lbb3dUkCu00hL5d1SQArPXpAH3lJARiBe1y/eUkCZ4ME8Ud5SQH4lfUd63lJAmSLTtJ7eUkC+ZU6Xxd5SQAh/rM3s3lJAFjCBW3ffUkAXkqZUnN9SQAb1LXO631JAdnEbDeDfUkD0y03BB+BSQAETuHU34FJAr5RliGPgUkBPzHoxlOBSQOfB3Vm74FJAvihUSuLgUkAvJ3teBOFSQC3kJKeJ4VJAviuC/63hUkCCpc1L2OFSQKfoSC7/4VJAl3MpririUkDWUdUEUeJSQKs2Ent74lJAZvfkYaHiUkA7U+i8xuJSQPceLjnu4lJA0gDeAgnjUkAHjAjZjONSQKMOGBGy41JAvxbhE9jjUkAmWBzO/ONSQBHCo40j5FJAuZVL0EzkUkAx1iRleORSQGaAHn2m5FJAbZBJRs7kUkAyl0Gi9uRSQPUQje4g5VJAP5RV/qLlUkDkRqSAx+VSQGOsScrw5VJAF0hQ/BjmUkAh5SfVPuZSQL99HThn5lJAISc5TYzmUkBIdSfFtOZSQIzr8sDa5lJATeMEkwjnUkDhrJtlKedSQHZp1iyq51JAYcjqVs/nUkDQzREM+udSQJXUCWgi6FJAO50+FUroUkBIx8L9behSQGjlcSuX6FJAElE5E8DoUkBVRcuU6ehSQEjUHgkO6VJA7ginBS/pUkCkrTdXuulSQMnlP6Tf6VJABjc/6wfqUkD54ngrOOpSQPMf0m9f6lJAgVhJPonqUkCjl1Est+pSQBKdeOHh6lJAOwFNhA3rUkB1WUxsPutSQAs5yWli61JAfzUHCObrUkDXo3A9CuxSQC0Z2hM37FJAZtK5tV/sUkCxAf4WiuxSQFW0TJmu7FJAZOlDF9TsUkDTghd9Be1SQKlyx4gx7VJAeLRxxFrtUkDgd+b4e+1SQHxZ7XT67VJADqFKzR7uUkDty6y4S+5SQNi+bZN37lJAtMh2vp/uUkDChqdXyu5SQOCkVoXz7lJA2MvJnhfvUkAcX3tmSe9SQKHeec9u71JA0dNtdpHvUkCfaZxgEvBSQOqNbSw78FJAX63tAGLwUkARPoGdiPBSQKMOGBGy8FJA/Yf029fwUkDQYb68APFSQChZYQ0q8VJAQ9/wlVPxUkBhkUx0g/FSQG9PfQ2u8VJAn6No+CnyUkDVO+/ZTfJSQDXal1lx8lJAHDU5j53yUkDVc9L7xvJSQIRsRvPt8lJAUSFEHxnzUkBMaRD5QfNSQBiV1Alo81JA6OHx2pLzUkAPnDOitPNSQM9ekAc19FJA3IgU8Fj0UkCb4QZ8fvRSQMAZD8mj9FJAFvvL7sn0UkDOpbiq7PRSQH2eLKIT9VJAMToz1Dv1UkC+cqqiZfVSQLEB/haK9VJA78nDQq31UkDzqzlAMPZSQAkG/XJT9lJA/6o2Env2UkAsHvE+ofZSQLjULpPO9lJAOUVHcvn2UkCYYbZ3IPdSQL443gpO91JAdWGRTHT3UkAUfMApmfdSQKxmsLy+91JA7q7G7D/4UkAOT6+UZfhSQPmtw76K+FJAvalIhbH4UkBNb2xj2fhSQOHBPFH/+FJAojAVCCj5UkARNjy9UvlSQAKvqQZ0+VJAiMJUIKD5UkCRSUbOwvlSQAdn3SxL+lJAQ61p3nH6UkCcJkapl/pSQDB5Fpe9+lJARFGgT+T6UkDja88sCftSQBiNjyky+1JAEb912Ff7UkC7H8oqf/tSQNu/stKk+1JAI1fXjs/7UkCaf+GCWfxSQLkJ5P97/FJAMsGDeaL8UkCaod55z/xSQKnhSI32/FJAW/sVRSL9UkBvyCxoR/1SQAdSPEF1/VJAUwq6vaT9UkBhyOpWz/1SQCnTVafw/VJATOgbvnL+UkD/eK9amf5SQBJRORPA/lJA5BQdyeX+UkAy0Q06Dv9SQMOhpK03/1JA85aYVFr/UkDqRkWJg/9SQNS3zOmy/1JAqCVDe+L/UkCYsCP7DQBTQAggtYmTAFNA9gt2w7YAU0DmDR0o3QBTQO4dSPEEAVNAT1CdIS8BU0CEBQrPXgFTQABnPCSPAVNAh/GtIrYBU0DMcuyz3QFTQNYPxIwDAlNAhn/+aCUCU0DuvlCtqwJTQGZrfZHQAlNAE1l+8/UCU0CIeP7HHANTQF9zIWlKA1NAiU688HADU0CmYfiImANTQJbs2AjEA1NAQ2MThu4DU0CKjuTyHwRTQKqaIOo+BFNAJVDX7cYEU0DSPdhP7ARTQG7A54cRBVNAhjCR5TcFU0D+ZffkYQVTQHmf0NiEBVNAuHIJmqkFU0A0wsi4zwVTQKNQKYn/BVNAlmi2GCkGU0CWv2h8TAZTQJMQv3XYBlNA9pz0vvEGU0BkDm/DFQdTQDt15bM8B1NAgAGX2mUHU0BLNFuMlAdTQMgMVMa/B1NAmOKqsu8HU0BHej7wHghTQFIXFslECFNAnKc65GYIU0CtbvWc9AhTQMXenvoaCVNA6apT+EYJU0D9CxfMcglTQJki07SeCVNAYbZ3IMUJU0Av4jsx6wlTQL87DMAZClNAUoNpGD4KU0D9gt2wbQpTQL/xtWeWClNAOymm5RoLU0DaOGItPgtTQCE82jhiC1NA8fRKWYYLU0CtwJDVrQtTQFu5BM3UC1NAD1UL//wLU0Bcj8L1KAxTQPHsBXlQDFNAY3/ZPXkMU0DjW0VsnQxTQJPbCQkrDVNAWmQ7308NU0DK4Ch5dQ1TQEg7Wy2dDVNA5NpQMc4NU0BMMnIW9g1TQNt1XHohDlNAYpR6KU8OU0D6fmq8dA5TQEIEHEKVDlNAxHQ0IcAOU0CjCQHmRw9TQM9m1edqD1NA7wa+j5APU0BPIy2Vtw9TQHDOiNLeD1NALJrOTgYQU0CQ4gmqMxBTQCNSwGNlEFNAkdWtnpMQU0CpYj3IxRBTQCORoybnEFNAMrk+mWwRU0BNtpQGkRFTQAds9Fe1EVNAA78zx98RU0AR9CpFBRJTQGx4eqUsElNA2nIuxVUSU0ABVcnthBJTQKWQUYuuElNAaiCDAtwSU0D4z8C1ABNTQAuQe82FE1NArkLKT6oTU0CFqUBA0RNTQHe2Wjr5E1NAyxXe5SIUU0DRGpYZSRRTQF/VRmJvFFNAL6udTp8UU0AQWDm0yBRTQEYYGff5FFNANXugFRgVU0B55A8GnhVTQJNfLPnFFVNAwdLmJewVU0Cy3wAgFBZTQK4yQI8+FlNA7I6ya2gWU0CCbi9pjBZTQMX2bZu8FlNADSI/CO4WU0DLjKTKHRdTQCJ51IVFF1NASjEt18gXU0BOIP/f6xdTQL2c7HkRGFNACDiEKjUYU0DAYDdsWxhTQJCtVD2GGFNAwrguD6wYU0BoFRBt2hhTQFLy6hwDGVNALgdn3SwZU0BhEkGvUhlTQBD+WJvZGVNAtbsas/8ZU0CgGi/dJBpTQCoyTetJGlNAkX77OnAaU0AuDH4IlxpTQOnMUO+8GlNAAD36TOMaU0AdRcNPCRtTQHQx8woxG1NAJkvAwlwbU0AihjCR5RtTQH+XLAELHFNAcaRG+zIcU0DRVGKxYBxTQM8p25qHHFNAnfS+8bUcU0DAqo3E3hxTQFYTRN0HHVNANsDfQjEdU0D8WoRPYB1TQB37bPeFHVNAunuTuQweU0DNSKrcMR5TQAeEw/hWHlNARNXCP38eU0DGUE60qx5TQJN8EsXRHlNApFucHgEfU0CcFrzoKx9TQFTejnBaH1NAJqJyJoAfU0AeXZLwqh9TQPtksqU0IFNAsYLyUVkgU0A2AvG6fiBTQGcCWPeiIFNAMhg23cUgU0CB35nj7yBTQLqYeYUYIVNAJQaBlUMhU0Apif9ObSFTQPQyiuWWIVNAxOv6BbshU0BwSmbiQyJTQMrDQq1pIlNAI8ZYk5QiU0CkNnFyvyJTQL2xjWXnIlNAInGPpQ8jU0D41wWWNiNTQC57/wxcI1NAUsV6kIsjU0CfCqUcuSNTQAdXU2zfI1NAXCBB8WMkU0DlLOxphyRTQMrobVmrJFNAlgm/1M8kU0AGhqxu9SRTQOMR7xMaJVNA+grSjEUlU0DpAQZcaiVTQOFFX0GaJVNAJEVkWMUlU0DSqSuf5SVTQI1donprJlNAvl0Jt48mU0CH8a0itiZTQH8jlNHbJlNA0+5qzP4mU0AJkmRDJCdTQLWR2NtTJ1NAVkC0aX8nU0CuywNrrydTQGURnXjhJ1NAWAxEPP8nU0ArRQVhgShTQBakGYumKFNADMAZD8koU0BwCFVq9ihTQPToM40TKVNAAjCeQUMpU0CR9cEfaylTQJYBevSZKVNAT0ATYcMpU0AVUn5S7SlTQAKfH0YIKlNAjBU1mIYqU0Cjhd71rCpTQE7mMkjUKlNAjLlrCfkqU0D9QMw4ICtTQB7htOBFK1NATtaoh2grU0ClVoXzlitTQCVQ1+3GK1NAw+jMUO8rU0Ae5OKVESxTQFFOtKuQLFNA3fJ+ybMsU0Dwv5Xs2CxTQIB6RjX/LFNAebefeSYtU0CAvFetTC1TQOqVsgxxLVNA/3ivWpktU0CMRdPZyS1TQD1ULfzzLVNAb1SUOBguU0DFKPVSni5TQAmfwE7ELlNAYhidGeouU0De5SK+Ey9TQF7Cjuw3L1NAKfVSnmYvU0Bbd/NUhy9TQMoFVCW3L1NABkzg1t0vU0CGvPi1CDBTQBoPyaMuMFNAnmuF1rAwU0BogWO80zBTQJqMPY75MFNAs5CTnCYxU0Cih8drSzFTQPsApDZxMVNAbwo+4JQxU0A4Mo/8wTFTQP3BwHPvMVNAsvzm6x8yU0BKe4MvTDJTQEKVmj3QMlNA8xq7RPUyU0BbZ2mUGzNTQM6N6QlLM1NAg8gPgnszU0DISU4TozNTQDe7yBfHM1NAWnGX6u8zU0B9uxJuHzRTQFjFG5lHNFNAff0j5mw0U0A80vOB9zRTQL650kUdNVNANnFyv0M1U0C0wDHeaTVTQO4YMcaaNVNA1d8lS8A1U0BbfAqA8TVTQFLAY2UhNlNASgS9SlE2U0AmGTkLezZTQGuad5yiNlNA8xeNjyk3U0A0eHJgTDdTQO84RUdyN1NAdsO2RZk3U0Cp2QOtwDdTQOxEXBPlN1NAzYWkKRU4U0DZLe+XPDhTQGVb89BkOFNAgm4vaYw4U0DSNZNvtjhTQA74/DBCOVNAP/hjbWY5U0BbAC1wjDlTQJTEf6e2OVNAMNDI+uA5U0CWEQS1BTpTQPGVUxUtOlNA7HHMn1w6U0D1FaQZizpTQAgLFJ69OlNA7saVjeE6U0D56r0LbjtTQESGVbyRO1NAdYa8+LU7U0DJ5T+k3ztTQK0fiBkHPFNA8Irgfys8U0COt4KTWjxTQP1F42OKPFNA5RdLfrE8U0AXt9EA3jxTQLdaOvkHPVNAfVTWSZA9U0ClJP47tT1TQJxA/r/XPVNA9K5n9fs9U0Cweq1xIz5TQDQMHxFTPlNAXdxGA3g+U0C/Dpwzoj5TQC+ob5nTPlNASjlyt/4+U0Aa8uLXIj9TQFc2hhOrP1NAy0qTUtA/U0DgLZCg+D9TQJrj7/EcQFNADwNwxkNAU0B9hl0BckBTQOXdfuaZQFNAOdGuQspAU0BWbST29kBTQBAjhEcbQVNASefWfkVBU0Dan55RzUFTQPOj9F/6QVNABo7xTitCU0DgjIfkUUJTQDSAt0CCQlNAqZ83FalCU0CndLD+z0JTQPIsLnv/QlNAwgKFZy9DU0BPxDVRXkNTQKxea9yIQ1NA54wo7Q1EU0ACin5aMkRTQAouVtRgRFNAHQbgjIdEU0ClBxhwqURTQP3+usDSRFNArQKiTftEU0BE7ZHgIEVTQEZsnaVRRVNAVy5BM3VFU0C0yHa+n0VTQJ8PvEcjRlNA4XoUrkdGU0DKTHzIbkZTQJBe57mYRlNAGnYFyL1GU0DSqSuf5UZTQDl/EwoRR1NAeV2/YDdHU0AgxRNUZ0dTQB2s/3OYR1NADTfg88NHU0AMdsO2RUhTQKftX1lpSFNAnhTTco1IU0BAReh6tUhTQAz65abgSFNA1BbELQxJU0BR77xnN0lTQHQ5OOtmSVNAdi8KlZJJU0DQPJMQv0lTQGawvL7pSVNABR9wSmZKU0CsXmvciEpTQMFBaCqxSlNAlialoNtKU0ADBHP0+EpTQBVPUJ0hS1NAIgIOoUpLU0DNAYI5ektTQM/3U+OlS1NAgycHxtRLU0B4OJS09UtTQPp+arx0TFNARRoCbZhMU0BLH7qgvkxTQAVpxqLpTFNAEyf3OxRNU0DGt4rYOk1TQCTJhkhgTVNA1+3GlY1NU0DMh42fs01TQCgXUJXcTVNAWiIqZwJOU0A0CfFbh05TQB5dkvCqTlNAxqcAGM9OU0AkufyH9E5TQDP5ZpsbT1NAbz/zTEJPU0AEnTbQaU9TQLpOIy2VT1NAW5Gra8dPU0DfmePv8U9TQNg3He4QUFNAwZDVrZ5QU0BkQyQww1BTQMLAc+/hUFNAGy/dJAZRU0A0qvkXLlFTQOrSrFlUUVNA8WsRPoFRU0CM463gpFFTQEIe1FjVUVNAXzEQ8fxRU0CMLQQ5KFJTQL60uxqzUlNAh9wMN+BSU0CRAh4rC1NTQL7+EXM2U1NAc5oYpV5TU0AX4RPYiVNTQFppUgq6U1NASH1spepTU0Bgdk8eFlRTQG8/80xCVFNAeuc9u2lUU0BEboYb8FRTQFUwKqkTVVNAS9VjSDtVU0B0sP7PYVVTQL7JXAaJVVNAaCqxWLBVU0CjZcp01VVTQI3hxGoGVlNAJemayTdWU0AS5845ZVZTQCGTjJyFVlNAduWzPA9XU0DGI94nNFdTQAqaqSNaV1NAReA11YBXU0BEwCFUqVdTQL+CNGPRV1NAzbcr4fZXU0AX0YkXHlhTQLYIn8BOWFNAb0c4LXhYU0BLyAc9m1hTQFPL1voiWVNA/61kx0ZZU0AsFqxea1lTQMBofEyRWVNAupNiWq5ZU0DIveZC0llTQJh2V2P2WVNAFLuj7BpaU0CjdVQ1QVpTQP75o5VoWlNAHy457pRaU0Aydy0hH1tTQBObj2tDW1NA/o1QRm9bU0BMP84hlltTQIiFWtO8W1NAvrwA++hbU0CdU7Y1D1xTQL8JhQg4XFNA3BFOC15cU0D2l92Th1xTQPwlz+KyXFNAGSyvbzpdU0A5wSSCXl1TQBK1R4KDXVNAxM4UOq9dU0DYOkuj3F1TQG6jAbwFXlNAYU87/DVeU0DhtOBFX15TQIHs9e6PXlNA3fJ+ybNeU0AWrF5r3F5TQPRHK9FsX1NA1GAaho9fU0AE30dIt19TQH2W58HdX1NAnL8JhQhgU0Aj07SeNGBTQNduu9BcYFNAldkgk4xgU0B7oBUYsmBTQGYcEA7jYFNAJ/c7FAVhU0B70pzPk2FTQEf+YOC5YVNAJpUWG+BhU0CQbnF6BGJTQOXYZ7svYlNA7vMFGlliU0BhhtnegWJTQFjKMsSxYlNAhE9gJ+JiU0CgVykqCGNTQI9OXfksY1NAIJBe57ljU0Bby3cD32NTQLREVM4EZFNANjemJyxkU0AI+4ndUWRTQKKPDEyBZFNATPBgnqhkU0BMZPnN12RTQMpHZZ0EZVNAvOgrSDNlU0AZeO49XGVTQOrCIpnoZVNAzOaE4wxmU0CiTfvTM2ZTQKS6k2JaZlNAfKNDzX1mU0CFvuErp2ZTQHTS+8bXZlNAX8W8oQNnU0D//NFKNGdTQJn9pwhdZ1NA5SzsaYdnU0A4dKB0D2hTQFJx9uEzaFNAkUQvo1hoU0C6nZCwgmhTQLHh6ZWyaFNAJOuDP9ZoU0CRUYuu+GhTQAWDfrkpaVNASw8w4FJpU0CSplScfWlTQDpdFhObaVNAkbOwpx1qU0AXM68QQ2pTQFonQZJsalNArfIXjY9qU0D+O7UNtmpTQEt2bATialNA1Y2KEgdrU0DX+iKhLWtTQAHWvShUa1NAiuJooXdrU0BKvZSnmWtTQOm/9OMcbFNAZgRBbUFsU0CrhX/+aGxTQCVIkg2RbFNAcvkP6bdsU0CqOymm5WxTQLRhOpoQbVNAP4TLPTdtU0DsjrJraG1TQPU9/XqYbVNAbn7WD8RtU0Dgb6EYRm5TQCPb+X5qblNASB51YZFuU0BBvK5fsG5TQK9KDzDgblNALaVB5AdvU0Bewo7sN29TQBiV1Alob1NAbYgEZphvU0Aksbenvm9TQEdy+Q/pb1NAwpMDY2pwU0DbDiBWknBTQMLVFNu3cFNAFb7RoeZwU0BPgiTZEHFTQAjBvUU6cVNAIDFno2BxU0DHBA/miXFTQJjl2Ge7cVNASWCG2d5xU0BpdzVm/3FTQNlSGkR+clNAufRCFKZyU0BVd1JMy3JTQEDWZnbwclNAzHoxlBNzU0CdPhVKOXNTQJPjTulgc1NAv9TPm4pzU0DopPeNr3NTQCiDo+TVc1NAwvo/h/lzU0CBsilXeHRTQLZKsDicdFNA9R3p+cB0U0DkFB3J5XRTQI1q/oULdVNA3TFijDV1U0DRyyiWW3VTQJpfzQGCdVNA66hqgqh1U0An7/Yzz3VTQFjvXXDzdVNAnmNA9np2U0BCFo94n3ZTQDpIdSfFdlNAL+I7Met2U0C7o+waGndTQEEj64M/d1NAVn2utmJ3U0DjqrLvindTQCnLEMe6d1NAGVbxRuZ3U0A4dKB0D3hTQA7DR8SUeFNAKcsQx7p4U0Cidz2r33hTQJ9BQ/8EeVNARiBe1y95U0C/zIq7VHlTQKorn+V5eVNAOVKjfZl5U0BQwkzbv3lTQMNfkzXqeVNAB0KygAl6U0CudFEHjHpTQFInoImwelNAFRiyutV6U0AS4rcO+3pTQJn1Yigne1NA1zTvOEV7U0AUhu5/bXtTQKPUS3mae1NAHqLRHcR7U0CQKTJN63tTQBvDidUMfFNAv4ViGJ18U0DykDzqwnxTQK3lu4HvfFNACuxEXBN9U0B3bzKXQX1TQC+jWG5pfVNALIpEjpp9U0DOulmWwn1TQIkP2S3vfVNAFDJq0RV+U0B3bzKXQX5TQP/sR4rIflNA9wFIbeJ+U0AeUDblCn9TQAeZZOQsf1NAdQrf6FB/U0BkARO4dX9TQMISDyibf1NAgOnHOcR/U0Crz9VW7H9TQBMn9zsUgFNAo1huaTWAU0DpzFDvvIBTQBrNtyvhgFNALJrOTgaBU0BE/wQXK4FTQNlnuy9UgVNA6DBfXoCBU0CNZedaoYFTQE2+2ebGgVNAZCMQr+uBU0AOhGQBE4JTQEF9y5wuglNA5j+k376CU0D4lfQd6YJTQPVf+nEOg1NAZdznCzSDU0CNyfXJZINTQPWMav6Fg1NAcWVjOLGDU0CCHJQw04NTQGPJL5b8g1NAGoaPiCmEU0DedqG5ToRTQMCqjcTehFNA6vzuMACFU0A2o/l2JYVTQF+QBzVWhVNA2/E5ioaFU0CnL3HRtoVTQHJtqBjnhVNAvSUmlRaGU0BbNeLcOYZTQKwHuXhlhlNADrHUjYqGU0ClDC+bE4dTQAW9SlFBh1NAyEEJM22HU0D/73U/lIdTQJNCRi26h1NACpWS+O+HU0Av6oARIYhTQEG3lzRGiFNAIE5Nb2yIU0DDHYK9nIhTQJDSf+nHiFNAd4wYY02JU0AlehnFcolTQO0NvjCZiVNAiZDNaL6JU0Df6FBz34lTQA+P15YUilNA+/heVjuKU0AiR03OY4pTQCnDy+aEilNAUBG6Xq2KU0D7fIFG1opTQHhIHnVhi1NAYzBsuouLU0CFb3SouYtTQPV/DvPli1NAlrcjnBaMU0BBt5c0RoxTQB7ME/VvjFNAXselF6KMU0DMOCAcxoxTQF2S8Kr0jFNAfJO5DBKNU0ACBlxql41TQGhHlyS8jVNAPSzUmuaNU0DSd6TnA45TQK6BrRIsjlNANaDLwVmOU0CxbVFmg45TQIx3WpGrjlNA6ZrJN9uOU0A/fIZdAY9TQCE0lVgsj1NAs/fPwLWPU0BtrS8S2o9TQIrAa6oBkFNAKWTUoiuQU0CKlinTVZBTQH5CYxOGkFNAo5dRLLeQU0AQkgVM4JBTQHRGlPYGkVNAniEvfi2RU0ASQa9SVJFTQPdtm7zbkVNAm5ewI/uRU0Bv6EDpHpJTQD4q6yRIklNAO/TweG2SU0B/8/WPmJJTQDIYNt3FklNAwFsgQfGSU0DSsXB/G5NTQKvCeUtMk1NA1QloImyTU0D8SvqO9JNTQDV7oBUYlFNATX/2I0WUU0Akb6YvcZRTQIzGxxSZlFNA1XPS+8aUU0Cw+6Gs8pRTQEVkWMUblVNAK7SGZUaVU0AaNPRPcJVTQKx7UaiUlVNALNSa5h2WU0CSgSnwO5ZTQOp4zEBlllNAirDh6ZWWU0DTUnk7wpZTQOOdVuTqllNAOoqGnxKXU0AVHcnlP5dTQI1donprl1NAAPvo1JWXU0CQLGACt5dTQCBj7lpCmFNAGaBHn2mYU0B42ZxwnJhTQJoNMsnImFNA6WhCgPmYU0Bb+xVFIplTQKezk8FRmVNAA9cCaIGZU0Cv1nYAsZlTQDgACEXgmVNAx0PyqAuaU0AJl3tujppTQCk3ZBa0mlNAOYJBv9yaU0CLy94/A5tTQDfLUtgym1NAtKNLEl6bU0CeFNNyjZtTQFAuoCq5m1NAtwOIleSbU0CPCR7ME5xTQMjNcAM+nFNAvtGh5r6cU0C6kDSl4pxTQI3hxGoGnVNAj05d+SydU0DeCk5qVZ1TQEv6jvR8nVNAEQGHUKWdU0D5Zpsb051TQE/cBPL/nVNA7GmHvyaeU0Bxcr9DUZ5TQDplW/PQnlNA8I0ONfeeU0BjIOL5H59TQDBMpgpGn1NAkhKo63afU0DUmuYdp59TQIY97fDXn1NAGSRqjwSgU0D7ZLKlNKBTQOE9GmFkoFNAAGc8JI+gU0BApN++DqFTQJaFnOQ0oVNAOUpenWOhU0AnysuHjaFTQIZ65z27oVNAxuHMr+ahU0DtpoEMCqJTQKd5xyk6olNAnKc65GaiU0C8ZAlYmKJTQH9VG4m9olNALa2GxD2jU0DyqAuLZKNTQEwi6FWKo1NAZjGx+bijU0DuMunc2qNTQKjzu8MApFNAMBLaci6kU0DZ+2fgWqRTQME5I0p7pFNAhslUwaikU0DZlCu8y6RTQGSf7b5QpVNA+PwwQnilU0DHPtt9oaVTQOf7qfHSpVNACLl4ZQSmU0DT9q+sNKZTQHMuxVVlplNAzLkUV5WmU0DeoxFGxqZTQA/BXk72plNApheiMBWnU0AHFUL0kadTQOsxpJ2tp1NA4lgXt9GnU0DR2ISh+6dTQLB6rXEjqFNA8OGS406oU0ArRQVhgahTQOSDns2qqFNA9c57dtOoU0B1yM1wA6lTQJdzKa4qqVNAw8OhpK2pU0B3X6jW1alTQLBA4dkLqlNA6gQ0ETaqU0At+cWSX6pTQPcrikSOqlNANIj8ILiqU0AszFUG6KpTQLFdx6UXq1NArKWTf0CrU0DupJiWa6tTQKEdXZLwq1NAfTLZUhqsU0BWrzVuRKxTQL8GV1NsrFNAzTtO0ZGsU0DDacGLvqxTQOtWz0nvrFNAUzcqShytU0B3+GuyRq1TQIjX9Qt2rVNAo9RLeZqtU0Du68A5I65TQJOpglFJrlNA/QsXzHKuU0BfSd+Rnq5TQFTjpZvErlNAzKy4S/WuU0Ahq1s9J69TQDsmeDBPr1NAS2biQ3avU0Dxpd3VmK9TQCfSEGjDr1NAYwtBDkqwU0BLZuJDdrBTQHTKtuahsFNAaW/whcmwU0DoXc/q97BTQJoA1r0osVNAPTxeW1KxU0BI2TU0eLFTQGeLkRKosVNAABWh69WxU0C0J24C+bFTQDqaEGB+slNAsLmQNKWyU0C/+fpHzLJTQJh2V2P2slNAUbXwzx+zU0Ab6LSBTrNTQIv4Tsx6s1NAjOOt4KSzU0CABq4F0LNTQMQQJrL8s1NAgEi/fR20U0DsHzFno7RTQIitszTKtFNAPEm6ZvK0U0Cw5gDBHLVTQDBMpgpGtVNAX8rTzG21U0CDH8LlnrVTQDGhb/jKtVNA7PXuj/e1U0DSOqqaILZTQPFjzF1LtlNAdD5PFtG2U0C+2ebG9LZTQAJQssIat1NAo3VUNUG3U0Ai0IbpaLdTQFFOtKuQt1NA5cjd+sO3U0A2m7SW77dTQNAvNwUfuFNAzAuwj064U0AwNwUfcLhTQICFucoAuVNAfk+/Hia5U0DOjekJS7lTQP4WimF0uVNAdMq25qG5U0BWgsXhzLlTQGRA9nr3uVNAjq89syS6U0Dhl/p5U7pTQO0/Reh6ulNABKV7sJ+6U0BZ5S8aH7tTQFWkwthCu1NAQQ5KmGm7U0DwETElkrtTQERxtNC7u1NA0j3YT+y7U0DJ7YSEFbxTQKHzGrtEvFNAB76PkG68U0AItGE6mrxTQDYnHGfAvFNAkzK8bE69U0CmCkYldb1TQIjCVCCgvVNAXynLEMe9U0B2q+ek971TQHKS08QovlNAUr01sFW+U0CRuMfSh75TQKcvcdG2vlNAhNiZQue+U0BPgiTZEL9TQDpdFhObv1NARnwnZr2/U0DDNzrU3L9TQB/H/MkFwFNAmpSCbi/AU0AFAop+WsBTQNXX4GqKwFNAGlkf/LHAU0AfcEpm4sBTQPPA2isGwVNAj9eWFDLBU0B/ODW9scFTQOdn/UDMwVNAPVQt/PPBU0DQLzcFH8JTQGQWtKNLwlNAB76PkG7CU0D4U+Olm8JTQO2BVmDIwlNASyf/gPTCU0BRIUQfGcNTQKWLOmBEw1NA1fwLF8zDU0CMJb9Y8sNTQIFTMhMfxFNAB9MwfETEU0Aofoy5a8RTQM7P+oGYxFNAMHkWl73EU0A3iUFg5cRTQPgJjU0YxVNAkQpjC0HFU0B4WpGra8VTQEP3vzb1xVNA1T4djxnGU0DTE5Z4QMZTQIbBD+FyxlNAFAX6RJ7GU0AC8bp+wcZTQILqDHnxxlNAsOYAwRzHU0AWRSJHTcdTQPPtSrh9x1NAaHke3J3HU0B/ZaVJKchTQLgehetRyFNAURToE3nIU0BPfQ2upshTQOJYF7fRyFNAB64F0ALJU0ChrtuNK8lTQI8uSXhVyVNA06QUdHvJU0DYuz/eq8lTQNw+vpfVyVNAUuWOEWPKU0BPzHoxlMpTQGtdfU+/ylNAIJijx+/KU0Dqymd5HstTQA+XHHdKy1NAIXam0HnLU0C9FZzUqstTQBasXmvcy1NAd2fttgvMU0CXkA96NsxTQNv5fmq8zFNAdgXIvebMU0Ch69XaDs1TQCdr1EM0zVNAC7CPTl3NU0DlLOxph81TQJS5DBK1zVNAvR3htODNU0AtLnv/DM5TQAU0ETY8zlNA1YAuB2fOU0BKiN867M5TQAxRmAoEz1NAlV1DgyfPU0Da6fSpUM9TQPFrET6Bz1NAExdte6jPU0C6c07Z1s9TQLPCGlQI0FNAM7xsTjjQU0Dj56w8btBTQAo2m7SW0FNAES733BzRU0AsK01KQdFTQNFUYrFg0VNA6E1FKozRU0DpzFDvvNFTQBVSflLt0VNAsfFzVh7SU0BRKYn/TtJTQLLkF0t+0lNAh10Bcq/SU0Aws+Iu1dJTQKGkrTdX01NAGlHaG3zTU0C10+lTodNTQCdmvRjK01NA5Tx2KvPTU0DW0sk/INRTQMoAPfpM1FNAvaEDpXvUU0CDH8LlntRTQMHy+qbD1FNAMPghXO7UU0D7AKQ2cdVTQHlQY1WX1VNAQ+96Vr/VU0AH6/8c5tVTQOFyz80R1lNAvRCFqUDWU0DAEcrobdZTQCJEHxmY1lNAIjrxwsPWU0BUVz7L89ZTQADOeEge11NAczYKNpvXU0BD0pSKs9dTQJKZ+JDd11NAWy2d/APYU0D/aCWaLdhTQCxlGeJY2FNAP08W0YnYU0DmtmrEudhTQDgACEXg2FNAlqWwZQzZU0AHECvJJ9lTQF9bUsio2VNAVoLF4czZU0BhKhBQ9NlTQEBVcjsh2lNATpzc71DaU0B/nEMsddpTQCwe8T6h2lNAoLs3mcvaU0CDB/NE/dpTQBTYibgm21NAqi7NmkXbU0A8yq6hwdtTQAReUw3o21NAVjudPhXcU0CeZm6rRtxTQA1slWBx3FNAjdE6qprcU0B2N091yNxTQIN+uSn43FNAAM54SB7dU0AjGPTLTd1TQA53CPZy3VNAObwNV/TdU0DHa0sKGd5TQI1yQ2ZB3lNAuvdwyXHeU0A/AKlNnN5TQD1pzufJ3lNAxf6ye/LeU0ClNIj8IN9TQId10BJR31NAA7ocnHXfU0AohtGZod9TQB4ery0p4FNAaUKA+VHgU0ARje4gduBTQMUo9VKe4FNA2QvyoMbgU0AZ/BAu9+BTQJVdQ4Mn4VNA5bhTOljhU0AV1qBCiOFTQIRkARO44VNAHmXX0ODhU0BBep3nYuJTQDw5MKaG4lNAaaF3PaviU0CcQP6/1+JTQPQ3oRAB41NAwfcR0i3jU0Av8sXxVuNTQHFvkY6F41NAJiF+67DjU0BIzNko2ONTQJmesMQD5FNAORjX5YHkU0AZuv+1qeRTQPbZ7gvV5FNAn7gJ5P/kU0Cp3hrYKuVTQHaei5lX5VNAPbD2ioHlU0AmjdE6quVTQOJ1/YLd5VNAJf47tQ3mU0CIOwR7OeZTQBlrkjK85lNAEBs/Z+XmU0Bopo5oFedTQAM7EddE51NAFIbuf23nU0A429yYnudTQEm6ZvLN51NAY8kvlvznU0CLtj1ULehTQPOWmFRa6FNAs4M3kYboU0CYJ+rfCOlTQIiV5JMo6VNAw9twRU/pU0BYObTIdulTQDuFb3So6VNAKIOj5NXpU0DVBFH3AepTQFHS1psr6lNAsY1l51rqU0BWXZo1i+pTQKGM3pa16lNAUwWjkjrrU0ASe3vqa+tTQI3ROqqa61NACTNt/8rrU0C4K+H28etTQMLlnpsj7FNA72rM/lPsU0BI2TU0eOxTQNWlWbOo7FNAcUVPt9nsU0A9+kzjBO1TQLYQ5KCE7VNAKzBkdavtU0AXIyVQ1+1TQLz9zDMJ7lNAkXa2WjruU0DLzrVCa+5TQGoGy+ub7lNAnJre2MbuU0AhoxZd8e5TQM6iivUg71NAjIS2nEvvU0BrDhDM0e9TQDK0J24C8FNAlvxiyS/wU0CHG/D5YfBTQOhNRSqM8FNAnYhrorzwU0CA1CZO7vBTQIJepagg8VNA9nKy50XxU0DutgvNdfFTQKyYN3Sg8VNACgkrKB/yU0CtsAYVQvJTQCLQhulo8lNATKshcY/yU0Ba/f66wPJTQCWniVHq8lNAlSN36w/zU0AYqnX1PfNTQKhvmdNl81NArYbEPZbzU0DGbTSAt/NTQEi/fR049FNAW/jnj1b0U0BOG+i0gfRTQGk1JO6x9FNAzPslz+L0U0CO/qo2EvVTQI1yQ2ZB9VNAfgiXe271U0BSdg0NnvVTQF6yBCzM9VNAcx47lfn1U0Ci+1+bevZTQNMGOm2g9lNAxAjh0cb2U0Bt5/up8fZTQIHK+PcZ91NABlxql0n3U0B4guoMefdTQCol8d+p91NA9mIoJ9r3U0DOaL5dCfhTQN8qYuss+FNAyd36w6n4U0B9XBsqxvhTQMVqBsvr+FNAug9AahP5U0CSgSnwO/lTQOkBBlxq+VNAhJaIypn5U0DkURcWyflTQEkRGVbx+VNAV2P2nyL6U0CTMrxsTvpTQIOTWhXO+lNARXn5sPH6U0BU1kmQJPtTQHSIpW5U+1NAVtRgGob7U0ARshnNt/tTQD43RzDo+1NAkip3jBj8U0BZ0I4uSfxTQPVSnmZu/FNAxp+7N5n8U0DxW4d9Ff1TQF/fdLhD/VNAVBhbCHL9U0D33BzBoP1TQBsnmETQ/VNADT8l1Pn9U0B5t595Jv5TQKrU7IFW/lNAOY+dynz+U0CERxtHrP5TQLXbLjTX/lNAU8ioRVf/U0CfbrOLfP9TQMGtu3mq/1NAInS9Wtv/U0CP7DcACABUQIGN/qo2AFRAZVvz0GQAVECq3DFijABUQIiFWtO8AFRA1+Bqiu0AVEAggwLcGQFUQDKkna2WAVRAEDDgUrsBVEB4ahts1wFUQLrVc9L7AVRAENQWxC0CVEABamrZWgJUQPB9hHSLAlRARvPtSrgCVEC5GW7A5wJUQDkTwLoXA1RANnFyv0MDVECozpAXvwNUQKONI9biA1RA5mTPiwAEVEA5ud+hKARUQGSf7b5QBFRAew+XHHcEVECdTp8KpQRUQFqukTfTBFRA8rVnlgQFVECD8lFZJwVUQANGhGxGBVRASJINkcAFVEAz8SG75QVUQNOCF30FBlRAUdLWmysGVEBD3/CVUwZUQGsm32xzBlRAnDi536EGVEAFL/oK0gZUQIB6RjX/BlRA7ginBS8HVEDQwLUAWgdUQHhqG2zXB1RAaoKo+wAIVEBZi08BMAhUQHQcUh9bCFRAk86t/YoIVEBBvK5fsAhUQOSL463gCFRAvZzseREJVECNckNmQQlUQD8VSjlyCVRApeoxpJ0JVEDMA2uvGApUQNmZQuc1ClRAaF9mxV0KVEBo0/70jApUQPuuCP63ClRAAMYzaOgKVEBZUYNpGAtUQKWLOmBEC1RAaqSl8nYLVEAhYQXlowtUQPVFQlvOC1RAPirrJEgMVEBmZmZmZgxUQNFcp5GWDFRA9ihcj8IMVEBUVz7L8wxUQA2W1zcdDVRAKLATcU0NVEA0WF7fdA1UQDTXaaSlDVRA5nlwd9YNVEA75Ga4AQ5UQGDyLC57DlRAumsJ+aAOVECDCiH6yA5UQLWeNOfzDlRAjaTKHSMPVEAjoS3nUg9UQLqdkLCCD1RAPi8CULIPVEBCRi264g9UQMfXnlkSEFRA8Dtz/D0QVEAQHm0csRBUQEIMYSLLEFRAAVrgGO8QVEDBvUU6FhFUQMXJ/Q5FEVRAMUJ4tHERVEC2SrA4nBFUQPUd6fnAEVRAtYFOG+gRVECToT1xExJUQErK8LI5ElRA8nNWHrcSVEBlpUkp6BJUQHmaua0aE1RAnu+nxksTVEAtPgXAeBNUQLr/tamnE1RAVJQ4GNcTVEAcOlC6BxRUQCf0DV85FFRA2iPBQWgUVEDXdgCxkhRUQOl6tbYDFVRAbvqzHykVVEAd/pqsURVUQJKmVJx9FVRA6f7Xpp4VVEAn7/YzzxVUQOrfCGX0FVRAYqkbFSUWVECq1OyBVhZUQMnym69/FlRAArfu5qkWVECqzKehIBdUQF1ortNIF1RAevmw8XMXVEBk4f42nhdUQDU5j53KF1RA2X+K0PUXVEB0gGCOHhhUQJfK2xFOGFRAQb/cFHwYVEDfV9J3pBhUQAEDLrXLGFRA3E5IWEEZVEBRY1WXZhlUQB37bPeFGVRAQCgCr6kZVEBPet/42hlUQAQhWcAEGlRAHzuV+TQaVEAFH3BKZhpUQIMC3BmTGlRARhDUFsQaVECnN7ax7BpUQLjEpNJiG1RAhvvbeIobVEAdeni8thtUQFtfJLTlG1RA3M88kxAcVEA486s5QBxUQACZw9twHFRAgJIV1qAcVEBPaGzC0BxUQLIubqMBHVRAU8vW+iIdVEDhRV9Bmh1UQNRd7NDDHVRAHYK9nOwdVEAmnVv7FR5UQEc9RKM7HlRAP4wQHm0eVEALykdlnR5UQCp8o0PNHlRAau77SvoeVEAVWsMyIx9UQGGJB5RNH1RAluzYCMQfVEBRravv6R9UQLTNjekJIFRAhjCR5TcgVECP39v0ZyBUQOhqK/aXIFRAvE9obMIgVEAgId3i9CBUQKElonImIVRAv8yKu1QhVEDsyH4DgCFUQDQZexzzIVRAK6xBhRAiVEBXncI3OiJUQHQ5OOtmIlRA2pdZcZciVECm1ZC4xyJUQGVLaRD5IlRAc51GWiojVEC6vaQxWiNUQJpfzQGCI1RAEZUzAawjVEB9uxJuHyRUQC2/+fpHJFRAiU688HAkVEB0yrbmoSRUQBWEBQrPJFRAn7gJ5P8kVECq6Y1tLCVUQAJ13W5cJVRAZr0YyoklVECKm0D+vyVUQLkZbsDnJVRAFva0w18mVEBX39OvhyZUQLgGtkqwJlRAKi02wN8mVEBuowG8BSdUQBwlr84xJ1RAtzD4IVwnVEBdgmbqiCdUQIrqrYGtJ1RAC+9yEd8nVEBDqFKzByhUQB1yM9yAKFRAo/ExRaYoVEAeKws5yShUQA2reCPzKFRAwuWemyMpVEBtUWaDTClUQE+Srpl8KVRAviuC/60pVEC6B/uJ3SlUQCFmHBAOKlRAOF//iDkqVEDN/lOEripUQPbZ7gvVKlRAkG5xegQrVEDOyuNWLitUQHvKV+9dK1RA5jdf/4grVEANozNDvStUQDN6W9bqK1RA56kOuRksVEBsO4BYSSxUQICK0PVqLFRAKrZv2+QsVECOdXEbDS1UQE7Z1jw0LVRA+EuexWUtVEDseRGAki1UQNNSeTvCLVRAW3wKgPEtVEDPrf2KIi5UQJ+DVHdSLlRAH32mcYIuVEDdXtIYrS5UQHMJmqkjL1RAMmKMNUkvVEBj9p8idC9UQBaHM7+aL1RAVvmLxscvVEAGhqxu9S9UQMoKa1AhMFRAWdCOLkkwVEAVkWEVbzBUQJDnINWdMFRAA4VnL8gwVEBqMA3DRzFUQES43HNzMVRAcBWxdZYxVEA7U+i8xjFUQL5iIOL5MVRACp3X2CUyVED4EdItTjJUQL0Yyol2MlRAMUq9lKcyVEA2Yej+1zJUQECH+fICM1RAw08JdX4zVEA012mkpTNUQGRVl2bNM1RA97La6fQzVEAcCMkCJjRUQLop+IBTNFRAup2QsII0VEAxZ6NgszRUQDoW7m/jNFRAfYFG1gc1VECqfToeMzVUQKMOGBGyNVRA0HZfqNY1VEAkTak4+zVUQEWBPpEnNlRAnXjh4VA2VECRL463gjZUQITbx/eyNlRAZ5PW8t02VEDAHib0DTdUQEzg1t08N1RA0egOYmc3VED7jvR84DdUQG7A54cROFRAmkUV60E4VECFtpxLcThUQInNx7WhOFRAIMoqf9E4VEB4VXqAATlUQLvduLIxOVRAUuWOEWM5VECLMhtkkjlUQPH8jzm8OVRAjswjfzA6VEC8P96rVjpUQOrPfqSIOlRA1LfM6bI6VEAz8SG75TpUQK2zNMoNO1RA9UpZhjg7VECqegxpZztUQMHqtcaNO1RAnfS+8bU7VEAw0Mj64DtUQJoIG55ePFRAL/oK0ow8VEAnPmS3vDxUQFlUsR7kPFRAnNzvUBQ9VEAH0zB8RD1UQODjOUh1PVRApXNrv6I9VEAh1Z0U0z1UQJBucXoEPlRAGxo8OTA+VED14xxiqT5UQPr6R8zZPlRAlPsdigI/VECBBMWPMT9UQAouVtRgP1RAKeCxspA/VEDlq/cuuD9UQM8cf4/nP1RAo4r1IBdAVEA17zhFR0BUQJOU4WVzQFRAEDglM/FAVECyaDo7GUFUQIz7fIFGQVRA1JKhPXFBVEAcvnKqokFUQKqKlinTQVRASsKr0gNCVEBseHqlLEJUQFJR4mBcQlRAhgZPDoxCVED9E1ysqEJUQHs52fMiQ1RASGWdBElDVEDApXaZdENUQBidGeqdQ1RApFNXPstDVEDKKn/R+ENUQEPiHksfRFRATZFpWk9EVEBxyXGndERUQHbgnBGlRFRAF494n9BEVECqQEDRT0VUQCoAxjNoRVRACQ5CU4lFVEAntSqct0VUQDJv6EDpRVRAoQi8phpGVED7FUUiR0ZUQOWGzIJ2RlRAd+sPp6ZGVED22e4L1UZUQOHBPFH/RlRAB9t1XHpHVECeqH8jlEdUQL499TW4R1RA4nX9gt1HVEAhZhwQDkhUQNIII+M+SFRAvWc3DWRIVEBpZ6ulk0hUQDWl4uzDSFRABoasbvVIVED1EI3uIElUQJN0zeSbSVRAqwFdDs5JVEAqZwJY90lUQCvmDR0oSlRAAda9KFRKVEDIe9XKhEpUQIfxrSK2SlRAVSjlyN1KVED1QhSmAktUQF85VdEyS1RAvd798V5LVEBSB4wI2UtUQNRlMbH5S1RAGXsc8ydMVEDgjIfkUUxUQPJ2hNOCTFRAXng4lLRMVECUOBjX5UxUQJAUkWEVTVRAB9MwfERNVEDDJ7ATcU1UQD8AqU2cTVRA0BJRORNOVECf3TSQQU5UQH8TChFwTlRAN0cw6JdOVEDZC/Kgxk5UQMoqf9H4TlRASyTRyyhPVEBIgoPQVE9UQMwT9W+ET1RAzPPg7qxPVEAJUFPL1k9UQMI8Uf9GUFRAA0NWt3pQVEBx0baHqlBUQFMS/53aUFRArKjBNAxRVEDMZZCoPVFUQD/4Y21mUVRAVebTUJBRVEAgGZgCv1FUQIyREqjrUVRAjHxxvBVSVEBMqyFxj1JUQF6VHmDAUlRAPSzUmuZSVEBG2x6qFlNUQDbdxQ49U1RAo1VAtGlTVEC6TiMtlVNUQNkAfwvFU1RAsQYVQvRTVEAIh/GtIlRUQN1rLiRNVFRA0NA/wcVUVEBWbST29lRUQEHpHuwnVVRAf9k9eVhVVEA8OTCmhlVUQGUmPmS3VVRA+yKhLedVVEBlGeJYF1ZUQITLPTdHVlRAMcuxz3ZWVEDwt1AMo1ZUQMx6MZQTV1RAqGdU8y9XVECfq63YX1dUQJrzebKIV1RAhuY6jbRXVECK1QyW11dUQMmzuOz9V1RAFnep/i5YVECOQLyuX1hUQA46DqmPWFRAqUVX/LlYVEC8y0V8J1lUQBvotIFOWVRAtN0XqnVZVEB2V2P2n1lUQF0wy7HPWVRAJ24C+f9ZVEA+8B6NMFpUQGt1TPBgWlRAkUEB7oxaVEAnPmS3vFpUQMp57FTmWlRAq0uzZlFbVEBqpKXydltUQDfQaQOdW1RAHKnRvsxbVEAPVQv//FtUQLGXkz0vXFRAa+GfP1pcVEB9y5wui1xUQKMOGBGyXFRAnd8dBuBcVECaqSNaBV1UQPkHpNd5XVRAmSLTtJ5dVED5SbVPx11UQI9GGBn3XVRAzjY3pideVEBmPg0FWV5UQEmVO0aMXlRAlMR/p7ZeVEDPHH+P515UQGYkVe4YX1RAEPH8jzlfVED6hq+cql9UQEYtuuLPX1RAau77SvpfVEACbZiOJmBUQB3+mqxRYFRAsW1RZoNgVEC4BrZKsGBUQEXT2cngYFRAPRczrxBhVEDPe3bTQGFUQCXx36ltYVRAufyH9NthVEA+BcB4BmJUQKGu240rYlRATpzc71BiVEAkA1Pgd2JUQPl7PAepYlRAbzrcIdhiVEBUCNFHBmNUQO6cU7Y1Y1RA7hDs5WRjVEDY+Dkrj2NUQKJFtvP9Y1RAf2WlSSlkVEArtIZlRmRUQOWGzIJ2ZFRAx8cUmaZkVEDUDn9N1mRUQLhlrY4JZVRAHcTOFDplVEAEFP20ZGVUQCv2l92TZVRABHP0+L1lVED1LXO6LGZUQJoIG55eZlRAfVTWSZBmVECD7TouvWZUQEPa2WrpZlRAKSoICxRnVEDN+TxZRGdUQMQ9lj50Z1RAC170FaRnVECVkvjv1GdUQAgwP0r/Z1RAn1HNv3BoVEBXGaBHn2hUQBePeJ/QaFRA8J+BawFpVEDZEAnMMGlUQDrMlxdgaVRAE92g45BpVEA7vzsMwGlUQK3lu4HvaVRAXojCVCBqVEBVpMLYQmpUQGk1JO6xalRAtm/b5N1qVED+fcaFA2tUQCsD9Ogza1RAlvk0FGRrVEB5M32Ji2tUQM8xIHu9a1RApKoJou5rVEAURN0HIGxUQA8gVpJPbFRAs2ZRxXpsVECXTv4B6WxUQIdQpWYPbVRAM7xsTjhtVEB3xuT6ZG1UQFj8uXuTbVRAgMzhbbhtVEATPJgn6m1UQL87DMAZblRAsD2zJEBuVEBzS6shcW5UQL1vfO2ZblRAZvz7jAtvVEDsD6emN29UQI/f2/Rnb1RA9DKK5ZZvVEAdIJijx29UQPYwoW/4b1RANSwzkipwVEAWYggTWXBUQDUUZPGIcFRAOiuPW7lwVECPlYWc5HBUQOrSrFlUcVRAfiV9R3pxVEASg8DKoXFUQG2QSUbOcVRAA42sD/5xVED2GwCEInJUQCc5TYxSclRATyZbSoNyVEC7Jw8LtXJUQIv9ZffkclRApo5oFRBzVEDdc3MEg3NUQD86deWzc1RA7ERcE+VzVECRAh4rC3RUQEc9RKM7dFRAWidBkmx0VEBk4f42nnRUQHjE+4TGdFRA3heqdfV0VECbWrbWF3VUQO/ErBdDdVRAQsch9bF1VEDrsK9i3nVUQLPCGlQIdlRATtnWPDR2VEAIrBxaZHZUQFLFepCLdlRA10R5+bB2VEA2fs7K43ZUQO3DZ9gVd1RATODW3Tx3VEBocdn7Z3dUQGDl0CLbd1RABLUFcQt4VEBDpST+O3hUQKRrJt9seFRAmQXt6JJ4VECRSUbOwnhUQGS3vF/yeFRAfURMiSR5VEBfkAc1VnlUQGgibHh6eVRAOeZPLqB5VEDDP3+0EnpUQO8wAGc8elRA99TX4Gp6VECTdM3km3pUQNFk7HHMelRAh58S6vx6VEBboTUsM3tUQJ4pdF5je1RAlW3NQ5N7VEB2rhVaw3tUQF3+Q/rte1RAa+GfP1p8VECe2gbbdXxUQHnkDwaefFRABx2H1Md8VECC6gx58XxUQALkXnMhfVRAwU7ENVF9VECLgYjnf31UQAZEm/anfVRABK3AkNV9VEDdKR2s/31UQJKJbtBxflRA7Zb3S55+VEDXEvJBz35UQGRA9nr3flRAgl6lqCB/VEBG42OKTH9UQFQqzj58f1RA0ZZzKa5/VEBLWYY41n9UQN29yVwGgFRAv3XYVzGAVEDM4W24ooBUQAvSjEXTgFRAAoI5evyAVECiMBUIKIFUQA0nVjNYgVRA/scc3oaBVECDWY59toFUQNdMvtnmgVRA+RQA4xmCVEDVKXyjQ4JUQIKgtiBuglRAla/eu+CCVEB4VXqAAYNUQFXzL1wwg1RACi5W1GCDVECjI7n8h4NUQNVLeZq5g1RAlkOLbOeDVEAnqM6QF4RUQBtUCNFHhFRAA7ocnHWEVECoABjPoIRUQBtXNoYThVRAfRLF0UKFVEBSi674c4VUQBKDwMqhhVRANs07TtGFVEDDBbMc+4VUQCApIsMqhlRAnIpUGFuGVEBqwYu+goZUQM0JxxmwhlRAFaHr1dqGVEA7JngwT4dUQK8dn6Noh1RAkWlaT5qHVEDnZ/1AzIdUQDnOgI3+h1RAlmi2GCmIVECkupNiWohUQGvM/lOEiFRAlLkMErWIVECL/WX35IhUQHuIRncQiVRAN5ada4WJVEDEsS5uo4lUQKNI5KjJiVRANriaYvuJVEDV768LLIpUQH5XBP9bilRAhgZPDoyKVECgFRiyuopUQPuZZxLiilRAhMP4VhGLVECAFjjGO4tUQHqVooKwi1RAMNDI+uCLVEC9nOx5EYxUQFHvvGc3jFRAf39dYGmMVECQXue5mIxUQEH2evfHjFRATT3lq/eMVECRxSPeJ41UQFhrO4BYjVRAhFy8MoKNVECekLCC8o1UQBtpqbwdjlRAV7qoA0aOVECI1/ULdo5UQPvgj7WZjlRAHisLOcmOVECeJF0z+Y5UQFNUEBYoj1RAa1hmJFWPVEDNirtUf49UQIM8qLGqj1RAQtertR2QVEBmLJrOTpBUQJfSIPKDkFRAMnIW9rSQVEA7IWEF5ZBUQOy49EIUkVRAAzsR10SRVECiciaAdZFUQLRRsNmkkVRAyshZ2NORVEDcHqoW/pFUQMYrIwhqklRA7Q2+MJmSVEBD73pWv5JUQBLF0ULvklRAT6p9Oh6TVEC2CJ/ATpNUQI8ZqIx/k1RAcFrwoq+TVEAKW8Zg2JNUQOJgXJcHlFRAxRhrkjKUVED+iiKRo5RUQMcB4TC+lFRA2evdH++UVEDqymd5HpVUQPyp8dJNlVRA71UrE36VVEB24JwRpZVUQGX0tqzVlVRA0uP3Nv2VVEB/7t5kLpZUQI2sD/5YllRAo2XKdNWWVEDwFkhQ/JZUQMaapAwvl1RAobYgbmGXVED6L/04h5dUQKOXUSy3l1RAYfBDuNyXVECBop+WDJhUQM/yPLg7mFRA0HFIfWyYVED+bTzFl5hUQIMvTKYKmVRAdR+A1CaZVEDbfaFaV5lUQD89o5p/mVRAmMjym6+ZVEDuxpWN4ZlUQL4Ts14MmlRAZnsHUjyaVEAbq7o0a5pUQL3bzzyTmlRArGawvL6aVECMSuoENJtUQMIKykdlm1RAyJi7lpCbVED9TShEwJtUQNr2ULXwm1RAf9H4mCKcVEBEYSoQUJxUQHV+dxiAnFRA70CKJ6icVEBez+r315xUQF/FvKEDnVRAPIidKXSdVEDVfQBSm51UQD1M6Bu+nVRAP8vz4O6dVEDVx1aqHp5UQJxtbkxPnlRARNXCP3+eVEB/LcInsJ5UQBCSBUzgnlRAqJnbqhGfVEDO3FaNOJ9UQJjI8puvn1RAs8VICdSfVEAn2lVI+Z9UQAfo0WcaoFRAdoGlzUugVEB6jV2ieqBUQCswZHWroFRAo/l2JdygVEDITmU+DaFUQKmPrVQ9oVRA3rvg5mehVEArpPyk2qFUQKDDfHkBolRAlmi2GCmiVED3Lrj5WaJUQP1F42OKolRAJTPxIbuiVEAEXlMN6KJUQF70FaQZo1RAv6+k70ijVEDZyeAoeaNUQN9X0neko1RANvJm+hKkVECFQgQcQqRUQPlWEVtnpFRA1v85zJekVED5SbVPx6RUQIN+uSn4pFRAdirzaSilVEAkNdqXWaVUQDBx0baHpVRAMPDce7ilVED4DLsC5KVUQG/whclUplRA9QMx44CmVEDJ3frDqaZUQDG+VcTWplRApe9IzwenVED67evAOadUQD/4Y21mp1RAUNftxpWnVEDPxcwrxKdUQCS5/If0p1RA11QDuhyoVEA8wmnBi6hUQILix5i7qFRAUrgeheuoVEAVqTC2EKlUQAlVavZAqVRAYussjXKpVEAl+SSKo6lUQDG+VcTWqVRATlrLdwOqVED7ZLKlNKpUQDGR5TdfqlRA3bWEfNCqVEDkTulg/apUQDzaOGItq1RAWP/nMF+rVEBvgQTFj6tUQPtCta6+q1RAwdLmJeyrVEBdBonaI6xUQFCywhpUrFRAUjxBdYasVEBUMhMfsqxUQBl7HPMnrVRAeoUYwkStVEC03Reqda1UQBuz/xShrVRAu/WHU9OtVEA/fIZdAa5UQDIowJ0xrlRAGQyb7mKuVEBSWSdBkq5UQBn/PuPCrlRA1+Bqiu2uVECxjWXnWq9UQBUlDsZ1r1RAXj5s/JyvVEB4xPuExq9UQF+dY0D2r1RA58b0hCWwVEDwdT+UVbBUQFXJ7YSEsFRAqB3+mqywVEDTl7ho27BUQACJORsFsVRAslveL3mxVEBolgSoqbFUQM9r7BLVsVRAK49buQSyVEC5W384NbJUQFwgQfFjslRAwXPv4ZKyVEDnwd1Zu7JUQOOdVuTqslRA4XLPzRGzVECAFjjGO7NUQMVF2x6qs1RABzptoNOzVEBk1KIr/rNUQK+MIKgttFRAOLax7Fy0VECudFEHjLRUQPghXO65tFRA/C0Uw+i0VECK+jdCGbVUQMnqVs9JtVRA6BN5knS1VEBI6b/047VUQON9QmMTtlRA0IbpaEK2VECBHn2mcbZUQAWw7kWhtlRABbgzJte2VEAFLMxVBrdUQEQnXng4t1RATtaoh2i3VEBOVbRMmbdUQJHADLO9t1RAamKUeim4VECF85aYVLhUQLYQ5KCEuFRA9PWPmLO4VEACSG3i5LhUQD2gbMoVuVRAvZm+xEW5VEARje4gdrlUQAnRRwamuVRAmjWLKta5VEApeXWOAbpUQD0K16NwulRAD866WZa6VEDU1LK1vrpUQD/L8+DuulRAJKRbnB67VECBx8pCTrtUQOGCWY59u1RAKq4q+667VECd3x0G4LtUQJ5eKcsQvFRAkoEp8Du8VEAK3Lqbp7xUQOjewyXHvFRAobEJQ/e8VEB4rCzkJL1UQHy45LhTvVRAsW1RZoO9VEAnLPGAsr1UQGSPY/7kvVRAuIKTWhW+VEAUpgIBRb5UQB7ME/VvvlRAYfBDuNy+VEDXLKpYD79UQMIfazM7v1RAeuc9u2m/VEAft3IJmr9UQCdmvRjKv1RA/N6mP/u/VEA82jhiLcBUQEHxY8xdwFRA6Vi4v43AVECxdZZGucBUQBry4tciwVRA+grSjEXBVEDl8h/Sb8FUQLXT6VOhwVRAzFUG6NHBVEC8dJMYBMJUQHKvuZA0wlRAd8bk+mTCVEBzol2FlMJUQEkmukHHwlRA84YOlO7CVECDcV0eWMNUQKGEmbZ/w1RACnBnTK7DVECaNYsq1sNUQM7fhEIExFRAjErqBDTEVEDfnvoaXMRUQLB/xJyNxFRAR4ea+77EVEB0DMhe78RUQBzr4jYaxVRAnwJgPIPFVECggWsBtMVUQF/3Q1nlxVRAon+CixXGVEBERERERMZUQPXb14FzxlRAzuzgTaTGVEBpjNZR1cZUQMcxf3IBx1RAsqIG0zDHVEAGDf0TXMdUQI68mb7Ex1RA8g9Ir/PHVECjp9vsIshUQFRK4r9TyFRANosq1oPIVEBD0pSKs8hUQDZ+zsrjyFRAN/3ZjxTJVECYuGjbQ8lUQH+cQyx1yVRAYcsYDJvJVEC2xo1IAcpUQBqGj4gpylRAXhlBUFvKVEApV3iXi8pUQM4mreW7ylRAxWoGy+vKVEBf/4g5G8tUQFKrwnlLy1RAOY+dynzLVEDHW8FJrctUQDZh6P7Xy1RAxcn9DkXMVEDcSxqjdcxUQKPxMUWmzFRA42OKTNPMVEBkXdxGA81UQB0wImQzzVRAf/YjRWTNVECthsQ9ls1UQGdZClvGzVRANi9hR/bNVEDbdVx6Ic5UQJZbWg2JzlRAcOMpvrTOVEBBO7ok4c5UQGgdVU0Qz1RAZPnN1z/PVEBK0jWTb89UQMrLh42fz1RALZ38A9LPVECcK13UAdBUQEKIPjIw0FRAoCJ0vVrQVED/Yw5vw9BUQNNIS+Xt0FRAsOYAwRzRVEBtUWaDTNFUQMbctYR80VRAZhTLLa3RVEC6B/uJ3dFUQE13sUMP0lRAMMNs70DSVEAj2/l+atJUQHhF8L+V0lRATtGRXP7SVEAAdJgvL9NUQGbSubVf01RASBMCzI/TVECJkM1ovtNUQFhmJFXu01RA9AUaWR/UVECdeOHhUNRUQIRcvDKC1FRAxuT6ZLLUVEAtuuLP3dRUQGw7gFhJ1VRADfXOe3bVVEC+eu+Cm9VUQIOTWhXO1VRArxiIeP7VVEArerrNLtZUQC35xZJf1lRAiieozpDWVECLprOTwdZUQMqW0iDy1lRAvrnSRR3XVECrU/hGh9dUQN3yfsmz11RAtwOIleTXVEBI1B4JDthUQE9tg+062FRA15YUMmrYVEDBB5ySmdhUQPIk6ZrJ2FRAGgeEw/jYVECiMBUIKNlUQJrrNNJS2VRAzBs6ULrZVEA/QrrF6dlUQLJoOjsZ2lRA+ZMLqEraVEAH23VcetpUQIfUx1aq2lRAufyH9NvaVEBO7ncoCttUQDtjcn0y21RAyCQjZ2HbVEAt75c8i9tUQLMc+2z321RAuKrsuyLcVEAVzltiUtxUQG1OOM6A3FRA/RNcrKjcVECdS3FV2dxUQCwjCGoL3VRAb7a5MT3dVEAgTk1vbN1UQGHLGAyb3VRACqoz5MXdVEC2sexcK95UQJG79YdT3lRALVvri4TeVEBiEFg5tN5UQOehydjj3lRAazM7eBPfVEAxzt+EQt9UQIIp8Dtz31RA8LdQDKPfVEAPaqzq0t9UQJDaxMn931RAnbKteWjgVEBiJfkkiuBUQJrB8vqm4FRAASAUgdfgVEAS/53aBuFUQAWr1xo34VRAIMUTVGfhVEDSZxonmOFUQJoNMsnI4VRAYLNJa/nhVED3JnMZJOJUQJ4U03KN4lRAuS4PrL3iVECoue8r6eJUQL2c7HkR41RAQ6Uk/jvjVECPaBUQbeNUQBuz/xSh41RAv4I0Y9HjVED0N6EQAeRUQOhlFMst5FRA6VBz31fkVEA1HKnRvuRUQIl7LH3o5FRAw9MrZRnlVED3fSV9R+VUQOP5H3N45VRAR03OY6flVEB4ahts1+VUQI/sNwAI5lRA/XqY0DfmVEBHKKO3ZeZUQFLFepCL5lRAT7SrkPLmVEC+udJFHedUQG9c2RhO51RAgUbWB3/nVEBvT30NrudUQM19X0nf51RAduWzPA/oVEDBqKROQOhUQCRvpi9x6FRAWi+GcqLoVEBS6qU8zehUQG4Xmus06VRAX5AHNVbpVECXSefWfulUQHhi1ouh6VRA1fwLF8zpVEAm7Mh+A+pUQBsaPDkw6lRA+kSeJF3qVEAYWNq8hOpUQOOVEQS16lRAX2OXqN7qVECOBvAWSOtUQEErMGR161RATWcng6PrVEDjY4pM0+tUQGyNG5EC7FRAu924sjHsVEAC/haKYexUQHrHKTqS7FRALXWjosTsVEBZ+tAF9exUQCWvzjEg7VRAy5wui4ntVEA7olVAtO1UQFlUsR7k7VRAaImonAnuVEAUiRw1Oe5UQKNVQLRp7lRAFHzAKZnuVEDp6Ta7yO5UQJuXsCP77lRAAm2YjibvVEA8MevFUO9UQLiaYvu271RAp658lufvVEATk0qLDfBUQP4ORYE+8FRARC+jWG7wVECGrG71nPBUQDvnlG3N8FRAs7CnHf7wVEDGmqQML/FUQIw1SRle8VRALNmxEYjxVEDw+WGE8PFUQLWJk/sd8lRAuqC+ZU7yVECx2aS1fPJUQAPCYXyr8lRA/53aBtvyVEACnx9GCPNUQJwzorQ381RA5+sfMWfzVEAYCW05l/NUQDN9iYu281RAcnXt+Bz0VEC1/SsrTfRUQE+Srpl89FRAphKLBav0VEBfUSRy1PRUQHEwrssD9VRAJmBhrjL1VEB0sP7PYfVUQGAs+cWS9VRASZ2AJsL1VEA9wIBL7fVUQDYXkqZU9lRAE8C6F4X2VEBAReh6tfZUQGSa1pPm9lRAK0DuNRf3VEA17zhFR/dUQMdTfGl391RA1aVZs6j3VEDAIVSp2fdUQO2mgQwK+FRArJMgSTb4VECzvQMpnvhUQHbL+yXP+FRALRGVMwH5VEDre/r1MPlUQDKcWM1g+VRA+kzjBJP5VEDU1LK1vvlUQIHfmePv+VRAGNz8rB/6VEB9Oh4zUPpUQKee8tV7+lRA7ERcE+X6VEBhZNznC/tUQFB49oI8+1RAWIghTGT7VECzoB1dkvtUQEmdgCbC+1RA6UDpHuz7VECRs7CnHfxUQKzN7OBN/FRAD5TuwX78VEBEwCFUqfxUQNEdxM4U/VRAkoEp8Dv9VEAj2/l+av1UQHM2Cjab/VRAdLUV+8v9VEDo5ggG/f1UQHSoue8r/lRAhodDSVv+VEAY7IZti/5UQPSJPEm6/lRAL1kCFub+VECgBY7xTv9UQErvG197/1RAewxpZ6v/VEC1ZGhP3P9UQAva0SUJAFVAJ/QNXzkAVUCdsq15aABVQHbDtkWZAFVAjEXT2ckAVUCivHzY+ABVQPOOU3QkAVVAcZfq75IBVUALmMCtuwFVQNnO91PjAVVAkYtXRhACVUA9lj50QQJVQO6kmJZrAlVAySxoR5cCVUB4xPuExgJVQN2g45D6AlVACiYR9CoDVUB9w1dOVQNVQOhVigrCA1VAObwNV/QDVUBA3qtWJgRVQMFOxDVRBFVAVksn/4AEVUCQmLNRsARVQNe4ESngBFVAkpbK2xEFVUB04oWHQwVVQBm9LWt1BVVAJnDrbp4FVUAtpUHkBwZVQNmZQuc1BlVArN9fF1gGVUBIAY+VhQZVQEqAmlq2BlVAgLdAguIGVUC+p18PEwdVQEVPt9lFB1VAd3d3d3cHVUCIS447pQdVQOXlw8bPB1VAXbcbVzYIVUAkXTP5ZghVQDdHMOiXCFVADMAZD8kIVUDvgpuf9QhVQF4R/G8lCVVADqmPrVQJVUAz/n3GhQlVQK9fsBu2CVVAAkht4uQJVUC65+YIBgpVQJQLqEpuClVAdCSX/5AKVUCgnlHNvwpVQEgGpsDvClVAa1AhRB8LVUA3jliLTwtVQAwHQrKAC1VAzQnHGbALVUCR+thK1QtVQBeXvX8GDFVA9ZnGCSYMVUB/4YJZjgxVQFt/ODW9DFVAP0K6xekMVUDw2U0DGQ1VQA6BNkxHDVVAteiKP3cNVUDS+8bXng1VQPCiryDNDVVAH6oW/vkNVUDZh8+wKw5VQNregRRPDlVAY6QE6roOVUA8tQ226w5VQAjzRP0bD1VAPrMkQE0PVUA+MjAFfg9VQJ7iS7urD1VARkqgrtsPVUAoi+jECxBVQA1kUIA7EFVA2aGHx2sQVUAgOayDlhBVQDliLT4FEVVA0/avrDQRVUAfuqC+ZRFVQPxiyS+WEVVAY8HqtcYRVUBbBUSb9hFVQENrWGYkElVAHHxhMlUSVUALkHvNhRJVQMn64I+1ElVAEJIFTOASVUDZ0w5/TRNVQDoGZK93E1VA76zddqETVUAU8FhZyBNVQLCPTl35E1VA9qQ5nycUVUAekkddWBRVQI82jliLFFVAq1s9J70UVUAjJVDX7RRVQGGBwrMXFVVApbBlDIYVVUDRKiDatBVVQAbgjIfkFVVAZ5sb0xMWVUCPiCmRRBZVQEtm4kN2FlVAahg+IqYWVUA16iEa3RZVQGN6whIPF1VAgBY4xjsXVUALwgKFZxdVQPJBz2bVF1VAyr4rgv8XVUBvjmDQLxhVQEifaZxgGFVAYTdsW5QYVUBmxV2qvxhVQNVTvnrvGFVAgVMyEx8ZVUAy68VQThlVQGIIE1l+GVVAmDRG66gZVUDZQpCDEhpVQB3WQUtEGlVARs7CnnYaVUCawfL6phpVQMdGIF7XGlVAR0ByWAcbVUDsD6emNxtVQFqeB3dnG1VAaOVxK5cbVUBgND6myBtVQNh0Fzv0G1VAXaJ6a2AcVUD5QXBvkRxVQKnZA63AHFVAEbpere0cVUBqRa6uHR1VQJMyvGxOHVVASG3i5H4dVUDkDNjorx1VQMnlP6TfHVVAe4hGdxAeVUCjWG5pNR5VQLAwVxmgHlVA5EakgMceVUCoXw8T+h5VQPkx5q4lH1VAubIxnFgfVUDVQzS6gx9VQGIQWDm0H1VAKrZv2+QfVUBCQ/8EFyBVQAr0iTxJIFVAcclxp3QgVUCYPIvL3iBVQN8iHQv3IFVAIatbPSchVUBYazuAWCFVQHKFd7mIIVVAAEcoo7chVUB2Bci95iFVQPkUAOMZIlVAi/AJ7EQiVUDHU3xpdyJVQHjOKduaIlVARiqMLQQjVUDp+cB7NCNVQAUfcEpmI1VA4bwlJpUjVUCOvJm+xCNVQNTc95X0I1VA845TdCQkVUBD6mMrVSRVQD2w9oqBJFVAfzg1vbEkVUAe3J212yRVQGejYLNJJVVAynTVKXwlVUAPf03WqCVVQMEsxz7bJVVAPY75kwsmVUDLWh0TPCZVQHXN5JttJlVA0mcaJ5gmVUBNvtnmxiZVQEUNpmH4JlVA6lOhlCMnVUByDrHUjSdVQF1Q3zKnJ1VAwxpUCNEnVUBNT1jiAShVQP7xXrUyKFVAQoUQfWQoVUDQUTT8lChVQGZOl8XEKFVAR4/f2/QoVUBeEfxvJSlVQDXvOEVHKVVAvJ7V768pVUC00Lue1SlVQMvbEU4LKlVAvHzY+DkqVUDxMUWmaSpVQJcM7YmbKlVAOtwh2MsqVUBA4dkL8ipVQF+TNeohK1VAXXohClMrVUCG3vWsfitVQH2zzY3pK1VAMu7zBRosVUD/Np7iSyxVQLHZpLV8LFVAtfDPH60sVUCOAdnr3SxVQH4V84YOLVVAxDVRXj4tVUBR9wFIbS1VQPbRqSufLVVAYT+xO8otVUD+hQtmOS5VQLhYUYNpLlVAAxHP/5guVUAJM23/yi5VQIqjhd71LlVAY7SOqiYvVUAZ77QiVy9VQM8p25qHL1VAG+3LrLgvVUCoue8r6S9VQIE2TEcTMFVA4hYGP4QwVUAcNTmPnTBVQMo/IL3OMFVAEmvxKQAxVUA1tWytLzFVQClhpu1fMVVABgrPXpAxVUAC8bp+wTFVQKbA78zxMVVAXQaJ2iMyVUAw4FK7TDJVQG3ftsm7MlVA451W5OoyVUCmF6IwFTNVQFzJjo1AM1VAEQS1BXEzVUCg0NiEoTNVQPAr6TvSM1VA+uWm4AM0VUBWCRaHMzRVQH/2I0VkNFVA3JBZ0I40VUDJqEVX/DRVQOzywNorNVVAvMgXx1s1VUCzDHGsizVVQJx9+Ay7NVVAnfwD0us1VUA5E8C6FzZVQELCCspHNlVAviM9H3g2VUBM8GCeqDZVQP3+usDSNlVA/QPS6zw3VUAIrBxaZDdVQMYWghyUN1VA+8vuycM3VUB3LSEf9DdVQPOOU3QkOFVAYygn2lU4VUAinv8xhzhVQNfYJaq3OFVACwxZ3eo4VUDpK0gzFjlVQMsIgtqCOVVAIM1YNJ05VUC8bE44zjlVQCdGqZfyOVVAQmDl0CI6VUA0DB8RUzpVQEbrqGqCOlVAynwaCrI6VUArOKlV4TpVQL2c7HkRO1VAmCS8Kj07VUCyz3ZfqDtVQAqqM+TFO1VAMw4Ih/E7VUAw9fOmIjxVQDQMHxFTPFVARmJvT308VUAJZfS2rDxVQBIUP8bcPFVApHiC6gw9VUChX24KPj1VQHvKV+9dPVVA9C9cMMs9VUDir8ka9T1VQNpq6eQfPlVAsNFf1UY+VUBGzsKedj5VQC2yne+nPlVAdUnCq9I+VUCgw3x5AT9VQGLGAeEwP1VAJdT53WE/VUApV3iXiz9VQHMeO5X5P1VA/FI/bypAVUCPwvUoXEBVQMHqtcaNQFVAp8Mdgr1AVUBv4PsI6UBVQOWTKI4WQVVAg8DKoUVBVUCEP9ZmdkFVQN/gC5OpQVVABCSHddBBVUAg2rQ/PUJVQPRHK9FsQlVAfXG8FZxCVUDQWXncykJVQEy7qzH7QlVAgXAY3ypDVUAT1VsDW0NVQOzlZM+LQ1VAujmCQb9DVUBOIP/f60NVQH+0Es0WRFVAXnDzs35EVUDNCccZsERVQGDl0CLbRFVALCMIagtFVUCWGUmVO0VVQNUJaCJsRVVAoEefaZxFVUCdEaW9wUVVQPac9L7xRVVAcv4mFCJGVUAsSDMWTUZVQLOACdy6RlVAupA0peJGVUBqKMjiEUdVQDE6M9Q7R1VAp+1fWWlHVUC/8bVnlkdVQGPB6rXGR1VA47o8sPZHVUCLIpGjJkhVQINxXR5YSFVA3XNzBINIVUBLHIzr8khVQBERERERSVVAAh4rCzlJVUCuEiwOZ0lVQGNNUoaXSVVAZk6XxcRJVUBLJ/+A9ElVQKlV4bwlSlVArM3s4E1KVUCPkG5xekpVQLRRsNmkSlVAk6E9cRNLVUA9lj50QUtVQHfjysZwS1VABbDuRaFLVUCYH6X/0ktVQHXIzXADTFVAuFAMozNMVUBGHTAiZExVQKjGSzeJTFVA2u4L1bpMVUBJ9DKK5UxVQClPM7dVTVVAlj50QX1NVUCGUo7crU1VQNoo2GzSTVVAaQBvgQROVUALMYSJLE5VQO58PzVeTlVAa2CrBItOVUBRORPAuk5VQIJWYMjqTlVAvBqz/xRPVUCnMp+Ggk9VQCvEECayT1VAou4DkNpPVUBKVliDClBVQB3EzhQ6UFVA15YUMmpQVUD86wJLm1BVQN43vvbMUFVA7H4oq/xQVUADAUU/LVFVQA0nVjNYUVVA0NA/wcVRVUBoT9wE8lFVQEJg5dAiUlVAQtR9AFJSVUBNfMhueVJVQAGse1GoUlVABsOmu9hSVUD11sBWCVNVQPfMkgA1U1VAJ+rfCGVTVUC1IlfXjlNVQHe2Wjr5U1VA/DVZox5UVUA3jliLT1RVQLZ8N/B9VFVA9U9wsaJUVUDHsnOt0FRVQAk7st8AVVVAwgKFZy9VVUBEB0r3YFVVQHrHKTqSVVVAcoJJBL1VVUA6xFI3KlZVQOxxzJ9cVlVAT6+UZYhWVUAPE/qGr1ZVQM6I0t7gVlVAPRczrxBXVUB3bzKXQVdVQFYjzp1zV1VA9U9wsaJXVUDqEZAc1ldVQCv7rgj+V1VAHLYtymxYVUAmUwWjklhVQMHy+qbDWFVAe8VAxPNYVUDZ8yIAJVlVQIqWKdNVWVVAbNdx6YVZVUA3FakwtllVQLZv2+TdWVVAY3rCEg9aVUCDo+TVOVpVQFYrE36pWlVAi+B/K9laVUCuKvuuCFtVQPZVzBs6W1VAFetBLl5bVUBKDAIrh1tVQEqAmlq2W1VAzxx/j+dbVUASpb3BF1xVQFvbAcRKXFVApf/Sj3NcVUDF1lka5VxVQHNjesISXVVA9t4FNz9dVUBOalU4b11VQBF4TTWgXVVAwg/hcs9dVUA+cRPI/11VQAUXK2owXlVA50UASlZeVUBs13HphV5VQLNulqWwXlVAnnsPlxxfVUD+ovExRV9VQNQmTu53X1VAxjNo6J9fVUBQS4b2xF9VQBDM0eP3X1VAKUfu1h9gVUBSq8J5S2BVQIp2FVJ+YFVAB1qBIatgVUAAFaHr1WBVQHTihYdDYVVAT8Q1UV5hVUB4RfC/lWFVQI68mb7EYVVAUMqRu/VhVUAYcKldJmJVQKzfXxdYYlVAOy69EIViVUDnLTGptGJVQMp57FTmYlVA4XLPzRFjVUB6IQpTgWNVQGk1JO6xY1VAnuqQm+FjVUBZyElOE2RVQDsJkmRDZFVArjqFb3RkVUAe1FjVpWRVQMKjjSPWZFVAv4p5QwdlVUA/hMs9N2VVQIuzD59hZVVABK3AkNVlVUB2P5RV/mVVQHOdRloqZlVA1WNIO1tmVUC3pJBRi2ZVQO1kcJS8ZlVASojfOuxmVUBpOjsZHGdVQHHphShMZ1VAw08JdX5nVUBAKAKvqWdVQHeE04IXaFVAW6E1LDNoVUB2u3FlY2hVQOnsZHCUaFVAb4lJpcVoVUB7Tnrf+GhVQF0GidojaVVAiIBDqFJpVUBRnSEvfmlVQGYUyy2taVVAEosFq9dpVUC6DBK1R2pVQJaqx5B2alVAOXr83qZqVUASiwWr12pVQLvyWZ4Ha1VAvwmFCDhrVUDKw0KtaWtVQOAoeXWOa1VAR4ea+75rVUCkqgmi7mtVQHwnZr0YbFVA+BkXDoRsVUCqqqqqqmxVQBwyC9rRbFVAzMmeFwFtVUAp7Q2+MG1VQMOBkCxgbVVAIKX/0o9tVUChqcRiwW1VQPenZ1TzbVVAHOviNhpuVUA4fOVURW5VQA6RwAyzblVA3WYX+eJuVUBzY3rCEm9VQK2wBhVCb1VAo+nsZHBvVUA0TjCJoG9VQG6bvNvPb1VAuEjHwv1vVUAIpNd5LnBVQCxlGeJYcFVA5q4l5INwVUCiKNAn8nBVQD+ZbCkNcVVAF58CYDxxVUAHvo+QbnFVQBP6hq+ccVVAszGcWM1xVUBcpGPh/nFVQAik13kuclVAE9VbA1tyVUAgHMa3inJVQIuJzce1clVARHbL+yVzVUC5lUvQTHNVQMTGz1l5c1VA9U9wsaJzVUAZHCWvznNVQJ6tlk7+c1VAUt1JMS10VUBt94VqXXRVQEYIjzaOdFVAchb2tMN0VUBUzgSw7nRVQFyXB9ZedVVAKJtyhXd1VUCO+ZMLqHVVQMzpspjYdVVA8T6hsQl2VUBKyvCyOXZVQLTAMd5pdlVAgP5oJZp2VUAtCVBTy3ZVQDIge737dlVAEEBqEyd3VUCBgKKflndVQKptsF3Hd1VAkVGLrvh3VUCiMBUIKHhVQALhML5VeFVAC5B7zYV4VUChjN6WtXhVQAj2crLneFVAxmDYdBd5VUCWNi9hR3lVQLVfUSRyeVVAP7mAquR5VUAAAAAAAHpVQOfj2lAxelVAfuuwr2J6VUDseRGAknpVQPczzyTEelVAxPM/5vB6VUCzB1qBIXtVQD08XltSe1VA/z7jwoF7VUCRD3o2q3tVQOEGfH4YfFVAEWjDdDR8VUDGounsZHxVQHlQY1WXfFVAw/1tPMV8VUATWX7z9XxVQJn1YignfVVA2We7L1R9VUB1B7EzhX1VQEboerW2fVVAgS4HZ919VUCJ9wmNTX5VQCkvHzZ+flVAMdP2r6x+VUDf6FBz335VQLp7k7kMf1VAk4ychT1/VUBEL6NYbn9VQLTIdr6ff1VA8riVS9B/VUDnb0IhAoBVQGpilHopgFVAp2xrHpqAVUArajANw4BVQNQrZRnigFVAIfrIwBSBVUBTjtytP4FVQNHoDmJngVVA/GLJL5aBVUBIG0esxYFVQDKXQaL2gVVA35a1OiaCVUACWPeiUIJVQOtrcDXFglVA8PlhhPCCVUARLvfcHINVQA6MqeFIg1VABtACx3iDVUB/pIgMq4NVQMpcBonag1VAL7C0eQmEVUAZLK9vOoRVQF207aFqhFVAGAltOZeEVUBmc8JxBoVVQPVKWYY4hVVA+c3XP2KFVUAwjreCk4VVQAqqM+TFhVVAISxQePaFVUAlQ3viJoZVQBVXlX1XhlVAMFTr6nuGVUCRD3o2q4ZVQOZ5cHfWhlVAeQ5S3UmHVUAuSXhVeodVQJWnmduqh1VAGkR+ENyHVUAJWJirDIhVQLv6nn49iFVAQJeDs26IVUBdvDKCoIhVQIAGrgXQiFVAR6zFpwCJVUBB6R7sJ4lVQOA67KuYiVVAr1+wG7aJVUCutmJ/2YlVQJ3KfBoKilVAXUBVcjuKVUAofoy5a4pVQJukDC+bilVA+Md71cqKVUAKsnjE+4pVQKbINK0ni1VAGWZ7B1KLVUCmTFedwotVQLWBThvoi1VAJBsigRmMVUDAJmvUQ4xVQPBDuNxzjFVAcT0K16OMVUBhXJcH1oxVQA1cC6AFjVVA6gQ0ETaNVUBDkIMSZo1VQCngsbKQjVVA/GfgWgCOVUA+P4wQHo5VQGyyRj1EjlVA5YbMgnaOVUDdrT+cmo5VQFoa5YbMjlVAUV4+bPyOVUB2syyFLY9VQOxxzJ9cj1VAIjKs4o2PVUAId2ftto9VQC5zuiwmkFVA2dMOf02QVUBqOFKjfZBVQHTnnLKtkFVAO420VN6QVUB6fdPhDpFVQEIuXhlBkVVAX8rTzG2RVUAvoCq5nZFVQIzODPXOkVVArPcuuPmRVUALwgKFZ5JVQNbFbTSAklVA27+y0qSSVUCObSw715JVQOwHYsYBk1VA1XjpJjGTVUCICX3DV5NVQCc2H9eGk1VAf8Fu2LaTVUBFXBPl5ZNVQAfWXjEQlFVAnvfspoGUVUDTrFlUsZRVQN1mF/nilFVAOX8TChGVVUD8byU7NpVVQCfq3whllVVABIiV5JOVVUC1Kpy3xJVVQIJzRpT2lVVAZTbIJCOWVUBcUsioRZZVQEr3YD+xllVAgZpattaWVUC5NlSM85ZVQHQUDT8ll1VAipYp01WXVUA3lp1rhZdVQKGM3pa1l1VApqMJAeaXVUDyZvoSF5hVQN3i9AhImFVAaybfbHOYVUCAt0CC4phVQMQtDH4ImVVA5M30JS6ZVUBt94VqXZlVQPDp18OEmVVAPzp15bOZVUDgaort25lVQOeMKO0NmlVAYz3IxSuaVUDjNhrAW5pVQB0G4IyHmlVAyip/0fiaVUBhu45LL5tVQAL+Fophm1VAjr/Hc5CbVUCYbhKDwJtVQEgGpsDvm1VAxGfYFSCcVUAtU6arTpxVQDwcStp6nFVArkLKT6qcVUCvLSlk1JxVQKmskyBJnVVAj5BucXqdVUDg634oq51VQEKygAncnVVAlqWwZQyeVUDrmODBPJ5VQFWPIe1snlVAbf/KSpOeVUDB8vqmw55VQNTc95X0nlVAHHQcUh+fVUBU22C7jp9VQICv+6Gsn1VAu37BbtifVUBGKowtBKBVQKuIrbM0oFVAT1jiAWWgVUA61Nz3laBVQPEZdgXIoFVAtJPBUfKgVUBow3Q0IaFVQCBj7lpCoVVA4X8r2bGhVUBo7bYLzaFVQIUA86P0oVVAnPnVHCCiVUDlJKeJUaJVQOSYP7mAolVAK7mdkLCiVUBBO7ok4aJVQE13sUMPo1VAgiwe8T6jVUA53gpOaqNVQACpTZzco1VAXtcv2A2kVUA36DikPqRVQCuUcuRupFVA/gHpdZ6kVUDLSpNS0KRVQIm1+BQApVVApsg0rSelVUCG/gkuVqVVQFI8QXWGpVVAFsH/VrKlVUBmQTu6JKZVQBlmewdSplVALFB49oKmVUCKfloytKZVQFW8kXnkplVAO5X5NBSnVUDwzx+tRKdVQEXDTwl1p1VAZHWr56SnVUAN6HJw1qdVQNFPS4b2p1VAq/xF42OoVUDvVSsTfqhVQDwHqe6kqFVAhTJ6W9aoVUA6baDTBqlVQKDLwVk3qVVAUm7ILGipVUCsD/5Ym6lVQIyxJinDqVVAg/V/DvOpVUAX0YkXHqpVQEgTAsyPqlVASJINkcCqVUAcAIQi8KpVQDJ3LSEfq1VAKbuGBk+rVUCG3vWsfqtVQBEBh1Clq1VAcseIMdarVUD78Bl2BaxVQPtksqU0rFVAEl6VHmCsVUCPW7kEzaxVQIqGnxLqrFVAgCvZsRGtVUApnqA6Q61VQNMQaMN0rVVAhaH7X5utVUCXi/hOzK1VQORO6WD9rVVAdrMshS2uVUDrZlkKW65VQAuQe82FrlVA24r9ZfeuVUDzF42PKa9VQNRY1aVZr1VAoaF/gouvVUB+Sqjzu69VQDSFzmvsr1VA5BxiqRuwVUBWQ+IeS7BVQL2hA6V7sFVA7r5QrauwVUB/j+cg1bBVQPj062FCsVVAFODOmFyxVUBh/Z/DfLFVQBkxxpqksVVAncI3OtSxVUDclXD7+LFVQNwJCSsoslVAJ8KGp1eyVUCNIKgtiLJVQNNABgW4slVA4wmqM+SyVUCw7kWhUrNVQNM4wSSCs1VAseHplbKzVUCOihIH47NVQFQltxMStFVAs0EmGTm0VUAINVZ1abRVQIk5GwWbtFVApFNXPsu0VUBjyS+W/LRVQB4ery0ptVVAHy457pS1VUDA54cRwrVVQFRXPsvztVVA95LGaB22VUCbYvu2TbZVQPPtSrh9tlVAZhTLLa22VUB4/scc3rZVQOP0CEgOt1VAilxdOz63VUCwKBI5ardVQMOuALnXt1VA1pj9pwi4VUBPbYPtOrhVQIi6D0BquFVAJFoFRJu4VUBaGuWGzLhVQLY9VC38uFVA2YfPsCu5VUBeGUFQW7lVQHam0HmNuVVAlLkMErW5VUDE+4TGJrpVQI2sD/5YulVAS/qO9Hy6VUBI4XoUrrpVQLVkaE/culVANV66SQy7VUBmewdSPLtVQJswdP9ru1VAH8Llnpu7VUC2vkhoy7tVQBRk8Yj3u1VAVgbo0We8VUCoT4VSjrxVQFZl3xXBvFVAYqHWNO+8VUCy3wAgFL1VQP6XfpxDvVVAaybfbHO9VUCzRj1Eo71VQF9RJHLUvVVAIsD8KP29VUCsa8fnKL5VQJT2Bl+YvlVAEmOsScq+VUDSxhFr8b5VQJO+Iz0fv1VAECvJJ1G/VUCkEUbGfb9VQBvQ5eCsv1VAUZDFI96/VUBe1y/YDcBVQPEpAMYzwFVAZtK5tV/AVUB/j+cg1cBVQKXvSM8HwVVAFwtWrzXBVUBHKKO3ZcFVQOVURcuUwVVAXR5Ye8XBVUBfnWNA9sFVQPakOZ8nwlVAmn/hglnCVUChoX+Ci8JVQMoFVCW3wlVAW4RPYCfDVUBAyQprUMNVQF9egH10w1VAL6AquZ3DVUAA+LofysNVQMw18mb6w1VAmwtJUyrEVUBnSYCaWsRVQK1p3nGKxFVAL26jAbzEVUBtyhXe5cRVQDu6JOFVxVVAkCQbIoHFVUCSkbOwp8VVQMzpspjYxVVAqpLbCQnGVUBKyvCyOcZVQPe38RRfxlVATKshcY/GVUAyj/zBwMZVQMTzP+bwxlVAimaLkRLHVUD5JIqjhcdVQPDUNtiux1VAqRPQRNjHVUD5buD7CMhVQKPEwbguyFVA7N0f71XIVUAYY01ShshVQC/laea2yFVAegk7st/IVUBsqgFdDslVQGkItGE6yVVA89ipzKfJVUDWB3+szclVQOjmCAb9yVVAsYUgByXKVUCovgZXU8pVQGUe+YOBylVAayOxt6fKVUCYqN4a2MpVQH2BRtYHy1VAaort2zbLVUDW9/TrYctVQApbxmDYy1VAHp+jaPjLVUDeAgmKH8xVQLcTElZQzFVAKjqSy3/MVUAaPDkwpsxVQOoRkBzWzFVABCFZwATNVUAkVe4YMc1VQMUDyqZczVVAHxFTIonNVUAPVQv//M1VQIqryr4rzlVABg39E1zOVUCeFNNyjc5VQKjOkBe/zlVAS5NS0O3OVUB8sJ/YHc9VQLJwfxtPz1VAGM+goX/PVUCNCwdCss9VQGsr9pfdz1VAv8yKu1TQVUAgiBkHhNBVQDYKNpu00FVA4f42nuLQVUDI4hHvE9FVQJqxaDo70VVANEbrqGrRVUA3RzDol9FVQD1eW1LI0VVAPd1mF/nRVUAglXUSJNJVQIk5GwWb0lVA8IXJVMHSVUCPHr+36dJVQIsFq9ca01VA5JD62ErTVUAe6fnAe9NVQHNT8AGn01VAwqONI9bTVUByOyFhBdRVQEMc6+I21FVAJ1YzWF7UVUDQdl+o1tRVQIMH80T91FVA6lOhlCPVVUAMk6mCUdVVQCtFBWGB1VVAdv2C3bDVVUCZR/5g4NVVQNzPPJMQ1lVArKWTf0DWVUC+j5BucdZVQD8AqU2c1lVAH8f8yQXXVUAKCSsoH9dVQNkt75c811VAKneMGGPXVUAktOVcitdVQAyGTXex11VAsVWCxeHXVUCcvwmFCNhVQAtOalU42FVAOmBEyGbYVUAZgDMekthVQFScffgM2VVAqY+tVD3ZVUBxNcX2bdlVQK8l5IOe2VVARSJHTc7ZVUBobMLQ/dlVQEF9y5wu2lVA8hRf2l3aVUBU22C7jtpVQDu/OwzA2lVA3wU3P+vaVUAue/8MXNtVQAROyUx821VARtYHf6zbVUBzWzXi3NtVQKgQoo8M3FVAzGWQqD3cVUCcO+eUbdxVQC+rnU6f3FVAOVroXc/cVUA0NmHo/txVQJ0ESbIh3VVAfeiC+pbdVUDbFmU2yN1VQMHvzPH33VVASRleNifeVUDciBTwWN5VQD9PFtGJ3lVAnH34DLveVUCF4wzY6N5VQOxMofMa31VAXOZ0WUzfVUBUoZQjd99VQMLdWbvt31VAceFASBbgVUA9lj50QeBVQNk1NHhy4FVA0HmNXaLgVUDOTgZHyeBVQLQnbgL54FVAmgDWvSjhVUBCaCqxWOFVQB8RUyKJ4VVAWuAY77ThVUAQQGoTJ+JVQN5Zu+1C4lVAAiZw627iVUBuJySsoOJVQEGKJ6jO4lVA6vzuMADjVUCr9AADLuNVQFyXB9Ze41VAPdhP7I7jVUDEdDQhwONVQJTBUfLq41VAo68gzVjkVUBu7VcUieRVQDaTb7a55FVA4pLjTunkVUAPGBGyGeVVQMVdqr9L5VVA81meB3flVUCczGWQqOVVQCT29tTX5VVAIuhVigrmVUC1w1+TNeZVQP4ez0Gq5lVAJH8w8NzmVUAN5US7CudVQHbbheY651VA5WnmtmrnVUAaH1NkmudVQOHEagbL51VA3jSQQQHoVUAMPPceLuhVQK4Auddc6FVA11ka5YboVUAfqhb++ehVQMdrSwoZ6VVAcd4Sk0rpVUDKdNUpfOlVQFzZGE6s6VVA1KIr/tzpVUDg3iIdC+pVQM1Iqtwx6lVA1vf062HqVUDZA63AkOpVQK3ddqG56lVAesISDyjrVUCs318XWOtVQCS05VyK61VAce6cU7brVUBVvJF55OtVQCH6yMAU7FVAzfk8WUTsVUDBsOkuduxVQPPYqcyn7FVAClvGYNjsVUCzOeE4A+1VQODjOUh17VVARIZVvJHtVUDEzhQ6r+1VQPBTQp3f7VVAoEy2lAbuVUBS+i/9OO5VQC+jWG5p7lVAtT89o5ruVUCjSOSoye5VQOloQoD57lVAihceDiXvVUCj1Et5mu9VQHzlVEXL71VAkNrEyf3vVUDTYgP8LfBVQHcyOEpe8FVA/M4cf4/wVUDgCGX0tvBVQFQ6WP/n8FVACXV+dxjxVUAbVAjRR/FVQArf6FBz8VVAPSzUmubxVUAJO7LfAPJVQAcinv8x8lVAnil0XmPyVUDr99cFlvJVQNwE8v+98lVAJrL85uvyVUCQqD0SHPNVQM+YXJ9M81VAaS3fDXzzVUDHxxSZpvNVQL0lJpUW9FVAS/JJFEf0VUDwQ7jcc/RVQA1pZ6ul9FVA6hGQHNb0VUBtmI4mBPVVQJaFnOQ09VVAqG+Z02X1VUBMP84hlvVVQL5lTpfF9VVAY6xJyvD1VUDYDdsWZfZVQHzdD2WV9lVAIK1Es8X2VUD3strp9PZVQBdlNsgk91VAxV2qv0v3VUDeYQDOePdVQB7UWNWl91VAMb5VxNb3VUA6baDTBvhVQOfj2lAx+FVAJHfrD6f4VUDO1z9izvhVQHdKB+v/+FVAAvbRqSv5VUBjvNOKXPlVQLMMcayL+VVA0r7Mirv5VUA0hc5r7PlVQEZvy1od+lVAfCQ4CE36VUCuOoVvdPpVQOUfkF7n+lVAg0wychb7VUAg95oLSftVQBvTE5Z4+1VAIN/Laqf7VUASiwWr1/tVQAGUrLAG/FVAgIKLFTX8VUDT1psrXfxVQBRUZ8iL/FVAJqq3Brb8VUClRvsyK/1VQDR4cmBM/VVAo2CzSWv9VUDCfmJ3lP1VQABvgQTF/VVAAu6MyfX9VUCoSm4nJP5VQPmlft5U/lVAL2ZeIYb+VUBfg6sptv5VQOkudujh/lVAw2SqYFT/VUCbakCXg/9VQCOU0duy/1VAfyOU0dv/VUBhZNznCwBWQM/yPLg7AFZAmzB0/2sAVkAyLdfImwBWQFaCxeHMAFZA0uP3Nv0AVkD2pDmfJwFWQFcZoEefAVZAjdl/itABVkC/AUAoAgJWQJyqaJkyAlZAvFzEd2ICVkDfpj/7kQJWQFPYMgbDAlZAuRluwOcCVkC6mHmFGANWQPiImBJJA1ZA+n5qvHQDVkBJ9DKK5QNWQC7NmkUVBFZAYuPnrDwEVkBBDkqYaQRWQOA67KuYBFZASjEt18gEVkAtfeiC+gRWQNfdPNUhBVZAhOgjA1MFVkBvZB75gwVWQMA29ZSvBVZArOKNzCMGVkCQpQ9dUAZWQOXyH9JvBlZA6glLPKAGVkCct8Sk0gZWQDa4mmL7BlZAvda4ESkHVkDD7eN7WQdWQBCfYVeAB1ZAHebLC7AHVkAnDN3/2gdWQNnTDn9NCFZAB1I8QXUIVkBftTLhlwhWQJoNMsnICFZAGGhkffAIVkDKgTE1HAlWQB51YZFMCVZA71UrE34JVkAUtozBsAlWQK00KQXdCVZA7JsOdwgKVkBwUqvCeQpWQODrfiirClZAXs/q99cKVkArGJXUCQtWQHS6LCY2C1ZATcs18mYLVkC7WZbClgtWQCCtRLPFC1ZAQ/e/NvULVkCKFx4OJQxWQKtLs2ZRDFZALYAWOMYMVkAA4xk09AxWQH0y2VIaDVZASXAQmkoNVkATo9RLeQ1WQNtI7O2pDVZAP5EnSdcNVkACnx9GCA5WQBWUj8o6DlZA9slkS2kOVkBvCj7glA5WQBH0KkUFD1ZAet/42jMPVkBcIEHxYw9WQLETcU2UD1ZAQni0ccQPVkCp1tX39A9WQIeKcf4mEFZAWGs7gFgQVkDr2vE5ihBWQBTI//e6EFZAwkmtCucQVkDt6JKEVxFWQL6PkG5xEVZASzRbjJQRVkAntSqctxFWQJZDi2znEVZAkip3jBgSVkAg95oLSRJWQHb1Pf16ElZArSzkJKcSVkAKW8Zg2BJWQHEwrssDE1ZAoFxAVXITVkDQeY1dohNWQNL4mCLTE1ZAtbsas/8TVkDv9jPPJBRWQIFbd/NUFFZA8OnXw4QUVkBSsNmktRRWQKIL6lvmFFZAPqvfXxcVVkDYtiizQRVWQOQM2OivFVZATw6MqeEVVkBqKMjiERZWQO/ErBdDFlZAahD5QXAWVkAsHvE+oRZWQKXydoTTFlZA9DehEAEXVkABfwvFMBdWQGhfZsVdF1ZA6s9+pIgXVkDfIh0L9xdWQC23tBoSGFZAMR1NCDAYVkBGAEpWWBhWQPDM8fd4GFZAtMh2vp8YVkDSb18HzhhWQIB6RjX/GFZA86s5QDAZVkDMvEIMYRlWQMWC1WuNGVZA2qfjMQMaVkBRZoNMMhpWQB6vLSlkGlZANCbXJ5MaVkD2KFyPwhpWQKIo0CfyGlZAbnF6BCQbVkDpvMYuURtWQGIIE1l+G1ZArssDa68bVkDbx/ey2htWQIRUd1JMHFZA2qz6XG0cVkAyLdfImxxWQJXhZXPCHFZAxf6ye/IcVkAC5F5zIR1WQFM/bypSHVZA8naE04IdVkAgByXMtB1WQG3KFd7lHVZAZpCoPRIeVkANpmH4iB5WQMiDGqu6HlZA3vrDqekeVkDJdr6fGh9WQDNt/8pKH1ZAEBYoPHsfVkC05VyKqx9WQIzr8sDaH1ZAVx63cgkgVkA0x9/jOSBWQCKzoB1dIFZAMaFv+MogVkA5vA1X9CBWQN4CCYofIVZAAMtKk1IhVkBzaJHtfCFWQBdDOdGuIVZAYOXQItshVkAwuycPCyJWQOBSu0w6IlZADuNbRWwiVkD51RwgmCJWQHLEWnwKI1ZAurVfUSQjVkD1GNLOViNWQLHZpLV8I1ZAf6SIDKsjVkADNvqr2iNWQIMvTKYKJFZAp3nHKTokVkBqh78mayRWQHRBfcucJFZAdjdPdcgkVkD7gZhxQCVWQD0K16NwJVZAFxvgb6ElVkAcMgva0SVWQK+hwZMDJlZARQp4rCwmVkCWcPv4XiZWQHexQw+PJlZAnAYyKMAmVkD+zDMJ8SZWQNKxcH8bJ1ZAej7wHo0nVkAxSr2UpydWQHEoaevNJ1ZAVX+XLAEoVkB7Vr+/LihWQBFTIoleKFZAcxkkao8oVkA/V1uxvyhWQOtWz0nvKFZAB1+YTBUpVkDpFqdHQClWQA+cM6K0KVZAB+v/HOYpVkDc7CJfHCpWQOaJ+jdCKlZA4+esPG4qVkB9fC+rnSpWQFsIclDCKlZA2HQXO/QqVkAKndfYJStWQP5IERlWK1ZAVksn/4ArVkAU0ETY8CtWQJxwnAEbLFZASXAQmkosVkDiZXPCcSxWQA9iZwqdLFZApV7K08wsVkC1uxqz/yxWQH3Y+DkrLVZAQObwNlwtVkDW4lMAjC1WQEKqOymmLVZAA8d4pxUuVkC3RZkNMi5WQIPdsG1RLlZAK0UFYYEuVkAMhk13sS5WQLGvYt7QLlZAN0xHEwIvVkCyogbTMC9WQKZZs6hiL1ZAzDDbO5AvVkBRORPAui9WQAF/C8UwMFZAK1qmTFcwVkBy1OQ8djBWQGHo/temMFZAtlL1GNIwVkDnb0IhAjFWQCrbmocmMVZAOC140VcxVkAxfERMiTFWQM4mreW7MVZAnGhXIeUxVkCAbeopXzJWQME5I0p7MlZAQ7WuvqcyVkDwv5Xs2DJWQKqS2wkJM1ZA499nXDgzVkBRY1WXZjNWQF2qv0uWM1ZA2/l+arwzVkCNnIU97TNWQKgtiFsYNFZAIbByaJE0VkD9MEJ4tDRWQOYNHSjdNFZAduWzPA81VkB6aDL2ODVWQCdWM1heNVZAYpy/CYU1VkAWOMY7rTVWQDfYruPSNVZAlQaRHwQ2VkDhQEgWMDZWQMQ6aImoNlZAKZmJD9k2VkCwNW5ECjdWQFs14tw5N1ZADM11Gmk3VkADEc//mDdWQNd+RZHIN1ZANa0nzfk3VkDMtP0rKzhWQH5XBP9bOFZAXgSgZIU4VkBr+W7g+zhWQFhGENQWOVZAT/a8CEA5VkDsgz/WZjlWQHhF8L+VOVZA0NA/wcU5VkAyl0Gi9jlWQE2xfdsmOlZA+BHSLU46VkB/nEMsdTpWQHM2CjabOlZAon+CixU7VkD3fSV9RztWQODjOUh1O1ZARkJbzqU7VkCxQw+P1ztWQPTLTcEHPFZAPPceLjk8VkBuH9/LajxWQOhqK/aXPFZAq3gj88g8VkA9VC388zxWQO4t0rFwPVZAHUCsJJ89VkDdtYR80D1WQBcOhGQBPlZALpCg+DE+VkDwkiVgYT5WQLOgHV2SPlZAKl+9d8E+VkA7PkfR8D5WQIqO5PIfP1ZApRR0e0k/VkDub+Mpvj9WQB9wSmbiP1ZAPIOG/glAVkCoZ1TzL0BWQEkhoxZdQFZAnhTTco1AVkDQH61Es0BWQEjpv/TjQFZA21h2rhVBVkBtvbnSRUFWQOb9kmdxQVZA3e9QFOhBVkAAOsyXF0JWQKihIItHQlZA5YbMgnZCVkB36w+npkJWQI5tLDvXQlZA+WNtZgdDVkAhUXskOENWQPlWEVtnQ1ZAN9BpA51DVkDPMSB7vUNWQFBbELcwRFZAUdobfGFEVkCrU/hGh0RWQHHunFO2RFZA3OTdfuZEVkDyZvoSF0VWQKihIItHRVZApYgMq3hFVkDAokjkqEVWQFafq63YRVZALhwIyQJGVkBXLkEzdUZWQLhglmOfRlZAPfIHA89GVkA/fIZdAUdWQKv0AAMuR1ZA3f/a1FNHVkA9J71vfEdWQApwZ0yuR1ZAste7P95HVkA/mWwpDUhWQIsikaMmSFZA1X0AUptIVkA63CHYy0hWQJNncdn7SFZATTq39itJVkB7QR7UWElWQEPnNXaJSVZAXwzlRLtJVkDaYqQE6klWQDOCoLYgSlZAKsb5m1BKVkD7Ehdte0pWQB0L97fxSlZAQ05ymhhLVkBxwSzHPktWQIABl9plS1ZA0ko0W4xLVkDx/I85vEtWQCay/ObrS1ZA8G36sx9MVkBKe4MvTExWQLHZpLV8TFZAzGqn06dMVkCqOPvwGU1WQFnQji5JTVZAh2AvJ3tNVkAx0/avrE1WQLoH+4ndTVZAY3rCEg9OVkC9EIWpQE5WQCyf5XlwTlZALB7xPqFOVkAvHzZ+zk5WQD3dZhf5TlZA92iEkXFPVkCCbi9pjE9WQAJogWO8T1ZAMm/oQOlPVkBL6gQ0EVBWQK2wBhVCUFZA0QX1LXNQVkDfV9J3pFBWQNWFRTLRUFZAj1iLTwFRVkALMYSJLFFWQOyz3ReqUVZAn2FXgNxRVkBKVliDClJWQNYMltc3UlZAmBqO1GhSVkDpdZ6LmVJWQKNI5KjJUlZA63O1FftSVkC6SQwCK1NWQEDm8DZcU1ZAGW7A54dTVkAWb2Qe+VNWQJEfBPcWVFZArUSzxUhUVkARje4gdlRWQEO1rr6nVFZAxqcAGM9UVkDjujyw9lRWQIPVa40bVVZAehnFcktVVkBGV/y5e1VWQGHo/temVVZAoQi8phpWVkAGXGqXSVZWQOWGzIJ2VlZAimF0ZqhWVkBdxHdi1lZWQArPXpAHV1ZA499nXDhXVkCEmbZ/ZVdWQBf++aOVV1ZAhpfNCcdXVkCw+6Gs8ldWQOfrHzFnWFZA5ssLsI9YVkDEzhQ6r1hWQNQOf03WWFZAvQhAyQpZVkC/kr4jPVlWQPphhPBoWVZAyjfb3JhZVkDHlY3hxFlWQOMxA5XxWVZADZbXNx1aVkBNtpQGkVpWQMfvbfqzWlZAtwOIleRaVkBuwOeHEVtWQEfR8FNCW1ZASVtvrnRbVkBjajhSo1tWQBsnmETQW1ZA/mDgufdbVkAV4/xNKFxWQHkrOKlVXFZATUcTAsxcVkAiwPwo/VxWQBDUFsQtXVZAvNOKXF1dVkAwBX5njl1WQMykc2u/XVZAGEt+seRdVkBP+eq9C15WQArXo3A9XlZAB76PkG5eVkD3SHAQml5WQCFmHBAOX1ZATetJcz5fVkAtIR/0bF9WQMe1oWKcX1ZA5cjd+sNfVkCKhp8S6l9WQHJYBy0RYFZAz3t200BgVkA5crf+cGBWQG4nJKygYFZAulZoDctgVkDPe3bTQGFWQGobbNdxYVZAMi3XyJthVkAgQfFjzGFWQPvTM6r5YVZASaKXUSxiVkCHddASUWJWQHLxygiCYlZAZZ0ESbJiVkB8HyHd4mJWQHp90+EOY1ZA3GgAb4FjVkDqgBEhm2NWQHXAiJDNY1ZAwWaT1vJjVkCW33z9I2RWQLinvgZXZFZAthDkoIRkVkAC1NSytWRWQGSa1pPmZFZAtfXmShdlVkBZPOJ9QmVWQD86deWzZVZA6Kw8buVlVkCEV6UHGGZWQDRbjJRAZlZAzGJi83FmVkCUf0B6nWZWQCv+3L3JZlZAb4Yb8PlmVkCBUzITH2dWQC1TpqtOZ1ZA+Qek13lnVkA4sZrB8mdWQOSItfgUaFZA3NeBc0ZoVkDg4zlIdWhWQIzjreCkaFZAvgtuftZoVkBrFlWsB2lWQIm9PfU1aVZACbeP72VpVkD4yqmKlmlWQALxun7BaVZAIVF7JDhqVkAdh9THVmpWQJdJ59Z+alZAckh9bKVqVkBk6UMX1GpWQJ9BQ/8Ea1ZAy8ZwYjVrVkDsgz/WZmtWQPxiyS+Wa1ZAyKAAd8ZrVkDKltIg8mtWQCoAxjNobFZA9T39ephsVkANrqbYvmxWQCtKHIzrbFZAfz1M6BttVkAKYN2LQm1WQPXb14FzbVZAgP5oJZptVkAMwBkPyW1WQPvTM6r5bVZA4xHvExpuVkBzGSRqj25WQHwX3PysblZAb6YvcdFuVkAJO7LfAG9WQNHgyYExb1ZAAv4WimFvVkCMPY75k29WQGCrBIvDb1ZAFuYqA/RvVkDY6K9qI3BWQDaD5fVNcFZAQW1B3MJwVkAJAeZH6XBWQCRqjwQHcVZA1QEjQjZxVkD97jAAZ3FWQByhjN6WcVZA7YFWYMhxVkCDfrkp+HFWQLzLRXwnclZAQmgqsVhyVkDcaABvgXJWQEuwOJz5clZAD4/XlhRzVkCaRRXrQXNWQC61y6Rzc1ZAaYSRcZ9zVkCxr2Le0HNWQL3rWf3+c1ZA90NZ5S90VkDjv1PbYHRWQFbxRuaRdFZAxfZtm7x0VkDes5sGMnVWQEYASlZYdVZAORjX5YF1VkDP91PjpXVWQDVWdWnWdVZAMj1hiQd2VkD0P+bwNnZWQMGIkM1odlZAmpmZmZl2VkBpb/CFyXZWQMfsP0XodlZAX63tAGJ3VkBpSsXZh3dWQFAuoCq5d1ZAVUXLlOl3VkDZ1jw0GXhWQOzAOSNKeFZAwkSW33x4VkADwmF8q3hWQJ9hV4DceFZAZwdvIg15VkAXFslEN3lWQO/Jw0KteVZAt11ortN5VkC30QDeAnpWQBLNFiMlelZADZ4cGFN6VkCCvZzseXpWQCHqPgCpelZAbIXWsMx6VkAq8Dtz/HpWQKrpjW0se1ZA232hWld7VkDsCpB7zXtWQEkRGVbxe1ZAIiIiIiJ8VkBt2p+eUXxWQO3T8ZiBfFZAcdG2h6p8VkDM6bKY2HxWQIxfi/AJfVZAXUBVcjt9VkBhTA1Han1WQC0BC3OVfVZA6hnV/At+VkDl2Ge7L35WQAoRcAhVflZAlTMBrHt+VkBLbickrH5WQJ9hV4DcflZAQKTfvg5/VkA23cUOPX9WQMhBCTNtf1ZAf4eiQJ9/VkACevSZxn9WQDVm/ylCgFZAVY8h7WyAVkCxijcyj4BWQE8GR8mrgFZAPv16mNCAVkCaFXep/oBWQI2kyh0jgVZAv8yKu1SBVkBxb5GOhYFWQJlcn0y2gVZAJ6CJsOGBVkC93v3xXoJWQAX/W8mOglZA1d8lS8CCVkBt5/up8YJWQO3gTaQhg1ZA6sc5xFKDVkAy8woxhINWQK5UPYa0g1ZAmNA3fOWDVkCjivUgF4RWQGPuWkI+hFZAGWuSMryEVkBOIP/f64RWQB32VcwbhVZAwcWKGkyFVkBomTJddYVWQGuad5yihVZAbST29tSFVkBPSFhB+YVWQMupipYphlZAa+GfP1qGVkCcdbMshYZWQEgjjIz7hlZArmTHRiCHVkBo/UDMOIdWQEKFEH1kh1ZAzrIUtoyHVkAtz4O7s4dWQLb4FADjh1ZAh9negRSIVkBljXqIRohWQJ3Pk0V0iFZAf4eiQJ+IVkBSLLe0GolWQHoZxXJLiVZAWLB6rXGJVkCg0NiEoYlWQE9obMLQiVZAHz7DrgCKVkBhu45LL4pWQIuzD59hilZA+kzjBJOKVkAB5kfpv4pWQDcSe3vqilZATUL81mGLVkAlv1jyi4tWQOOVEQS1i1ZA/7rA0uaLVkD8oazyF4xWQKMJAeZHjFZAyF7v/niMVkCRD3o2q4xWQC88HErajFZAuGWtjgmNVkD7ZLKlNI1WQAJAKAKvjVZAlp1rhdaNVkDzGrtE9Y1WQH1ETIkkjlZAxG8d9lWOVkDBVgkWh45WQF32/hm4jlZAtYFOG+iOVkCxXcelF49WQKouzZpFj1ZA4FoALXCPVkDH7D9F6I9WQL5/Bq4FkFZA7ZHgIDSQVkCNyfXJZJBWQKJAn8iTkFZA4TC+VcSQVkA5vA1X9JBWQN33lfQdkVZAWmQ730+RVkC2fDfwfZFWQAZPDoypkVZAzsrjVi6SVkDzH9JvX5JWQCZTBaOSklZAANvUU76SVkBhlmOf7ZJWQBI5anIek1ZAV9eOz1GTVkB2ieqtgZNWQLV5CTuyk1ZAu5unOuSTVkDqGdX8C5RWQEiKyLCKlFZAeH+8V62UVkCl8naE05RWQMpHZZ0ElVZA98ySADWVVkB1kxgEVpVWQGrBi76ClVZAXW3F/rKVVkD4DLsC5JVWQK08buUSllZA3sUOPTyWVkAHAKEIvJZWQCIa3UHsllZA1T4djxmXVkAPlxx3SpdWQIGVQ4tsl1ZATD/OIZaXVkC5Lg+svZdWQG90qLnvl1ZAcnXt+ByYVkCjkjoBTZhWQEjZNTR4mFZAm5ewI/uYVkD1EI3uIJlWQCccZ8BGmVZABDHjgHCZVkDL1voioZlWQDAqqRPQmVZATU9Y4gGaVkD2pDmfJ5pWQA4yychZmlZA8fRKWYaaVkB2/YLdsJpWQIenV8oym1ZAG+i0gU6bVkDcLjTXaZtWQO9yEd+Jm1ZAShRHC72bVkAge73745tWQHRu7VcUnFZA3NeBc0acVkBvRzgteJxWQGiWBKipnFZAUPwYc9ecVkDXbrvQXJ1WQG1rHpqMnVZA08k/IL2dVkAsYAK37p1WQF//iDkbnlZAbEbz7UqeVkAUrkfhep5WQMrobVmrnlZAsMHVFNueVkAcsRafAp9WQG2D7Toun1ZAJ5hE0KufVkDwSM8H3p9WQBOTSosNoFZApgIBRT+gVkB1zeSbbaBWQIMfwuWeoFZABCSHddCgVkCDB/NE/aBWQAMBRT8toVZAFODOmFyhVkDuZ55JiKFWQCkNIj8IolZA5ruB7yOiVkDnRQBKVqJWQFAJdX53olZAEgz65aaiVkD9h/Tb16JWQLdaOvkHo1ZAQpqxaDqjVkC+++O9aqNWQOqAESGbo1ZAF30FacajVkD6CtKMRaRWQKNDzX1fpFZA3vWsfn+kVkD0bFZ9rqRWQCT29tTXpFZA6Xq1tgOlVkBFniRdM6VWQFwgQfFjpVZASzRbjJSlVkC8u7u7u6VWQNZBS0TlpVZA+9hK1WOmVkDZbwAQiqZWQF8M5US7plZAVUXLlOmmVkDpog4YEadWQDLZUhpEp1ZAdthXMW+nVkAXG+BvoadWQMi95kLSp1ZAgZAsYAKoVkCYfpxDLKhWQKIDpXuwqFZAhE9gJ+KoVkBI1B4JDqlWQKX3ja89qVZAB76PkG6pVkDbKwYinqlWQFeNOHfOqVZA8iwue/+pVkDzqzlAMKpWQCAxZ6NgqlZAKVd4l4uqVkAEtQVxC6tWQCf0DV85q1ZAm5zHTmWrVkDV9MY2lqtWQGZOl8XEq1ZAJcRvHfarVkALMYSJLKxWQDarPldbrFZAnYAmwoasVkA3FakwtqxWQGmpvB3hrFZAyCQjZ2GtVkBecPOzfq1WQGsjsbenrVZAXaeRlsqtVkA0GXsc861WQNNFHTAirlZAaUKA+VGuVkDt0/GYga5WQCOU0duyrlZAjfZlVtyuVkAUChFwCK9WQOELk6mCr1ZAz24ayKCvVkACDqFKza9WQCwGIp7/r1ZAfuNrzyywVkBX9HSbXbBWQK50UQeMsFZAfkqo87uwVkC3lzRG67BWQM0O3kQasVZAwyreyDyxVkDkoISZtrFWQFafq63YsVZAqv4uWQKyVkAIOIQqNbJWQO0FeVBjslZAT8x6MZSyVkA+4JTMxLJWQAaGrG71slZAES733ByzVkDiDsFeTrNWQGuvGIh4s1ZAv1Ctq++zVkB25bM8D7RWQIjPsCtAtFZANdqXWXG0VkC6awn5oLRWQLZS9RjStFZA/N6mP/u0VkByktPEKLVWQBLK6G1ZtVZA670Lbn61VkCgZIU1qLVWQBl7HPMntlZAAlj3olC2VkAeYMCldrZWQN7VmP2ntlZASEOgDdO2VkAVjErqBLdWQNLrPBczt1ZAg4PQVGK3VkAp4LGykLdWQIyUQF23t1ZAte2hauG3VkBwhDJ6W7hWQP8+48KBuFZAqz5XW7G4VkCf9QMx47hWQBBy8coIuVZATmIQWDm5VkAABRcrarlWQN64sjGcuVZAcZ8v0Mi5VkCA1CZO7rlWQDLRDToOulZAnP7sR4q6VkAZuv+1qbpWQBJjrEnKulZARXn5sPG6VkBE7ZHgILtWQIToIwNTu1ZA443MI3+7VkCv1nYAsbtWQJ3fHQbgu1ZA70WhUhK8VkDMZZCoPbxWQPObr3/EvFZAROVMAOu8VkDimigvH71WQIwYY01SvVZAo5p/4YK9VkDYT+yOsr1WQMdjBirjvVZAi3H+JhS+VkAwTKYKRr5WQOke7Cd2vlZASKeufJa+VkC3lAaRH79WQGklmi1Gv1ZAwRw9fm+/VkBMXLTtob9WQGXX0ODJv1ZAwORZXPa/VkCD8lFZJ8BWQEYASlZYwFZAP08W0YnAVkCEZAETuMBWQKca0OXgwFZACbeP72XBVkDRItv5fsFWQIlWAdGmwVZAgOnHOcTBVkCQKTJN68FWQGpFrq4dwlZAFDqvsUvCVkAppuUaecJWQHoB9tGpwlZAylwGidrCVkCM1lHVBMNWQMdwYjWDw1ZAcFrwoq/DVkBmHBAO48NWQCTzyB8MxFZA1ZXP8jzEVkCfyJOka8RWQJN0zeSbxFZAVoLF4czEVkBKOXK3/sRWQC5zuiwmxVZAmNVOp0/FVkBtJPb21MVWQPD5YYTwxVZAMeOAcBjGVkA64TgDNsZWQLvl/ZJnxlZAjMbHFJnGVkBvEoPAysZWQGnjiLX4xlZAJKRbnB7HVkAc8ycXUMdWQJrLIFF7x1ZAAZSssAbIVkARwqONI8hWQBxfe2ZJyFZAg6sptm/IVkBsfZHQlshWQELkB8G9yFZAz7ArQO7IVkB+xoUDIclWQNEalhlJyVZA5A8GnnvJVkAhYQXlo8lWQDhCGb0tylZAQktE5UzKVkCaQuc1dspWQCDfy2qnylZAXs/q99fKVkD11sBWCctWQA/mifo3y1ZAaXxMkWnLVkDhRV9BmstWQFHfMqfLy1ZAUtUEUffLVkC8Kj3AgMxWQMdbwUmtzFZA/huhjN7MVkDRiRceDs1WQPxvJTs2zVZA0vOB92jNVkDdJAaBlc1WQDtT6LzGzVZAub+Np/jNVkAXZTbIJM5WQMl+A4BQzlZAbST29tTOVkAq8Dtz/M5WQHT3JnMZz1ZAfaZxgknPVkDonLKtec9WQA3gLZCgz1ZAlgm/1M/PVkDq/O4wANBWQEF9y5wu0FZAC7CPTl3QVkA1FGTxiNBWQEhdWCQT0VZA7xMamzDRVkDZhKH7X9FWQCjVPh2P0VZAtJbvBr7RVkAsYAK37tFWQHPss90X0lZAJhH0KkXSVkAN9c57dtJWQHbgnBGl0lZAhrSz1dLSVkBdonprYNNWQGN/2T1501ZA3MolaKbTVkA7cM6I0tNWQEQfGZgC1FZA9CIAJSvUVkA0HpJHXdRWQBC8RyOM1FZAvj31NbjUVkCF4wzY6NRWQKiZ26oR1VZAMqSdrZbVVkAadgXIvdVWQI2chT3t1VZAbdJavhvWVkA7nT4VStZWQEtm4kN21lZAd+sPp6bWVkBNUoaXzdZWQJDaxMn91lZAyjLEsS7XVkAgnbryWddWQP5D+u3r11ZA1BbELQzYVkCqfToeM9hWQAaWNi9h2FZA7HkRgJLYVkDgJUvAwthWQNnr3R/v2FZAYwP8LRTZVkA2cXK/Q9lWQLRU3o5w2VZAEu8TGpvZVkDTRR0wItpWQAW9SlFB2lZAj9/b9GfaVkDinz9aidpWQIHXVAO62lZAHHdKB+vaVkBJ/HdqG9tWQEuG9sRN21ZAOIQqNXvbVkAXr4wgqNtWQE9obMLQ21ZAHHxhMlXcVkAezBP1b9xWQMgPgnuL3FZAoSCLR7zcVkAlp4lR6txWQB8ByWEd3VZApYs6YETdVkAi+N9Kdt1WQAMutcuk3VZAo2XKdNXdVkA75Ga4Ad5WQOzlZM+L3lZAB+O6PLDeVkDCwHPv4d5WQHfwJtIQ31ZAiM+wK0DfVkBSAnXdbt9WQDROMImg31ZA7iB2ptDfVkCT8Kr0AOBWQDfLUtgy4FZAMP04h1jgVkDjgHAY3+BWQIObn/UD4VZAwYBL7TLhVkCwCyxtXuFWQE/MejGU4VZA+8vuycPhVkC4K+H28eFWQCIiIiIi4lZAXvxahE/iVkC2fDfwfeJWQFrDMiOp4lZA3h/vVSvjVkB9Oh4zUONWQOZ0WUxs41ZA1fTGNpbjVkBjweq1xuNWQJ+bIxj041ZAf9H4mCLkVkBlqmBUUuRWQHLxygiC5FZAQsch9bHkVkDBLMc+2+RWQHi0ccRa5VZAuHU3T3XlVkDI0ocuqOVWQEUiR03O5VZAhBJm2v7lVkC1L7PiLuZWQDsmeDBP5lZAgUbWB3/mVkBvRAp4rOZWQIO7s3bb5lZAhzO/mgPnVkBTR7QKiOdWQMNXTlW051ZAPQ/uztrnVkBLYcsYDOhWQJ9JiN866FZA6QEGXGroVkC9b3ztmehWQO2BVmDI6FZAxYfslvfoVkDKnhcBKOlWQIwYY01S6VZAe/fHe9XpVkCn6Egu/+lWQISRcZ8v6lZAsYLyUVnqVkCWW1oNiepWQDL7TxG66lZAUa2r7+nqVkC7o+waGutWQI+IKZFE61ZAZG1mB2/rVkA3RzDol+tWQH0y2VIa7FZA+PTrYULsVkBWmpSCbuxWQN/DJced7FZAzczMzMzsVkAjQjaj+exWQGAn4poo7VZAuKe+BlftVkBfDxP6hu1WQKg65Ga47VZAKzipVeHtVkBq/oULZu5WQKZEEr2M7lZAyo6NQLzuVkDUK2UZ4u5WQOl6tbYD71ZAzjY3pifvVkAQtAJDVu9WQNPB+j+H71ZAfKuIrbPvVkDpLnbo4e9WQNklqrcG8FZATD/OIZbwVkAMD4eStvBWQC264s/d8FZATGw+rg3xVkA8gFhJPvFWQD12KvNp8VZAYa4yQI/xVkAY9MtNwfFWQAFa4Bjv8VZAKDx7QR7yVkApJ9pVSPJWQA9qrOrS8lZANi9hR/byVkBVTRB1H/NWQGejYLNJ81ZAzuSbbW7zVkDBkNWtnvNWQG2QSUbO81ZAwYN5ov7zVkB4yRKwMPRWQLEWnwJg9FZAGOyGbYv0VkA59tnuC/VWQNgFljYv9VZAHYfUx1b1VkCqtNgAf/VWQPsI6Ran9VZAhj3t8Nf1VkAGNz/rB/ZWQF/NAYI59lZAoUrNHmj2VkAai6azk/ZWQPtCta6+9lZAd28yl0H3VkA305e4aPdWQJkF7eiS91ZAB5RNucL3VkCUVf6i8fdWQLMHWoEh+FZAnXjh4VD4VkDxaxE+gfhWQIwAlKyw+FZAClvGYNj4VkDRbDFSAvlWQPyxNrOD+VZA3v3xXrX5VkCY0Dd85flWQPXzpiIV+lZAB9MwfET6VkBleNmccPpWQMvW+iKh+lZAF30Facb6VkDX8t3A9/pWQMUG+Fso+1ZAQ9/wlVP7VkCfzarP1ftWQO2Jm0D++1ZA25JCRi38VkCRsILyUfxWQOgwX16A/FZAh9THVqr8VkAi4BCq1PxWQIzWUdUE/VZAXKyowTT9VkCEmbZ/Zf1WQIaPiCmR/VZAa5+Oxwz+VkArA/ToM/5WQHpTkQpj/lZAU2Sa1pP+VkD5LM+Du/5WQFroXc/q/lZA3OwiXxz/VkDOBLDuRf9WQKyt2F92/1ZAc1PwAaf/VkC76hS+0f9WQGSf7b5QAFdAIoEZZnsAV0DzYePnrABXQAzd/9rUAFdAOm2g0wYBV0Dwp8ZLNwFXQCRdM/lmAVdAP3dvMpcBV0DAcMEsxwFXQEmlxQb4AVdA3IDPDyMCV0AM1br6ngJXQHauFVrDAldASv+lH+cCV0AJdX53GANXQEG3lzRGA1dANWPRdHYDV0CAr/uhrANXQFCFUo7cA1dAS2HLGAwEV0BHPUSjOwRXQKA/WolmBFdA5xiQvd4EV0CBkCxgAgVXQBDUFsQtBVdAJUBNLVsFV0AbeTN9iQVXQKGM3pa1BVdAGEt+seQFV0AL97fxFAZXQPDPH61EBldAh8yCdnQGV0DyOYqGnwZXQJIqd4wYB1dAINq0Pz0HV0ABamrZWgdXQELcwuCHB1dAS4sN8LcHV0AAxjNo6AdXQGYkVe4YCFdAYwtBDkoIV0BSH1upeghXQNxTX4OrCFdALjGptNgIV0CbYvu2TQlXQB1VTRB1CVdAvnrvgpsJV0DXYV/FvAlXQFroXc/qCVdAvzsMwBkKV0ACxErySQpXQMAusLR5CldATPBgnqgKV0BnCp3X2ApXQAi5eGUEC1dAHun5wHsLV0C8ge8jpAtXQE7mMkjUC1dAfO2ZJQEMV0CfNxWpMAxXQNXsgVZgDFdA8BExJZIMV0Bv9Zz0vgxXQFbZd0XwDFdAbVuU2SANV0A7nT4VSg1XQKZMV53CDVdA3e9QFOgNV0DkiLX4FA5XQAOy17s/DldANM8kxG8OV0AohtGZoQ5XQLZS9RjSDldAXa/WdgAPV0CKNATaMA9XQKrx0k1iD1dAxwQP5okPV0BNxh7H/A9XQAsUnr0gEFdAqL4GV1MQV0DnuZh5hRBXQFZI+Um1EFdAVscED+YQV0Cif4KLFRFXQFjFG5lHEVdA9GQRnXgRV0C8Cik/qRFXQBQNPyXUEVdA4QNOyUwSV0AutcukcxJXQP1/r/uhEldAIdWdFNMSV0AIuXhlBBNXQBFow3Q0E1dAFn/u3mQTV0DwmmpAlxNXQHjE+4TGE1dAwFsgQfETV0CxXcelFxRXQEmVO0aMFFdAtxgpgboUV0AzelvW6hRXQAjzRP0bFVdASGWdBEkVV0AZRmeGehVXQF9mxV2qFVdAmr7ERdsVV0CjbQ9VCxZXQBs3IgU8FldA9b7xtWcWV0Bgbgo+4BZXQG4sO9cKF1dAz/I8uDsXV0DLzrVCaxdXQDS6g9iZF1dAAPi6H8oXV0DvC9W6+hdXQCApIsMqGFdAcIQyelsYV0CrU/hGhxhXQAfjujywGFdA9qQ5nycZV0CVSKKXURlXQC5JeFV6GVdAzoCN/qoZV0DDrgC51xlXQMrQnrgJGldAT22D7ToaV0Deu+DmZxpXQHvSnM+TGldA2QB/C8UaV0Da9lC18BpXQJFhFW9kG1dA5q4l5IMbV0ApGn5KqBtXQEhDoA3TG1dAOlC6B/sbV0D8Uj9vKhxXQLGNZedaHFdAt6SQUYscV0Cu6Ok2uxxXQMVqBsvrHFdAIgU8VhYdV0BvZB75gx1XQDwHqe6kHVdAv4I0Y9EdV0DGkl8s+R1XQOKaKC8fHldA1lHVBFEeV0BWSyf/gB5XQKMOGBGyHldAZhwQDuMeV0DoINWdFB9XQM/yPLg7H1dAjoLNJq0fV0CndLD+zx9XQLKlNIj8H1dANjemJywgV0CZ4ME8USBXQLiSHRuBIFdA+xpcTbEgV0AAMoe34SBXQHfwJtIQIVdAcsyfXEAhV0B0wnEGbCFXQNMg8oPgIVdATu53KAoiV0BTBaOSOiJXQMc2lp1rIldAwhIPKJsiV0BIr/NczCJXQPAWSFD8IldAj05d+SwjV0AwhnKiXSNXQLrF6RGQI1dA4RPYibgjV0AwiaBXKSRXQHMR34lZJFdADrHUjYokV0B2/YLdsCRXQDkLe9rhJFdAUxpEfhAlV0CNVV2aNSVXQCRdM/lmJVdAu1mWwpYlV0BRVvmLxiVXQAJlU67wJVdAcSNSwGMmV0D+bTzFlyZXQNTUsrW+JldAxdZZGuUmV0AqNXugFSdXQCccZ8BGJ1dAc99X0ncnV0ATF217qCdXQFIHjAjZJ1dAL7C0eQkoV0DunFO2NShXQC2yne+nKFdAdcCIkM0oV0C1MuGX+ihXQCpvRzgtKVdAf9k9eVgpV0AbeTN9iSlXQMTr+gW7KVdAdIOOQ+opV0D7KuYNHSpXQKMJAeZHKldA5wgG/XIqV0CAQHqd5ypXQH6MuWsJK1dA2CJ8AjsrV0A66X3jaytXQJN0zeSbK1dAPnRBfcsrV0BFlt98/StXQNgFljYvLFdAAnXdblwsV0Cq3DFijCxXQCMdC/e3LFdAHqfoSC4tV0BqatlaXy1XQPH0SlmGLVdAS4sN8LctV0CF4wzY6C1XQFlRg2kYLldAtXTyD0guV0D0ZBGdeC5XQLhyCZqpLldAQacNdNouV0B200AGBS9XQM4M9c57L1dAlR5gwKUvV0CR+thK1S9XQEc1/8IFMFdA1QEjQjYwV0C/fR04ZzBXQOwCS5uXMFdA2xZlNsgwV0BPSFhB+TBXQJsLSVMqMVdAipYp01UxV0DQ0D/BxTFXQGdEaW/wMVdA5z27aSAyV0A3jliLTzJXQN71rH5/MldAfy3CJ7AyV0DsuyL43zJXQBSevSAPM1dA2ZlC5zUzV0AJt4/vZTNXQJySmfiQM1dAWiIqZwI0V0CMLQQ5KDRXQFZVVVVVNFdAlj50QX00V0ASoKaWrTRXQFvLdwPfNFdA1yyqWA81V0CoDXTaQDVXQFCAO2NyNVdArq4dn6M1V0An7/YzzzVXQO5Cc51GNldAaqSl8nY2V0D3cMlxpzZXQL4Lbn7WNldAYtuizAY3V0CT+O/UNjdXQP3uMABnN1dA8JpqQJc3V0DJq3MMyDdXQP9rU0/5N1dAOTCmhiM4V0BqBsvrmzhXQAOFZy/IOFdAiiy/+fo4V0B6LmZeITlXQNK5tV9ROVdA19DgyYE5V0AOkcAMszlXQKWYlmvkOVdAgkG/3BQ6V0CZw9twRTpXQKiMf59xOldAmUf+YOA6V0BQcLGiBjtXQF7Cjuw3O1dAN9OXuGg7V0CElojKmTtXQLpWaA3LO1dA/N6mP/s7V0BR0tabKzxXQJNaFc5bPFdAUsV6kIs8V0AE30dItzxXQMWPMXctPVdAhXzQs1k9V0CJiIiIiD1XQJpnEuK3PVdA1b8Ryug9V0AXSFD8GD5XQIpu0HFIPldAWUQnXng+V0De1Zj9pz5XQECcmt7YPldAhzO/mgM/V0DkDwaeez9XQOLkfoeiP1dAKQXdXtI/V0BItzg9AkBXQF85VdEyQFdA62ZZCltAV0DaenOli0BXQM4mreW7QFdAU8ORGu1AV0Dd95X0HUFXQH2mcYJJQVdAkLWZHbxBV0B6MZQT7UFXQJdWQ+IeQldA+ZMLqEpCV0AUrkfhekJXQIjfOuyrQldAclDCTNtCV0BIS+XtCENXQIYwkeU3Q1dAj9/b9GdDV0CPyjoJkkNXQDO/mgMERFdAe1a/vy5EV0BLLBasXkRXQFRSJ6CJRFdAXgFyr7lEV0AOmQXt6ERXQLYAWuAYRVdA5x2n6EhFV0CcWM1geUVXQDJVMCqpRVdAqRPQRNhFV0ApJ9pVSEZXQIxvFbF1RldA6p337KZGV0CaNYsq1kZXQF04EJIFR1dAy8ZwYjVHV0Dn6x8xZ0dXQBqLprOTR1dAvVrbAcRHV0AwgVt380dXQAn+t5IdSFdAW4lmi5FIV0BiLT4FwEhXQC926OHxSFdAGvLi1yJJV0CdeOHhUElXQA0StUeCSVdAkaMm57FJV0BF09nJ4ElXQFMaRH4QSldA5X6HokBKV0D31NfgakpXQKP5diXcSldAoOBiRQ1LV0ChX24KPktXQJijx+9tS1dAnbryWZ5LV0DgQjGMzktXQKnW1ff0S1dAQ2tYZiRMV0DzAuyjU0xXQEqDyA+CTFdAiN867KtMV0BY2ryEHU1XQJti+7ZNTVdAeAskKH5NV0A2donqrU1XQCWKo4XeTVdArbM0yg1OV0BWG4m9PU5XQK+xS1RvTldA155ZEqBOV0DHsnOt0E5XQIH8f6/7TldAeuc9u2lPV0B4vLakkE9XQBE7U+i8T1dAn349TOhPV0C+MJkqGFBXQFjFG5lHUFdAJANT4HdQV0BfW1LIqFBXQOwndkfZUFdAQ6hSswdRV0DFGGuSMlFXQGb35GGhUVdAIqZEEr1RV0Aw+CFc7lFXQOKaKC8fUldAAU2EDU9SV0BJW2+udFJXQNu/stKkUldAEHUfgNRSV0BfxbyhA1NXQE7Z1jw0U1dAHyb0DV9TV0A+/XqY0FNXQEDh2QvyU1dALNSa5h1UV0C7qzH7T1RXQOAAIBSBVFdA9GxWfa5UV0ChbMoV3lRXQNvEyf0OVVdAdmS/AUBVV0DuLdKxcFVXQLZKsDicVVdAkPeqlQlWV0DUbXaRL1ZXQCAxZ6NgVldAVvFG5pFWV0CHDpTuwVZXQGS3vF/yVldAwdorBiJXV0Ad/pqsUVdXQFlEJ154V1dA66hqgqhXV0DOYHl901dXQNCG6WhCWFdAv5oDBHNYV0CoABjPoFhXQNoo2GzSWFdAC0YldQJZV0BoaZQbMllXQMD04xxiWVdA7HkRgJJZV0CmTFedwllXQHYironyWVdAmuPv8RxaV0BrYKsEi1pXQBE7U+i8WldAROVMAOtaV0DlkyiOFltXQLdif9k9W1dA2qz6XG1bV0CCFE9QnVtXQIDpxznEW1dAc5UBevRbV0BmQTu6JFxXQEj5SbVPXFdAXYqryr5cV0ByUMJM21xXQEAbpqMJXVdARjLRDTpdV0DT/vSMal1XQPAjpFucXVdAEFg5tMhdV0CRUYuu+F1XQLSbBjIoXldApjzN3FZeV0Bx5ldzgF5XQFhmJFXuXldA8XhtSSFfV0CHddASUV9XQMHCXGWAX1dAuREp4LFfV0Bnk9by3V9XQApjC0EOYFdA43MUDT9gV0CdRloqb2BXQAzVuvqeYFdAGYh4/sdgV0AxOjPUO2FXQKgDRoRsYVdALxfxnZhhV0CHokCfyGFXQIDxDBr6YVdAElZQPipiV0B9TJFpWmJXQMNs70CKYldAS5aAhbliV0BZ3eo56WJXQPToM40TY1dAWWENKoRjV0DMh42fs2NXQI+VhZzkY1dAg0wychZkV0Cvxuw/RWRXQG0xUgJ1ZFdAxbyhA6VkV0Aog6Pk1WRXQEc1/8IFZVdAJN4nNDZlV0CXe26OYGVXQJxA/r/XZVdAZlbcpfplV0BVavZAK2ZXQHCEMnpbZldA50LSlIpmV0BnPCSPumZXQDN6W9bqZldAUiy3tBpnV0B/seQXS2dXQO5KuH18Z1dAAKEIvKZnV0CmF6IwFWhXQPdDWeUvaFdA3xXB/1ZoV0C0jqomiGhXQCxYvda4aFdArFEP0ehoV0Bz7LPdF2lXQL+vpO9IaVdANWPRdHZpV0D2ZVbcpWlXQIIclDDTaVdANnFyv0NqV0B6v+RZXGpXQJaqx5B2aldAic3HtaFqV0CTfBLF0WpXQNUEUfcBa1dAWpbCljFrV0DeJzQ2YWtXQA9FgT6Ra1dAw1dOVbRrV0AdWmQ732tXQHggxRNUbFdA670Lbn5sV0AruZ2QsGxXQG/DFT3dbFdA1SE3ww1tV0CZLy/APm1XQAImcOtubVdA9DKK5ZZtV0BJJrpBx21XQPm9TX/2bVdA46WbxCBuV0AHFUL0kW5XQEFtQdzCbldA4q/JGvVuV0C/WPKLJW9XQIFbd/NUb1dAWmyAv4VvV0Dh9vG9rG9XQI32ZVbcb1dAlqWwZQxwV0AxOjPUO3BXQG+WpbBlcFdAo2XKdNVwV0C3Wjr5B3FXQCf0DV85cVdAGaBHn2lxV0BKvZSnmXFXQMKGp1fKcVdAhIksv/lxV0BC9JGBKXJXQMsdI8ZYcldAoyO5/IdyV0AEVg4tsnJXQMVyS6shc1dAkbv1h1NzV0CmJyzxgHNXQAt72uGvc1dA44BwGN9zV0AQBp57D3RXQNMTlnhAdFdA6pWyDHF0V0AGu2HbonRXQNoo2GzSdFdAL5POrf10V0BkbWYHb3VXQIQqNXugdVdA91C18M91V0BHrMWnAHZXQLvduLIxdldAhxvw+WF2V0DXdgCxknZXQGCrBIvDdldAwWaT1vJ2V0ALFJ69IHdXQIyEtpxLd1dAjSjtDb53V0BmOfbZ7ndXQKSVaLYYeFdASXAQmkp4V0D/qjYSe3hXQKYSiwWreFdAjOvywNp4V0D+EXM2CnlXQG6rRpw7eVdAEGWVv2h5V0AW84YOlHlXQKwUFYQFeldAENQWxC16V0DLHSPGWHpXQKjGSzeJeldA4RPYibh6V0BhDSqE6HpXQF3pog4Ye1dAim7QcUh7V0D0ZBGdeHtXQP0TXKyoe1dAfoR0i9N7V0AxVxmgR3xXQIGyKVd4fFdAtmeWBKh8V0Bez+r313xXQP4GAKEIfVdAK4wtBDl9V0DS84H3aH1XQFLt0/GYfVdAn7DEA8p9V0CS08Qo9X1XQE0d0SogfldAaFw4EJJ+V0B2rhVaw35XQFjvXXDzfldALF3UASN/V0DMn1xAVX9XQE2ZrjqFf1dAcOMpvrR/V0A3iUFg5X9XQAPHeKcVgFdADHbDtkWAV0DLV+9dcIBXQGmpvB3hgFdANefzZBGBV0BCLl4ZQYFXQOBaAC1wgVdAo12FlJ+BV0DKPyC9zoFXQDMr7lL9gVdAektMKi2CV0BJIaMWXYJXQDgqShyMgldA19glqreCV0ApZNSiK4NXQFfXjs9Rg1dAtQVxC4ODV0AxZ6Ngs4NXQCB7vfvjg1dANvJm+hKEV0DDsxfkQYRXQN674OZnhFdAhhjCRJaEV0CX90uexYRXQFJBWKDwhFdA0N2bzGWFV0AuDH4Il4VXQNX8CxfMhVdAqWqCqPuFV0BIlyS8KoZXQJp/4YJZhldAiYiIiIiGV0A2k2+2uYZXQCScFrzohldAbUkhoxaHV0DL41YuQYdXQAds9Fe1h1dARkqgrtuHV0BYNJ2dDIhXQOb1TYc7iFdAxisjCGqIV0Aft3IJmohXQBb7y+7JiFdA6WhCgPmIV0BmynTVKYlXQDk462ZZiVdAQ178WoSJV0CkPrZS9YlXQFRfg6spildAAWpq2VqKV0AB3gIJiopXQLF1lka5ildAvrwA++iKV0DuztptF4tXQDfoOKQ+i1dAs0lr+W6LV0BxtNC7notXQDCW/GLJi1dAcsyfXECMV0CkaybfbIxXQEALHOOdjFdAlP5LP86MV0AnY49j/oxXQF0jb6YvjVdA74eyyl+NV0Ct8heNj41XQMgMVMa/jVdAqU2c3O+NV0Dw5MCYGo5XQG/4yqmKjldA1s2yFLaOV0B/NQcI5o5XQMfXnlkSj1dAmkUV60GPV0DiZXPCcY9XQGJfxbyhj1dAZmt9kdCPV0Dq/O4wAJBXQK4K5y0xkFdALnv/DFyQV0DgQjGMzpBXQOZkz4sAkVdAj9eWFDKRV0ChtiBuYZFXQMBofEyRkVdA+bUIn8CRV0DQu57V75FXQLeUBpEfkldA8OGS406SV0D9KP2XfpJXQAK37uapkldAVEKd3x2TV0Agi0e8T5NXQNpdjdl/k1dA6KT3ja+TV0DrsK9i3pNXQJMYBFYOlFdAxDVRXj6UV0BuqBjnb5RXQHZXY/aflFdAHDIL2tGUV0DkTulg/ZRXQOwX7IZtlVdAXJTZIJOVV0B7RjX/wpVXQCzpO9LzlVdA1FCQxSOWV0AFbt3NU5ZXQABKVliDlldAm97YxrKWV0BvTE9Y4pZXQCN8AjsRl1dA3sUOPTyXV0DVLpPOrZdXQCL99nXgl1dAvZzseRGYV0CaRRXrQZhXQNWALgdnmFdAfeiC+paYV0A5tMh2vphXQABPbYPtmFdAIo51cRuZV0CDSQS9SplXQCL430p2mVdAUi/laeaZV0ArQO41F5pXQCkn2lVImldANm5ECniaV0ASDPrlpppXQMvePwPXmldAoEy2lAabV0A+eVioNZtXQG+WpbBlm1dAG5YZSZWbV0AJFoczv5tXQAik13kunFdA3ic0NmGcV0DD9Shcj5xXQGvUQzS6nFdAQs9m1eecV0AWPd1mF51XQPwguLdInVdAzPYOpHidV0AqJfHfqZ1XQPdtm7zbnVdAXkODJweeV0BCNqP5dp5XQEAoAq+pnldAtFn1udqeV0BGvjjeCp9XQOb1TYc7n1dA5nRZTGyfV0CduvJZnp9XQMo/IL3On1dAp+hILv+fV0Bp682VLqBXQHtBHtRYoFdAvmVOl8WgV0BNPeWr96BXQEWBPpEnoVdAswQszFWhV0BLF3XAiKFXQCMdC/e3oVdAYAK37uahV0BOC170FaJXQDTkxa9FoldAFjCBW3eiV0BoeR7cnaJXQMvbEU4Lo1dAp3nHKTqjV0C88HAoaaNXQHW4Q7CXo1dAHSCYo8ejV0DuAGIl+aNXQOa7ge8jpFdAxvFWcFKkV0DLCILagqRXQKQZi6azpFdAfqFaV9+kV0DhA07JTKVXQMfnKBp+pVdAnGASQa+lV0ApIsMq3qVXQPfspoEMpldAF58CYDymV0Cg0wY6baZXQP4B6XWepldAwQRu3c2mV0DS4/c2/aZXQHrCEg8op1dAD866WZanV0CYAr8zx6dXQIMH80T9p1dAmYkP2S2oV0DgqW2wXahXQCti6yyNqFdAqrwd4bSoV0BUsR7k4qhXQKMBvAUSqVdAx0s3iUGpV0Bm75+Ba6lXQBSWeEDZqVdA6Q5iZwqqV0Cj4aeEOqpXQAEQisBrqldA2RUg95qqV0B85VRFy6pXQCnlyN36qldARP8EFyurV0BU3o5wWqtXQEPnNXaJq1dAnOlLXLSrV0BFgT6RJ6xXQGa10+lTrFdAviM9H3isV0DDL/XzpqxXQCTrgz/WrFdARzX/wgWtV0AEoGSFNa1XQOyDP9ZmrVdAu1mWwpatV0ALtaZ5x61XQA2reCPzrVdAbw1slWCuV0BFkchRk65XQLEJQ/e/rldAnHrKV++uV0BmrY4JHq9XQFS2NQ9Nr1dAe5jQN3yvV0DyVnBSq69XQMpcBonar1dADeVEuwqwV0AodkfZNbBXQBWZpvWksFdADElTKs6wV0BwCFVq9rBXQJjq75IlsVdAjKGcaFexV0CEXLwygrFXQHDGQ/KosVdAdd1uXNmxV0AKz16QB7JXQMvGcGI1sldAamrZWl+yV0DsCpB7zbJXQJDaxMn9sldA4DXVgC6zV0BGlPYGX7NXQBHHuriNs1dAqlDKkbuzV0BNFYxK6rNXQCmzQSYZtFdA0RqWGUm0V0AXO/TweLRXQJQT7SqktFdANvJm+hK1V0DsNwAIRbVXQH6R0JZztVdASMSUSKK1V0ApBd1e0rVXQMcxf3IBtldAzUiq3DG2V0ATaQi0YbZXQIaPiCmRtldAVmXfFcG2V0B1jgHZ67ZXQCQ12pdZt1dA4p8/Wom3V0AowJ0xubdXQDJv6EDpt1dAgcr49xm4V0C2f2WlSbhXQH0aCrJ4uFdAdF5jl6i4V0CPeJ/Q2LhXQBmto6oJuVdAND6myDS5V0D20akrn7lXQKsM0KPPuVdAo1Apif+5V0CalIJuL7pXQEaU9gZfuldA6Vi4v426V0ACaIFjvLpXQOOdVuTquldAIIMC3Bm7V0ACxErySbtXQB1VTRB1u1dAh9wMN+C7V0BL6gQ0EbxXQMvjVi5BvFdAe3vqa3C8V0C0yHa+n7xXQA1Uxr/PvFdA3SkdrP+8V0AMPPceLr1XQE25wrtcvVdAqdG+zIq9V0C/vy6wtL1XQLxCDGEivldA44WHQ0m+V0CEP9Zmdr5XQCynKlqmvldAsrrVc9K+V0C30QDeAr9XQG0MJ1Yzv1dAaOif4GK/V0CTYlqukb9XQLxPaGzCv1dApSxDHOu/V0AltxMSVsBXQC9mXiGGwFdAB2z0V7XAV0C8phrQ5cBXQLPqc7UVwVdAAzsR10TBV0DXqIdodMFXQAfG1HCkwVdAMjUcqdHBV0Csi9toAMJXQMy0/SsrwldAqHfes5vCV0D50u5qzMJXQFmOfbb7wldAgXAY3yrDV0BDc51GWsNXQMcED+aJw1dA+CFc7rnDV0BegH106sNXQHmaua0axFdA7MA5I0rEV0B/nEMsdcRXQPNpKMjixFdALsInsBPFV0DrLI1yQ8VXQDblCu9yxVdAUv9GKKPFV0CUh4Va08VXQJT7HYoCxldAa20HECvGV0D90Uo0W8ZXQD9PFtGJxldAjxZ617PGV0CQMXctIcdXQOCMh+RRx1dAS2biQ3bHV0CZtn9lpcdXQLEbti3Kx1dABwjm6PHHV0CMmVeIIchXQGSf7b5QyFdA7rYLzXXIV0DXJ5MtpchXQCfv9jPPyFdAomrhnz/JV0B53MolaMlXQOqAESGbyVdA135FkcjJV0B2q+ek98lXQB8ByWEdyldAPrMkQE3KV0CGVbyRecpXQLPa6fSpyldAHdEqINrKV0BdOBCSBctXQMCldpl0y1dAZHWr56TLV0CYqN4a2MtXQJmesMQDzFdA9cEfazPMV0Am32xzY8xXQHvSnM+TzFdAYKsEi8PMV0BGhGxG88xXQGGeqH8jzVdAw9twRU/NV0BqUgq6vc1XQN1mF/nizVdABLUFcQvOV0BAjz7TOM5XQL1nNw1kzldAkdWtnpPOV0ARz/+Yw85XQIj58gLszldA2uGvyRrPV0CH4SNiSs9XQJ7aBtt1z1dArFEP0ejPV0DVPh2PGdBXQK5PJltK0FdANnm3n3nQV0DfwyXHndBXQLth26LM0FdANBl7HPPQV0CRPOrCItFXQJClD11Q0VdAzYq7VH/RV0AGTw6MqdFXQLDmAMEc0ldAkzK8bE7SV0CqtNgAf9JXQE2EDU+v0ldAonc9q9/SV0DXLKpYD9NXQN/b9Gc/01dAOGdEaW/TV0AIPZtVn9NXQB20RFTO01dAYKjW1ffTV0DgxlN8adRXQKsEi8OZ1FdAxyk6ksvUV0AyIHu9+9RXQIqryr4r1VdADbsC5F7VV0AOsdSNitVXQMPgh3C51VdAnPGQPOrVV0C3C811GtZXQDwUBfpE1ldA3v3xXrXWV0C4Dvsq5tZXQLmNBvAW11dAvqQxWkfXV0A+noNUd9dXQMtfND6m11dAYVyXB9bXV0CwrDQpBdhXQEpBt5c02FdAg4PQVGLYV0D+UFb5i9hXQF/FvKED2VdAe82FpCnZV0A/232hWtlXQNTMbdWI2VdAK01KQbfZV0CUOBjX5dlXQAhqC+IW2ldA4XoUrkfaV0BmDIZNd9pXQJrB8vqm2ldAOmVb89DaV0BGxn2+QNtXQJQLqEpu21dA2ysGIp7bV0DeN772zNtXQEgjjIz721dA508uoCrcV0A5OOtmWdxXQMb5m1CI3FdAJ7UqnLfcV0DgfP0j5txXQM78ag4Q3VdAg1FJnYDdV0COgs0mrd1XQFUL//zR3VdALAYinv/dV0Br5M30Jd5XQKrU7IFW3ldAEDMOCIfeV0AE30dIt95XQJZDi2zn3ldAG+BvoRjfV0BbR1UTRN9XQGm+XQm331dAy4Rf6uffV0AqvrS7GuBXQDNt/8pK4FdAeo1donrgV0BAKAKvqeBXQLNOgiTZ4FdA2zuQ4gnhV0BXncI3OuFXQEpJ/Hdq4VdAqOMxA5XhV0AldQKaCOJXQLfZRb444ldAobYgbmHiV0D4Nv3Zj+JXQJ+T3je+4ldAo5+WDO3iV0ARLvfcHONXQFhOVbRM41dAk7HHMX/jV0C4fXwvq+NXQLpzTtnW41dAEKKPDEzkV0COeohGd+RXQPZlVtyl5FdAjFdGENTkV0Bo9fvrAuVXQM1Iqtwx5VdAY0UNpmHlV0B4vLakkOVXQIFgjh6/5VdAH40wMu7lV0B4j0YYGeZXQKznpPeN5ldAp8Mdgr3mV0DZ690f7+ZXQJz51Rwg51dA1lHVBFHnV0ANErVHgudXQEsC1NSy51dALk6PgOTnV0B3+5lnEuhXQEx0g45D6FdAs0lr+W7oV0Age7374+hXQCHd4vQI6VdADFnd6jnpV0D6YYTwaOlXQNb/OcyX6VdAJVDX7cbpV0Bo2BUg9+lXQGhXIeUn6ldAtA+fYVfqV0Az/n3GhepXQGzC0P2v6ldAy6mKlinrV0B+zsrjVutXQPH0SlmG61dA82Hj56zrV0CokZbK2+tXQKyowTQM7FdAemgy9jjsV0C4WFGDaexXQE9gJ+Ka7FdABZtNWsvsV0AJE1l+8+xXQLTAMd5p7VdAGh9TZJrtV0DZC/Kgxu1XQJwOdwj27VdABfpEniTuV0A2F5KmVO5XQKL7X5t67ldAxUXbHqruV0DsJ3ZH2e5XQBBy8coI71dAHTAiZDPvV0BdUN8yp+9XQMOuALnX71dAj+w3AAjwV0DQaQOdNvBXQBZ/7t5k8FdAYTdsW5TwV0CSVLljxPBXQMR8eQH28FdAB3x+GCHxV0AH8BZIUPFXQB7p+cB78VdAvMMAnPHxV0D9QMw4IPJXQMXm49pQ8ldA5Jg/uYDyV0CYyPKbr/JXQN7d3d3d8ldAcEIhAg7zV0DWoEKIPvNXQG2dpVFu81dAryXkg57zV0CfsMQDyvNXQPbeBTc/9FdAUfcBSG30V0AFJ7UqnPRXQAWbTVrL9FdA3qtWJvz0V0AdnHWzLPVXQOfOOWVb9VdAG3kzfYn1V0Aw8Nx7uPVXQJhZcZfq9VdAgkG/3BT2V0AHjAjZjPZXQDGEiSy/9ldAnHrKV+/2V0Dhj7WZHfdXQAwKcGdM91dA71UrE373V0CmEosFq/dXQDTfroTb91dAe/8MXAv4V0Asl6CZOvhXQH/2I0Vk+FdAy2d5Htz4V0BhZNznC/lXQGHYdBc7+VdAuFhRg2n5V0DSZxonmPlXQPEZdgXI+VdA2P1QVvn5V0BQx2MGKvpXQOpb5nRZ+ldAP08W0Yn6V0Au2vZQtfpXQH93GIAz+1dAKneMGGP7V0Aai6azk/tXQIcOlO7B+1dAK97IPPL7V0ApR+7WH/xXQLPyuJVL/FdAaS3fDXz8V0C05VyKq/xXQM//mMPb/FdA5vh7PAf9V0CSplScff1XQJ/tvlCt/VdA+HgOUt39V0AJWJirDP5XQIpR6qU8/ldA/HdqG2z+V0Bi1ouhnP5XQJT+Sz/O/ldAwYN5ov7+V0Aep+hILv9XQDgteNFX/1dA3je+9sz/V0CUVf6i8f9XQAhqC+IWAFhA1bK1vkgAWEAGR8mrcwBYQKZ+3lSkAFhA4NbdPNUAWEAjXxxvBQFYQP/80Uo0AVhARh0wImQBWECfH0YIjwFYQGVoT9wEAlhACUP3vzYCWEC75f2SZwJYQP5tPMWXAlhAmAK/M8cCWECLrvhz9wJYQNwJCSsoA1hAA+yjU1cDWEBbd/NUhwNYQCe1Kpy3A1hACW05l+IDWEBzEd+JWQRYQOY3X/+IBFhApKLEwbgEWEDLhF/q5wRYQGB2Tx4WBVhAXFLIqEUFWECiciaAdQVYQP+VlSalBVhAjWK5pdUFWEAR9CpFBQZYQISRcZ8vBlhA+oavnKoGWEC0WfW52gZYQE7udygKB1hA03/pxzkHWEAdOGdEaQdYQM3Eh+yWB1hAvmVOl8UHWEBrZcIv9QdYQG987ZklCFhA4qJtD1UIWEDjjcwjfwhYQClcj8L1CFhASfx3ahsJWEDpM40TTAlYQO4t0rFwCVhAvgMpnqAJWECABq4F0AlYQF2v1nYAClhAMijAnTEKWECcHgHJYQpYQIonqM6QClhAfT81XroKWEDes5sGMgtYQI9LL0RhC1hABf9byY4LWEB3Jdw+vgtYQGKh1jTvC1hAuywmNh8MWECdW/sVRQxYQCHtbLV0DFhApn7eVKQMWEBl9Las1QxYQN40kEEBDVhAeo1donoNWEAbs/8UoQ1YQH3wx9rMDVhAE+0qpPwNWECcFrzoKw5YQKGkrTdXDlhA2ubG9IQOWECKfloytA5YQDLmriXkDlhAjHxxvBUPWEBJUyrOPg9YQIj8ILi3D1hAvZSnmdsPWEDK0J64CRBYQPVKWYY4EFhAARv9VW0QWECQ5yDVnRBYQD9/tBLNEFhAA42sD/4QWEA95av3LhFYQFRnyItfEVhAKEwFAooRWEAdvIk0BBJYQBcLVq81ElhA5uCsm2USWEDGFoIclBJYQC11o6LEElhAlmvkzfQSWEAJkmRDJBNYQEiCg9BUE1hA5q4l5IMTWEAxZ6NgsxNYQI4B2evdE1hA3xXB/1YUWED6L/04hxRYQNfYJaq3FFhA+yKhLecUWECWtyOcFhVYQKw5QDBHFVhAw7tcxHcVWECPBAehqRVYQOT3Nv3ZFVhAjF+L8AkWWEAACEXgNRZYQKIDpXuwFlhAQTu6JOEWWEAnFCLgEBdYQPfpeMxAF1hA+wCkNnEXWEBQ9NOSoRdYQNWFRTLRF1hAP3yGXQEYWEAHIp7/MRhYQM3HtaFiGFhA1+3GlY0YWECThFelBxlYQD+Eyz03GVhA7IM/1mYZWEDW/znMlxlYQPEZdgXIGVhAk943vvYZWECTUtDtJRpYQLMELMxVGlhAJSusQYUaWEDSNZNvthpYQIRPYCfiGlhAKuPfZ1wbWEDK/Q5FgRtYQD0kj7qwG1hAooKwQOEbWEBGUuWOERxYQC02wN9CHFhAiU688HAcWEDeTF/iohxYQMo/IL3OHFhAA42sD/4cWEBqYpR6KR1YQFei2WKkHVhAFwY/hMsdWEArcnXt+B1YQH5aMrQnHlhAjawP/lgeWEBhGoaPiB5YQCQofoy5HlhAeSYhfuseWEBC16u1HR9YQAZcapdJH1hAQCC9znMfWEAsYAK37h9YQGebG9MTIFhApW5UlDggWEAW9rTDXyBYQMHqtcaNIFhAeJyiI7kgWEA2Bwjm6CBYQB94j0YYIVhAXWiu00ghWEB6BCSHdSFYQA3gLZCgIVhAKDx7QR4iWECTMrxsTiJYQN3qOel9IlhAi/UgF68iWEBEyGY03yJYQGcS4rcOI1hAJX1Hej4jWEC44YqebiNYQB1ArCSfI1hAtDwP7s4jWEBLsDic+SNYQOWGzIJ2JFhAj3Ba8KIkWEAHOm2g0yRYQK+hwZMDJVhAND6myDQlWEBvlqWwZSVYQEinrnyWJVhAVvmLxsclWEA5RUdy+SVYQEaMsSYpJlhAJzlNjFImWEABl9pl0iZYQH9v05/9JlhACzGEiSwnWEBs7BLVWydYQE0tW+uLJ1hAfDTCyLgnWEAJAeZH6SdYQDoeM1AZKFhAeAPfR0goWEDj+R9zeChYQLt2fI6iKFhAaMN0NCEpWECUPS8CUClYQAwHQrKAKVhAdv2C3bApWECe6pCb4SlYQN3arygSKlhA4vHakkIqWEB+kdCWcypYQMSxLm6jKlhAyshZ2NMqWECR5Tdf/ypYQNCrFBWEK1hAynwaCrIrWEDL3j8D1ytYQKE6Q178K1hASaKXUSwsWEA9WUQnXixYQHWbXeSLLFhAq1s9J70sWEC+RToW7ixYQA2W1zcdLVhAI4RHG0ctWECC/61kxy1YQH7bJu/2LVhApb3BFyYuWEAcfGEyVS5YQCUrrEGFLlhAMnIW9rQuWEA/uYCq5C5YQP+lH+cQL1hALCtNSkEvWECKWS+Gci9YQEALHOOdL1hApTSI/CAwWED6J7hYUTBYQIj029eBMFhAT5rzebIwWEDecYqO5DBYQHblszwPMVhAPIBYST4xWECIQ0lbbzFYQAm/1M+bMVhAD9b/OcwxWEAqZwJY9zFYQDFfXoB9MlhAADW1bK0yWEBCsoAJ3DJYQInS3uALM1hAgBY4xjszWED7bPeFajNYQJFpWk+aM1hAEmOsScozWEDn25Vw+zNYQJh+nEMsNFhAQF23G1c0WEDHz1l53DRYQKR4guoMNVhAO3Xlszw1WEC+++O9ajVYQIWh+1+bNVhAirgmyss1WEBMu6sx+zVYQKM7iJ0pNlhAS6PckFk2WED6uDZUjDZYQLwygqC2NlhA/g5FgT43WEBSAnXdbjdYQMKbSEOgN1hAkXGfL9A3WEA62fMiADhYQNRtdpEvOFhAJMmGSGA4WEC6xekRkDhYQKxmsLy+OFhABOeMKO04WEBPFtGJFzlYQMvW+iKhOVhABCSHddA5WEAAAAAAADpYQL5qZcIvOlhAHRAO41s6WECirPIXjTpYQDGEiSy/OlhA451W5Oo6WEDhj7WZHTtYQCiwE3FNO1hAenB31m47WEBC7Eyh8ztYQOa7ge8jPFhAChFwCFU8WEB9N/B9hDxYQFQyEx+yPFhANGjon+A8WEBBr1JUED1YQFOO3K0/PVhAImQzmm89WEA0TjCJoD1YQIB9dOrKPVhABW7dzVM+WEA6I0p7gz5YQGpAl4OzPlhAIHu9++M+WEATJ/c7FD9YQPn/XvdDP1hAh8yCdnQ/WECDs26WpT9YQKDYHWXXP1hAQIf58gJAWEBKrQrnLUBYQPmYItO0QFhAJQFqatlAWEBk1KIr/kBYQBkEVg4tQVhATDeJQWBBWEBNLVvri0FYQOfB3Vm7QVhAUa2r7+lBWECXwpYxGEJYQAZcapdJQlhAMk3rSXNCWEA3ww34/EJYQB2cdbMsQ1hAbdqfnlFDWEC3h6qFf0NYQK/WdgCxQ1hAGcJElt9DWEBJ35GeD0RYQEbGfb5ARFhAhbacS3FEWECh20sao0RYQNBZedzKRFhAx3OQ6k5FWECTsccxf0VYQEns7amvRVhAZAYq499FWECZu5aQD0ZYQAdK92A/RlhA4+esPG5GWEDHtaFinEZYQIq4JsrLRlhAO1stnfxGWEDKnhcBKEdYQEZfQZqxR1hAIoYwkeVHWECe52LmFUhYQKWLOmBESFhA6R7sJ3ZIWEDnhxHCo0hYQG0k9vbUSFhA88DaKwZJWECfwE7ENUlYQBoXDoRkSVhA+Db92Y9JWEDCUfLqHEpYQJpFFetBSlhAF4phdGZKWEBiQt/wlUpYQKEy/n3GSlhAVm0k9vZKWECD8lFZJ0tYQE4wiaBXS1hAn4uZV4hLWEAG9S1zuktYQBdACxzjS1hAH0Pa2WpMWEAbDeAtkExYQO3Qw+O1TFhA+wW7YdtMWEAVFYQFCk1YQDz3Hi45TVhArx2fo2hNWEBJsiESmE1YQOx248rGTVhASyf/gPRNWEDlJ9U+HU5YQGaAHn2mTlhAB6bA78xOWEDgLZCg+E5YQDxGjLEmT1hAK1qmTFdPWEDy/73uh09YQKzSAwy4T1hA67CvYt5PWEDrJEiSDVBYQKTsGho8UFhAE/JBz2ZQWECTSosN8FBYQH6pnzcVUVhAwTHeaUVRWEA0WF7fdFFYQBo8OTCmUVhACVBTy9ZRWEBHNf/CBVJYQBUA4xk0UlhAZFCAO2NSWEDOz/qBmFJYQDgyj/zBUlhA8WPMXUtTWEBdSJpScVNYQDOvEEOYU1hAizpgRMhTWECeJF0z+VNYQJLQlnMpVFhANaDLwVlUWEDDbO9AilRYQNCzWfW5VFhABWnGoulUWEDAstKkFFVYQDPM9g6kVVhARzgteNFVWEA+cRPI/1VYQAQMuNQuVlhAXaJ6a2BWWECirPIXjVZYQChJ10y+VlhA1VO+eu9WWEBXY/afIldYQB8JDkJTV1hAD5TuwX5XWEAauBZAC1hYQMIfazM7WFhA99TX4GpYWEDysFBrmlhYQJLoZRTLWFhArQKiTftYWEDeH+9VK1lYQBPVWwNbWVhA6E1FKoxZWEBGfCdmvVlYQEsKGbXoWVhAyuAoeXVaWEAS7xMam1pYQNiJuCbKWlhAU+B35vhaWEDXcemFKFtYQPGAsilXW1hAthDkoIRbWEBw4ym+tFtYQDeJQWDlW1hAvSUmlRZcWECNckNmQVxYQOBCMYzOXFhAw3EGbPRcWECt7QBiJV1YQBxfe2ZJXVhANm5ECnhdWEC2Z5YEqF1YQFtCPujZXVhAZvz7jAteWEABnPGQPF5YQOd/zOFtXlhAFHzAKZleWEA/0zjBJF9YQJG79YdTX1hAVcnthIRfWEC3j+9ltV9YQEHE8z/mX1hAwsi4zxdgWED8ILi3SGBYQBUlDsZ1YFhA2ZH9BgBhWEAU2Im4JmFYQOUvGh9TYVhAGUZnhnphWEAspypapmFYQIKlzUvYYVhAM0jUHgliWEDl6trxOWJYQOkBBlxqYlhAeM4p25piWEBdHlh7xWJYQD08XltSY1hA9IH3aIRjWEBOGLr/tWNYQH81BwjmY1hA0R3EzhRkWED2crLnRWRYQD2TEL91ZFhAHtRY1aVkWECGIAclzGRYQO8L1br6ZFhA/ckFVCVlWEAQp6Y3tmVYQMdjBirjZVhAtWytLxJmWEBZPOJ9QmZYQI7xTityZlhADuugJaJmWEDfy2qn02ZYQEKSbIgEZ1hAmygvHzZnWEA5wSSCXmdYQO1stXTyZ1hAuywmNh9oWEDedqG5TmhYQEht4uR+aFhADgiH8a1oWEBrK/aX3WhYQMApmYkPaVhAH89BqjtpWECFLWMwbGlYQE3TetKcaVhAes9uGshpWEBdDs66WWpYQGWypTSIalhAZSY+ZLdqWECzdtuF5mpYQNtYdq4Va1hA6J/gYkVrWEDDu1zEd2tYQHNT8AGna1hAZwqd19hrWEAP3kQaAmxYQK8I/reSbFhAAEcoo7dsWEDYOkuj3GxYQIczv5oDbVhAjswjfzBtWEC5Rt5MX21YQLUiV9eObVhAqdkDrcBtWEDWXjEQ8W1YQNbSyT8gblhAHWru+0puWEAKW8Zg2G5YQIa8+LUIb1hA30dItzhvWEAQZZW/aG9YQIzGxxSZb1hA+1Qo5chvWEBYgwoh+m9YQGttBxArcFhAjreCk1pwWECkLiySiXBYQB/8sTazcFhAkQpjC0FxWEDnCAb9cnFYQFs6+QekcVhAD2qs6tJxWEBfxbyhA3JYQNgFljYvclhAwWuqAV1yWEC4OD0CknJYQELkB8G9clhAzqW4quxyWEAjEK/rF3NYQMxqp9Onc1hADehycNZzWEAOZ341B3RYQK8gzVg0dFhAZVvz0GR0WEAKou4DkHRYQMR/p7bBdFhASxyM6/J0WEBhnqh/I3VYQCzc38ZTdVhAbEPFOH91WEACvAUSFHZYQFxSyKhFdlhAvRjKiXZ2WEBh6P7XpnZYQC0mNh/XdlhAR0ByWAd3WEDTf+nHOXdYQItHvE9od1hAXaq/S5Z3WEAdIJijx3dYQOnUlc/yd1hAKLhYUYN4WED3gjyosXhYQAhixgHheFhAW0qDyA95WEDso1NXPnlYQHJAOIxveVhAqAAYz6B5WEDl5cPGz3lYQNPuasz+eVhAavZAKzB6WEDRyyiWW3pYQFA25QrvelhA+rMfKSJ7WEAr0WwxUntYQNEi2/l+e1hADxP6hq97WEAqLTbA33tYQC23tBoSfFhAaQi0YTp8WECbGKVeynxYQLCPTl35fFhADr4wmSp9WEDVY0g7W31YQNp6c6WLfVhAMwbDprt9WEByAVXJ7X1YQMFGf1UbflhALb/5+kd+WEDXmytd1H5YQHprYKsEf1hAtcNfkzV/WECEIvCaan9YQDIt18ibf1hAJNkQCcx/WEBO0ZFc/n9YQOGsm2UpgFhAvlXE1lmAWEClOZ8ni4BYQNXCP3+0gFhAslOZT0OBWEDeu+DmZ4FYQBJbZ2mUgVhA8pA86sKBWEDAWyBB8YFYQIgBOOMhglhAWOIBZVOCWEChhJm2f4JYQCYhfuuwglhA6S526OGCWEA7AU2EDYNYQHc6fSqUg1hAl/dLnsWDWEDnUlxV9oNYQN+WtTomhFhARPXWwFaEWEACYDyDhoRYQPFo44i1hFhAOZS09eaEWEAnqM6QF4VYQLJTmU9DhVhAghyUMNOFWEAiVKnZA4ZYQHGkRvsyhlhAKneMGGOGWEBgLPnFkoZYQBj0y03BhlhA/swzCfGGWEAE79EII4dYQGrEuXNOh1hAeRaXvX+HWEAwyIMaq4dYQG4Xmus0iFhAOlXRMmWIWEC6TiMtlYhYQEYQ1BbEiFhAGn5KqPOIWEDrXhQqJYlYQEPf8JVTiVhAEarU7IGJWECb3tjGsolYQKWYlmvkiVhATQDrXhSKWEC4YJZjn4pYQAUHoanEilhANxJ7e+qKWEA7KablGotYQOkzjRNMi1hAr84xIHuLWEA5Yi0+BYxYQF23G1c2jFhARJv2p2eMWEBFGgJtmIxYQFHfMqfLjFhAlHLkbv2MWEA4Qhm9LY1YQIaHQ0lbjVhADXGsi9uNWEArGJXUCY5YQMa3itg6jlhAXr9gN2yOWEAkZXjZnI5YQOwKkHvNjlhA6vzuMACPWEAJr0oPMI9YQHvKV+9dj1hAGff5Ao2PWEBpvl0Jt49YQOwPp6Y3kFhA2wbbdVyQWEAHjAjZjJBYQOnMUO+8kFhAPcCAS+2QWECfhoIsHpFYQNrp9KlQkVhAi4GI53+RWECMAJSssJFYQL2Up5nbkVhApcUG+FuSWED3DqR4gpJYQDeB/H+vklhAYG4KPuCSWEC1bK0vEpNYQLv6nn49k1hA1hTbt22TWEA9fm/Tn5NYQLVHgoPQk1hAw5lfzQGUWEAhNJVYLJRYQBpZH/yxlFhAAiuHFtmUWEBO7ncoCpVYQFs14tw5lVhABpY2L2GVWEBs9Fe1kZVYQJFJRs7ClVhAUL8eJvSVWECpVeG8JZZYQCQjZ2FPllhApOcD79GWWECQY/7kApdYQLhQDKMzl1hAcy7FVWWXWEAk0csolpdYQJgCvzPHl1hADT8l1PmXWEDT2cngKJhYQAUCin5amFhA50LSlIqYWEDqut24sphYQFWH3Aw3mVhAnbKteWiZWED7V1aalJlYQC11o6LEmVhAQ/e/NvWZWECu+HP3JppYQKGkrTdXmlhA8v+97oeaWEAf/LE2s5pYQBFow3Q0m1hAfUyRaVqbWEChhJm2f5tYQCmjt2Wtm1hASFUTRN2bWED59xkXDpxYQF9WO50+nFhAUw3ocnCcWEDHPtt9oZxYQC+ob5nTnFhAOUVHcvmcWEBabIC/hZ1YQG05l+KqnVhADXGsi9udWEDITmU+DZ5YQDO8bE44nlhAuFhRg2meWEAUfMApmZ5YQHdCwgrKnlhAjsTenvqeWEDjwoGQLJ9YQDB0/2tTn1hAZ1kKW8afWEBbBUSb9p9YQFuET2AnoFhA9iNFZFigWECKk/sdiqBYQMoFVCW3oFhAfbPNjemgWECD1WuNG6FYQKL+jVBGoVhAi4nNx7WhWEDc0mpI3KFYQK4q+64IolhAMC/APjqiWECBlUOLbKJYQGwRPoGdolhAUvUY0s6iWEBP3ATy/6JYQE3OY6cyo1hAq/xF42OjWEBejdl/iqNYQCv7rgj+o1hAZVOu8C6kWEAajtRoX6RYQCQ9H3iPpFhAa119T7+kWED9wcBz76RYQDcawFsgpVhAR3cQO1OlWEBH9hsAhKVYQOzFUE60pVhA3+hQc9+lWEDLlOmqU6ZYQAdkr3d/plhA2tElCa+mWEBj+7ZN3qZYQKHr1doOp1hAaJHtfD+nWEBPdcjNcKdYQK6uHZ+jp1hAYt7QgdKnWEAMUZgKBKhYQM7K41YuqFhAdMq25qGoWEAQ4XLPzahYQCdjj2P+qFhABAy41C6pWEDr75IlYKlYQLYtymyQqVhAv9wUfMCpWEB2Iq6J8qlYQABXsmMjqlhAJKygfFSqWEBcWg2Je6pYQKSqCaLuqlhA8G36sx+rWEC3ExJWUKtYQNbFbTSAq1hAaCqxWLCrWECigrBA4atYQNlCkIMSrFhAY3eUXUOsWEC8DVf0dKxYQEKqOymmrFhAqH8jlNGsWEB/KKv8Ra1YQF207aFqrVhAQo1VXZqtWEBZD3Lxyq1YQI/PUTT8rVhAHh6vLSmuWECDcV0eWK5YQKtT+EaHrlhAw8OhpK2uWEAAqU2c3K5YQC2lQeQHr1hA1CZO7nevWEBUIKDop69YQNCB0j3Yr1hAxC0MfgiwWED54ngrOLBYQLdN3u1nsFhAaPDkwJiwWEAiwyreyLBYQEmlxQb4sFhAK+YNHSixWEAJBv1yU7FYQB2XXojCsVhAozNDvfOxWEBMpgpGJbJYQPB1P5RVslhApbBlDIayWEB0e0ljtLJYQO9/beops1hAO0Ne/FqzWEDfEpNKi7NYQHUP9hO7s1hA3wU3P+uzWEAEWyVYHLRYQKcqWqZMtFhAdwCxkny0WEDg634oq7RYQJ9hV4DctFhAN+Dzwwi1WEDKTHzIbrVYQMGQ1a2etVhAM7dVI861WEAZkL3e/bVYQEmil1EstlhAaF9mxV22WECRTHSDjrZYQC3saYe/tlhAcX8bT/G2WEC8N5nLILdYQDqSy39It1hALtr2ULW3WECPlYWc5LdYQKMBvAUSuFhAjXJDZkG4WEDsjrJraLhYQBDkoISZuFhAcJS8Ose4WEBAahMn97hYQLOQk5wmuVhAL/LF8Va5WEA5GNflgblYQGdEaW/wuVhAx/SEJR66WEDjGTT0T7pYQLsfyip/ulhA43grOKm6WEDSjEXT2bpYQO6UDtb/ulhA4DXVgC67WEDMsc92X7tYQBPdoOOQu1hAziat5bu7WED7vpK+I7xYQI8RY6xJvFhA4wSTCHq8WECz2un0qbxYQNCB0j3YvFhAfYFG1ge9WEAk3ic0Nr1YQKhvmdNlvVhAn7PyuJW9WEAyGDbdxb1YQIaCLB7xvVhAaF9mxV2+WEDID4J7i75YQPeCPKixvlhAwzc61Ny+WEAdzvxqDr9YQEW7Cik/v1hAOfvwGXa/WEBK2npzpb9YQAAVoevVv1hAXkODJwfAWEA=</binary>
-            </binaryDataArray>
-            <binaryDataArray encodedLength="175384">
-              <cvParam cvRef="MS" accession="MS:1000521" name="32-bit float" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000576" name="no compression" value=""/>
-              <cvParam cvRef="MS" accession="MS:1000515" name="intensity array" value="" unitCvRef="MS" unitAccession="MS:1000131" unitName="number of counts"/>
-              <binary>sVZSST2x60ZXJzJHEA8dR4776EWfvhRHJBeiRsLVMUaIki1GE7gMRnE8K0avvk9JFVGNRXDsX0UOdD9G8iWJRZmWw0XOgVNGZ+hHRQiTh0WhCahF+gxZRQViEkmhEB5F73kjRVnTB0WjV7RFVwjTRODsFUUcTJZFoHZRQ0NUTUUkF0lFkoIoST9+g0WQ8jFFw7tDRU57hEXTQklF7+iKQhJBe0Vh5uhDKzJRRa3pg0UIMCdJ4D/wRGLLgUNoinNFU+MpRaWVH0WI89pDW2+eRERNgkVs4QdFkEoMRT0SREl2LCZFjiuaRAAAAAAasUdFcragRN1yN0KIjLBB6EypRDKLIkXwzOBDhIs0SepEMEStWtNDlahfRQAAAAD+6BJFBWKTREEdDkWyQuREv+7bRIjFHUS2SwtJ7+O7RJa7kEXVtQBEFTTAQ+1Tl0IAAAAA9dDfQ8DP2ESBvLtEhpj6RKApIUlG/mxFw8KyRLJR4ERePs1E9pWCRTJyGUWFqN1EAAAAAG/brkREIE5Fw5Y1Sek+/UR8EkxDpTvcQysVFkTsaNhDn/H7RGUvO0V2BsNEfWXsRAx1QkVuo0VJbkAHQwAAAACJD81DvKEaRFxr3UQ5lRREWG8gRR03mETN0bVEGwaeRPjvM0lPA7BDN0lORIe/J0XWLcNE9anCQ2sc3UTM61dFQh1LRKxPikORCitFQGsrSRlDX0J/rUBFSvIeRMCBj0QcnRNEla/lRInvn0QAhqhCTMQnRUaRa0XcxBhJrxlFRb2hz0S97AdEXd1qRb4fA0VC/eZE0EQGRRi4EUUizBBFnNQUScnGD0W0bnVFEQlORG6naUQb7IlF8ZFERRBCA0Xgif1EO5A9SZZUQUT+p+1Eggo3RZyex0MvQTdD0zg/QkBXZURB84tENpixRDTBA0XpwT9J0RbeRDKRtkLn+TpFiPHfRAyxVEX+3CZDyzs+RfvN/kQxGuJERacORdp6ckl+8aZC/T//ROVUwETAtFpFi0UHRfP590RuDOhEj3wyRfFVQ0XjiRJFoylESZhvkEQZeUZEdfO8Q9nliURcgKFBHqQGRWQFxUROMQBFd3YpRfKFP0UO3RZJYZ7+Q4Li30TX+RNEMFslRYQJG0U+azxFyRgqRYUmKUXuNxZJ/cjSQ10JQ0XzNvJE2cs2ScU78kNKvNZEOI0+RMpN6EFGollD6xb7RF1lIkVR6C1J1aCaQ5oaUkVVnzBEoR3ARM9G30R8sOZEJj1BRZgqG0l66Q9FC0DDRGZBtkNLXIFEl2U4RWnJ8kSBJRVFA3olSWd27ENY5J9EAHg7Rd68DEXsqx5EgCMzRWd5FUXeBElJPZfXQ2Syz0SLn8JDa+7rRDMx00SLjkVFAmZTSe9o1EMAAAAAAAAAAJSg30S3+cVEmmlORIgJAUTP/adECI5YRKpNuUQnKBxJAAAAAJe+CUUl6LJDxuHyQ1SpAEWwuihFJ8Y+SciWTUWRdgJE1K0/Rd3dCkkAAAAAIw+TROUg/0QLw2tDKSUERU8RqUOOU+lE4lIHSSQOBUJwlghEsyaXQzi/skSc8T9JmArqRpooJEdcRcdGSfkKRuBOF0autjlGt9xbRse1PEfjfshG/nTWRSywhknOXoRGcjpyRRKkrkXK5BFG21WoRf3Z90V6HHxFwhA0RaMRzEXtOB5F/DiFSSlVQ0U9HzRFZJXqRMfaGUU/ShJFu+eRRRcGwkL4KZFFC456RU4ZjEQ646dJmdIdRqv4jkUSJiNF4AKSRUKjpEVTiFdFhl5hRfLsWkU86zNF5CVrReEkakmmXhdFzdTiROvLh0P8l3JFqQqJRQoQJkSi4whC1Ww+REkN2URvtvVE9y4kSa+FtUW/8F5F9UHiQ+HShEVQDJVF4bltSd0vXkWUYR5FAQDaQ+kclkNXfzdFeVV7SR6iDUI0Qh1F0rciRLzyUkXBjQxEhOkaRbjTv0S85lZJHWy8RNvpqkTJ/RNDisp0RWdXr0TjWIdJ2CwBRQKb4EOhDgtEtHhTRUqkIUV9s3ZJ1vpKRZWgRUVg9vREB+fSRN+0WkXhHUlFNkN2SaaT6EOEm2VFs8OZQ7Dp/UMAAAAA3/tNRZ3rN0X968BED2QzRSVddEm4jBlDizz/RFP890SYtrxDDAadRH9KBUQ+shBErnLIRAp3H0V3wABFC06+SQNAMUWeGgxCAAAAAFmIVUVyIUpFmCEbRVo3REWe60FE+sEIRczo0kQT9INJGBHQQ68I+ERp1OBEAAAAAIa9WEUwzWJF70bkRIMHQUSi0C9E2OnLRPNnbklkouZDxYoBRK+O4ERmhw9FPR0ORcKxgEkHZ41FAAAAAIE7AkX6Oj1F5YAYRTNDgUk2/WhFamU0RIblxESmMLpExll6RUjG4ERp+ztD86tgRTZnhUk/KntFPSzsRL4M0URs20ZF8Cv9Q/Lnk0Rw9EdFwqfrQ4QxBUV0C5dJAXcvRYIsCUXM1PhEW3qxQwAAAADLXPtEh/+IRU37kEXMwEpJDmW+RClwN0WJr/5EXA8oQlIFyUToxD1FC4PNRMYiPUXBnhtFkOp7SZUL3UQsL3pFhpQrRT4/tET8EShEmY6HRbSCS0WwklNJHKXtRHNEokTRNj9FMFnMRDH4M0US6jZFOk+aRTt2NEV0glVFEWk0SeEYL0Qbig5FVLb9Q0i3nESyXiNFSTcQRXpuKkn50sNE4NY8RGJNoURcyRJJAHqkQxyV1kQ5Qx5JMKCORIS3V0WWNN1ERTRORfQ2PEmd8IhFp/cQRaZfEkRs4SdF3voCRWtQAUVbbO1DQMLgRIfnrESwA8FE7rVHSTL8sETW3/9DpDy8QzCZjkR/hDNFxcPQRDq6qUS45QtF7LEmRXcDFEXI6YVJ4wocRRLG00P4nsdEbaYoRJJ/ckXpicdEBoYVRfjtKUnqCmNFEbG5RF11CkXtsjRJooawRKGWxENnfjBFFeUrRVqyL0QVbxZFHps8QzSY70RzbURJGXSTQ1qC30MhJk9FDXj9RLJkD0X2JzJFFs4wRQGnVEVxDGhJqYHYRF/Q4ESttq5D2TwmRRxBMEUzfIJE9V1ERJ1Xf0TDQVBJR37PRlxkBkeKl99GiDPjRaMxVkZEkSdGp//pRc39VEY7LsdF74OYRTS5FUk6IYRFmmZfRb0eokUW36NFcRrARXydBkaYs0xFxvJPRXCfaEXAoYlFlq8uST3JKUXGhy9FAIpBRWyfhkIwr+5EslbiRJFMn0WRZO1Dr1uaQ+2bmEQZFV1JembuReL4mEVJLEpFL69BRYPI8kRLOlRF3awMRXkBUkSZSp5Eff8HRNASVUm1DClFUs9uRZbCJENmYmZFwLxxRZzLo0TyLkdFtYY3Rd7ZRkXtuRtENB8/STrjjEVE58REuj+IRUx5n0RtKQxE8FiNQw65nUWAXwtETjukRIAqqkRaKlZJl6cNRJNkHUQ7v/ZEwozWQ3h5MkS6zTNFWQDoRMH9okMzEGxEMX8sRRliJUlJfshGDkh6RTVF/0T3ezRDKSaqRF1M/kT4VU1F4mRGRWkxbEWE/jFJiSgARgAAAAAAAAAAyL8ORMcQJUV0EK5Euw7GRLoAEEl2zCZFDBsVRbjUcELaeWlFBnFkRZbw7ESzwBRJwscKRdtGR0ns2DxEAAAAAH3OmEIJJjJFRip9Q7/H1kSWyiFFx6uAReaHEUUVuyxF1i4oSbMXG0UbJZ1CC68PRDfcV0WJXEFFsXonRFw12kPqjThFQ2gjSQAAAAAQuZBFa+3YRATFxUMOu3hD/xbLRIdJ0UQ3iBlJucozQQAAAAAF4sRDddt8Q/JmHUUJ1TRJt8E7RKlxHEQmUA9EFXRHRRLqukO9Tt9E0eINRT8kRkV6n01JGzWZQsXxKkUAAAAAanQwRQ52pUOHc3lEK/1KSaV0zESgEmJFHdoYRGlARkS6U5NFyxFxRQ/TLEXsLztF9laqRLMXXkXGeylJ35daRa78iURFYYtDsfIwRVgjDUXRRitJWMMGRoOEyEQAAAAAsNGbRH5BPUlaaw9FwBzWRM3xMUUqgUJFH/6XRLOhj0RO1YhD7pRzQ6Bc70TIoy1F8RglSZJzd0RLHBxFbLtoQqX7GkUAAAAAWzNgRPRkC0Psg7FExyMKRVuiHkmOUYZFLTH3RDStSUV99J1EUMH0RHykX0VJ+4NEyRI1SRNKC0WZnAZFDEwORJVDmESGPcpEyIfERMTpjUQ2+IJEHcOVROxZF0k4DBlCUys/RWEo2US+2RhEAAAAABDjMUm2VT1Dwt8ARa/W50PWaDNE61NBRMs8IEQjPUVEmCQmRceyVEVSaHZFLr4hSZ+F5EQpVmNF0a9BSQAAAACkI09FUs3tRKHE9kS5YjdFycE+SUhxCUIzFjNEx28YRVh6N0MUmfVEZtUKRU57BEJGXBlFLJDfRLu7CEk4CtxEFjkmSWsG80S/PpVEIcfURHmeD0S0uZNEVmKiQ9gjPkXDL+tE2E2rRIrSGkkgAOVEAjQBRcKzREVoM8BEqnAcSf6jWkUGVQhF7RkLRaZry0QergZFAdM4SVYVBEUAAAAAOyDMQ5yTzURIWXdETmEbSYb6KkUAAAAAKC7YRGOqFUWGNSNJqGLIRgbnE0cjzyNGMZABR4afB0aeMJtGFxqxRZHPKUbKHL1FEx7rROgiR0ktwY9Fo9oHRr/wh0VGYChFG89IRXXXVUX2qExFdZMCRPahEkRDYK9EUAkSSdvyH0UVYftEdZ2IRXJ4VUILCixFKCIpRDcfX0VQkkRFIN8ZScctv0WXTG5F1mQ1RXhrLUVUiotEG2C/RFWIVERAiAFFghk7Rb2jU0U1axRJOfAURWT5AEWO+SxEDIgCROh3iEVuFY1JHY6eRZDEh0O1ODJFAAAAAMCc80PLnIlFfW7wRB/L8EOJzjBFDARFRSmlAEl1veVEda2pRE9hoURy6gxFKblHSQ+WKkV2SpREDCFXRcurU0UTA6VD+3tjSXo410Y2QkNFEmErRS0MOERGmI5EOYoZRSmvLUSX7BJFGHmmRGZg4UMKlkBJcIkzRqIyA0S8XvFDZJqcRGZh0EMTwuhDIZH2Q3vpVUkhl1ZF2bk+RZAZJkNQ9xBFZHehREwn2kQ2rklFjrDqRI0TBkVUXnRJHJA6RbgPeEWUjIpFKhLfRCf/U0XyIZtJFhCURYU6fEVI739FbM4+RTU+zkPKSD5FbSAGRcCMikmfeTFFx+AFRKfmOEVpr1hFREQ8RPtGAkUOomRFd9mCSTky+URsHLtEaAcfRJslikNawJdDX88rRcurgEXVvHdFXHZeRUNFlEnCrFlFAAAAAGKZREWRYxBJu3fvRGfWB0VFsPhDe7baQxsEaUQpyOlET5IhRcOrQ0nHgSxD4buhROle0URAKQlFtG3XRBpoRkWlpm1F85TPRN/ugEKoVftERIMYSUbjyUMUCb9EwPwPRGAkkEPkshVFE3l1SUFUJ0XjV/1D5aX4QnJ9fEWvxkJJYCPVRaqRS0So/iJFQ/fWRIAVqUKBbstEdTpqRcXlIUW/oX9F7aE2SXPgA0UKAX5C/+eyRASE9UGWTVFE7eOPRV/RN0kXNcJE5206RCT1P0Q0ArFDPwL5RMXrE0SBNtdEz4t5RVSv9kRDVOFExs0lSQCMXkUSkMdD+U7PRJUzxERoeAxFXGsRRSeYJkmpzjtFPLn5RGs++ETK1IZEOH/GQ3WyckU1IwZE9ePvRKauckWjRh1JEFsFQgAAAADjGXtDOShcRKHGy0TbfXtFSUjzRLFIMUWkvAhEEkTrRKNRjEnCuBdDodgMRQAAAAAjpjND0RSBRRZK4ETx4TJFhMCxRL5UEEV8letEn3sySdZ+BER0a9VEZfRPRYoRD0VFOD5FOcQnRSeiTEVSfA1JAAAAAP6HckNTGN5EL3pvRAAAAAAwuVJFQ9qBRBM4VEl/D1BEZiNBRc35w0N5uPZDYb6uQ30vk0QGok1FwpkzSQCr9EUb37dE2xjqRLjVz0TD2DlF9oILRXkaRUUS8lNFC2w7Rdv5OEnbUopFcPFWRQAAAAC0zf9EAAAAABrLhkU6sTxFAAAAACsiCUV7nEFFtHBGSQAAAAAAAAAAtMMFRVxrpUPIHkpFh4RjRbPBKkWSwlBJbGTzRKoOKUXvNPRElMlBRRNtF0Wx7FBJt8bPRv0M+kZkBOJG68WKRqfdHUZTaD1GmbmkRYOi0kUPwbxFAvURRM2iLUmQBYZFTkcRRmrIG0XRSEpF6ohjRb7dT0OFlxVF5HHzRBLp5kQvVvNDbfMsSasRA0UKzi1DcJEQRdEXrURNl55F/5jDRNa2VUP8xG9FYlRORXrli0UZ7jNJ2of7Rf8AXEXDtiJFq51CRTfhUEMAAAAAnnJfRJnNS0STsg1ELE+SQ/69M0krPwRFHHTtQ+xhR0QBSldF7TpvRf0dM0WuATNFsZNORQfBz0TItOtEYZwbSSb8X0UAAAAAFWxtRYyjBUVtNEZFXGYGRUtQlERASAZF9ZXqQ8FFGEUMd0ZJbt2/RqN3L0UBaslDmNHcRBo6dkWe20dFAAAAAJYrMEV/CflDpKRIRXwiQUkkkyZEc7JpRHDOGUW2jy1FAAAAAHTtkkSPffhE2UfDRIf4kEUGjyNJlYEURjK/OUUEiFJFEw05ReDeJUWY+l5CmTc+RTLxJUXzhUFEKzgKRR2JIkmEVARFAAAAAEFEykQADxpE0WPERF9i1UQ2I7NECgnORCIZMEmUXNtD8ETVRINrOkSunSVFacsjROWUS0ScN/NDh3lESbKQL0XG8XxFnxrcRC/iw0MGeANEdEMBRAAAAADluDFFUvQ1SXbQekGco0RFtmfWRDMjBkFBOXxENwkBRAsnrUPX7xxF+/I3SZBV6EP1FERFq8ghRV19aUVTLAVF/nLPQyb4Okk/7zhFZj8DQyvh/kNfohNFXv4FRSafzUQwuINFNg1wST3sAUUSRepEvIfORFVuUkVfuBlFjr2IRdxy3ESuMLxDDYcgRYGPOEnahCtEwzEuRdtfp0NoGrNDMtoTRU2aCkW1oEtJ1CymRZU31kAyjstExaC4RNZPHEURJCdJBDM8RUgXEkRVDOtEhkMoSSNBzUQYz7lENT6pROvYGUWOCyFEef0lSeumW0XvRQdF7g/FRLlXwUSfNz1F+dIjRVPrpUTZ8x9JfQSpRLho70SACh5EiUoeRZ7PM0WcN2BFDHomRRf1uUQ9dIZEWpEgSQd03kWZyWFF1cDQQ2zEIERpgfZD36rIRC3rCkXRRyFJ8fT9QxzjNEVhGgFEciBBRd+n1kRbxhtJmD7vQ1eN20ME3vVE/BOSQwAAAAAAAAAA1GglRYqfhERzagZFDRAjRZICIUmWUOFC39GkQU5EaUX/yItD84oSRWnOikRxCCBJJxnwQ00OHUQAAAAAafkjRDYxQETwjSVEe76FRZTUNEWN2SRF37cFRW6JRUkM4ENFDTn5RJN3UkVjPctE5+ZARUpnKUldSqpFAAAAANOjOEW8iCFEc4SGRbtjKkUPmnFEMZqRRU57UEUS/ClJpmfKRWd4pUVBGDRFWcQKRXR2IUVkvkFEsnruRA9efEUCPj1FLXiORW4fKkmy4zhFHImARQor+kSK0BFEsiHgRN1aDEETNadFmLe0RbdljkUIhaVFOI1ZSUGookUQKxdFdUALRTlGjUXbdl9FzGZMSR4+gkXdbANFMBbQRIVt6kQkOQxFFcRlRdFlfkUNjV1JRlkeRygme0YOTQdH/JyZRtzeNUZ5AeJFUeznRfLLykVUXtFFWGk4RFAGd0kY7KJFgImSRoFjikXAUoFFEfNhRWm3P0UAAAAA6E+HRdRNxESKU8JERl1cSfAh7kVV8yZF1h8bRScTo0W1MFJFAAAAAJHQQ0VlVIBFLUKfRS+8aEUHgo1JkAswRoC9gEWSm4hFm2oQRcxpqUX0p5RCSXA7RPOLa0VN9kxFHAYHRVBJh0l5ycBFdUuXQwAAAABf6bJF9c2WRU3AKkUmasVEN/6FRSJivUVY+nlJ8TGpRT4WXEUAAAAA69SCRM8zaUQAAAAA4WqpRYDxH0W9HMVEP+UjRPM4Skk15o5G3UoSRYfEtUURv5FFNYBuRTQLHUWBcVhFVeJPRXYWkkW0QnNFsHx0SWv7cEVuH41FDtwoRVdAy0MGmz9EDD2CQ66OmUGLC5lF02/jRBLe3kQ7ixhJBwEIRhaBTUVnrwxFOJjqRMWOpEVLJUBJPKRgRaWlHkMxFaVFPTD8ROL9jkVi6g9E+WI3RUrBC0VyLldFpL8VRayOS0mbsIFFl2XmRCIw1EFhPBZFvFcKRUuIWEk9zx9GSbSQQyRaK0Qfz2pF2x4YRefouEMHfs9D6/mFRVswB0Qv6opJx8qLROjxcEUrjwNFAAAAAAjerUO2Tm5FotqyRYb6nElpTYZF/YUmRPvmmEUn1nREfLibRRDKWETxNvFDqI+ZSSogiUWruvhEvvAgRPikrUUWhwJF/FqTRV0TbklzdVxFM+zuQx1j7USGabJCb3WcRfki90SPq4FJflYSRVRG6UMhOUZFhQdBRSwkQEWPGG1F3eCGSZJ0kkVJIplEt92YRXsVZknWonBELgPART84FUUTFXFF7K4RRQ8bDkXtVJNFUehjSQAAAADq/wlEJLnlQ5SW60ScOYJJqwTbQynXhUXpMeZEtaEARXK9AUUmtZZFRlR+SeI0fkWjrDtDW4k4QhgYMUWtgjFFzv/dRBTQWkUnfj1FMu2ZRWYOekXufUNJY+RVQ0r+R0Q48VhE1dkHRUs+zkTilyBJMT7XRYJXZEW0HjlFjD9FRdX23ESwp1VJrrIzRPZIi0S2HwFFafHwROJABEX6TX9FTjSIRVI2DEUG43xFNTQSSckxR0TRtBJEeHbfRC10GEQsoSJF3Vi1RG6KQkmKSO9BA8utQmM3QkVZBDhFqY5rRe11jEWPW51EwztNScUJ50S7hatEl2/gQ2eCB0TMnPFE+lYLRS2IO0X9HkFFv31MSXugTUR9DxpEksgyRMnQ50TUMN1CNOlERfZU0ELgcU1JpdAuRWxXL0TL1ttDtLlIRHR5HEUHtEhEmB0zRKf6ZUU6j/lETJF5Sdgk0UU2wHZFHAiCRZXynUWyuCZCOIZ6RK9wb0mX+yJH7PVVRVPAEEX3jdtE9drsRLYgiUTcOGNEp8QsRWbFLEXME/hEYZVmSd79X0Wx4PVDzEwkRSnQHkVKhMpEF98bRVKECkU4kJhFR7ANRSgtSkX60jVJU4QERhWvAESn9KZEDHCiQajl2ET6Vk1EoGQ5RXBnM0mahy1HI21FRhq48kZyHI1GIm3eRa+G0UWrBZ9FPLSKRQAAAABcGONEzFtISUxdjkXCLDdGpe+yQQAAAAA18L5ELgQRRQ4Zi0WJnxpEP3z0RJ36aEXcW09J/SXHRSaeGkURFIJFU9e7QwAAAAAKrqxFr8XfRM/o+USa0wFFd/FASacKpkXlDTdFvB4tRdOoIETlIJ5EAAAAAOGluEQzJTlFziG+RFZHQkXl0CtJfaaWRo1iVEX9lRdFQNAGRVGj30SAVdBEgwwFRY7BNUkAAAAA08ZkRTPos0RQHiZEhW6ARGt0i0UcZQNFwAKNSeEUjEYxKiBG87h1RVaWzUTWhU1FB3gjRSOvPUSRiQBE2KobRCqEAUUey4ZJb2MMRQhiW0WY5mBFzRcxRM2vq0SCDYxFiY34RMVEr0SOaQVF9IXcRNBpUUkZuCdGfM48RSsAgkJ4W+lEo5BlROvNtEPcDb9DjV5NRC4B2ES7WN1DT0heSbY4FUXf/EVFNdnaQ5Wl8USDxwZEyS1+RQAAAABnWMtEtcMlRSZdWUWgjlVJpnwJRi1HKEX3oLFCAAAAAKE3IURro51F7Mr9Q9BaGkUkRB9FzQfeRBtVPkkbIkdF9EPvQ5p4/kPqk0JEZa9bQ8EJuUKchg9FDKxrScbYYkVhSgxE1g69RKZiL0WKyXJFicoZSankHUUAAAAAXGm/RNWkx0Pwk2ZEiuwcQvF36kTEdARJh3XxRRD5lkRefX9Fqw5YRdnVVUTTdQtF6ssnSeOlmkTprMBE7PhsRX571URvAghDk77wREwMZ0WcuWdFFQUXSehNLkNuYuhE3OESRTxcckX0vCNJgbEURfhMkkUWRt5D1zz5RPJhIUn+nj9B5SjcRAAAAACJckVFrUisQwFjt0S0RCpF9z1oRVas9kSAJSpJAAAAANYT+0Q4PG9FcN+FRcJs2ET25T9FOkJlRekiRkWNeW5FwxyXReD9BUkEt0BFKgUeRXRjskPHv/FDwo9lQu0cC0Xpb8ZDloVoRS8KF0n5FZ5FBiY3RRmfiUUAAAAAQzOkQ84FvkM8O8RETbHxREF3IkW65CRJP9stRXD2HUUHaCxEhGoPRTMKD0Wi/JhF9eYFRQhfkEV4LH1FUt9ASdBZhkUCQHRFrieSRSJLjEXfTZZFDB0uRdAihEXWqEpFPhA4SczmYUVhQS1JG+oBRULf5ERV9ltFNslQRBSqZEX55IRDN5gfSZ0aNUmaUbFETkoKRXK8XkPPvQZF6EFmRNIhLUW87zhJT1NMRTvbzURWYU1EBFC9Q7ppV0WhhOBEStziRBPeOEU+ykFJQLRMRX7bkEXFN2ZFU7+IRfPfhEXCVuFDXGZPRAAAAACS7DlDYw9mSd1QDUfw8h1FAI68RH3cUkXgDElDnUMvRdzvBUWHSk5F86O3RP9UJUX4hT1JKQivRH2PjEN2DjtFfFb0RL6ZdUUOjz1JDrX7Rb1sNUUrUJBDdGlBSSUgzkBeRs1Dt+lHRQAAAAALpZ1ERry3RI2GO0lUJGhH0ak7Ri/X9UbWuFhHzo2sRdeBckW6xKhBJl8aRWXFM0Tti4BDs99GSQlEokXh731GoTlxRXEuLUUCgmhFGGq/RHHvi0VtYQ5FMHo3SWIn+UXfOzxF+l9wRaL3j0UAAAAAJrCbRfVyqUS3GYFE6l7dRPIyIUMhZXNJ/43ORcnVJUWdppRFah+FQieqPkR3vt9EzCu6ROpTgkWNl1VFd8cxSU+7PkYn+U9FVtLfRAC7OEV306hE9ozSROj6s0SUNIRFA2gaRb7lukRfAkxJLmwhRbN0oEQsnppDYJSXRI1fdEnusPNFQkW0RYdjV0XgWJVDkUVFRcUMhkWBP4VEaPIpRYqgAEWYyoBEVt4wSR9qV0X+4z5Fc8aPRfg1r0TTNcZESUw4SUq8yUUB7VRFkbw8RaJ30ENR6jlFcBWIRLtSnUSFCGxJ5OPdRJ4000Td1pVDZ2eeRAAAAADZ7TpFhNZPSZVB1ULgq6VEmCCARLnfm0M0gjBFOIFqSWkAFkVXJp1FONUGQ1mVCEQBpjNFCK01RTyumESJqBpFWdrTRHBeMEncnQdFPGbMQiG3C0WzNjhDkQaLRDbyLEWsd9ZEcJU2RIN+BkS2/1dJ3BQ4Rfi2v0Q8w6NEPl++RMhG+UOjsGBC6eoHRQAAAAD/G81EmY7TRHfwgUlDNZhBnGEWQ/FZL0XqF4xJ3Ac/Ruojr0VMDSlFmjufRcGlykQhaIJFFbzzRAAAAADRVwJEbG0mRL69akksvQxG8AfSRPSrXEPWuLxE+6+eRP0LhkGbUC9FxEhtSc8urUScPgJF1JXMRKQG0ETlNBZFn4tFSXptfkJ8YZhEcEyxRNGGPkmJG6ZCvinHQ6odNkWUpQNEf8ypQzP9rURwVrpDy6OtRNw3sURcs0tFlKc+SbM0QEVJ65RE7B5TRTRkREVzMfNEgnYtRZVaNkWhQxNFOnanRCzWR0lqI3NFuxAVRBNZEkXGlApEye8MRXYI0ESN6khFy1kRReasB0IyJdpELVdpSZIAqkUc7AZFgAITRPkFqEPX+ilCWAtmQ2fqGkXsOadDVSQHRdc3HkUqGYhJE7giRXB5okMjsKxDbUOaQwAAAACYz99EQDstRWibEEWIHpNDJjSuRNa3TUlMpyNFaLQFRQccjUSB5IhEZKajRAypfkVyTmZFGK9YSV9GQ0VlFpBDW5QVQ8Jd4UQCrzdEGUerRHyAv0TNbEtFzZ4ZRTgrFkQoeWVJmOp3RaRsK0WKOMVEhVvZQ7NqwkOT/KJEvA3dQwAAAACUwpNE8bi+RKBxgEmZzEJGRFhjRSnUqEVGit5D2tJ5RW7RLETUwkJJsFisRonbp0UujUhFge15RBEA1ETJwOVDX9NoRTnmwES5+hxFtsaJRV9eQ0kG1KVGRZJNRfcX4UTxpA5FyAHuRC559ETLBx9Eyt9xRRmBOEkAAAAAvqRMRB4SY0Xa8GdFl59KSdaHNkYAAAAAPt/nRJKab0UAAAAAArdbRfBfdkSwNLFFG/K6RbqdfUUD80JJvWnRQQvs4USBeqBER6ymQdaRy0SBp3pFYkm6RPjQekQVbi5EnZmIRbQ8IUn7uOpGYhy6RoBCGkYoFudFnvKFRQAAAACI5U1FWejFQ8m/rEUOmX9FdQ8cSWyB2EXI2O1FDgN+RZ3xaEWkDO9DXP6MRbyvJ0nTM65FmPiURSrq9kQfgLhFb4giRaBgE0XGGwlEcIwwRDhQREXtrw5FhHg+SfOGhkViDstE3BHdQUxvAUNGIcZFBz6yQ4pTEEmS3TdGu3iQRWi8aUUKnxZFCegPRDQh5URzJGhFvv7IRS8BLknZbRlEAAAAAHK3XEWe1xRF99R/RfMRgEWwp39FdXMKSeUAGESmGn1ErksuRe3BvUWMgjdJMbi9RVxSjkUPJ6hFBTzWRFHUk0UjyWtFJuhWRSG2C0XRDKpFCLQXRRDTZkkk5wlGMp9aRbCupEW95ehE5j0FRf2NeUM+PwxFYFAdRMTJCUX0mP5EWb1bSXc8mEWoDNVEJNLDRLC7AUTNjiRF3tutRIzXIEXl6nBJlPvqRZIP4UTTyzZFbcSSQt73X0WFNXRF8E7jQ/JOgEVQAH5F6BkARSelaEkhSppFzqImRE9GTkQI+5tFrE40RQf9XkVetrVDzk1KRaIsW0V/VHVJmwWORfihA0W8H05FUaRRRfMDFUWBogxFj9jdREwJBUUXOFJFuhhXRWeSEUnkDRtDrA4DRInfGERnw1VJSD1ERrNF/kUmgo9Fb2x8REa490RNxJNJvrQ5QoQUCUWxCopFtDQjQY7RhkVZzoNFXJwaRW6aBkUdpjJFffLFReqfhEnMqQ5GvIwERHyr+0T1yOVEAAAAABYBtESzxTpErZxCRcRWi0VZuG9JAAAAAFubukRqqwFFb6QARR5ljUX/EINJMG/4RE2Ki0WXNQxFW/sLRbkXeEXCZo1F8Gl4SZ2KIkULLZBFi0d2RREPgEWfJD1FVP1dRKh00kXhfZ9F/ExKSVjjGEV3w3xF/ErmROvqBkXIHT9FNDpYRQHppkVMB7RF+OVvSQAAAADDVi9FJYPLRDWzr0IAAAAAqwVSRS12yUSlYZxF5gU1Seed+UVpIQlFSQamRDelkUnyFOlEdBDtRPp+mEWrC7hCAAAAAFPeh0l0E4dFeGIaRHcA70OIGoFFLd4fRRkTuEQmBY1Fx9tgSQZwKkaXTNpELU7dQ0/mdkWAJRVFx7MdRa9SBUQoMlFFLgEpRaXNg0WBNppJ1aJjRcwSvENvqCVE8orMQ81NN0XKAYZJXtS/RecwR0WUJAVDAAAAABQd3EQdekpFNsmMRZvG2ERl/hRFjAmISaIeJEY9fmlFFhxtRZTBzEQzigdF101wRTteWUnUKqVGE3DGRTVZNEVWZnRFFMMRRe5HvUSR4Z9DvuLHRClFi0SpTmtJJir1RoOXTEXC4upCq7+ZRGNQDkS7IvFEAUjJRMbfmER+63FF9MtBRXn8dknztXpAoPGPRUHwfkW/l1hJw1o2Rl+UEEU8X5VF3Z1iSSt8SUNA0mhBNTrsRH3UHUU5cNBE9Sh/RY/6h0XH401FZEdwRSLoe0kqmJ5Fc84BRc4WikUBaxZEmzb2RBbd20Nfe7ZEZ6Y2RUhZOkUrEXJJFy45R1tjKkdo4VdGX4amRls6nEV4l5pEdjWKRSz+g0TP/BFFvqpCRX2aUklfCplFnrwgRgAAAADtcZhFN62TReXLHUUIwvpB+tjZRKhcD0VgKYFFWSZYScwzxkYZtBZFAAAAALep6ERneTVE6+Q2RXlDN0WpaDhJJ8rQRWe1K0UZJyFF5zbaRC6IuES3ywFE6j/JRAGNAEVBk8FDpiozReLqX0nEFbhDKTu/RNoqrEJpGadER5LIQ4laXkXE2EhJU6jURLE0MkXnLyFETfOWRXACOEUl6ERFSVB7SboVzUXpgDlF9TiZRS2Ue0n0gYNFRQbARMbSjUXv8U5FbpBeSXn7iEXNlCpFRkcsRM3h/0MAAAAAZbrXRNBQwUReulVFgvlLSbzze0U8zAhF3BCARIBUBEXqnlFFKkdWRbBg+ESsO6NFhfQFRY7fXElJ97lFAkszRajot0EwknhFOf4FRVaiWEVEEgBF09oMRTLmgEW1zjtFLORcSSw8S0Xae1BDoHFaRbvDv0TQDUpF9JYZROsSJUV7QQdFkenLRFHoskS9Y0BJCbsVRnj2+ESWDgFEnY8XRVVLGkU21V5FcvVVSdFp80IpsbFB5Y4uRVXILEQAAAAARR0yRcfSB0VnMYtJPkbaRY9JpEVW4WFFAAAAAHxxDEQ37d9EFby3Q6kxS0XcigxFnJQ6SY26w0Ndr8ZDsaXMRNuNTES9JEBFn2u1RCexGkmps4hFAAAAAAAAAAC3S/9E0xleRSwhrkQaToRFzNgySUaL9UQ1FvVE6NRTRXjOHUl5JPNDXxbMRN9qAUUqnAZFMRcMSdcBx0Q6avREPJRCQh6f5EQtmAxE3UNERatLBUUyQSFF/bI8RbIUH0U38SVJ707fRKs6okSXg9lEkj26RK5X9EPytohDtOUrRSzXSkUhvEhJ7gNHRbkdlEV63vdE98jDQ9RJmESJWMFEsfEBRWmNAklkiHRF1AlURe5X0kHXfOtEeD+8RGiTBUUAAAAA3bHuQ3IGFEkBPZJD1BHORO69SEXOLuZEoVrGQgAAAAAeeX1FY8/sRKdJckWaAi9J4UbkRVBrZkV4yD1F1f1ERYnn+UTu5tFDS8VLRewWdUNi4b9ELf/YRL9VL0npXhFFLlmSQ+4CJUWLZztF1j3pRLhiMUmA6ipF0a+RRUlqZUTh+KlDEKEKRIuRskTLdwREWkJDRYsXG0VkkSdFkWUeSc6Zo0Vcu0JF4V8QRUG5j0JfxutBL3yxQxvmCkSBL9hEY3Q5RH7DTEV9YFVJ2egXRo1zU0X0EzJFtowWRaKtx0Rr/flEA69QRAohUkXBQB5FsZsOSZOx0kYeAzNFK9OxRKsD3kTfGgJFaT7dQ0pLEUUEUDlE0dk5SVfl+ET9aTtDlrDWRHn6OkWtryJF3SceRWmjMkOsroBFyECxRB0HWkWYXDBJ4eoRRkeWC0MCVGVF9XiFRcWrL0nbZfNDOOh/RbzXnUUF5zxF2ksaReUk80QN8lhFNbL6RJW4T0nfKoNFNl3cRJEM90ORuxVFOlYpRX1zNEVuJCxFz5AiSQZNEkeSLiBG+bTqRmxXtUa3IsNELba0RG8igkR06DpFQJRxRbRt20RAETtJCJymRcD6CUZOSKJFYPBbRQAAAACQjxNEclKrRC2UdEV4yPFEzVpCSbGmIEYPe2NF5KWYRH+6n0QAAAAA2NRGRcRPsEVTdEVJN3JXRWAXPEW8SW9FP1gkRcv/0kT0TtpEwtbTROHFNEn+ceVEX3HDRPEp1UMskXFDUQY2RUqvoEXYBWZFxY4+RazLXkUYykNFFSMzSajw40UgpF5FkJAoQbDXTEXCv9tD5zPIQ13Yt0OKi0lFR4N/RFQ0rUTi9yZJqOmbRQutr0RxENBDQQjcQj40nUUgt6RDAIsORFJQ5kSBtfRDCEc/RZs4JUnfljNFNFqoRKeqo0Snj5RFCh87RZkqXkWhDi9EyddrRYCVJEm9CfxEuDOyQirzr0Ssk5VDef09RR4dZEXx2qBDP/97RROQEEX8UU5JTnZDRYpNJUVa6w5Fx23NRIYeOEWPILhEykY6RabgOkkAySZFGLZkRRUB70SjrqFEBX+AQoGSU0XEwuJD4hi7Q6vFCUUsHtxEMcBBScQ5BkZ+8rZEAAAAALN1TkN2MG1EAAAAAAKD3EPXM9NE6J4nRT87DUVI91JJMM3JRQAAAABq/qRFAAAAAAp9A0Gr6/lE2zKMSf0vgkQWUcZEMV2TQwtfokRLKfBEA8I9RR/zEkU8f31FrO1XSclm3EYmP7FFDSclQwAAAAA1FE5FdRC5Q4mj2UT31FtDSJsbRUiDTUkPH4tEoWpqQ8MUa0W0CU9FdDJ7SZEHZkX/sJVEezj7Q2PG50O6Ve1EAAAAAHSzdkUB53dFrAM2STbB60QAgBFFCxdPRU7cX0X4YCZFDeJnRaCzbUm879dEii7pRJfwG0UAAAAA4ShGRSMyS0XQNGJDQuA4REQF2ERmNnFF3MwySfkF4ETvRDlJ4FXCRZA16USqN2RFT/jOROLqpkM8xMxDchAnRcAQkUkAAAAAU9uSQ/uTVUVmDLBBjKZPRANUDEWAeJVFevyhSUqGb0XfKnpFNG33RET0qkTkWZpFXEygSaBIPUa/OLFFiLJ4RdOJiUXMxMBCghxyRUGvi0kJpgJEEKcbRcDVIESewyJEF5biRAGovkWcKF5FwMaBSdHRcUUq60NF7rW9QuCfY0Xo0YBJAAAAAOJMGEUAAAAAXSuJRQUrhET00AVFP2ZCSWix3UVaxzZFABC2QdRfukI8qEJDYQoORc54FElbmltFqraWRRhmiUKkisxFlns8RQAAAACLlBdFaV72RPq9RUliOOZGqNJ1RaBogkXoM3hFbUUzRQAAAABGJ4FFKoY2SVP7W0UFj0RFVQuRRfwKTUQEuxJF477jRN3PP0XaywpFk8acRW66RUXOxpVJX7JDRpb6T0W1ZBRFWOM/RJuzK0VK5GNFt6+6RXEkcEkiP+1EAAAAAJmdlEMxzZVFI6pvRRmYeEnuQHBFojO9Q96uGEVLyn5ETLoMRXy6mEn41IZHllVZRz4YCkeSc4hGcCokRbkOKEVTChlFbSxGRcgZSkXsCxZF3d18SWtprUVahnBGPcy7RT97oEXe82pFolEIRW+KCEWeRCRFOj0VRaCCLEVdIGVJKDVeRs1wq0VBtaRFH8ciRau4K0X8vQZFzECpRWMsG0VLm/VEc8EARV0rPkmPgY5FAAAAALi6BEXtJv1EdJwfRaUgMkVB7LVFCK1YSRVrnUX3OFpF4OmKRcslZ0UWe4RFedtPSXwEc0M+HAZFAAAAAAvni0QmaDlFs8hKReyTIkWacENJtD/6Rfq0v0TrQQBE2QcPRZSZPERUJmlFKRZQRaJ1OEXGfyxJTLsERrjHU0UxrehEKroUQ05Cq0NlklZEEYeXRdqbGkXHPoBFnIypRePJRUkuRGpFBd71Q+EVYEL/7adFwqq8Q9CYB0V52AVFbajcROmNf0UeCE1Fu/hSSQ66CkXS3q1Ff1sORfJ5FEXCEUBFXipZRa/d1ER9F5pF5oozRXZjVEmeQF5FAGgzRK1fYESdxG1F+45eQpy7B0TgFhRF7mxJRVqnv0RqJiJFb9p9SfSoSEWYCiFDqVNjRewTjEUuuXJF4EdmQwssYUXiHNhEKIfSRNti5ETcikJJN1YfRrxQU0R1zhxFJ8EVRQ/HJ0Sw42pC4XzrQ3HdMES8OF9FNeGGROcZT0nwBlZFeN77RLoRjEVWhTVF6+/GRHJAOknNUJ1GyMSORZDOQ0Migp1CDGmZRIkftkTGq+RE1jOBRc2xtERh8iZJ3BvnRE1hekK67k9F9G1XQ3YSv0SBCipJEkQ0RZLCHkO41vNDiDeDQl5vFUQAAAAAfqT/RL7TzEOPfEdJ+lHLQwAAAACouZdDGJXGROn/kUQ8KDlJSy3jQwAAAACJ2X1FrF2ZRYWpJ0kbUC9E9071Q1yYHEX9vTRFXYMDRQ7OQ0Wj5lRFHv5hSf5sCEOHqMFEpw6LRP+LM0UMQLVEutcxRc9KJEm+VZNFyXcXQ33yKEnj4gVEDWrUQxZ1EUSEe6xDmCgTRSaoB0UkmxBJyt0mSYnN3kU1aUhF9WsORUFkN0VtTAFErfE1RXQvOUkJHzpDf+GVQ7iNhEWMsblFocw9RPKmxUS5lSJF0ARBSeueXkXz7EJEwS0EREOkC0T95RBFcqV9RfNocEVtVeVEu09eSW99iEM0cXVEzRsNQrBKFUTbqwpFrzZeSV4gw0XbbKpBTK4JQwAAAACKs2xFxwZfRJpRA0XCi+hEj/4uRJNaQEWMCyZJEFWYRT4laEUAAAAAAAAAAE04DkTjLDxFWPBISXZl5EareGxFAAAAAHK5zkWPnopF/qonRcpRGUWhNYtFKBg7RWCJTEQ+qVBJAAAAADhW+EMhuNtEPaQKRCMppkRWSoxF8ZG2RTbDhEWy9V5FW/J+RUQ4UUmPQCtG5BpJRbEHCEUFCnBCv6IxRdejmkXjKeRE48hISQVoUEV7vgtFAAAAADoaOkT3ieBE+qB/RbggqUVC/otF60hhRSbQLklTkAZH5l44RvhgP0dt4yRHpG4yRQAAAABZBoNFe4hYRTsuZUU/0YJJFK+7RXdLaEb0NslFtjRPRW5RokNYXVBFV/L0RAdxgUV+QqRF2qgsRdv2VElINm5GQdeKRa0ECUWjs7RFi5gBRPhkI0Q7PwxF6lAmRTfzg0XhYXJFjE0WSdukSEW23ApFrrz/RAI/KEJ80glFH8wTRbzBg0URiDRFbNuRRVEjLUl2oadF2bBPRSzc/ETACR5CgsScRUhuNEUuVEFF/acoSQAAAADQIBxFSATlRM6ol0SiNUBEZ4j7RLYrHUVJ20tFQmPtRK1hiUVnDTVJUlTkRaBqEkVNixVBrcYPRTp3e0XVDHRFRfYgSfaDAEbVitFEiZT1RPvgvkTQtSRJFdynReBdO0WC+ftE3fKzRaDnBEXX26dDuOPWRMhn20QTmHdFAoaFRc2hI0kS4wVEAAAAAMgwCkREgAtFE1h8RUgcN0XLa6NFeP5LSQNbo0WtNxFF5rErQ7e2bEWZWhhE18oQRHt4L0lu0VlFQGWfQtVACEWh2vFEAAAAAMkmUkWoBklF1jdmRfauYknx44xDnhBvRSvnW0VyJqRFEUqLRE4/jkUgRF5CMYUtRGOzAkWmsDtFHrsvSbme60XNth1Eld+YRX8BLESuLRlFH48aRZiuHUWRfkRFXgmMRTZGVUVR/ihJ56OlRb7/CkUk3zBEy/YFRDbcA0RD5khFbA8uSRCIvkbo7uJFM7rRRSBwbEVfl3BFRPWyRcqcrUXYE15JtMSLRrOxLkXL6ChFakgfRZR5mEVzL5lFzLApRTnrsEWjYnJFldB0SefiKEWNKTVEeoN1QuZV8ERWs4VFAAAAANTOPkn3oUVGnA+vRRdDnEU2mKlDYRooRVubGEUdbTBFCuiERURRXElzgwpFZjg6RAIusUXRQBBFS2sWReRkH0Uo5pJF4gOfRa4lk0XYGmFJ4/FqRQ3SDUUvOBJFk1p2SQt5JEbtxUpFGX5PRT9HCkVUcaJFPrBGRa5JhEk/vLREk4ctRIfvAkVgGZZFlRi5RQAQbkmQ2k1Ef9clRIPQeEUD8XlJwKkhRubyjUWIg+ZExNAlRDw3V0WrnDFEdUcjRXalo0UYaqdFnp2ERfsHhkmqZy1FMRI3RVNYv0UGWR5FxCyPRQopcUmh1a5FjhCRQSr9LUXKDo1FzpIKRWJzqEUs/y9F4OU+RY04AUXmEEFJ4G5jQ4+R30V6/LFCVjRiSQVapEUFcTtFStj8RDAyh0WxgNNFxfmWRZubP0kN6UpFv3wjRYSHgkVO+NBFX9zVRLZJskVhAJRF/+yZRa8UjkX8oVdJTloJR5QEjUVrjuNE99WeRaaUCkV4N+1Eb4VERRKYzUWMKmlF279HSfcy5EWNNAFF/aQSReUFvEVzHClFQ5aJRZXZE0Xz+epEnknGRcPPQkktXdhFpe97RTkt4kPgMqBBYadCRL7WLklSNalCt76MRT1/20UVJaBFojaARe1hZ0WYTLBF8bRbSdhGvkW3P2JFPzi0RQj6LkXqzEhFiAySRT38y0Vlv2hJnDlaR153PUfFBYJGZ7jyRhTbz0Uc/+pCAAAAADXr00T7W0FFXRmORTfoVUnQhK9F6JcPRo85B0Kyy6tFHzgKRaH7CUXU8eVDrZ52REXreUU6hXtFkFlXSd1QTkZMAMVFk3xERN34LEUAAAAAyyB9QUBOjUVypONEoF0xSbFqV0UGa4RFZQhyQ6guoUWRM3ZFbEu1RUy8QUn6UBJEreQ8RFCnLUVlX1ZFFd2nRTv0wkWZakZJXm09RM8jU0QAAAAAXT+CRae+lkRoWbRFcpOBRQRzXEm4xbJC7HXOQEKfkkTkza5EBURsRVm8cEVbyT9FrHUFRWFzJ0XCDndJrNEbRAAAAAB6n4BDAAAAADdfzkMQ/NlFAAAAAEjdoUFvuC5FVkVISQoYSEUrrK5BGWcmRHrBI0R38qFDOuheQwfX90EAAAAAD8O7Q24p70QaUnJJHWqJRfLTTkYAAAAA77SYRXaw/UEAAAAAAAAAAGcVPESYXa5CDnPuRXa/hUmBtMpFnbAgRTVJpUWYdgJE85qbRSRElEWcHhVFfNDHQwAAAAB/idlDgN1iST8H0EOEcE5FU98YRJQBIEKFX6pFFmCqRUL+0ER/5tdCG2s2RWWr8kSukpxJ/9MFRgvxBUVk4uFENX1WRVC4UUQco3pEJ8AwRZWFOUVYKbhFi7iXSaGbp0WH15xBAAAAACBNbUTwuvNEVerfRKXeBkTuNLhB4K9IRd3FskRezpBJDhw3Rw0KzEXky4pFxxwNQ75Fn0T8X8BDuHI6RDYEzUPI2VZCSYccRdWvfUlHyURGAAAAACdSHEQjvhhFbMn0RCWPukTe6/5E3Ic0RNtvNkWFnzpJIeGhRVHPb0LIdSNEw5TmRP7H9EEAAAAA/bbEQTbTDkV1AANFoaT8RIZtcEltgBRGERdpRTe5NEXbm4BEolmhQscmzEIE/u1CWjsGRRJnn0IOqSlDp7+BSYWyZUQjBhBE9IqgQ+bIz0QqpZZFd6IRRQfSEETbdhdFfZ/lRBSwK0XVQaBJT8m2Re6Xq0OZZx1F43wMRIV4GETTTdZEqSkBQxF8zETlzedE9hyARUPulUlJJkpFr/IQQvAj3kQCDyFFqfIIRa4kUUW8zYBJMIv4RYQ0mEUAAAAACBseRZKvdUMRPAFEij7zRPaOV0WYeTFE69Q2RQt0TEkyiOhB4cWAQ/yAK0V+xARE9L98RCJqAkXLyZVF+97iRKkVEkUK0BJFfHcmSQAAAAB1uNlCHLDcQK7gA0QAAAAANPGUQwjk3ESCLtpEsKixRB63t0Q/9TFJK88kRBx0YkTacPZExEWCRHzrREl/JD1F9BLPRQGVR0UAAAAAsNXRQ6jDh0JKpPdE+j/aRNOn20NgsvhDACtTSb5+40YrupFFUwYVRZpUKUXKL/BDAAAAACz5v0OLk0ZJXdXqRQpycUX9rXpFpEw8RIkC1ET4/mNFENHzRC8z8UQzMGtJyvvQRZYdfUXLtKhElW8+RAAAAADFEQxF1DpnRHZsMETfcc5EuYF4RRXOQknRM39FOfOIRNPgBkUFfIVFSOOCRYYF/UROtglF3IAmSUeGjkUXDsFEpCRqRRT6KEXcb+VC70ZiRfoLFEQieXVFp1hHRbUTXUm9LxlH6NMLR6N+Ekf5eB1GivUJRH5gIkVRJEpFY8j8Q92c7ETeqRpFkjBRSVEVpUWPqSpGMIQNQlSuAETVrmpFFXNgRQd0iUWE6QJFQwIRREfUT0UodUtJYzYkRh8IBUWchE1EYe4ARSf0DEVgjjJJ43SWRUHsBES3jp5FTDDEROWgxULR0FJEGHlBRP4cxkTf+LtEXlA/SSIlK0UAAAAAg1csQVswnkLKIttE9/rKRPnbMUU1vBRFVjtNSVqcQ0WKwcREwGOORX+LOESK2SdEu0UTRJB+xkFKjAVF4jNTRY9yaEWi71BJA02xRWJVAESusoNBAAAAAInYGUT6fd1COzpfRVTeLEXofkxJej6dQrMWT0WhhehDg/8XRdGM1EE6YUVBz3/UQBm8XkVvpSZJEVGWQnnq50PosxFEM4M2RRiUSERH3fJEyuoxST9aeEMaTpRDVU+eQRnLT0Vd8xhFmb02Rdfj6kRu+ShJ7HNhRR5zHUWu+g5FZf6jQWG5wkMAAAAAe2NkRdhwgEXu4plEcLrsRCvlI0kAAAAArXnVQxJOZEUpaFFFD5V+RXWbJkVD7F1FxyONRRs2aUnRKPJFlOCvReQYUkVgADRF7Y5+RVbcJEXYYGNFGyWfRY6pYUUcF41FfhJESSN9FUMwaFlFE2QYQ2MtCUQlLzZEnqC6RbezVEU4iWFFwmVVSRv/vUbvk59FHgvlQwPlpESjbNpE5zuYRF4Oz0QHGmRF7FcRSda0GEbVuCFFAAAAABg+HEVGEeFEgf1ERF0pp0XNF8pEX5SCRRAW7ETZ7BpJGqQaQ9xTw0X1TjxJjKryQ3Me90RYBIVFZTkERX92VERfBURF8TUyRb0qOkVTnDJFfAijRaHUHEkJNANGawQ7RXsfQkUnCSJEV4+WQtc/y0MQNURF85dqQ6nh+kST8F1F+9Y7SZ9QDEUamqBFirGjRSxsSUme7hRFRhkbRAAAAADCaytEn2sDRWu4iEU5VB9JAAAAAME6mkO/qBdE4lNiRP5TTUQ41HhF66kERdE6UESJzyZFT9pORWP3NEnAPB5GPay9RYVSDEXjxmxF8NMuRc+GQ0RRGM9EL9s5RZeAnUWYYJRFxok8Sd7+8UTQeSBFh8wRQ4CzokSbvQxFjSgFRKGGM0WaRqBEdUH9RBOBiEWv1ThJDmdQQWOuN0TsSvtC5IXdRBNlj0VFqalEUXNxRf/2b0XC9lxJJjPiQ3Wx1kQk4txEz9LlRCdzgEVZdfVEl/XeRNogb0mQcWhFhaB8RWZt/kRGashFiDKNRREfl0Wr8WpJhxkOR81dtEXm0XpEuVoRRPGjxUS9yJtFvBdFSR0YGUUT8m1EAAAAAD0tNUQwmp5FdAU+RbHzkUTrNrdFJvevRVA8YUmR0/dFkhXaRSYAYUWdw0RFiZOMRfdPRkTgF2RFkOkPRHs8xUTB125JGjnjRNptj0WD23JFposeSaazj0U1EUxFnEeXRTYY4ERHkSxFv6RISYOzfEV5b6BF487tRMUUCUVQBZ9FmA0gRcjtlkQcy5NFfmNbSbP0LUc2aAVHmxauRtXVfUZGp09Fm7gARSvIkkT6Xh5FDJgZRTsUKETMVINJ7ZnlRV5cXUY2cL5FwdjeRfxCPUV3f4hFbDxrRZP1AEVbU7hFcw+kReuJeUnwLGdGjE+nRe8Zm0QAAAAAWtn/RPqn50MAAAAAGUSERQc2j0XHGyNJcJjNRSHb00UDaFxF8rYVRQAAAABLJs1DZlEnRNWqa0W4x2FFA3obRUR3Z0kAAAAAfrwnRWx+O0V1DdhFu88jRbFeVEXEWxtFjc4zRX+JFkXJmntFb3Z5SavjbEXPOzFDkwqnQ9iUCkVha7FFiyqLRc9axEVycWtJAd0YRu5WU0WMJ95EkIAFRX3EuEWyeqFFPG9ZSci460XUoCdFcvg1RZzyI0XJ9RdFMxciRdYZjEXSXZZFywFZRT/7zkWiUG9JqMbcRPwYEkWVbRNFS5noQ4zackXvKA9EDOt3RdfWl0VtTadF7FuOSW4RaEZx6phF8nfBQceID0XT2hBFAkIgRaxmJEXCNl1F7zPaSc7a+kN1+vVEsVXGRUmVIEXjGENFBZKTRa7niEVJ841JL4S5RaFAF0WyKSFF1xWARbb8lEWbnFRFZpCWRW4tX0XaWEVJb7qoRRAXoEWFYZ9FEavRRev2l0WyEiFFckISRZKhckQx9A5FDGdYRDWtYEmAP7ZFqW7pRfOQmUWbsX1DVbcfRbqr8UT0/T1F8vWWReDBY0mskKJGX8v9QzXgaUVj+glEzNMXRfoYsURAfHtF4wUVRd94VEnC8wVGuCYAQzXuC0QAAAAA49iiRUnznkVmUIJFPY4ERTq4hEV/lMZFGDpGSZagGUV22glFBFRkRadTlEUmghlFaZMzRFmyCEWVPJlF+iuwRTfer0UpNjFJi/GhRfalDUacOjtD90cVRGykQ0UnvaJFlnqRRRshWkVkTJFFVaIdSYATYUXR/EdFHH+LRG7KgUTao/pEfSQORfzZmUV6sTREIzUhRfSSiEUNFFFJbUsgRA7YNkSZ+hZFXJwpRWddIETs9O9EJCstSQAAAACmRxNFAAAAAM3N/URNGmBFmv4WSTLnA0Z7IapFrPzuQ2m7NESd1QpFlsz6Qy5pKUWK1ApEjZ+BRU2zWUW3tFJJWpeBRYVKT0QARg1EPzBmQ4DKvUTN2yhF1/MMRHv9OUVbDltEog7oRGMHYkmCeHJEm3pQQwAAAAAZ3QRFnxWIRbiRqUTgIf5EzzI/ScvZokPcdd9DcHGVQ/t7GUUeZyxEVa8yRTnqokUxQ29JSStIRWB0MkXQgMxD9IbsQ1RR0UMAAAAAnpSYQgAAAAAFRjNE+ftaRYzwSEkIsepG3t1/Rc+kK0SmWOhESe+2Q7+N4EOnfTFDkdGDRWOjgEQ/XPhEFihQSUlRA0S9vMdEap7xRAAAAACP+iFFL9gPRUJ0uESqBkhFzvRrSTVu/0WDejpFlzCxRdxEHkW06qxDLXRMReOPJkTzQkJESNRORMLNBUKwPW1JdADxQ+LKk0QQmjZEAAAAAGWZcEVKzNBEcYFkRR4fakmF7HVFOSy6Q/cORkRs3plFvd1kSVP9IkcwMUdGYnrWRoTwhUYAAAAAcL4ARQE7+0QAAAAAm7RfRG0+JUTZLX5Jf6yGRVfUF0aYB5BFC/Y2RQAAAAB6zatBp6RdRAAAAABdauZEy1DbRCpYZknW7WhGldTYQT7sTETUbtRDNXpbRQDSw0PBblpEHUcqRE5BAUMXnCdEM0t+Sadig0Xon1FFInYxRVq7W0JuwahFb20CQuLFuEIL/sxEsnEUREb7AkVpekZJfN1nRWqJikUAAAAAN4UXRLhPcULs1a1FZ13DRB67MkQnCyNEYQQbRBjRYEnTpT1Fy2TyQSSk50HRpxdEhxtcRcsJbUVUuVpF1qhNSTGF60XEsQlE+XEhRNMRCUTxXzhE/FZlQ2+IIER29UBErU8gRf8gDkQRSDtJegxaRfscf0OWnmlFkJYuQvmkEUW6vwlFBeN9RdaI5kL3pY1EOMaIRaK7PEkAAAAAAscbRKdoB0UAAAAAKboxRAAAAABi1QFEAAAAAA4rg0TqRzlFrP1ZSZinHEZ8fBREyj1VRNCm8UQAAAAApbcaQu66F0XUHeJEpyZcSf6Z80NucRdETyzhQ38N8ERuv95EAHHkRI1xkUW6a2tFeKppRTYoSkV5jCVJdHXeRGIuuUTjMERJ0EwaRdNN7UQs+1VFGZfcRCjP2EQbHNtELGHSRKSZg0VxIyhF2Uo+RV+rW0nulYZFuASFRYAglEMDbopEMOyARaaj2kTRTOpEWGIpRUqBjUUajf9EqIKASblyA0dBjHJET9LtQ587IUUOsxFFRItZRZX95kRbkZVFaqOgSVq0gEbIwapD58SWRVNWDkVgSJdFdj8ERfgGiUUNkVhFOfAXRdAs5UQ7BpNJ6k0xRQAAAADniAxF8mt4RdI2REWBZxFFzeZzRQy6hEXUNHtJ41qbRfmABkagogRErtOhRFQVgkWB/KdFrSi6RWuCuUVdMY5JSteTQyGsQEWJKnNFa3QDRDe7SkUkyk5CAAAAADtgVUSLzh1FMX8PRWivqEn1uKNFyanVQ28rwEXfkp9FuQeoRf+MPEWZh2ZFJoWTRXfyQ0V9RoFFwVuWSehfgUQAAAAAtPmoQt8BvUXi4TJDoFvgRLB3KEV8smFFhv6IRYLkwkW0CpRJrwU4RvJq4kXpWuNDHu6xRSFFEkQtQn5Cq8fVQ2yih0Vc6gpF2oHISfSzu0SmPyNFynamReyOZURySIdEM3OLRRcO+kX4c5FFC92GRRE+iUnBQ1BFjR47RBthgkU6vNxBtcTYRKCcGkXXHEBEb6QbRTk4kkWe3WxF4+prSUDsvUJcllhEIj/2QyIImkTP2wNFpiMDRa4LrUUWRzlFYzBCRevOUUUln0hJBaFlRvkwm0W87BBFxWiWQ1+HR0TFwQ1EuVIuRWehU0UpoRBFfoYIRbX8Mkmaj9VD6ZLnQ08qtUMAAAAAAAAAAAhp8kRUGy5E8XQgRBoA2ES/Wl1EkrhASXSnwEUUkj5FKZG2RQAAAADs2QdFeQFXRFtuTUUhCP9E1q/fQ0rr0ESm+0lJ1NgvQvPGrUO/Ou9Dc8j/QSXEQ0WI3oJFQ3VGRWuagUWRRKVFbB0qRSjZb0nKGSBF0nggRCzQFUTOkktEwMBFQhoqGkSjow1FYwCIReo1PkRbVftE38CESQs1GUexdP5G7qtzRh77uUULbChEAAAAAPYqPUTlOiBEhO1GRKebcUTVa5FJ1aKERZKtnEY5+zFECS0wRbc+BkR5DlFEkhnHQ1YzOkSi7RNEuhlSROjylkm8xxVGB2m2QyBTvES4SU5CkybLQuonh0TZHQ5EfbIIRTZHTkSr+xBE2zacSUtLNEQY7olEDMT/RN2UK0T7ZB5DxWOwQrN5UURtboZEwQf0RNuTK0RVrLpJBgOjRd7NB0UAWJ9FDH1lRESLk0TLX19FtDrNQkUAC0RCZsBCOUtCReIUtkmkNQNENtIEQ4KaikRDvOhCp6bBROlPkkVGEMRCaF5eQvD6q0RIi3REiHTUSWM8vEZZeg5ClGERQ4pYnkPVm29FriuARGZnikK4SopCQr8vQ5L1rESU6axJA8mNRNzZx0U5SOJEOAuuRPKCtkQPLetC7vJIRShdjUQetH9E8r5YQ0WnqEk8KQNGMMWcQ5ap1EKdMK5DsKiiQr7qjkKXc6FElCyFRJmAg0IRLntE9MrVSTxSg0Wf2BFDCoICQ257r0WFPX5Ek32DRENpSUTDVPtEGnYyRIwUmETERNtJAAAAAHzckkQAAAAAWWd9RKv+f0VODqVEMqibRFdml0RVLytF/revRFJM1UknUAhEgy/XRM6mnUQA7mhEOusmRJnfP0PBCq1ERlAbQ0hPF0V149BFWu8ASldmY0WgrVBEQjOjRUgdnUWvEzlCFD8oRQAAAACIHKxDa8G0QuwU9kIuNedJGlOqRlF4SUIAAAAAISDOQxPztkRAEgVFXU4LQ7szBUPdg+FDvYFyQ81B30neAvlFda9qRBq8jUXDEglE33TBQx1+ykLLzIhCtCf/Q+3mM0XsqU5Fv5PQSeVRmkUC8Q5Foyk0RM3GeETcpP1CaA18Qhcn70SnVIhEGxshQ344zEIdBchJuWSzQ8NnlEJhp7RCRDM1Qyptw0CE6I1Dcl4FQgZew0NaUAhDAAAAAEsOuUnU/5lFvo3KQ/s9vUJHgDRF6tu/Q6O/NUOY4/RCWFwkQ9SuPEXvxIZFZZvGSYilHkQR0Z1EAAAAAIPm9kS8UwJE+tGnQ+g9BkTl5AVEJrDYQ2I+AEU7Tr9J9t6cRVKYo0VnentEsNc+RJUHz0JNHudCegIfQQXDfkJqeY1FgGJ6RDDuy0lj8eJCnnS+RLw1KUWavo9DH7IWRNY3kkQ55lFCDLOMRB1fBkVa7sNEP738ST9UikU62ZdCGmGhRN3xg0RPEStFt0jSRGfSEkVFjEdEyefFQ2snJ0OHnxJKzVGYRmu6BEXl0JtEarRxRPBChUW7nhhD9teWRLAVY0QgnbxC2mVzQ3IHMEp4oL9Erb5KRDpOaEbmCYBEzhOjRegdDUM7nmBF1HZbQimMA0R1pmVEVrs5Stj6mkQd1rhEBncWRKQdOUVZs5JEpH5GRE+Ya0J2bFxD9pUfQo1HaEV2qVdKQX3sRXdS9kQT+kBEC048RVsCsEWMS8tDkyAcQ5caBUVCVQ5FsPNORO+RkkpJYVRGENACRq7qOUT823hFMOsWRJa5ZkTkV/ZEQKywREU8/0MX1NxF5JGJSoP0zER9T4pFJfGiRAQGCUSF9IdF0dpCRJzPvUPDEJdE5SkxRCC72kKdEIVKgoE9R/GkL0eonr5GqBX8RpIY30VCxEVFSwOHRBUpFkbXBBhE7MNtRGxbYEptJLNEyNyfRRivKUeMx/5E0VnUQ0rDc0RVouFF/tg6RAa8BkTR9pxEFJ5fSkhPs0Se4JJEWttLRdS6aUQy52dGEcMcRWbi90RPcFJE/gdHRnPSCkT4ET1KWmyQRGLaG0WDAr5DXV1lRg2iwEYNe/xFc/+oRLjsyUTOGbREjRqDRM/0IkpRiMNEoXJ6Q/OPoEIkHWJGB6UQRjdVi0OJmMFFkBIwRPNtKUUKIY1CWtwHSgBf00PhRopDk58/RZqAv0KdRVZEn6dGRf11iUS5FoRFkaOmRHJLG0OzhQdKrgYnR1Prm0VMQXtFiffZRAEaLUShWClFXg7SQiPISkJtq21G/hC+QWv8DEqTRVJGOvuzRUe2sUX5tzxEACe7ReSzGUXLa69FD7i6RUrNgkFqgZlDrizySVO1bkaO7JhGG9OOQxA1q0OiUkNEurrcQg/baEVn4vlFsMRIRAAAAADawORJPFn6RZXT/0Lh8YpCTZ2lRVheX0SDVxtEpuw1RIIEjES8H1xEYl/iRHyzvkljTYBFj2IDRrFXaUSYzDlEWnuYQ3F6P0Tdu4NF2KV7QWtXXUTRzYJEZvq3SajodUTUjvlFIIWORIc8l0KRVdBEAAAAACe2bUR5xMtEJQO9Q65se0RTgLZJXXrXRQSawUWlo81F41V2RPLvlEU47E9E0sE/Qg16c0UTSoxEQN2eQ658qEnoHcRGAAAAALhMfER2ENpCmJQyRA5RL0QEP0ZE8X0BRfIF8USP8ndFkligSQr/KkbImDpEw1mORDrk8UPaLYVEyEDgQDD1pkND3ytDPKEmRLBHDERcsIxJqeV8RarJFEI8OtNFPIBTRKbCTESVfwdDlOY1Re2vfUS8LAJFEbYCRa0QjEmeSUJC2BYJQshqy0IAvU5EF5JqRCTeRkX0OBhDfE8JQmVof0SyCRBFrQ+DSbFEj0ViWKhFAAAAAAAAAACKlbFFb46lRPbg8kRMIEVESMyuSQAAAAAAAAAAKmcZQiLYmEQSolFD9t+IRXxJPURW6pJF+KVKRGiHJ0W4Z6NJaAu3Raa98kX7p1hER+2KRGuPq0Lg4FFB5QNpQlUvIUTUBchETEYIRZEIrEkXlm5EoEjeQx6K8EImrl1C+wDAQg5rWETIO3dEsMYZQmd3IkTCaFtEB6ijSc46YETqh05FIUxZRBEyOUR6UWdEAAAAAHGbvkMEio9FTgaBQn27fERBCLBJRehgRaCNY0RuP19FKPRNRAz1f0T7R7JDwbScQue0XETaaTVGKBEqRRWmw0lhTV1G4iAPRS1yc0TchopFi9ByRRfJLENEQIxEdrYVQ8jBd0KryUlDpLjVSYVWIkRBUzREeNlNRNts7UJUk6xEhBARRCUHrkVdwu9D5DoHQ7e/UURLRNNJ+dj+Rd8rIEVO5UNE1WtzRfEpqkM08JpDNKkEQzHP3kP7iEpDDyf8REJM1kmJKr5GqAwCRsvOtEWvHLlEaSgcRREDXkSqYihGtE0KRpEt8UOJGcRCxg4JStJQ9EPSRo5E4HaiRrTsh0Uk2WxEuCD7RVBL5EPS4VVCY6oyQ9I0RkVF5A5Kx7sNRz5p/EZxA2hHU+88Rmv0UEaq6aZFmCbwRrsL/UJ+8wdCwVwGRomPDUo7ZU5Hz4ViRtL7iUSBYJFE5zMmRrrsgUTdNrdFJH50RBDFBkTP5SZEFSMzSgz52kaaoI9Hdz9GRcqPgEZYa4hFm/2wRSz/IEbyL6dEYYKdRWpuZEbF2ytKmjhCSMQ7mkN4OY9DT2Y2Rr39hEQVvAJEKUFURCIVdESUoJdE/7inREl7K0q21A5GyZC7RIPv7kbHmN9FyLLqQcRLtkYy66FFqKITQ/NvKERvkNpEo7QRSqA6RUR8QpBGM12qRFxiZUYLAuVFoL21QiVXkkQqQEtDO+ofQoSjMUdYQwpKidjKRjPTqEST3otENj31RToKoESUdmZDsCe1RGoDKUW81WFDiMeFQqZVAUoalQFD5aCPRncAi0OCuKZFPTSrRXM2O0UAAAAALPieQ9CwkUOVghRE+5bYSR8KT0d1OypGFmdxRoK3CEQEH+1EAAAAAMRoEkVz21RG/8g3RNHdakEUvMVJ0SKCRLyHOUKIMpNEt+ynQquXWUQk+VVEHm11RAAAAAACpyxElSGLRGTAu0keXFlGq16RRCtAIEaXe0RDBvYeRmHYYEaoQohCAAAAAB+rgkYAAAAAAJywSS0HQkWHLehCP0W7RWQUJUNbNSZGvrg5Rvs93UVERANDpqEiRiUNTEVGy6lJjD2GRgbRT0WUEGNFES43RAqMo0W1RTFGfBZWRtvHO0Wg8fpFXvJXReH5n0kIKbNGqKMURuy/mkWZaZ1EmtKeRT/AN0QAAAAAhgwCRjxzikSm2aBF0DioSY2wSEY4G2VEADXhRTl9LkbYVJhEew5kQ9zEyEXU291F1N82Rauat0KsW6NJuD5+RRhdGUYAAAAA0vOPRfExHkRsnSRGQPppRG2OFkXotG9FHV1aRVQjr0lUuE9FDZb/RZydRkWbg4xEudweRvNtWkT/ayRGZA2NQon1JUWP90pExci6SdhF6EVqiM1FcIv3ReL5FkIch8tF/UxARVSTSUQAAAAA4Qw/RJhlTkXm8aNJam05RnwODkbBM6pC+GJsRYHpLUU8n2pFwfVVRUsIT0WxyrNFnSYHRi1eykmkOtRFIHQ1RnzV40D2yANFXKwTRTEbrkVzh65Fohc4QnBU0EUvJA5G7AC0Se73RUR1mj1Ft81hRN1KPUU7lkVE674QRuX8iUR1ZEtF37t6RXMAA0aZUcVJwmKrRXqyxEVpBWJEvmAeRPdEaET8K5BERsd1RfxZh0Rl1clF1zMjRjbOtEmS+z5GAAAAAIh2HkTp2FNFTzJDRAncbESmv09EdOd3RBEpS0b8bPRCIWXrScIKxEby4OpFr/grRIebcEUdN9FE0Y2ARTehZ0RWq4dD01KHRa/9F0Pe//FJFe6sRLyYnUUroyFEBU2KRIqOSUJfMThEZZtrRAACo0PlLAFGgfSdRFg4AEqfNCpGhHuIRZjuEUQKEU5E7iRXRLg5jEUgzG1FpgwiRuheYURul0VGBmgbStBimEXk7GBGDzoCRi/fJUSDFShGCNGeRh+UbUQQxg5GzpqnQgjQikXcERxKGtqUQ3e7mUVUS8pG14isQvdUWESqJ1tCR8vHRb/mMEZUFAJD1x6IQj6QM0qQeCdIbRxFR5ZgV0YWojNHIfTsRp4eMUY8O/hEjrzrQ1/YPkbIBixE1v0zSvHtZkfn+I1GkbMpR/NJnEYyVCJEdL1BRijtNUbqsCdG7DnNRSQB6EUmUlZKr8RSRkzlr0b8CylHBpITSNvboka4h1FGi6JER83ULUbm+jhDrfbBRateaUoywydG42IlR+Di0kVYQ0ZGMN7IRdpBykYnYxdGJD0xRds1X0Z+5bNFrY2ASjOfQ0cQQj9GNxj/REh22kX4u3JHrbRERp/BSEasuZJGcCwRRr21AEcG2ItKbpZFSL3MrkbwaixGH+ltRsMEOkYAAAAAH/ovRgT2nUXkOmNGUb+fRZNEhUpyqRdHcu49Ru06E0NA1mZCjb8lRrEfYEXrYb1FO6ssRims40YhDsxFUwN3SvRJxUSqgO1GxrNMRh2i2EaDsDNHAlh9Rt10uUSFxvlGlC9JQcQQS0bpRVJKDc+fRnoC/0ZCBNVGO1JUR5l2b0YiklJI5w+9RA6KfEbL+jRGlaTERUHwUUoWAOxFzPSFR5nihUPruhBGiYg9QW8bxkbwJWZEoI2VRhyAhEONEDtG6KxJSvAXw0Yo3c1GMFyyRYR96UUSk99Fu96qRPpBvkaImSJGrVhnRKcQyUZHe1hKRiCMRhZnoUcQkepGBljTQ0n1l0bMVC1HKYVCSGUVFEZ7YRxGd+GtQxtsV0qho9VG/PWMRfUvDUccxaZEquomRwAAAADwMSdHvwCVRg5vDUMcom1GavNySnNhEEc+jzJGbW21Rt8VH0Z5uAhH8JVhRrm/5ka9GphEROZAR29mAEeupYNKeTEjSFEw4EYLcSdIlHRmRsWEzkVN6TpHtsp4R7A9ykWKdeFDIffQRskQnEoCsXpGVWqzRBWvN0a/SwBGk7vNRa2xmUQpkahEvi73Qoubg0bG4b5E4HmgSmBM2kZLxTtHP8nAQyJsJkddbGVGfAhSR67nlEXKuIdGo6m5RFlqOkd1/qVKNEeaRgGvxEXXZ81Fz79ERaweOUKAxoVElmiiQSQLl0Z8T6REYP+dQuV0lkrFtmxHt1U0SAtDM0bJFM9Fu0yqRhV42UV5c+FFlbf4Qc/KEUdF2I5G47GKSkam3kYTUodG2GXARfNM70Tt0FFGtkWeRjWc5kVQF6JG/z0nRQKAnEIFAoJKfFvNRlMsAEWTYcRG7xtkRO/ehUSx6c5FtHTnRbr5aEar80RGas4IRtWGckq2QUhGfODaRAo5k0USscxFd8vFRDejJUZS+gZHEyu+RQmfokV7z81F/2lzSs9jz0A7B7tG9aX9RD0TK0aDvoVG05XdRR5YPUUpboNGYbSDRhSK1EIBSGxKNLMOR91GD0YVs/9F72oxR9L3WEawnK1FKg3MRf/Vr0UPffhF6QNfRm9Li0rKiA1HnwGLR6g7wUVVvMlFCalAR3dWgkavHqFGiDq3RYE2okW0m6BFj1unSpWkSUcdxLhEuB0ORgJUTUYB3vdCUX9CQxybCkfdK9xG6JS4Rphpw0bpjdFKQzb+RHPNrUXzbDdG7HXbRsknVEOM/MxFASa7RAAAAAD8fYpEWM8UR39570r+OCxGMUY9RhqkCUdtkuRFk/cVRtUoD0Iw6dhDAhnfRR9IckUNxJ5EG8gES2uUHEgBpWdHZ1qERlhWQkdnGFtG6kwOR403n0ZgVwtG9vHJRbr/x0X6aPRKCXQVSABOa0do0RdH2yOFRoIF6EX3vohGObgVRi+hUEehybNFH3fKRnGr0EpnHCVHVkGtReY+VEcn+CNGBvkbRf7stkRzvwlFKs3eRMZI5kbJMoZGmFbCSjKT3UWDv7xG2uncRgAAAADDB+dFaGTFRQnazkbiJtJFy3jPRSTnB0KcK6lKiCnXRyA77EaWwe9FdELRRXh+v0Vh6U9F86ixRCswHEKbSN1FNClxQg5mlkrg8IxGKuaURqQGv0Uc5I5GFDGCRoLh9EbNs/1FBL9zRltBLUZqZX5CPh2WSvNxA0bzcSJHFQ24RMgODUaqitNFD1nBRUJE50Wgm9ZFGoCdRePP4EVz1pZKvyI0RiDKvkWv6hJHvuyeRb7ROEeYi0lG1nPLRrhxN0e472xHfFNFRXZnlEq5DuFG2fATSHBYyEbNVrdHmdK0Ro59A0cEDJVGUc72RhXkdUZ07ENHKi+VSnXGLUZlFcJGDvSgRyWfKEbWZaBGKtx/RqGKSUYO0SFGPnkzRXfm/UYRup1KgvmBR6e4ekYghfhF7Fr4RkKPQkcN3dBGrqX5RjtHkkY9CulFA0dSRd5mr0pjPiFIJvYbRNd000fWLbFGvBwcRkBY/0YR2/FFQDiPRWKlmEbeB1RDpX/MSmAXikap5oZGJU+KRodwU0Yf3T9FnsKwRkpdT0Wq7MxGr6ZNRUJCGEZRItxK43P4Rnk+6ke1noBGS/LzR+XCx0cMSCNHJNs5R70iCEf984xHN2tlRuPk90rSxqBJ3RMzRzsZGkfTsBxHwqAER+G730c4AKtGxzamQx1n40cx4KdGxRT5SkE7gUbIOsJFp0e6RlEpuUZLg9VG5xsVRU3C4kYctbxHTueUR97VfUYykwRLOrYGRy+mqke1fhpHczPXQ5p1CkiLVUJHIpZKR0fERkZSK0hHFNljRwXjBUut0eJH+UbSRoV3kUjs5apFZdzSSODAh0fHOZZGQ7RUR5z010aJpApHW/0VSyu0VEjGyRFIdOpxRppFmEc9BsJH+7a6RnoEf0YXWstGAzvvRvZAzkdLASZLLdFwR2CCkkbpejRGiyRPRxWS6kYmNYJGtNGERnPbSkZX2WdGK3XTR0TMNUtlh3FIVZK+R49nrUYLsDZGj0ohR1mJEUagQlpHm/OaRjO4X0anZ11HBWdbS2hlRUXTm8hGeXAFR4HT00Z6gDFGYW1bRu7Hh0ey6PRGOJTQRvg0d0aNqJFLPI5ZRl+iXkcaPsxH/RJVRt20g0ZncTRH1AvoRnqBw0QuDJhFtUgTRpa9nEthQZNHbKdgRvrnZUZvxmlENS9lRoZXdUaWLWxGI9WlRtKLUEf+AeFG6WWdSyg1jkeUDpZI+iqkRsIPkEf/IuxEzk2KRRfpJki6hGBHU+AiRVm/0UaznJdLdec8SOOsiUcNq4RGn3lfRnCtOkfflc1FdyyvRVslDkhIdblEkTBMRkt2pEsaGu1GVMkoR4yZlkdmQZBGykpcR8mku0bEOqdHTTjCR7vqgEZFK3RH9b2cS4URQkcc3SRH57dvRonR0kamnVBGEWE/SDAHg0bnp1xI4h0ORkuXP0enSKdLyN5YSJDOQkcCyDhGL6uDRqiMrkdzp8NG+HSYRqkFiEcvhw9IJOFVR3c81ktrKR1IcqVCSD/wyUdN5hpH0rhBRiFn7kZpOkZGPTBqSFCuCkf/JnpHSRjcS9uovUe4fCVJz0USR6HciEhFqEpHMTeFSOY0v0dCpVNG5zUBSJ23S0ZVje9LlVohSKAbE0gnW3hIALp0R5g3jUeHYiJHwPSMR+Ot8kgGrLpIVE2/Rgd99kvjuJlHXIaCR99LUEiYZqJG+dx7RwwCKUaXTMpG8SoySNCalEUkvbxGtk/4S628zkjmtopGvV5FRsp9m0fWnsVH6W0PR3vh8UfOC7xF3mEvRhGFvEYHtAFMa6AeR9W9JEdnJghHfTCKRglckEbLsSJI9IqpRpEh00aF1pNG2TCvRjeG70sbLzJJltVHSN+GkEY32TFIuXY5Rqy6DUYQHCdDZYvARvQgo0Y/J61Gp3PgS6S2qUdBxX1J6T6OR+g6FEmUvjRIetQRR0vKskjm7fRHlqDuRxF17EYNusBLwJPjSOs1TUemazVIAYbJR7auzUjlPCFHVByUR8IpR0b2DKZGi6DuRiFDt0s450RIlUkYSEJKYUgMIeRG1F1eSO/VC0g8aeNGEBcGRx+S40dt8QJHNsGfSzQatEidn7xFXQ4nRyLeb0ZA5YFFJNR9RgukJkjdTxNHwQJ+RjDkyEW6U61Lk58SR+a8pEUBlVJGmlCBRqML4UU6wZxGuZCURS0jk0c895lCxwBVRo95uUvblARJBOSVSEoAlEbchXNInMX0R3zAjkZKntxGd+kzRtLj9UW+GNZFm7OpSxOf3EkNT8hITnlPR7woDkdjgxdGUiyWSO0OQUfgkUNFKeYERrQcK0fWvrlL/AYjSS7VeEcxjYJGZqy1RnthH0gjDiVGuJtcR47aGEgAAAAA882GRn1koUuxU1tJ2kAFSNUBzEgQhCZHlbR0SBqFH0ULcAtH8m6dRy5HhkjPob1FhgGZS/VapUj2H69IF+c9SPNBBUgT3zZGPcssSDXm6UcV0A5GKHasRYj1JEhdhY1L5JhOR9BzhUjvaMdHR/wqRuQXJUZqltxH8oabR6D/5kZx99NH1ktYR+s8iEshLxlIxyIQSLFmsUaetjtHeaiLRpcDHke/Lg1Ij1zpRXFqCUex9fNGWMmNS2qYrEd85StI1+lERwHQMEbxvWxGOPWXRxQ0TkYqEwdIPU1dRviyEEgxUJlL3QtFSTkAEEctPjZHRoomR7+YJkaNuFJGSVjHRjlF80ekyY1GlTF9RgxArkt+RIBGMfaRR+CFOEcpISZHEktERq8vbUdEc3BGB2fIRtblrEZayYVHqHTBS/Ru3kejYRxI62UjR0eVKkYAQipHaSKWRq0T7UiA8CBHTfaBRhiSWEZdY8tLrTRISFlfq0b0AF1H3kJER/mgBEjZOy9JBpcvRzNxCkY8sN5GAYfDR99/10tEdd1IEk6KRltvHUi3izFI9ivlSFF7wEUEVNtF+XrAR0+43UcLyodFusDnSy4hVEj9NwpJ/vLLSDOyc0f7m6JICJlmSEFSkkaEsopGlLMBRzgAYkYWX/pLg4kWR2qVpUj40yNH9aAGR4aPhkbA2i9GbEkxSARRr0gYywxH0MwCSPMw+EuhmBRINGpiSBstSUcAtEFIkQWqR0kgzEc3KtxGZWbaRrcTD0iMBolGCBrkS2dTwkcUM7hI3EfyRw/InEYkLfpHbMW/Rhpuukd43udGryFgRpEUi0fJks9L+kboSTzToEkh8GNIhzlqRzqqBkmP4sNG/TkrSChtNUZTssVHpVRCR/ka00vkAWdGmthoSGChakgbzoVI1PBbRpadV0ZgiOFGWLCaRqZlgkhvFqJGsCXqSxuWH0fXPIdIBd+LRpwugEYcvYRIAVnLRkKbhEZ4IxVH+seWRtc/fUWQvhhMPZaISSQtc0YAfBJHC0CXR4HhNUZoDzhI0lJnRnJvTEfXo89IK8S+Rzl9KkyCO6VIhiDkR4D9QkiVnmdGMh6VRhuIr0UNo09I0bGFRsTqQkcPtalG9oxETDg+ckg3gQNH4bqPRoJZkEizr3VGi7BvRSuvZ0Ys829GShvgResGSEaYnz9MbJWjSfC8O0nNPwpJKRiRSB/BE0YL+JNGiWayRoOq9kVMoDFHOZtyRguiPUyrxEZJEry+R0yyEEhBZ7RIKiF4RIx8BUfzlqZGkTEiR1+wlUXWLoFHG4I1TCNE5EnFb2VHCJa3SentAki0QA1Ixt8DSPB8dUR3JFRCGlYzRxPZiUZcRCNMGbGQSAnRxEUCmpVGm7iTRmwGMkcQfLZGNNcBR2XRQUc6rkBGtnQoSJcaGUzjNGNH6cwXSH/20kZNP7lGV3uXRmLqMEddUFVHbO7iRSixLkc2PrtGcXkhTDJclUeHXFdHAqkuRkB1hUcQmuZGF2y6RriOj0dReStE7xY0R11qgEgj5CBMw7NDSAdIB0fdaYRIv26ASDyyfUd55phIjao3RzPLDkcWiKJI09swRfMdOkw1J5ZIPSAOSEhDh0cGs7BG2CajRlZQdUf/L5NIp6maRgPq6Ef86eNGNyM4TAC0OEqUgphIXKjISLOJpUhgpINHS7arSFFLO0kEIIxG3SUuR2WrpEiETVdMc+XGSBHmm0gQ5vlGXBkHR+5OK0foHnxIGYQmSPZZokeLaRlJlJWcSNbDT0zJdRFIiCQvSQu1XUfLtKVJZvbpRqnMwke6xqRHAodqR5XLCEhMKrdGszZxTOBUZki7VpBHdRP2Ri7Rx0aY4VpGETSXR4JFq0Z+QFdHoUW+R9InPUfc6oFMI/R+SSEyt0lNhlxIkMDOSNsyIEeuKDBHwbm3R13utUihay5H/y8ESc2HjEyH9GBIl8EqSUAo1UfO7Z9Gv0zdRlWtp0ZnBTJIHLUJSF4lzUbag8VIFJ+jTFCkhEcdGwVIVpKBR0oQ0UiuuHRIQFmcRvFN9UlCDA1Hzmi/R2dElkZrEKJMuhEMSJi7WkeyptlHy9KISfUwaUhVGYtHTpXlSCq8rkd6+XlFZdreRmmJqUzYOQhIm27iRlw8tEh7HttIEMS3RxFjS0f+XbNHbfb3Rsx5J0fS+wxIPvexTGemhEk9LHdIX0hHSdfzIkgsyZ9HmjqyR8T96UYPoZxGEB9lR7Gb9kdepLlMSCWcSeS4wEcvzEhHSioARz8CDEqxfAdHWflLSMDvPkmpjyBJ85UqSH4NwUy0C1RJvFhFR3ZFxkgbMMVIQvvuSJqtMEigsFVJLZp5R0UQkUgJQYJHhn/bTDuYFUoaCyVIyBsaSmHkBUjZGSNHG98gSiaJmEjDXIRI4+OCR78lx0f3QgJN7034SEnzJkcdibFJLuMtSMJN20fGJ45HBBquR/vZO0cRE5ZGtorWSMjcCk0xaRtKkbxQSQYgO0iq+qFIrPumRwpMZEhtSE9IQY6tR28sgkj5mgdI9dMQTUoK2knd1SxJedo1SBkDlUnKUCBIpciCR4RasEkJqspHQBqZR/fjOkgI/SJNYH2BSebL5Ehs4w9IhlyARkHZT0cG+ldJd1brR6Jrjke/+KtH8NG2SEacHk2mTqNJgxmxSDa2yUkdPANItGWnSCKJGkcxPiNK3iXoR2fShUjiPTZH7ykwTTxOPUmpp85H8dwmSZVY/Udq0xpHFwUISOa2Y0cHTstHNqDNRTBRiEghDjFNaJyiSccHhEcQ/opKu7soSN+dFUmVP1RJDvGRSIy/AkiGw5tH1cTXR7SvNU0pH6RJgqtiSEtLQkilSFpJh3KhR2bF00cSPYVJ9MIJSfkan0dL1pRH9/U7TXX+U0pwmP9HvYTxSNGD3UgrJCtJ4bopR7Lt6EcXBhBIorvfSAVBrkYR3T1NzWjBSkuuiEeQZplIgTxVSUHOKUlVbjhH9BbCR6WsZEdvBWdGWryFR13lSk1244JJVtx/SnqON0if4Z5J3NkbSMO44Ef4DqFIGhEnSOYW7UcjJi9GpB9LTUFrQEoNnetIpXZWSCO9R0lvTAlJyBl5RzT1ZUnEBC5Goi59SVY0CUmgfUlNaN+CSOyzYUgSgIdIF5HrRpr5fkipaaRHM3KNSI7NR0n3btZGShc0SdYyRU1reO1Ih/QUSDKAU0jVutdHFgqMRwA0GEg+0G5HqOqTSOYiMEi79w5Kei5ZTSi5jUh9V25KaPxUSNzSXkgN9txI6A6ySDjYmkfsKDVHqHXKR55JXUcmfUhNxuG8SECpY0e1AWZI5oddSFwnC0hNr1dIFs8BSJn6hEgeicxGCUrfSE5GR01PKU5KtmNYSvr3s0nFH2JHsVClSEZcAUnt5glJHm09R31r80izoLNHyxNGTcSN/UhsWLVJdccoSP5bMUgyna9H2MUTSGIpgUf3yVhInVoCSEzyPEgMiUlN0oZMS5joGkiiz1JJhgSNSSD0z0jTis1KHr7rSDwXBUfX9jJGGpVaRwuLM02q8j5Ky4CzSZUr4kljYwFJpJMwR/XjJEiFvsBH94S3SGUZ0Ee1jYNJFQs2TW7DC0pV/odItPapSW4/bUi6QHZIBwZlSfElpkdXxq5JVbcNR9EOV0dtNiZN7RsXSbs1uUeCFlFIopqFR+flhUfiedZIymqIR0d/HUipxAxHkEdUR94QLk1tJ+dKL3iWR2kLq0n/3qFHwsq2RzyeP0lOaeJH3+4jR0yNkkfzwZxIAmU3TZ3rl0kpRT9JtfZWRer8NEhVgwhIrQ1hSO+CX0f9vE1HYUCuR3oReknoE3NN5Co1SV26pEf2jTJI48wuSbmIfkf93t5J/JEJSFQ0oErnY5BIHLZHQ7KzgE2ZEGpKkxf8Sb2br0iMRwZJbWFvRzhXuEeXiwJITHUnSNnqdEhlSedFNZWXTammFko8aoNJYjrvR4/B7EmtFElHq0maR+GvMUi7etZIaSEESfX0okdfIJ5NtXqqStccA0u0CvRHUWY7SHPN90f5vL9GZoGrSFKLCkjHC4JHP9dqSCM/mk38039MfzAvSSeB4UeX3W1Hem8XSKGUd0h4N5ZJO+tjR0YxE0do0tpGR+COTdMzZEooTS9Kc9vWSZnQzkkSM0BIBv2+SE9vXEdBcfxI6ea8R1G0WkkbbIRN2dZ4SiXAr0i+79dHF3RjSELy8Efcs49IK19NR481fEfHPfZHnj69SJeia00JDexIr6pBSP7TFEiD5MRHGZEZSCtuo0dOWypJqqkRRyl+X0hm8xpJi95FTX7lc0kaVZ1JlH0dSUulvUdHyPpHYAbOSEqgDEh162FHfXtwSBMgNUdDZB5NSHuKSPDLB0ZhLLNH1y5CSCqr4EYFX15JwzNgRm1e4kbozR5HNGNJSBIZBk3Mr7VHq/8cSt9b8kegPBhJmoaUSf7P4EiIIvlHrVdcSetwAkjazIRHT1gCTSYVMkgYPpdJX4QpSIYnEUr4/G1It02ERxqP8UeGkgBKHjkmR1xs1kirvdlMqmO0SaIAm0dQqkRJQAoQRkk8GkeAJXxIHIj7R+yRPkcG7jpHcT/ySG4awkylR/dIlzXgSHiUMEhbvUxHFnyZRx4osUbJaYZHp070RrG/wEi5Yq1HD+XATLdDt0iIDw9JvTQNRwU6nUjL14lH14ZOR1bKb0mcmg9Huq6SR6PIfEfuVqVMxOmTSF2LPUjdjK5HtdERSf45BkjaQQFK75sRSTL1nkaEnvZGSoX2SMeFnUzcgc5JKYymSK3EYEcuAaZHg+wiSUEBW0ndm+xGBBYeSAur4UclC+FHBBObTE/Qk0lG+XpITJLkSSMpBEkE8UVIBzIgSdsNr0j8nQFIA11uR7e3LUdcSqFMJ1sTSmh12EgZeMhI2Wr/Ry0JAkja1slIy+YCSc+UA0i/SWRJRK0mR/VgoEyKUdZJ0mMHR1emaEhm2ZpHANfkR6LlGkhXELRG8QqKR840Vkk33DdH9mmkTCpeH0gI6s1HTMFkSCTv5Efqt7FIAWvTSL5VokY3GlhHiKfKRu2WxEf9GbhMcfsaSpEKgkeBjexHrxH3SGh+xEcd8ddHwIIER8pe80dVxzpHm+akRhcp0kyAAK5KXWUdSPRoRUghVM9Jr597R4l9QkiK01ZIRkIzSRkyk0fYiIZI4vzRTNv8iEpKCxxJXtEmR4uK0EfY/BdI2bVkSCakEUn2ItVIDZNCSVv9LUfmuvFM81P+ScxoQErKCwtJ8nvkSb/9p0gtketHDfAgSIRcTkiZijhHqJA+R4a4BE0EQdhJbRMpSX2lekl/G1pJ3ysASBkqx0cW1AZJHVIbR/F4s0cxL4FJA68bTcj7gkrp8SVKpeZdSrAO+keV9LhHBf8USvZnAUcxatdIl0i4R5IsHEeyQxpNYrk0STfWB0olE6NIZ0gnSA8ZH0fkEW5Hv+GxR0ayUUgn0phH15mIRx5jNk28UhJI7fNpSc7ZTklobT1HpemhSBaJsEf7WShHMkzGR/m2rkdoow9I7nVDTXsBWUmVTBNJ1gmNSVGOVUnr2ydJjmd3SIReXUc6O79HY+V1R+ujPUjKa2dNQbIHTN7bh0kaSTJJpqJuSHngZkhayqJJaiajSAPYckgwlPpCGSCLR1aDh02DGPFJwB5/SQM1lkhDyEtImVP8RrPdCEifg6lHSH2tR/4k+UaOJ0RH/QKcTY66Bkrs/PBJ06ATSKC0EUl5w1dH2D18SWHiiEkrVUtJECN0Rxg8VUl51rVNqaYPSpwHPEmrZs5Io1RoR8sY3Ue/cthHUYmASKVGIUgO0mRI9T+xR52ztE19ZkFKyWSlSaBq9Eg5f6RGwrmGRjpUV0fjE1tIAgbeR2lGH0hYyAhIiOrITdViH0qfjU1JluuQSbBXtklqiDZJp41ZR+dtDEoEp2xJLfxdSC2jkUjgTqFNrOTjSKTEOkgQKR1JSWlvSLSoxkjvtmNI8o/2SP7eake7jCxJNQdzR2JQt01g90tKAcsASVl0JklSAVtHITKXSVcNCkggTelHiDFqSECvIUgZcBFIdOSZTaRsOUlel9pHhU1jSN5yh0f4upBJEN+eRyzxE0gFAS9JtblnSZHDzUcAfZVNzFe6R6ZpH0mPsqFJJo+7Rw0xpEe71p5JMMhcR+9WsEcDndFI8tJtSPmnkk3sALVLNXgmS9Od60kWgzdI3q2zSRbeM0pPCw1KkIx0R1YniEdWeq1IOUuITUxq8UhRLhRImB+2SOwG2kcI3H9HuxKwRwUziUd05BZIc7CuSELutUZRIK1Nl/e8SpEXtElM31VJyHnfR228RkmwAi5IWrt4R1IACkkJqAxJPYEtSBWYiU35zgNKc/OUR+r+iUkA8AFILU4jSRCzIUgseIVIbx0kSJUejUi6qmBH1p1/TRBFp0gxQPxEcz28Rw7bvUeC5GlHKwCuR868gUVslLpHZeMPSb6dikdnmX5Nmat7S183LEqTz9hHu7P/R2AMhkg8caFHfBwLSSSsP0iX0otHW8ehSsGcf0059fZJw2aHSdBBzkjfjZxHww06SHOz4EhIXvRHEmz+R8fEhEe2N0FGJPCHTWJCT0mPrYtJS0PnR2ijAEiVzBlISbSfSX0FUUgdlIhJAzcPSR7uOEjKhaVNPnd0Sm9w9Ur32KFJKxl2Spto5klmgaBIqi6MR8dPpkdBjYVH7YQOSQXFl00JVW9JNA8FSrfzfEk2LMBIrKQsRn6U+0e1sHtH5T4gRr0NkUioMyZJowGZTXcPBErds8FIDKFjSbOGykgE14dJ7FEhSjXefkiBqlhJNGEMR3FOi0dc3atNRGS4SVWJqUhFh09Kq0NbSM6/yUdusqZH2DMpSECrW0iXkR5KrKPsSEeXtU1rHBJK0bdFSOSMhEhN8axIPQ31SCslyEasNoJHFrd2SDByH0lVmZNGss66TS593UuS9NJIK3ejSPFws0dhjuxIFQ+rR/GgAklZ1l9IfX7JR7Fnn0dJv7tNcPOISbRWhkhNw0tKArvFSeiJnEmggpJH1WtLR/6M+UfaFg5JkMweSOKLu03pSc5Ju+cQSYIRikiP8CZHi5jxSGVn8EdJQiZHeEk/R1qt7Ukae6lKQ/mcTbghD0tZkxJKAPaFSGAahEliQgZK43qeR7RmuUcftzRIAUw1SJ9ujEh+PpRNZ25IS6f9l0qmgdJKJHDBSJ4EhEkdVepJBLhQSQpguUmKS5dJM+9ESaRdb00SkLRJx9KGR+guq0kt4yVI0U7WSeemQUeR/4NINTQSSEE9kUiLvqRHVjaFTb9SmkjGvYFJ2JuFRy1YnUnshOFGssiMRwQ6kEnXJ0ZH4t7PRivQe0hHG3hNl46ZSh4nFEn8ukhJKRcgSR5jvUg4FCBFWYk6SBwthkft7NlK5V2iSM7Fj01rTNJJMWitScsvlUmvGuNHq+eQSYtL4kfzRglIvY5YSGJv3kdHXwBJge2fTcb9N0o6SQdIVD3rRwEYkUeGi2xIblX7STJWRUeHFaZHwpmXSJzfDEdIGNJNK9BKSgK9C0hMLXJI36AiSG8B6EcXzDdI7ByYSqrBkkgUpkBKKc6oSNQL+01SrBtLdqcVSfrQLUpdp5BItiAlSbyKI0rm5Q5Ih5C0StXQgklFOytIJE0NTmdlkkeCI6FJGHHlRjJTmEjp1jNIvoBuSQ/+pkgIesVIkMg+SSCFkUlPRSVOlJOHSUwqiUhKS95JedsVSCPTBEqppgpIlgSeSBxBLkmGNZdJuCVOSAg3ME7xfgxLXJq7SZYjfUpS9IZIT6j5SIZpXEkXKMZJz5/OSdGs8UkcaM1IVp8sTnjuDUz3Vi5LKIj+SDbTykgrDvBJKo0FSlrfpUgnFRdJSE2BSMgCDEq1hDtODKoDScMQo0rGF3FJCd0nSZNtzEgGpa9JyT+7SCYRV0kMAcxJOsK5SXWePU6kJDtMaVX4SoDTVEkeojlKjtKySgIWNUhh/iZJrPjOSpIc8Ui/2FZKZ8lQTrzXtkzejf5H9AqrSaMqXEnO9rRJsVadSNbHn0jz6KNJGl0tSgCawUi09EFOCq2CSr/xaEqKMzVJReNASr7jtEkvIgxLepupSJsq7EfvzrVIgyT1R0BDbU7zbIZKkdgDSS0ntEg6YQpIN5HJSWDVB0mmDgtI+e1LSF27qUmN2mVL3QZqTvnuUUnMiQ1KASVMSAGUw0itOQNKNUjFSF4fnkn4L4pITQzWRwTrmkmZtllOHPQWS3ShBEu2DBtIH6pvSAsn6Elb8sdIUJGLSM/cUkkLv5FItq+1SGNogE7uqzRJiVYpSDIGpkiYAWpIclMcSMpBwEeDadZI5X45R4q9okjixYRJZkJbTqSjIUhgK0FIVZCPSLjQ7UpjgYZIM9G2SUHUIEhMfqhIeDb+RrYIKkhRGGhOeBqWSgqqoUu/sTlJ8lmhSNabkkk/NcpIiDETSHJf8kjdwptJhJpbSsMvVE7j01hKP6ULSh7emkp/dw5JiarPSHpNF0iFNH1IA87wR66H0kcW+dVIKtFnTpiq40t+zyhMREUoSPhS2Uk9uUZIi13fSV4tFEpalV9KJF26SdXbFEhmzUdOkqQ/TAwehktLsgdJspADSrdW4kixg+xHSbRsSfoPiUe97KtJDa0bSOcQO043DgZK8YqbSVIao0qm6p1Ksu20SdDnh0r3VC5IqmfVSMzFjkj8oAFKr2IbTqstj0eSniRIw+HRSZ2QA0pVW7RHVGEUSnxEFkmvu1FJfYA9SnhfhUp8kgBOqRihSMKVuUoaGYBIf39SSs543knvt3xJhkMqSU4RSEhLhORH/2+XSdC0+U0Gx+JK75fYSS/ZVEmlZipJHFtFSDZgNUmAAOlI5yyYStEMukYqyk5IpMwCTthaWUsq0MVIV+ACSleh+EkLqGRKzOQnSKd5oEkQXiZI/QwJSZhtu0e8YRFOF+2qSUXqF0otepdKyvuTSlgYdEeH24lJwL0MSMAwSkoKL9FI86S4R1IcAU5C8mJKJnnVSmqp+EgPBQpJKslhSSxwbUjM+MpICK/ASAZoDUrxRghJAGASTgZKUEr4JAhKDrzYSGUR7Enw1bRJ9sXJSBR2hEgoogtKNXTISbv3ckn1pg5OzQo0S3ttM0sfEyFK5zhMSc/Ms0rmJ5lKKkUYSv71ZkpBvzFJBqGASC1WEU5JIs5K1X5gRmSTwUfQoTtLrroaSaMbXkjgXclIiwXOR4XDNUiFA61EwdwRTph3u0p2aj5J+TfWSoXUj0q/lTFKpg8OSLeJUEiItj9JaCXHSUcCYkiV6w1OIg+ASImSCUinGvVHP44jSaA5p0h4251Igk2QR0+FzkjH7yNJeda3SENrH04dtblKLwn2SIB1fErz59NJimNiSvvVpkjUvVFIO7dPSUJVvUmeYmBJuLoYTmU410qordtJGtTaSXdoM0iB0qFI3MT/SZih9UfVEBNI7EOgSBYQoElpHTtOjk/5SmzA50njyjFJHJN8SJAFo0gialJIc/keSJDUtUfs0zpJSuqbSHEXIk5okUVK6rdnSqMh/Ujyy4JIstkGSM3zZ0qZOhBKPx06SAzghkoiqTVHAVovTtTXk0sCfmVKmpnxSf0kYkiq48xIQPg/SDRwFko0JzlJ84/cR8m89UjRZiBOFPHQSZyW20jp+KNIdckVSoqkNEg5qv1IaGVDSW+SsUnn5xJJDVF+STKFH069eLJJScAcScbFxUroyZxIJvXfSJFkl0ruTINHh+VcSnB4KUq79VhIt1QVTsPUv0oGkC5KsiQ8SHgZikimYhVI/d0ISEyGf0n8BblJV3MuSSf8U0jd9Q5OGr1qSuGkoUmUo3JJyP58SKLSC0p2JJBIONePR2nmN0hPMc5IbweyRsbJDU5dlwpKQZt6Smc5FUp5L9JHHag2Sjp3gEl7LJlJQjQoSc8V8UfPk71IWz4VTgGrIEk2ZjlJuUmaSStrzEeX3UJIjs68SMPwT0lh4clINsV2SfRh40nK0RBOcPn+SjUEv0rGjolI++cPSzISTEqBLQpJ3dK6SA2KwEey/RFJhWLzSQkJMU5FtSJKgmo6SJjBX0qXX9hHdEYqSe20g0mxo/NHDcWsSa3SIkik0rFHojAlTmuaTUmNtnxGVlKxSMkQR0qQylZJ5Ol5Scz8T0guk/JJNJ1VSGZ6LknBci5OJXjTSjurakqXOAJL3lwaSj8MMUigOEFI3womSEo3bUm/uthIxQkmSdk6I07sxTtKt5mCSrHgxEm0cQhJrMJvSFprjUpPfbBIArPRR3qhmEkbcjVIplsgTgo5wUmDnG1IF+XkSUtBRUlz4MNJePXRSG/t0UgZEI9Iu/EKSHJ/+EjD7B5OIezeSU6JdUgUQKZJzNddSGDEuUnbzKlIQN8PSiti+UfrF79IHca6SJDqNk5hiyBLRh+USIOuA0nJYg1JModhSXd2ZkitmKhJZuKtSXmZq0iPxwxKh50TTlkFN0k+LQFJ0ky/SbLL00hmQ6hHMov5R/DTmEUOULNGwMSySPBokkmSqA9OaQTASSYSt0lzpVxKw90jSqvJYUhow2VITh0+ScUBxklOcq9Ij8VtScWvAU4LXiJK/wBBSdnOfkglYhhKwJS6SWOfGUmCluxJl39ESCrXcEl8HRJIWXDZTeFSDkx3MA1LLZKySX1nlEgHughJgSkpSVoaV0he7ipIqEbHR73V2km/ut1NefSqSo5H5Ej+uCVKX8NMSnpiiEgPXjtJeUs7SHScBErNnMBIxTSTSFO85k3gpMlJ4Sq9SYLIAUk7Ql5HrOwFSI4xbEng7pNGjrtTSaZa1UhwxzpIHkqqTUvr/kk6f2ZJ+sLER4rgpEjft/lIZa8zSt9OhEhEoAlIwfQnSItvPkjET9VNgrnxSrJ2l0pix0NJIL1ZSRoMC0njV2RI7mafST81pUk4LT9Jl5xZSFWz1E2fEFpLOKovShzUlkrpzqhIWWzjSf1qh0jam/dIIanzR36xxEcXtJ1JBTLSTX2F0klK+pVJhckSSclvJEn/+jxGMj2YR00zlUcrV/JFY7XVR3Vtokjq/+RNJT4aSjEZ+EkHxJVJVYvdRxN4Ekh5x5lKI4UYSasCJkpPfWlIj6kZSV3N802fgSZK59HpR+R6s0d+zF5JnYUESD6nsEcAtZFI9/mcRmXEnEm6b7ZGUlgYTt4t7kjrgNRJnFvySZm1yUfuSfdHTfffSdVSpUdIq8NHuZ6SSJRQU0lFcOZNvVEpST4akEiKWyNI6C2pSCi4Ykh7tHJJsgiPScB63kgNuP5IYh3MSUXL2E1xeWZKD8vnSVTYHkk2W7NHzEDdSem6zkjdjQJIY4YNSFDVKkmGihVK3FfNTR5D1Ukq5JRITca2SQCTrUjo3n9HMJZ8SS9vE0nai5NIrr7MR1qJkEkEAAdOxvQmSv7cKUqkDVJIDeuRSIDg+Ugd9npHM7RUR7TpBUgqmmdJftneR8FJ3U1mDcNHZ1GxR2QWKUrHystHhdnISjjO70cINw1Jd+YbSu4W1kh+i+hJjLfTTfuHIEqr7wxKFg6VR1t9dEcLYoNJ7K3IR7mnKEi9DyRHL0O6SCsXS0l2OcpNsgkGScj/nElin09Hz3psSSWiWkkJEDBGurfqR7vXrkmlFoFJdl6/SOb8uk2nSZlKdwGUR4OzqkknaKRJR6m7SAqx1EcBMFdH0PAXSJyEREmaQSFI/iC3TSaznErmshBI1hlISWxFD0lisrZI3GUpSImJ0EciCKxHRGDaR01qvkhdPqxNHdUYS21rs0nqExhJk4GzShhp5UiK7N5I/f0+SUwGpUjz5EFJPNACSBu9qk1KNwVLqkuCSebCWkg0BxtHuCz8R6yzjUdcP/RHK/DeSEsIj0gpaPdHuui7TYx/Nkkv15RJ6lYlSrRsM0pv7CtJ/opMSDRDMUiZl9BIKNvyR9LPpkkgoLtNB1MpS/yHtEpFv7NJghfrSPsl7Eks/h9J6P0USXsAmUiC7BVJkPEsSDnoxE3bDktJ35hRSgRo00gtvCZKOA52SZtjRUd7f9BHUGFlSFvKjkggS4hJFIu/TT6cwUqegW1KvunZSP3+10gXrS9I5UZLSTtwMUing5pH9PxUSBOWc0jlGbdN5Y1WSUWN2UnUHqNIg8PPSax5EklOGitIk4iwSbXjIEjqqhRIY25XSipAu01ESBdJ1SblSANrC0nAUQ5KCDgISTAjr0eCCENHb501SinfJUoinn5Kr5DPTeoWfEpnNiJKeHF4SA5llkmhvpFIdrLOR85sWkkqRetHHTm1R4Xzokjvi8RNiPTlRy7eiUoe39lIehyqR2Tro0iK9JpJt+b8SN5BbEjasElJbp4+SDbkxk2NMiFKCCtNSB8J6kiet7hJSvHMR1BYkEic9HlIqfbXScbBiEgIMWdJLw7mTezpNEmAusxIAAbzR1ydAUh8ADFIS+WnSeWBqEeQHvVJwBdXR2DAy0c9m/hNvwA0Su9lZ0o05v1J2B7tSVf47EktV/hJuqz1R59jhUj627hII0sgSENQ9k2aWThLYXS8SOso2UkmWuBI7YPdR7VlhklZrPtIC9iLSYmwB0pY0CpJhzjyTTYVpUtPk39J8FxWStb4LEkF15dJ2fk7SE+jD0lbH7NI1QLPSHb9qUmRbBlOmqRsSqSToUnZNVBJHZ+WSQUSGUr2PKJKtdmTSNzRDEiAW1RKsjKiSiNlE05IcbxLX4gbS068yElQK/BJJa4YSUf0DEjOiIxHzTxwSFHOE0j/ZelHLxMgTul1SUsjSItKrOLWSIH0lkgRIvZJpxUPSXMJT0gx6+ZKKX87SEPmmUhD8x9ONNI3S5RIu0mEB01Kf8hCSSjLxkp96d5IP2LVSCxGcUtB4oJJDzVlSlNVJU7M+A1K740ASbouqUhi+qZJyg6xSMGePUlF2BVIb+6fSaGR9EdDPyJJg7clTupixkp9+JpIHAkTSf46BEhPxYNJdFbjSUZNxUjLYjZHvaadR1Z0xEiVYC5OhMOASyeo8EghsKpJ4iWwSpIZPEoMbAlKe70iSI/GKEg21x5KhAlJSaeiJk7isGhIJhSLSJoFjkkHIWlHjx5HSmeGeEl85TxJiOVeSGLYRkhG4oRIJFA8Tn4K10v/bBJLYXDXShA60Un6AfVIRO1wSbCDZEoxg49JVlEESYSfR0qIKh5OeOKISpOEtEgcLjZIDc7fRwOQ+UdwME9IaDCYR4NihkglschI8bdvSIc/I04BNpxJIg8OSv2Kj0nPqNtJZ/qiSHGdp0m5bwlKHHxMSMAqoEiEQyZKHmcaTjIpXktt+OFJsE0USnmKGEmE4dRJSHxZSYaXBEqyso1IkzjDR7L4Z0k7UStOttPxStAqMEmZTblIXUQgSVhulUml4sVIrbTRSd/5+0gdFTRHZeWQSLvSDk6HLYlKptL7SL5Cd0pmsiFKLHTnSECOMEkO7NtIGMQJSC7CO0pl8N1HT3EdTlcpqEoyr1RKJRIBSh5g/0hkeBBJyOJBSqjei0kw5MVJNXKdSY0tfEl0myNODUSCStXKREodjopIsnQKSM5Lo0gHZCdKR7coS5ZhvUk1tg5K//eDSeyfLE5re41KVVGKSkxeuEqswnhHqMP+ShMdzUefpXZIrY4iSnh2iUgc8xpIgcVrTo55v0kifG9IMCDZSTl3L0klOS9JEqTBSVo+JkoYqJtI1+lHSVk3zUnZZmNOgPufStBIpkll0HBKEsOnSOalEErwp7dJLkW9SZQfdkqA7dpJ/wTjSO2/ck5lEbpK0txZSkFQmEqXxZhKCmR/SOtsnEozkEJHMaUDSbzYmUgK54RJ5lxxTmB+B0afVABJ68rJSJeCNErwQGxJ78MGSRHpFUnydOZI/+AdSRHllUl8GWxOjCWLSiD9n0c0aaZK/fL6STOYgkn7mrRJtGUmSGGcCkmj9wpMiInJSqndUU5HpP1L9rNESb0WhklEmJlJ3fUYSpJZS0pfV6BIPQo3SD/J/keXWUFGNe5UTgdPx0kwV4VJmoh+SVxzYkg9mzNITQvoSXvnu0nQRPlIcr6cScZ8w0kof1FOuCprSrczVkm6jExJKGedSRALDkkAg4NHBNWiSha+AUgqpWFIPOJXSI0FQk4K5ZRI7VA+SDWX1kgnJV9I7zg4SMLZ6UjrNtdJ/BpqSfNUe0m855RITvk8TjhhwkkFHIxKCKgrSir2YEow4aJJCkfKSLJI+0kVkiRK15mZSXA0Kkjl+UJOMPoHStYWT0nTvXBKREtISDePn0r8MkJKQL6LSj+s30myG9dHWb4FSUchU048UT1JlJJzSXPqVEpXVrRJP3OfSWR1R0nvmNNJa6xKSNG0JkkKJSNILzBcTsAZDkupRuBJdy31SSzhFEp8AKVKxqrFSCLXYUlc+eRJIigvSuyAK0qmBEhO6ZP7Ss92I0joehtK4XuOSbchG0ofPBhJsHpjSJdjDkoI9ghItsYaSIaoT07wapNJ+tLZSdsZkkhNsxhKrqGHSbFDeUjCdGRIh6HCR+Y2a0huA9xH17tRTu/zJEl/bkRJ5FIqS0wNAUounaVKkZQfSnDKJElOm6hJ5VrOSZxFpUizxUxOyVsKSz8VBkp7LwJJlIaoSYLpJ0oJKv1Iz0Q8SakbUEhIEctI/IixR9AbWE6K9FlLV/x1SoAKD0pozCRKiddVSB/PDkvCoQ1Iyng1SJxl2EnAURhIXL5ETrahQUqF/nJKfe8KSrxYOUqXZh1KooGaSENgN0q0ZZpJ6q0qSDoSpEhjwChO5TMFSky1V0plkfpI7W+cSoPdXkok0j1JLPM5So/9qEhHsaZGuWxVSEH8KE6xK05KfmloSnywgEkt3xVKeQxgShaHSkgjddpJIpeISfh9/0ghuVVJTj4mTny1Q0pYgjlKbjwXSiwSB0k2z6RJjmcyShxQCkldoF9IocRXSHmNkEliRhlOOg2YS5yLsUnnVMNJ/q9nSc+BPEhjLdJJeLjySHqMMkph0VFIQ3O9SJYNJU5S+wZL2wfSStFgA0tEQlRKdPOHSlRHEUqYEcpJe10SSc5lTUjb2jVJqpQwTprOFUufwQRJ8SFfSFNIREiIVCdK/h4XSYhuOkjGsqhIlZv3SX2TBkr0SjxOCk/eSprY0Eqrqh5KLiohSREcuEgHoKFKrPs7SUlsIUmX/RVKM0FqSXt1P04QMCtKVtxcSn5t9kjJv/RHD+P4SKcRoEpn0sBIpHtASnLq1kibYGFKzG1BThPqi0kMEVpKk1a0STLWxEpC5w1K/7I2ScbtoEjdColI5tABSoqofUou7z1OW3UvSsskJEotdKBJ6UEeSaadPEd9sd5HyNvzSXXK1kjnoyJKpJOjSITPQk5ENAFKmKRlR6trGkocD7BJbCcnSIn0U0gokKNJ3Po+SV+0UEiqPeNIYAdFTiY7XEufJx1KtWCuSmG6mkjSPalLPiiCSFw5sEhAZmJKITnZSPZqjUjX2EBOYZsuSavZEkrWbQRKZtEJSRByuEmtoYNKWYSgSaWDRUnvbwhJoGzHSWypQE5ZxzlLGSOFSbWBiUqQMu5JwbFQSBPZ9UksvqxIzKfWSbZ5REqdn89JDO09TjUOrEpJNqJKWQ+2SNfFbkoBJn9JfJWASDVvmUptxbpK8TobSSMuK0oWGU5OiMlmS313m0rw2vxJFnU5S67joUpbscZI5zViSOWAI0qfnhhIcqxKSahEVU4pw0xLRQ2ESnVlrkgkHgdK8NbRSP2RCUrx0L5ILUVUSl6lZkpbcEdKwuVfTi+mY0pXN/pKUrShSd7Hi0gAFYNIZD5tSiPZ20ikZG1KfAL3SMoqvUmFWl9O4pR/ScfUSErzUSdKr0J5R25XpUjfR2NKoqQESVCyEEu434NIKGrnSArnZE7gcQNLoEBlSrB4dElQSChJFMPaR70j0UjpbAZJbIXQSOB6XUlV34lIIR55TqqhzUkUDz9KBcYFSm/j2Ug3d+FIg3TMSF5lI0hnGD1JfxI5SUxcjElC/4JOQlWGSrEdGEtnd4xJgiWOSStzWUgaqhNKomVSSKJ5dEmVOj9KJF8ISiTfiE7o4YtL56WbSX381kjr5AFL0Sc8SQKtGUlwUMFI4E9uSn5mPEmbXy9KWGyOTl6xlUmIP3FKNZf0R1JAmEgFsEFKPfFeTOwF4EmXcfxJSKajSLMELEkHEnpOkhDESEK6YkrlLlZI3+E9SG5mIkheEK9Jnu7tSePWgkl91c9K8CiGSUisgE5QZoJLhb7xSjaz3EofvfJI3BfPSkTom0vh4R5Ke+wFSveorklU0dFIS1CITpy0VErv7ntK4ArdSO1yxEjPYctHt7kYSDwe0kipT1JJq4nQR+LoIEhvFIJOANOMSkR6RUk9rJtJst9qSQh2TUnNyJFIWKQvSv3HHEcSivRIPTIySBuTYU4PWMNJQXQPSjbl30kB0M9KSHezSPcMKEkgfDFK9ZEWSbMckEnlkUtITUFhTsRdVUjDbDdJDyjgSUXmQkqqAjFKYq+1SNw1MkkRXPNJwi62SKkQzkgkBF9Orp7SSmfSEkuXaJVKdLoPSotjB0i8KAJJS+7nSLYDSUl35oBHhZC4SK4WXE6mFoNKaJm9SdZWWko7VyBJXt3/SVqRcknAujVJCrgQSO55A0mh6/VIxKNhTl3DXUrGQoxKPfBjSicLXkoPcnBJJvMnSKzPPkrCJDJIFVgySC4cGEguG2NORGf2SoFDFUozEghKAEmBSHO7I0nzeeZJ6P0kSkiUrEgPe+5JUV5/Sa1TX05xtzdKXh8NSDYAGUln6k9Ih0WWSVvRnkr29DNI8NQhShtRuEhVhR5IpGFfTkb6HEt07w1KVHnPSFwJ5krKQV5JZ0UESSND5EgRcTVJee0ySA1KoEo4yVpOOH4cSioBDkrvPBlJVfCpSCmWp0gxdQFI2IpOSRqTDUlHeGdIdIdWSZsPVk6guWZLDpYaSqZBDkkHt5ZJ+xRUSlrt/kdpO0VJ8zMmSdYGF0jBU45I9NZQTvcXd0ql0p5Kyf6GSU2ov0i1NnVJyEgISeoOBUqojnRJcVl/SIU4ukmFjFBOVLA8SoaEQUolC4RKPr54SQKm8UhD22hJ/tcySk4T7UlJXmtKkSCUR0mwRk5rNSFJYFYySh2vr0q/UIxKXdg2Sa310kjuWv5JayngRxpsn0hRwn1J0N5ETsViq0nnBAdLaPYTSpGgikqHhBZK4O/4SU7vzUrn755Jf3cVSgA1GkqU0TtO+UOASnRnFEqbImFKIDWHSPCUoUoL7EdKvB5hSa54Lkn2/7lIu16+SPJfNk7RS6xKSOOISjjx/0j+Ed5JoPUGSR2l+knMNoFKGStpSrYXGEriNWNKSV8vTsXM7UhZODJIeCMcSe+tc0iIPYZJlWDmSRGY/0lQKxhISr0uSlCHW0ku2jxO9MpqSvX3CEl9gD1K80iISdWK4UepdzVJzDZdSl1rl0invShIRELySN6wP04wHaZKVkE7Sl5sY0gdB6JK6DfMSPT8L0inTYZIbMGZR1MrjkgFBTFJwDA8Tn7PBEq5Cl5KHdUxSlQ8OUkUW5RJslTNSE+PdEnjgZRILVeMSAl7CktcdlZOb+yTSqg/pUpMtDpKcZTASOwEQUhK7bZI8moUSsKo1kq3OyFKmvFESpXaak7CM5VK524hSqgMIEoEMYRKIjx/R6340kiqvTBIxXZcSe7gyko7lKlI8GV9TlxJEUuBuiJKuH8pSopvY0kx9jFIaFoLSMy8EUn+A/JJcqXCSC5ehUiXXZNOyGV1SwTpJkgQzc5Ic44hSgeSCkk+11JJMnykSidFO0iNg4FKu6vRR0NNlU75orlJfnfqSACgg0h1ECxIO+iISKlTGEo8lDxKejmvSXS+UEhMAh9ID72iTtj+TUtg8wRJD9yOSbbOnknsicNISAOMSTy2pUhaex9Ip1knSRglIEg2KJ5O63GjSrH+GkrrRadJjJ4NSdTnCkkGpaJIhLXlR8Uc4kjJ0xtJ4IV0R1CYm05Qlk9J+JvoSfxmj0kzeNtJdZMoSR7LKknARmZIyEegSgOtEkpvthRI5nacTnOZMUpTYQNKj8UhSTQRuEnuNYFJOzSBR7d5C0l4tDBJ0cHUSDm4o0hMcJhOGGyySg6bpkoiRxBJwkfkSTdJcEkYTQxJol4xSkYob0hzayFJ34bbSSpHmE5p4FNLa5yhR9k0sUk1mwFKEb+qSOIOVkgXeL9K/5AySqwQV0iVibRH9aqTToaWcUkIYJ9KzfBaSGN0ikinlAlKRFZTSRXChEn/e7BJmDQWSF2qd0jQrodO911OSsyeDErRfTtHA7ROSmjJiEi7uPtJSY1ZRy5cDEhU4HBJsMFASVKMiE6RacJJAFTUSo9FFkkRJq5JQlKtSJkHFUlhwj1JadSUSJAWD0mEOudI0WqMTql1i0rr1D9L5AWiStelMkoosZpIzgKXSXI1Akma3iRJcDhXSGuSMEmTsYlOoF+FShtGAEpe8LlICMexSbq4FkrTZXRIBHZVSMZ9n0rJ05tIwspqSRiwik5tF+RJ1cITSpJ0M0ntxtNJwXWCSb5Fo0pwfVZJ2JSTSOLMsUhsX2NIBbWPTsCHJ0r0xhNKwr8xR2d9dUmYZdxJHy0dSt6tpEi5+ENJ/IagSdmu9EeiiJBOd68gSxmhPkj7u7FJr7TJScNklUimWlZJ3wZrSa1lb0kb3bVIusVQSTb8k05ZJX9MATMzSkMDRkp4Qm9IG7tPS9Nsp0hygplJ2wOLRzoPBUreugZKQVySTkDmMEtuDe9KSa/PSagqVUk1ZsxIUvLWSX30uEkloNFIMknzSGF0fEhKsItOJnXjSKXAokkuhuhIt2SPSQsJDkoioR1Ih8pHSenDsUiKtm5ItLupSeX9kU4jdUdLMTUQSfzmXElt8ZFJ0NCjSYt0EklYhbpIzFnBRyseG0m5iU5IIGaUTsXG4UngZKRJgfrpSEbX0kmNrddJIrlURx+i4Ehotg9Ib/SwSDzYhEg5ZpFOjUxdSC+phEmQwpVJvLCLSYc40Ukx6aBJ3ktbScheo0kLuVVJMjrYSTsXok79T8VKnxDqShh8rkqGUeNKnmSzSLi7gEizsEVIGzOXSccqd0neuB9JIOebTgswZEhWYSZKzPpFSDbDh0mSlFZItRXqRyTjRkqjH6tI6ViBSRd19UjMjJZOUsbaSfW64kmMeLNJZZENSqcfTErPkylKXNVaSq+1iUmCiiNK5DcfSWNsp06hSFZNpaWuR3bMsElaCxhJQWgtSKZlFkoQJklIlLVgRwYGEkh5nFNIF1yeTq/QHErQ2hZKi3GFSJqsKErIPnNJcjoOSKSrzkg+T9FIJ4JuSRdlKErWladOQ9QPS2rv8Elm5OVI5vnqSTTBDklVTihKK7YoSc71rEm2HIhJC4iuSpg8p05jT7JJqdgFSiIr40o77j5KLpmrSQ0spkmcOztIdDJQSBNn3Unkpb5KKCeqTm4z1kmNWY1ITBF7SjKCS0npj15JAjarSZrVzkj8fTBK+RXsRzor10msSa5OucEeS4hqAUpxP/1JaZGsSOQ4l0gQaSlIZGMoSvMBcEm5oY5IAyimSe+krE4aAJ1KoNAzSUawYEsdD+lJX7QkSgIqD0mr4KZHBceFSdQt4UmWj4hIpXatTiSoYkrbuOZKna3DSPmfq0ojwANK2CMISUc3i0iTXOJIcjaiScMy30mOhbROcfbMSdS2rUpuPARJC5jBSoTNPEnHY3pKibqZSUBkM0rksQFJprLASHMmsU5zQmNLY8ogSntgyUqLJnZK5li7ShtMiEhVzo5JvWIZSNyByEip4uxJd0y3Tug+u0rlcrxJy1uxSWL/80hUF+NJcEI2SMMf2EgRE49IXNF2SWd7L0ojjbNOkfz5S+ujZUvh35tI4cdpSH2LXklkZlNK0FalS+G4i0kAcZlIm2S8SbqWuk4hhdhKeBktSbSt10liEIJKcXKgSUAvyEme2dFK/ojaSB64CUk8gBdJRnW8Ts2vC0tM0nBK8qoQSVfeykeBpypKgMASSwPnqUnY1lNJ1GufSJk3/0lwGcBOgJK+SWdIwUprx5FKdYW4SSs79Un+LoBK0BFPSHQKMUqz4FhKCtkLSuQvyk4BT0FM8XHYSpSTF0kgD8VKGfcRSRWnQUn1GDFJwXucSg6hc0o2xGBIbJLBTrm5WkpnjilLcBpAS0XFqEiPTXZINke9SHC43kiYwftJzZyUSiVDoUkJBL5Ov2DlSCV6YUqry25KNBuaSJxVA0nk/65Iw6t6Sk5Tpko1Y5NJLjXcSdHKu04PkgNKtE0rSz7NBEu1y5hKjYaWSjEIPkrVOohKmjk3SKbLqEgGZkZKWl21ToWWp0mdzWJKRacISmXwDknq+rJJWpIPSYKJ20gXBN1Jt/RvScOxT0gaYLVOwmO4Ss9ccErdhYJKSwHpSZA7bUnybGlKmf9NSvOuJUousxhJ1xYUSVPAm07P9N9IDpiaSsKQmEjidQBJ5YTCSK1JzkhlL9BIrJolSYoUeUg2nMFJl+uRTvkoAUvR2gdKON4mSsOihkoblhNLb1LBSIz6EEh+f35HGmgBSLY/aUmNrYhOn3GCSxrLv0thf7RKaN6KSi2lykoDbotIkHaPSar6okgLwC1KVuMoSpZMh06azlxL/TLgScqeFklUjApKhf/4R9gbF0qa0vRHj8eXShGsDkp3gWZKr2F0TkjtHksJuu5KMwtASk03A0kNaKRI8ehXSetZgEpAq/NHsOB3SKpUekmrB3JOo22ISu+ax0q9+VBKwEhVSNSh5EjKqtlKDdQ1ST6DbEoB9B1IaAexSbqcZ073Z9pJm6LVSg8uakma6sRKYqOQSbMAXEokGZFKF7+pSI6c0khPac9Ihit2TtDB70j82TxKy/CZSfCXW0g9w7BIdpvdSPYg7EgkQlJJ/jVPSbtMqEhIHnZOi77bSJSEk0lv2kJJJQl3SccBv0jaE4hIQza/Ss7taklLE65J3TPwSIeGgU6xyVlJnuFgSqklsUoKR4BI1n6pShBw8UjjTCJKEKJ0SoH/H0rBzYdIjIeITsZIIUyj1NpKfTbLSuZ7XUoSkm1KM9eASfOwU0gLTQlIU1siSOcsBUmkPZBO970DS96h2klbXa1KGAWNSTV8ikh33NlJGMKCSpWzjUqBrKFI0DBvSSvhkk6BWXJKVSxoSYmDEkpU9cVJhLuFSewfl0k5jfNJvcvyR7soDEjcTG1KZl+jThWhsEoTNJFJCzbHSDpzMUonwMNH/w8xScmNZkiBJOpIB76+SBsv/khHW6ZOuZhASxKx8UqibSxJe2kdSomvDkgRN9pJkIlCSVjBYkkF8k5JP7BjSaneqE5Bvh5KbhGaSj8UzUmgnmtJamZwSn1ogUmaVUZKRs+CSHB+N0j0sRdIGXikToKVUEqQPUxKbOeHSgW8u0nosL1IgxV2SaoW0UiqaJNIWCqdSKTtFUny76tOJqeyS9PMA0khMLJK6VZsS+WH+krAbG9J4TQhSr8nk0jupmtJ7g+8SJRFrU5T34RJN/4lRoGU20n47hhKUWUFSYcaZEmDW8BI3FheSKZ5SkqhsEhIctGvTrnghUrOLgtKQd2QSUQVQUZDP6lJUZbaSbogDknuUCxIMqfmSlIip0ftBa5Ok0AzS09lFUtVn4tJdtvzSnYUpUnPl/VInc0USk4NAUnK8ihJUPMESXxsrU6UBQFLVxCdS5iUD0redZFK3MjrSespwknUSotJ5n2CSULYZknHfKpJcRSmTid9uEtnU/5KKKZKSisko0m6BslJkE9lSs9e/0mr++ZIFjYPSZjBakrq0qJOlfWZSmiFkUltEwBK+y2LSolEekqnKrlJwmCdSpiYXEqkKwZIrJFBSXFNpk5RhKNJE+rESIZHAkk31ptIywI1Sq9oE0lVRu5IstqISbXGDEpgXpFIFIuZTmp0E0pn9iBKRcmDSj3DKEsDHzlICsXBSb3adkogL4xK+rgNSB+W+kgPkJ1OZCU/Sx71vEoF+9BLzgjTSlxe6EkV67tJej4JSncblUlcubZJjDuPSWnpoU4nrSVL8mlESl4k9kkg2PBLWiGWSm+dLUozvXVKD0jcSdiid0kLN25KR+ybTkKQ3UmZBoZKE9FkSFYRskiSt01Je30QSoMpR0ofQ21Kr2SmSFQJ7UgCU6ZOljlYSkVCtkkQl7JKtMbiSATbuUr4ZNhJweWwSpoKtEpNH31Jj7XySKVlsE5fYq5LYl8CS5eS7krwVZ5KvQMpS6zZU0rxiDZKwpakSAKlMErb2QhK3x/MTnu+TknHe/NK3iutSR0WYUrQ02hKtgciS4CjjEi1c5ZImWAXSbMekkkVPd1OjNZhSnzn/EpIqpNJ/P5zSs55XkmZTvxK/9CmSf9dSUoFTtdJojkvSon17E470zVKCnMeS7Eln0iMdAtKk0SJSG2iwEiepddI6uW0SJILjUn8GhlJlA0BT8mwpUupdndJGvw8STSp+UjmCklKlD2bSmsdiklAayBK1rQWS8lHIUnG0QZPV9vISSLSnUkdIglJpdsUTEIAtEjaj+NIQKWISWEmC0kL/81IjpZkSJ9sDE9nUTJJJKauSqaYL0rEii5Ly7UYSQBIfkkzgrpJiBrOSoTaHUrJ6gBK62oET4tSZ0scoR1KVXlzSsXnJksebxZLXnsZSbGllUhT+45K8T0LSWcejErJygdPZdYsSQxpmEozLkJK2gtpSsEntEge0XpKMqR0SJNSckq098VJAER9SHc5Bk8UxmFKxkGESkGhMkmVJgtJFniHSNPrkUiF4oJLxpT6SBtGskidp3hIevf0Tih3wEoRyQdKQWbcSfCeo0gv9a5IPqAiS1l57kmjQoNK5zs1SdRD6knXu+tOEXw7SxoZlEolnShK3+A2SQ7UdEhM8DlJB4VRSjmGxEnwK5dIZ+V4ScKJ5k6XrCZJKtgLSnJPhEofKWRJ2b+eSu6ycUmjfRBJ1MCWSUwuBUosSBtJ8OTMTl0sBUrSY0NJNH4fSl/920iRH/NJwAksSj+VW0nKxGxKplNYSTZ8/Efmhr9OSy1fSrXyhEoH/yhJ2srXSMd/pUoXs/RJvwsUSjT6l0rmpSZKFdKVSbfCtk6PwKJKeLg1SgACy0qLHGBKbMKqSmlR0UrHAytKOZcdSiimJ0rfNU9Jby2uTqzKlUowqwBKIVrXStU9O0pwzJ5KMPyZSnSFwErLVh5KdBmrSENqjUkI9LJOmPJLS2gflEqJW5JJmKYPSfk8dko14ZhIAAzMSjdsBEmMqbZIMoRCSmQssk4r1iBKjh5NSsazaUpo0OxJQbSDSsgmzUoklQJJ9ZcCSe35SUpw7YRJhoy6ThX7A0z2kLlJk52tSuHvzEmwKBpJSoRkSRHL7En3wqJIYeaBSuqzy0h+jrxOa0cMS962sUoD5dBKXWcTSQMMIUoRU2tITgXFSHZ2n0iBVE1Lzc9xSpvWwE4Gi4dK+9S4SVIT/0lyLgxJ1+mRS3IqD0kkZGJIbG8nSsNcm0p2XvNJUljRTlWM1EpwIQlKu7fRSXavUUkrGvRIBpatShRSGUk3Lg1KmR0USJU2MEonKN5OerJGSu2Jl0lXomJLQaOmSBBDVkqJXxRKhzlZSr2SQUmceQNLMwBESqY97k7A6MpJ9IIASpp/TEpwAjdJWDB9SQMDKEpmiExJa8e/S7hA+Umz4U9JyL0ETwRp7EnKpbNJ9W1GSvn1gElLpgxLPbDZSDAJm0qmySZKu8idSbH8n0npsgVPa+JhS0vgckonXw9LznxpSrC1S0uwYsxIesGVSpR/jEqtEP9JkNA2SrPFD08uyKRLTM0xSzZZCUqIFl1K4SsTSvFfV0miiIpKOBTZSS8ejEnCQrBKBO0bT8TULUpCHB9L20YHSua+6Ur6j2FK3LePSh05D0oXObZKF8AVSZSSuknPyhpPIEwnTOrvsktccLVJRtEWSqrDjEhTPM5JYLVUSt+KpUm4BMFKydM/SZY/JU9bMuxKA1/WSlqoykg+TJxJ2Le1SUZAyUqTP2FJmrclSLzdV0p4vMJIEvMjT6boM0wVUZ9L7o9gSwx+BUolDv5IeCUDSlwz0EkQElhJ89ozSixs/0iY7iFPUJucTQ2qoUx8hdpIOK/TSYgbsUqYZ6hJoVJESsS+tEjHWAZJcfzXSe6GIE9LyxNL1FVYStgu2UnymQ9Ka0gvS1KrBUlHXAVJ+wjySHlKGkkN83BJ6EUkTwhhM0tjE5VLWMkcS/7vj0qyGp9K/Xn1SBnZN0msZ0hJ36QuSVctfkl8vSNPw6ovTcKY4Es4jFxLcPyvScbrBksEa3tJqZnKSscgJUp9h/ZJGmG4ScXBI0/rqYNJq4wkSizGnEoblftILp4JSQwHH0r/hlNHpi7+Su9JtEhkk29IF/wfTxem4UtAKMxIXVp5SjQyRkh48B5J3LiGSSri40jKfMdIVMofSs57I0owZSFPNsfJSeTHO0h51qZJLTD6Sduh1ElSUW5Iz4ubSP+pTUmL7RNKUtbKRw2ZEE9bUvtKQQwvSpD6pkhQSThJOFQCSlXp0EjId0lJkB1YSNfbIEpDUvNI7k8OTzYLk0p6/LRJNCD8SaDSyUj0uVBKmm6WSAo6qknP/ZlIb0mISbfgj0gyCwZP06yMSiL8Ikn0kb9I02AUSBHxhkvQfyxKwbsPSUVyuknb/c9JkfzESfUA9U5xSIdLd1VfSxx5YEhe941Ks2LDRKTrDErbge1Iozk1SUqto0cSYyVKIGLrTkAQ10wucRRL0A84SbVCuEdlAR5KG0pDSnab9EmY17xIIr6FRlUoCUp9GuhO6XsOTIcLg0nkxghKDfZFSq6HCEk3l4dJMrCNSoWT7EjmompJPXINSlpW307FwDhKFVu+SJlbhkop0sdJYLdDST3IMUp1jo5Ic5Q5SV2DBUr6aFpKI5jHThgz70nMahdKfhyzSZGbGUqEQElJ/qdNSpTLBkj+uUFJV0ntSAGjEUnrHL5Om4fXSauOS0nBZ/dJ4jsESp7jz0jTGe9IX7MoSUHGgkiufcVKBmFUSnZktE6jRFBKynscSRsD30mLYFxJmuE6SbqeQUoW42NKB9f4SQ6FvEhd3UJJQiG0TkRKI0jGATlKs5r4SV7+n0jYZY9K30E2SvaVR0oiYXBKKKMWSWxVrEn0/atO6cUcS9FIt0c/s9RICyWfStxoaEn60Z5J4aysSRAckEkcSeNJSABnSnqAoE4Ui85K/OCQSk608UowwAZKi721SXTQi0oTjZ9KduspSj1k8kjK0R9JnOGpToInikpP62xKnLQ3SY2saEnBg9tIzYyWSRbDkknb2U1J9QCSSs/nUEgGVK5OQ+FjSZs6REr3xhdKkVyHSsw1EUlZcJhKZ8owSWffpUgvrGxI+AfESELUtE5pLl1KxXARSaucm0glpRRKxi0GSaiGCUmIX0ZJdmDsSdgktElLJg9JIzS6TjS1s0u8Ys5HoO4zSj/yz0hluc9I2ZLoSjyEP0hsKalJXs+QSgf5wUiT99JOHfAdSwkdz0qg7Y1KAgaeSKFhK0rF87dIYUKpStigG0kz0bpJIUtiSU8NwU5W5JFKhEuqSasVcUrzaItKzHAdSTlmD0lPdUVKTbyJSTHSH0rAdBNKcNLSTjc/j0z0R61LvPaLSpvUF0qp2LBK0gCTSgQjIElDEUJJ1+8qSDJFK0lzccZOVt/sSv8XCUl3LBtK9l0YSvC9tkniFkxKKR8ySri3UkmsYl1KsKDGR5+Svk5C4HxMe7HhSXaj00kvEtlJoUpESu2AqEkVBKZKjrUjSoVwXUne1BpKnenGThfL3UqTsBNLRBiGSOk8EkknWNVK+sZhSRxtmkiVSDJJjnGpSCSzmEne+75OBG+sStNfSkoVTfFIYQKCSTEkCUm0xidK+EnJSNNT+kgmAnxJcvcLSufDvE7oxWdKTMuHSUKax0lw24pK+h5RShOOEUk9B35JOpdkSaGNj0l0JZdJLV+4TiFX/EqAVGtJK+OSSjfJCEqZFKlJLFtFSqfVwknkJSNKpfynSprvu0mqX7lOy0o/S7UkuErSzd9JpQwNSl90cEiHjQFKRY82SnQJB0mGp4NIKf2hSXA000536PNLwiapS6mi0EoERRFJ7K2NSrk7xUiL4nFJsLSpSnC7ZkgXCitJGv26TleWUUoxTPpJ0en+SB7Ih0os4NVKh6GTSCFoSEkBIVRJnI6WSEwiMklMbLxOQoMhSnRPB0ugVGFIrQxYScUHbEo/zYVILzMRScWvokgc9cRJmubYRx20tU5y9KhKuYYmSTNWnEqs7e9JMI3MSRG8y0lHSjRJAZMkSkKmOElYbhxKqxKzTrVgo0p41hJLFswSSre8wUkbVJxKbLWHSdsG/khtJsFKpWeISRLulEj4Qb1OJyYeS2PQbEtVpOVK37baSp7Xvkf3OkdIio1HSlTbqkljCxFKfeLISP24yE7ofGBKJrpoSmKc2kjZ3t5J4uuRSo9oEUqfFhNJai+DSjx6cEh2pW5IRQO2Tnk3mkuTqW1KFpS1Sv/ZaUo3fEZKWvvXStKNSElGQTFKejnHSU5Zxkhl3sBOW/D6SsNVj0hERjZIjFWESb4XXkhbfQVJJ/D8SQ/d+ElVxLNJjN00Sq1GxU6pXYVKzwkwSpjab0r+ejJKqJcPShjXh0gDmh1KQEGGSDXEakq5YwFKDjXJTgIFFksLZJBJJZSSSJxFiEoC3I1KeeC6SYaFVkoiRKFK3r4BSMVkYEq5SMNOwd5cSfVOUkqDGN5Kf7QjStc+XElmksRKGMY4SJ4XrUlP2YpINMiLSkysvE4glwhMkGHmSTZ5S0qBbH9KWRhiSgf0EEro2EtIYwqcSlIMLkrT/vpJec7JTj/IEEp4QRVKdtsVSE4Ok0ll2g1JaJfUSAx+8UovzlFI6Lf4SRMzx0dpk8tOVlysS0M6hErpugNKL9N4S95wN0kkwe9JkAO0SbtqAEh1jYtKDZA9SdEu1E6ibBpNfqnJS0mwbEkd5gFJFPoZSkrMAEnOEOxJmjp/SMuex0ifUYpJPErRTrmM4EnMdNlJ7mE0SbGYD0kdOphJtDjvSFaxFEpg9tlIQVmLSJuKJUppC9ZOhngTSlYfHEmYcQJK1/pgSlCUU0p8t55Kdm6KSQumg0qiSQJKz4qMSgiC007om9NKEKizStAvn0oBqGFJNuggSVM2mUhKAHNJhs6BSfQo80lSL65I+9PaTiH4q0oa8TVKg4AuSpsf+klXWL5JpLFISvi4lElpF0dKfwDFSYxPAUj31s1ONVEQSuyshEpkLD9J10xySiPq90nPsKJJI4F5Se3sCUiAmoZIvRmYSC1hvk6llFtKCGowS+ZT2EmsSABKcTW2SjZZk0gs65JIAuOeSa5++0krJxJJnMixTpfHpUmmGOJI2ZyiSc6Sq0pVHjVKNG9sSY35lkreha1IHVxqSoVRHUvTFatOaQXMS7M0AEqNw2hH92xJScTeAUl7bhBIj79LSZR2gEidhQxJCEEbSIrCrE6ufuhIghG5SZxvPEkqTJ1JdwFxSjLjSUlsFn5K9mDZRxzpe0nTG6hJSVOkThOY/0mAVvdJ9iP3SN06yUg+qadJPUuOSgoQ4EcDI2pI2ufXSTD9PUg7ipxOX9tnS5lE1EpuLjVL+Bf0Sd0K10nzYLBJeqwJSYDnAUtzkVdKMR3JSFDDmE6Wq1VJcE8LSvPQSkqiu5hKx5PuSRYDQkr1e8pIrqX2SH8On0iwq3dI47CUTlMyRUvpza5Ki4+OSowkhEia9TBKfNxfSjnwH0nHralJNExvSpNPc0qP+I9Od8Y7S95RMEqhqVJKsh+ASqONZEimM51JmJDrSd5dV0nJKHBKjN9jSU0JkU6J8o9L/tR0S5DFY0g0syFKJ96dSIAejkiEIw5JPAahSU3aPkkg2ihJD02MTnV990rS6aJK8Tw+Svn54UnGkYtKhTbDSWEKq0jXI0JJG7aPSgCSiUiW7phO0zNRSvvxhErnZIBJJGOxSgZoUEhCA+NJXJXtSeRoVkkJnG9KgEk1SeoooE6Hc59KNydaSo7s1UocjLVI6gFWSdbbrUoH085IMxLRSDANU0kzcoJJyKCmTn8AO0sQFdtKTcMVS9EpZktlvg9JvDarSoYMV0o3EMhIZw8GSkm9LkoAwa5Oz5uVSyAYkkqngppKFm5aSZ20SEmcANRJLTCwSe8EFUrM4L1IFIoBSgqAtE4z37JLqWH6SlSEOUnz3YRKJ6X9SBbO0UkX6/9IqdyjSZLhH0kTAU1LQJ+2Thi7pkos7/NK4L3LSTOGXEpCITBJMkbPSUIlYkqfWOhIzYK3SEki5UiJ18ROWdrzS5vsOkp671xIDNz4SNjdW0pEVw1K/X9oSiLiQ0l1ZWpJw1gxSrYYzU54i3xMrbnnSi7WTEo+BgtLJm4cSkktKUp7S/FJD6wbSuyWuUisjDJKfLfWToY5d0tA20xLKOrcSrWvlUmPNStKZ42QSfsU3kkkb6ZITIcVSVWpHUqqctpOHLcJSxDtc0lJxKJJR+mHSGwwdkpuFT9JFb1PSsS6RUvJELVJQKWpSYjL5U5cRclLBFu2SdnjwUkeGgdJN3QESmiyFUq7RlFKQtzFSIPuX0jDz3JJOYjcTnHq40rzrNlKJg6tSWJkh0oAx4FKSlxQSimD+UhYjBBJ749mSdeVMUnh2OFO3aUQTO4EaEp4Ds1KKKozSnBkmUncqUBK3SN0Ssxqs0qPP6lKDkseSjkP804q1JxJuswxS4qtLUusCTxKSESBStKtaUoFp41KHvvFSNY12EkbL91JOhDlTj2TWUl4Vo5K7tMESYZWBUry5HlKq3P3SX2Ur0qhK+FJyZJwSmj8L0rk5e5OEJwHSu1+3EkZmBZLiyCRStQB3UiWWQxKV2SDSpyLU0pWyFpJFbGiSFpF5E7na65KcxGOSnZpKUrICLxJ7YUnSp9lCUrnJjNJ9SbvSDXTwEfYWctJwHXcTqaxHEuzlYFKITBZSvwr70kCn1xJaXUvSyiiVUkqpK5IHmnJSoYLU0liP9NOQXI2S1qFv0kqhhRJKXjBSpfIg0oeR8FJdnCISuFDPUmm7o5IsvLASNGpyk5jvotK0sHsSdEckEkrb8RJXC0ISssPnEnuxQtKW3/zSwBhC0uw4JJJDW3ETpxAbUoR3yNKZjLkSKSMuEn1ClFKBZCWSvyweklvZrFIyS8RS6YtCUk517ROc4weSwZq9knNGI5KtJrKSc4BCEralIRJ7w+NSWaIHkqyu+BInKAaSPnRr04lmRlLWDcOS43KAEs5VZNK/zuzSjkJkUpZOHRJGMK6SI2aDEhdVDNJQXWlTsrVjUi0QStIDuV7STa0UUrDlM1IIsdvSnpmEEoSm8pINGpdSZ70wUmOPKpO76g9Sio2P0mUZiZJQKmNShf3HEnDSqxKNUpESf4TjUiSKwVITrAASlupsU4U07xL6PLYSikUV0mWZ0JIOmjVSnekR0nB5DhJPSsJSHqmNkmkb+1Iz9+oTokRP0rwzaJJWHEwRxFMHUoGGNVJ0/55SevKkkhL5vNIj7OlSfFu8kePYqlOzJNlStgbaklH0D1KvqvpScEXi0rMKQ9J852NSbK+KEqSj7JKVhC9SQQdqk7TIvVJP62sSLXPBEnYTo5IWS2CSMc22kjnvUVIg/bKSeF9+klOv3RKmkq+TsFjrUt01xJKynkISaorz0mPiiZKQGNFSQoXLEnnN8pJRqOlSAttUkoFF7tOWVKnS1eivkqOFKJKoNkpSkNaHknuNMJJYZ1NSt3R+Uk1tWhJaumGSHtxuU6htZBKH25ZSk49hUoM/ddJiaCrSHVBM0mlQrtIgEuzSdWHM0o0GJpJZcyzTjIVO0pw3dVII7heStobr0iYj71INzC5SYaNcUk76atHjxm2Sd6Rh0gpY8BOQ+sXS3ziTUiRsVNKPA05SsL+sUnhOANK6PPSSehqNUr2gOtIVe9aSkoer07b9J9LBbRCS6IRVkoxB/BJ88s9Sb3RPkqw5vVJ6vebSdq27EgJRi1Jk7eyTiYx20keaVtK3XqoSU4RaEgzxOdJ8bpzSLVzKko0Z3tJZsPYSHPciUhfMqxOP+LqSVGFv0rOON1Hmso6SUixOElswaFKUx4GSbMWE0nXI7JHE0K6RxeSsE4DzN5K0dSLSvFJSErMHiNKZbl+SsOjU0qKQaRJMlvDSRLwiEiIJPtH23SrTitUREzSxetKwp4FS/FiO0o0BmJKlFXESA+Xm0jEFo1JSzECSmVsJEqNZ6JOuOuCSfWNTEowPPBHVqXFSJ92gEojf6tJXuBTStiKRkhFzABKujVwSWjloU7/AYdKmIwwScNLxUieExRJdX0fShbDz0iawGhKP6KGSs0VFUpi9fBHfuqiTnGxWkvmNlZKO8KNSNfC80k+CpxJg7+7SadC2EfqKK5J8YppSvnZZEobIZ1O/gnzSQ8Em0rxGHVKbKjtSX07g0m4JCRKrMjYSPvtCEkbQCBKFG+JSPYJnU6ZxKVLHU/HST4az0lROK1JYYMISlREo0pk06lJTrkBSlGLhklkTRZKUoiZTqLAtUkRr9BIVNUZSUMcg0nNmwNIGEQnSSe/IUqG5VRKpusRStLEmUnGHZdOxP9GSjtFf0mxr4pKiMFeSoj9QErVeDJJhnt+SS6sq0h8asVJX336SRaykE4G87pLqnU5SqgQbkoU3lNKLmYcSE1u8EnfLepJ2r2NSuhoPkqrfVJKNpGRTtQCG0vfMhZKQFIeSvaxD0qIKCZKBGclSkBXu0iOviNJkTWDSkHC2Ulf3I1OuhwPS7isUkmWAINJMvODSlUWWkk+O2FKq/WeSd92ZEqaghRIsDCYSfoAjE65snRM4uV7SR+gmkmMHfdJBYfiSah2XEp4IFdIxFIaS02MEEp5TUhJiDyKThNRs0rRiQ1Ka5tgSty3eUqwskxK+WE7SZvB0Emkc3xJ8TwFSTsCH0oMP5FOIZCKSr2OdEqNglxKnJOUSN+b+0p6vcBK1lRuSc1wHUkbfLRJPwXAR+0tik4eggVL5mlOSqx1nkr6V+dKESRSSasY30ixRtxIHsZkSlx/DEj2tylJXFuLTi6lh0obqgdL1WhoS8CWPko1jodKEtEKST05IUrJ3qtKXMLwSt/Dw0kG/ZROqDp7SsiCG0pDykxJEqwtSQKmE0kmTTJKU7oGSW/3gUpsemdI4CWoSGiplE41gE1Kkq4vSlVvqEl0k+NIk5RcSpPquEk6/NlIKXLWSXaDZErWL/hIefuVTsoecEvSu0lKb2aZSvaI4kmfdLFJCb/USHDpYUmwUARKIJbrSK+Db0kQJaFOtplsSpu9GEr04BhKLHOAShx+G0lTK5VKZgyHSVa7VEryKjdJehvsSWOgpU65xzZK1ouLSL1Su0jRG1pK/LGXSBF250rgzfVJohshSKIEWEr0AylJtBOpTvTaLEplEolKH5WQSgIIUUr9aRdJjyraSPTn2UhynmBKraAbSsw+LEiuOb1OIwNhSnv+Okn93gJJkpIOSeQiO0eiHKRIV/FQSva1cEq3C5pIFGXGSDukrU74haZKPZOVSt/GkErMSA5J4CWKSiIPa0lzFa1JixxESuqc8EhR6SVJqFfITonmC0lVTB1JTJzzSRTqy0mxGuJIuGTmSFCRBEkfGgtK4OIrS8nYtEo7+bNOcnD2Sl+JrUnA1YJI7AMlSvh/OUr3kLtJqnW2SHnSNUqdz51Il32qSGAfr05TUPNKO9wWSnYh50hUDqtIkkgUSSL+O0rLsYRIj8hqSpyd0knokWdKvUexTqLqeknQXONJ5doKSVj1v0fTdJhHXn6rSM3lA0m3TfdH8YS+R8cIyUm8Bq1OAvMCSqNXV0omv49JEe5WSrRRG0o8jBFKj8TcR94XRUghujdKC09ESEKkok6jQL9JpQK9SrBPUkl/ewFKS0AuSqqnokgKDyVIEP/aSIZoEEk/bw5KmdmjTqZ0l0rM4X9IYt/GScLi8klx3HFIZLaCSl6FU0qezD5KZ2nER288E0qvTp1O2Pg5S69IlEpjn/ZHbAuNSALVIElZawtK8lytR21WD0u4xOhJAwXiSKs/lU78plRJB40gSdQbrknEaVZIfm4bSVVSA0kAsYFIGaVfSc9LM0lV1YlHNA+VTo3dwUo20VpKXyHlSbCgkkkjLrlJFHivSAjGxUjDfwZJs7hzSv1pXknAZqBO+pjmSnWQgEuN/K5Kz9xtSmcfgEo8GWRKE4/ISZqqI0mDjTVJEm45SgYfnU6b/vdLAdSlSUniHEpGjJtKESazSUf2cEqcwTZKps0CS32dF0ma4T9LVg2cTi+LAks79eBKN/RsShKfYEr9pi5JaeOYSYMDvUmdYP9J4OJfSbH430l+EaJOGJ7XSQaWNkpwbNRIq5ETSVbWIkpraFVKxqgvSMFjVUlMWlpJGXkKSl/eoU5PfmpJpZQrS1WMZUpeT7tKNimlSN1y+kl00ctI0S7iSLIis0n7o1RJHY6lTgODPkrydblJ6R8RSU4t8Erd+wVJhv51SnDLN0i85xBKug0wSgvuYEjfHq9O8thHS1inpEqB8ApKd7k9SigfiklHMv9IDWW0SPxx+kh88hJJHqYDSvc6pk5lr71LBCbOSfOQAUqmoQtKWqgNSd2lokj90dxIwv2YSThLpEn0iXxKuhGvTpLh5kqonmRKGCgkSqQKhUox3oFKbhcwSp2F8kjn6ZJIz6yKSHeCoEn8tKROuAs6SnseB0nuWYVJxgK2SRCLK0o+VDpKp90LSo8mJki2dApKW3tQSlIToU6E3rtJiSeDSaCWD0oco2dKYkY3Sn802kjYPlZJzCTzSRGgJkr6AexJikmqTmLkikqVZEBKPioLSqJNMEqcoT1Jz2eNSjGAhUpx1HlJ6hIeSZoRkUremq5OweyAS1PPGEoLLCJJfELgSucCL0qoSRlLKn+wSbiMT0lTCJBKbFXOSTzuo04b7kZJNeSiSjXeekoxPklKkTyeSgJLT0qRp5tJBY+cSrENjUmTLsxJ/G6iTq5uv0qZabdJNrQ6SZUyrkkrHT5K1EDbSVc4g0nEfgRKV135SbpNkUrDQKVOntjaSs3G5Ukpte9JN1eqSpRQ/UqJk2RJ3CA4Sf/WGUnsYYxIj2NmSbwDnk69OStLhOdqSpBYvkhYvRVJa9tbSkRbhUkj+xVJpiwHSVlZIEokpsdJycefTnhIhEp+ymRJcLnLSkHyhUr4e09KcWa5SmBamEoDa2tJw06tSJsq60fnhaJOwshjSjNG4UkLZu9IP6MASdjzBUmReSFIgXx8SgSXKUqLfgJJH40uSTW7lE4p3ARKMRBHS7ZHJUrphYlJIfSdSa8PMkpPVeZJiCLSSG0TQkr6BQJJjUCZTuwHeUoCO75IXaLnR7rNs0p7YZBJu5yoSTK1fEkAUgVKn0kcSUePgkobgJJOYJBqS3nO6kqotA1JSMs6SQJ+o0kS7mBJnn84SfYatUkgiLtIurVpSUsdjk7SQ8FKh1RHSrD91UiX7jFJxI5nShxgsEqVrmxJKL+bRpB0HkklXidKtiWJTsWSekizCxtJ949LSp4sqEkhPWpK8wU2Snd6c0n5cR5JrrW9STnHSEn2S41ODV0uSRh34UgYj8RJGKJZSh2O4kiGhdhJ3SnUSEuOvkppQT9KMoN5SMyHjU7b6gdKlPDUSiZ9DEqIBylJQoMvSixCPUkK941Jg1j3SW5Qj0mWXqRIUe6OTvUm+kon/6JKUfj8SbJhGUlpd+NJcry+SARACEt0DI5Jip0ISb0QKElK/pFOu3SwSIVkCkopX4hIwFcDSuwaskhFU8BJhwCbS3IGTUqMZxtJFS8lSVC6m06GGQpKpTW1SpB8VkrlHklKHb2tSapWhEoBf7ZJVrMtSQixOEmBrFJJtIaLTgDjE0qB9dlKqHudSiwRjEmNEIVJCWUtStTM50fg1nBIOSY7Sv79tUnv841OS7m7SvWLhEmzJ5NKmCmnSDlxb0pyN6NJns8ESqvSCkp++KhJGJ84SjCPkU76E6hKwWTZSph+WkrHtoJJRN8ASg7rVkq/p3VJxTuzSKiZrknwO4BKx6yVTiFY+kqOdxFJJQcTSbDvxUlw24tKS28GScUHB0pKuaJJLBQOSmTcm0cPLpFO3cMLSgqIhkp7mTpJBWU5Sc0bz0iJCDxJo6CaSaShxEf3rzpIwGIPSk5TlU74r6lJqn2ISiUiUkimq1hKq4sjSvrnk0lEb55Juo8dSqnZmkoe7N5JRHKXThINB0s1rm5KaoR/SDtu4kkCvldKM8I1Sqz9IEpuKoxIFYD8SKgnx0i065VOUcaXSxnASUrLMhlLtr6iSVRSREpfWUZJ/wOqSaCBXkl20RpKl5cdSXM1n04zbj5K2GMPStzfTEoi3BdJ7rK7SdVILUr3l4FIGhtMSbLNDUkFRfFIIOKVTqIBDkvxNMNKKttbSjrqE0r4LTNKX+jDSPL0k0jRVh9K1ogpSrv78klCtpROaum2Ss8250iTVAtJGmilSqLIHUnlZh1JFtNUSVoxMUrwdzlKS45lSteQlU76hwpLxqgiSpfUAkpBilFJEb9NSjJit0gpixtLHvRlStapSUiXTtxJ0UGoTvPrl0nhG1VJgumwSvbgXUpBRddJTc9MSVYHJErEdZJK0WMmSuud2UhRDapOqLZvStOid0oiPRNLZdxOSH2lnEjPNXhKu6g/SoeIfElpldFJWb1fSvnPsU7FrBpKhxv5Spk6/0lNitVI/eF9StRgAEq6NOBJwq/2SN0XBErF9qVIcH62Tox9skonGaxKkoCHSCedmEi7xBBKj4l5SfcfR0p1OQRLGUS+SdPObEqGvr5OZFSYSiDWXUoOPhhJVQ1kSQhTVUkja3VJh681Sml3YEgfpvZJMy6ESjoWyE6o8t5Ln0DsSaCWSEoX7HNJ7ilwSR0lEUqNQCFKDfGeSX9FTUhXIOBJnVfWTm40lktLhKxLEAcdSrexpUmsMAtKYiM5SDDbN0rz0xdI1LV4SdsmD0mLq9RO1/4rS5a1bUgS4+ZJK6SLSRDk7EimdltI008kSGCbuUkF7t5Ivf2ZSKKK104Tt3xLnWGVSlOanElDwshIs2iCSB1vu0mOdRBIPzjCSjd6zEdNe99HUJPGTn8KvEo6y+BJojLbSUnS50rBt1dK7daySRgd1kklxe1JKAW3SUCtDUkGTcROceySSvATf0lkaLlIkw5LSnFlQEngrFhJjqTiSkM12UcJYZpJTUGuSSmqvk6kywRLYMOMSi1NBklxE5RIHZSZSdwUgkjc9BZJ3jPqR4Vv10e+af5I/9GzTht2B0xS2NpKgQhRSfFb0UkcddVLHwNOSiv/OEkGdgpJ8GTFRx6IXEg5iK1Ow7umSiy8lkqykF9KY/oxSq/UW0pkfpZJEebESY1cDUn3BApKHMzySLmlok6HzktLqbV9SzbTuUpPel9KD+svSIzUXEk2OUBKODUkSkx4rknhYUJJG/yvTlqPqkoRKQ5KeADfSRV0+UmkU5tK922tSXHhHUn96fdIQZKkSZLEH0rc765OIPeCSo0X00pUz2lJVllkSTHtjEma+DNK8c4ASWC6BEm/x1pJ1C6WSNW6vU761npK+wZbSZzB6EgSrS9JYESoSfZF5En1mmNK23KdSRqIJ0vFWBJKweu1Tpu+lkozLIVJ1medSrV9QEoc3v9JKXc9Se66aUrv+gxJN6rHSTKYU0kWDKlOEp26SpeAhElc5HpKLfetShGdZEo6+75J8y8MSod2CUrqQ7dKNCPSSlbQq078j6BLGmNRSxH2okp9dDJLqWwoShWflUnlejxJOKCzShiTp0pCp5RKF7a+TswWjkstQZ1KUf87SXVrIUksJcRJNKegSiVpwUkkuuJI5J6tSQXE/UkAubxOQkJXSolEzklGHsRKZHwzSavBk0r7xCFLhihVSFbgCEn5mJVKJKiUSfepw06cDeBJsBQBSn8XEUlyPAFJZZr8SPRT9Uh3l5dJ8o8VS8rBJElm8SxIyZfJTs5rEExh+41L5pEaS9/hx0lgHNtJcAOaSvTKWUo5wThKejNESXyITErB0NdOB0fDSVbMv0p3p55IkF/OSrxS60nzTUxKKYhNSRUaMkr3AWVKSWw7STAy205bCSVKeRSlSd/I5Er+o2tKRBmySLyCPklz5zxKGKMySq8npUhXdKJJGPHYTmguA0soc09KTMKvSaIXz0ieHgpJXvEoSksZ/0mzFn5JGEmkSvx+DkqLnOJO526NSplVBUsIq01KqlVwSn3vmEpsrtdJccpBSnO4KUlwtEpITHC2Sdh/007IWJdKBjiHSg9cHEr8P8xKZ1PNSSxCAEmhUH1I5pcsSpXlR0psDKFIWmnUTm4RbkmnWGpJu0oCSgmRw0rLRPRJlz0QSL0sFkhuKiVKIgmNSAXBoUjBw85OtICiSPuKjEqUjg5KHZq/SXLrSkl5U9VJ9kLYSa0AVkdOee1Ix5ETSar2zk4aSRFL+A6RS0sNlki8E1VJXoqESVARd0qu6ltLlb68SDEEs0pd9j9KZR3CTmnN2ku943ZKyhoHSeF4R0i+lchJOHQRScUC2ElFAVhJVXYNSo+RqEhFIr5OYCdGSz2YBErM2DlKfNalSrxHp0nmuARJiSEHSpI020lFLKRJNMScSOTkx07TpB9KAdL8SXTjCEqv3UlL2BE9Sn/F1kkxFuFJH+vjScTcfUjdUapKARLUTqqdvErtf+hKQ1ZTSmkVIUprLn5KdXIDSlWrmkqqbpFJBncrSsYLP0uIltJOFj46Suo5hUk4JX5K4EYKSiFor0kvtTJKyyeMSgaMHEkVRs1In81hSmI8yk5JlHBLyjeJSh4RHkqZy/tI5p5SSklVR0plK1NK8WVTSjrPJUvq7rJInPfNTiIuTUyxw9dJ5DokStUdq0rm64NKRhxzSVFxDUrfsoNKLuMjSrc6lUr2O8hO2pcSSknqnUrunnRLnGcCSRTcM0oB2B1KZUYBSbn4i0lZ2wFKwgwzSUa0yE4dGRlLxdxaSfvcwUpkaq5IFhocSVR7vUrz7M1I6z3uStZkZ0qcjaNIcJXSTqbalUlG1TRK/uE0St3U50ncWTBKgkGjSiSmrUnJDeBJ0MvRSHOtREoTItpOy13FSzSAR0mN65ZKGK68SkF3nEq1V61KyqgiSljCDEpL+lVKFBveSUvn1k4HPT9LU+zwSmzBp0nXVqtJRdvpSsQvrUqvSYBJEcLcSmttq0tUQ0xKwvHcTnugKEqjbw5LIAhMS+KjE0k0APFIVWscSg8vdkrG+H1Kp+YaSpYUSkqaFulOGNpzSVirQEngCaJJjLsaS5ch0Eg8+pRJYJmzSSpNi0pdRcFK7Lg4SV/q4E6dvIBLvUVqSnNdU0ozit9JB3xqSYwDgkqCoURJJ7t6SoyedErEy6BIvv7nTofwBkwVuQdLwvk1SjcC3Un76xBKHTGJSo9A60rulm9K1WgBSY2ms0mOi+pOeiT1SyrSgEpnAzZIKXOLSn7/jEnXjSpKCQFISxsHKkmyzlNKgdCGSfNO7E5vSa9K+ti/SlgL30i+7flJ9H0HSooY5Eri2iFKDqhESCgW3EiD8YRK24vnTlnFh0nE2GZKJ46/Sb7QeEpFy4VKmcqvSa6V80giyNRKh2K7Sib+yUcuZ/BOExqPSmcFWEnFRtNKMjnmSb22iElw119KQ21ySai6Vkh/UuZJ6RpqSDZX6E7bvKRJhX9dSikecEllqoBLKB7+ShsCXkqIEIBKyoEjS4UnA0lAax9JCyjpTiDo7Eku6EpKFCyTSfFmmUrYWfVIR2qfSO3BH0rbtw1KMCtXSXRl4kefT+VOXQzxSRuIOEqvL0BLgxn4Sqxg7Uk8nYFJqMbiSA8LmEnMjq9JwQHLSRuH3E6soJVLONeSSlgVyknjybtKIeUpSnjmGUsCiHFKqbtXSpNn8Uj1OrlJvPDlTtONCEqGc5VK0zAXSsRoN0o4kiBJ8UPvSCKj00magatKGGfvSS0yTEn1kd5OclpESyJrnkmmAwxKGBnVScZLBEkaJndIZq90Ss2nD0ruwTNLU0ThSeTLxE7NfAVMg8jXSrqon0q72ZpKyhBdSWOqEEomw/pJX+GPSR8A9UkZ2JFJzEHGTmqD6ElQQydKk/oOSNPJRUnBuN1JPaAoSv0QTEpYmKFJAwoqSu3OlEmEfLBOfpgHSmWuIEqF+V5KiiDoSQ5mb0oWGQ5I82pISjYsokkdMBRJPPJeSil+pk7Et1RMiOdbSoBzyEorQgxKBvqsSVASGUndLBlK/YC0Sp2HoEqN2o1JHSahTkH/nkqHXhNKpXW/SRlAKUu9CSZKufgHSmZqREmSVvxI4kFYStY/lklJ5ZVOMLufSC0zMUmwM6xKpdK2SNhVzUrxMcFG96VwSGbgr0gJM0xKBPxmSPRUmU6+IO1IKC1CSnRhyEidiD1JuYQQSb8ItEhdhTBKBAw2Sl0Z2kk3STxJIyucTq+dO0v1Q/9JI/oXSsPHAkpFEsBJQ5DhSP21REnJhyJJUXa4SfGv+Uk/V45OtK4ES3Jj7Er3W7FJuorcSbBM80nd7KJJ+XcTSh0fkEl75OdJ+AgsSmWejk4LIbhJ/XsfSmluOUkTaLRJsDcNSdMn+0iXvs9IQ/2ZSWwfg0g20GNJ4PCaTqSqLkvh++NKuBerSeyouknZQiRI/W0iStC2KUrryZZIfANNSTFSmkhjP5VOy+F8SXt6hEoPxyhKDNTYSrzKx0lYIeZJs6KoS2KFDUls6mxI6A53SbCMmk7nWp9L88jvS5FnX0r2qhBKByQMSg3WlkqNnOZK0Dn+SfhYR0mCsj5KiyKeTmJzZUmsI9RJWiWmSsvgyEnONgtKKIAuSuDNzkjNSLxIGeu+Sfm3QEtOVpxOL924SgVG3EoUciJK0S4IShCMIEr/E5pIvvm3SISIoUh7iehJzmM+Sc9Tnk6IC8lIhBkMSLzsBErLPTRKb9iwSICieUplM3pIfLuGSVClh0l45kBKqiSZTkguXknmhPRJJgHKSXdm60hQJJxIPuglSTxdmkrLZqxJV8YlSNc8NUqV5JdOXR+XS2h3eUrUU4hJzH8HSpM200iCoSRJ8pNiSkOn0UkQO4BK6zmBSCOCok4KuspKT4LaSsDHrUlfmM5JVCboSSApJkp4K25KsAfJSbc20Uh+zPtI96OgTs5di0thebFKqOAxSwMdhEorVytK+LnmSTHnLkqgIoRJd6mrSJyU7UkgsaFO7yAJSxOWkkv+MfVJ2FGJSlgckUpYM3ZJTZJXSrvHvErUTgtI81wrS3rFpE41WA9LD1yuSUbgD0rz75JJj7oTSY+BKErufKhJuozsSDgydUiVqt5KCnSlTlxNrkom9utKMSu1ShfiyUlgLYtKGyc2SO3T1EnDfbFKrx58SsEPXkidWLNOkOlPSspR8EraBPBJQgWASt768UhsgM5JVyjtSESSj0hhloBKq8TCScNMpk58F25KHZaqSsuIqEgCdhBLsPoVSt5F4Urs8j1KNJ1aSeBKL0mfLHVK9zujTll1D0oxKDtKDDAhShnQgUrq7ixKiwpGSaNhJ0rdVARKlNghSgztiklzw6NOK0YtSVZFPkqSWzlK96sPSW9BQErOqHNKE3QSSr0pZElTuNRJuCcUSq8Nsk7vDvZKVmdCShfpFErNidhIHAUxSVKCikqP4PlJAh/QRzzAy0ksw5hJLbiuTqswIklVTvRKgOv4SvoAJEnJ5z9KqNV/SqQt30n4tqxJeq6wSBxPskk1e7pOG6aTSmJLgkqnmkZJ2Bo1ScDqjUl04bNJWgeKSfOoLknpPgZKSeKnSfkutk6JP9xKiKKGStBcykn4KHBKDz5USXvMh0rUeKhIm6yJSHQ+30l2SrlJulzETlhx7UpiBflKR0L7SBppzkh8tCtJFMxYSAmZd0o1PmhKYokdSfFqR0mc0sFOdseJSrJ9c0oMwWFKMvv1Se5XA0uCVI9KdYkoSgpSj0izdUZJw2mKSXUOxE7l6ftKPlGISuuzaUqPNwlKY6pxSnhDUEosqDlK87NjSB3CrklFWYNIM3KzTiBNp0uAzgZLGtYPStcDW0hpPFBJuqfnSgLBAEmJTXdIirLJSDGWw0mIVLdO11JjSw/M7EqAbapKawlKSnRgGUpJZPJJn4nOSngbQUiPF4pKCwGOSKQjw07If35LdLk8SseVMkpWVglLUcTdSVBUekkYPyhKKxdESCjyskm1EBJJLMusTkAwfktpVhVLnRpHSvkli0oyuvJK6YOvSmWJG0pBmFRK3R54SQQLpkjPOLJO2zQTSuO4ZEpK7eRJj3B0SWwssEmP3vNIBW7fSbF3+UdqSTJKoD2ESpS2p07CNUNJueaQSUeKMEpHZnFIIOW6SLiUAUnemYRJrrODSIbAp0mxRm5JiaqdTrvwDExDMq5KiB4bStXogUjmyfVJEp0vSk3rMUq6LuhJql1FShuv7kgRdZxOwu0yS8Kzg0rdr11KyH+gSqAI1kndUk1KDbE4SEmCyUkN4gRKLTfFSc7Unk6/wMtKpjmASm/IdEoCnChJM60uSgeYxkjrcMBIjDOeSaZTcUp4tiZJkXKlTrDwD0rQSYpKW5k8So+dl0oOldtJjzlgSZ0gTkgiG79KoO/UScW44Ujw1JVOSPQ3ScOoQ0p/UehJcYrLSf6I6kkOLxpKgI4kSg3B30lKd9RJWVXCSF05kU5XLgVK9NC/Sa+6Skm3LApKA3xbSp6wrUmYR2NKP9wFSUI8MUrN7A5KHQuETgIbv0qoeIJKcrIWShcFh0oMzipKtNZNSt7VVUqNPutJUzxeSI2uuUglQ3BOh46wSoIdNEpkRSxJA5HiSeUCD0oWrLlIb5UkShHX4UniuWxJRuXFSWRTgU7KT9xJOJ1CSlprCkliC/lImNSWSFAvoknx0kZJ262tSeRDWUh9d1FKZG1vTudFK0vVrMdJmQYeSp1WHkpS6t1IBBO5SdI/Ukq/11ZKTm8gSRfGrEi4f4VOKXLbShZyE0oItC1JGnWjSathnkqDoMRJodTgSc+T8kk1KJRJPsEKScIVhE5SayhLAiquSCHYOkkm1T1I3HLiSaRfm0hvy5hJ+wMvSmouC0oy6CxKl+uBTpfsAEvDXw9K/QKdSjhogkgOIFdK83MmSdBWAUlfhStJ92c/SfH9Kkmjg45OY78rSvquXkrONIdKhs5YSmL3U0h9ChBJsqx6SiuBQEq3V5lJn/K5SW66kE6Ll1JLEgg0Ss1IKUiKRoNKFgUBShw1WEpFn4NIUy0KSWvc20hUbRdJrkmWTkzJXEkuylFKeL+oSdmex0hcGilK0ecGSsv86Ei/7BFKudapSE2rJEjc+5pOM1DvSmSA5kp2fJZKlD+KStpKhEgaVIBKs4w3SS1F6UjezaRI0SoUSjw3oU5EfBVK6hoySkuSWUprKAxKV+LySJW+XEl3yolIqXFFSTVPv0p7MjJKhbuuTjQ4FEvZktdKk9yISA87C0qsavdJZEaeSHrNA0u1OlxI81qkSdudQEkhTaBOvz6FSjj4kEluJZBKfUJqSrTSw0rjywdKtIYaSnWzdEmWDHZIquUlSgXLnE48MpRKZigdSlDntUmsLJNJ/SMhSlkrUUkPo5tKMsAgSQC3HEmbdJZIf/+zTgIVaUqMRiBKKHoSSeWmfktnSiFK4gnoSQ0u5UhTSF1Jlec1SCD7M0pkoLFOKq4ISfSlrUhQKklJ61ORSRny20j5V3lKqoF0SoHRaEkedgNJNlxZSRQ7wE48Ck5LRD0FS+6YwUk3jgNKlGCVSgd1PknV9yBKyggdSiyJmUl/nwFK15a6Ti9ghEmp7wRJp9NqSmfNDEo9EQlKBkIcSgZzgUo7kXFKVRQXSeLNnEnce9JOj3JyS7UiNUmJnddK+Bk4SuxEo0qneXlKXgLFShvvmEnhuPxJvm8kSVKs0k6AYRFLc/neSrUinUm3KJJJsTllSr6ouEn4mRhKDn0TSS5tqkhGtWRKFJHfTlZsgEn7WgZJopx4SmENfEoYHYRIblcESeEkc0pNvuxKG/czSkUTJ0ruJu1OSbqhS9KfDko9m9JJquKASsH6O0olH8pI2ocuS/lK00jL+p1ISswkSxHy8U45yARKVYMQSs3zg0qafqdK/CE9Sg1Jgkrn9MBJ/448Sl6NO0qcp19KYMLqTrrhnEv1sgtLXEmRSWlqAEoy6sZK/aadSepH00nK8pZIB5EyScQClUpV6eBOU5O4SufOSUqfIARLXf9sSnM0h0tk8D9KZKnMSWelBUpIAzVJjjRfSLHO3E72tmhLP+4LSwvewEoDg7lKGCrkSZxe70ltxAZJ4eAiSodq50gOdZtJTObRTsNgRUo3SFFKYVhzSiilhkngWRtKLdABSqdwgEkNQ6ZJXqJ9Sf7ODUoUUelOPakkS1q+gEn6I5BJTwnhSHIjmEmtkMdJo+SYSijA9UoYevdJXVZKST4y7U4YUzdLU2uxSpZr4EggXQpKNqZXSUNPkkme8Q1JtadNSEv1EEn0rQNKlNrwTreVgkoyAKVKS8/zSainO0rGrxRKy7/rSf/9y0lXrqVIqqPjSH0BsklOVftONMhDS4M/YUsxCTlJEi2bSY+UnUkJeU5Jm37fSfnvXEqARVNKy80RST4J9k6kb35LEma5SkSytUirrU1KvGkcSZqwIEoBLHxIgwHvSBerSUo9wS1KbW3zTgGgCkvn5gdLEiQmSSxNgEiRQr1JDDDCSUsyu0mR+ZZKoOeqSTTrrElzv+tOateHSpZhvUkmjFhJeQ4nSU/QWUk3aFVKfzI9SneEd0phT1ZKGMjjSekl8077iUVLXNNbS2bsoUpcANBKatD0SP7KCkk2Xp5JukiiSe0cr0lDmwRKmLr0Tt7e8koGvphLfs9TSrA4aUkkTB1KJsUQSh18TknEYzNK8L4FSS3cd0qkyvlOK/gES3YBUEqHMGBKpUiLSc06c0jbI4lIYJgVSgHwXkriUElJiLeLSSMi9k7T3zBL3yWPSvK4bUqPKZZIh/WySvZm+0pdUP1Jd45USYQdLErsmbNJLgD2TstRmkugCxBL2K6DSAkgSUpUWBZK0sNuSWg3BUogHkxKhp8ISqEMskkbEedOWa1FSjuekEpu8QFJZBW+SJFMpEp8nT1K/V3BSasSAkpL7VBKJHX/SFpZ9E7NTNZKEESBSOcwGkoxml5Je900SdWCuEgfYwVJZrkBSOjDL0oXPpBKpoDzTkmrjUuHXy1L+Mu0SuECFEry9/RIdfZXSr8YRkomkn5JjBAdSgZ88UnTQetOakMhShZoqkqf94dJTdiNSBnpPkkp13tJmD+bSrY1N0nA8GVKTxw8SqBS3U5YhxVLfVneSYc7nUlEMxdKYJ0KSt3WBUpRpxNKU9dWSTEv10rxEBRKf6zdThr6p0kXESRJb1W7R6Edkkkj2+VJDCKRSMKRlkjaGopKDe/RR5mBUUrogdtOmgL4SUIZ9kmt5UdICvCaSdij10cZPE9KhNmISWSwJUh8ABFIV18vSkHt2E43pNdJfaEASrveB0rrzS1IO27PSRLCQ0rSo9tISgh+SOKJyknFexpKFzHRTsuf4UpgeslJ29oLSzyTnUq6XflJyLRBSo40a0qToE1JzOCNSgEwgEoFIslOeEqRSgN7vUgUqy9JnGYdS7g2OkoxUChIMRiWSk4DokmWyCBKIFVASFdMuU4EUJtKxVZKSoHSKknzd4VJv7USSgKelUjMEBtJA6lySdGo6krBLIRKBYzATvsBiUhDf4lJmqD0SSC16EhNHwNJQoaNSaiI10nakwlK6jqfStmkmkhAwcVOmllhSvktT0og9YdJgsUZSlsZIkkH0s9IbCZxSu0ZCUkenl9KtgusSJktw06CKHlIGTuvSpimDUqn29hKHDWMSppESEqAZLpJhSuQScilAEoyhT9KExS7Tm0vXUt0RZBKHwPpSXmwlEhBzpNKNi51SSlpuUq/YVhIKU+5SNNvlEiAv89OhxVuTDFh9EojO55J3mdBSv+eSUpCUIpJP4gWSh72CEkdhn9Kg4IKSTTCx06GB+VKaOsYSq6OY0oMpNNKyjWfSgwmE0reMgBLJRYHSgIb1kmiWlNLprLQTqYxoEqvwG9J5qfKRwwOKUrHtIRKPgTPSWC8bEn8jBhKkGQFSru/OEpp9qpOkzWfSznrKUuMlrZJLS5MSg3VFUo7BY5KFSRXSnEHSEhcp0JKP2QLSn6PuE67jYNKsPojSvVrI0rzUqlIMn56SBApd0mYEsBIKASKSiVc90g7djpJAKe+TuU7BUzpsa9JizUDSQgnIEg3wnNIs0dzSlcd/EkqCbRHdCJ3SdNe30criLtO4cukS/itAUrbXARKSi6kSu74DkoX0CtKMoEpSTnnqkrAPyJIW8TdSWPhqk5PXo1K8sALS1UpFkqOLDdKQv9USMWsY0iD1GFJwJ5BSv0YI0q8s5xI3tKtTvB7SEte45VIIY+OSQSHPEkFQI9KvnIaSRMaCEnDvvhI8Ey+SBEEz0lX2KhOTj40S03IOErgG3RKmuUmSse2DkrWSkFK+RuLSmVyg0lk6gdK7PyISt2Fm05d02pKHx20Srhk2Egg9z5KlIttSVSdiUhROuhJS0yxSWIVWUlylU1KYG2nTr5bgErCbCVJfbWGSIw2R0rltX9K1+IRSlBQxEn9NkdKB+EpSyYf1EhzerdOD76nSV410UiEMgpKMTYRSUpaW0hHlklJ2l8dSuPIIknoo4NJ/N2cSUjxuU5L26dK0dnzSalbUkp+WQ1KPDsJSSss+Uk9wWNK+ex8Saa+h0jGPYdKMqK6TgC200rDWBRJwAcKSrSBd0ps/xJJTnwhSsMuGEqM7iBJWTazSBGhikhWYcJO7+oUSjf+GUidoeBIYlTLSVZ9EEoz+xhKQm+iSVnWX0qFIWtKu5awSVGywE6vqOFKdPSESqSVc0ms8WJJw908SgIOHktIoJdJT8aISaK3zUot80VJOmy0TsWQD0oFxGpK0LU5STXYHkq5qC5Kb+xHSsyDuUpgIwZKJxA5SR0tJUpitrpOhZRxSnKHj0pjzW1KblaESFsTgEps4xhK2tr5SV9uhElNMXhHsHwbSpYRv046SFhK+J1fSve8EkroFEhJ2fYLSSnoSkqO7gRI8In0SXsy0El1bmRK7RO2TvLjQksF1u5KRLk/SjbgP0prQztJux6NSmyeNUrGKklKbR0dSpIgGkpHRa5OHQ0OTLsThUryiyNK65WISHXSLUmumMpKw768SQTNvkmf0zNJKfERSGqOtk4xz6hK/RvbSk5Nw0ppvxpKHNHYSkfD+kh7P2lKgC1ISTDsDkrQZSVKsmOzTswVp0lc4fpJ0mVXSWRFr0pqTLxIvi5aSow95UndQatKMcrESOP7S0nGiKROlu7gSg4LdEp2MABK/tn5SYMzF0rJEYpKJ6vASnyCE0l+QIpJ6jzfSbjamk4orsVKo3H6SaytBklWCdFJqpaMSTKB9UlgFqtIGJa6SLtYcknYD+5Jv0yUTnvV+EkhZg5KpLOSSvfSxUkyTChKDKH+SXWOSElkeWtIE2mFSYVn0ElFfJxOUqLLSY5I40qOBGxKrVfuSZEx5kl7MUhK3x5QSoMi2kjixFNKetBMSY1nmU7Nf+ZJwZEWSpGfnEpS53NJm4uqSUuZIUmnETRJ9Y59SbdfgEoT/51JojCgTqVptEpMUtdJwecHSWz320eRAI5JvxAZSkXdsklam4RJ7JqwSYr2vUn29ZVOf9GVStgkoUrm3tdJLDQ0SgYDDUkJ9hlKV0hOSvvwXEk92txJqnGOSvw8m05XL5RKLL4YSbGvyEk5HkNKTFsiSciWSEhUDRZK1k4QSctUhEmZ6I9JrnedTtlV6Eqx0I9JmSVfSo4qGErwzlBJo8gMSkLQY0p1b2NJ/wsqShtjHEkAup9OqDDsSp2BXEoBMClJFKeKShxOHkoVNKBKpiUeSn0cRUrp4oBJ1coCSl1pqU6twIhKQviRSJq8fkpMNSJLBA3WSu37nUmnqsNIb2g3ST82XUgtXH5JTHClTqFQ+0ktGwRKG/BTSRHy4EiobPNJMxySSePaH0lHkNxIx4o7SmcOVEmha7BOiucAS226JUpCVAVK9JrpSNqnLkr9Zt5JQSsWStCqikkCpU1Km6AHSjdkvk4f2+lLZxgQSk7CakliZTlImEmXSbOP+UmsxIFJwZ0FSbmU/UmJdV5JnHPaTs4ID0tfuE9KKy/tSIQOLErqn75JTlG0SX3UYEk7PvdIKKbGSMBjCErj38xOMh5JSgDLDkoMhSBKikftSB+bS0qXA7NJoOnSSTPulUnOZBhKuZc3SJzAv06DHnNL09BaTFYApEhxABhKhWRySsJlL0q+KWBIDbDfSWmKmkiB1f5I1t/OTmJbzUqz3kxJRvk6SuDqGEon+N9JKosJSpOth0ki9DdK2rHfSDYXHkn72tZO5h1uTE75wUmVgfBJTfPUSFCAx0mG03BKp86MSTK5Z0ip8T1JpqfXSbDV004AaoNMzv2HSs8+j0mQvKZJXvZpStgtnUnTHD1JvCR4Shlwnkj0GlRIXKXQTrGyMkoR/HVK5vEZSpoViErqZSlKGQtxSXcMzUh2iZhKje76Sex6HUgKWMZOOfnqSxAK5Eo/m2dKpXxTSvQe9UezPhpJiL2TSktRo0qXzhVJR6yESYDTvk7UAXRKx9GYSjlPJko1nmFJ0HEDShStGUl4Vg9Ju2fvSHhcP0r2fB9K20vGTqbqX0mirBNK4t+YSHPQ4UmgSoBITD6GSvExjEnom7NJb1aDScR9GUqz6LZO0pioSwDR5EriIPdJ+FPpSppQlEipQA5J6UK7Siwm5krLZPZIOmv5SND6tk4HmrhKvCCWSpxxQEp7eeVKMzuDSU3Pfkq357xKgtGFSILGaEmAYzdIX9uuTuPG8UnX3jdKlaeRSuGdpEoIedtKKmk8S2UAYUoazk1K2c6cSoUKkkkeqqVOGua2S7n5ykoHdaVJ2EHxSJmOO0reF5pJJq0sSplSFkoXzfhJHcKVSQKCq040iIhLxRYNSR7+ykolLhRI0RgiSpncWUpe/X5KtV83SsbsCEkDOkNLzIuxTur3DUst6gtLcou0SjdoJUrEBhpKkVLfSSuPi0paS5dJWp4MSdyJLEk+urFOUsM9S3JgEEr3BG9IfEOaSRFtrUkoqBRJ32+LSaUvbUoY9YZKc6FWSoT0wE4yEWVKcVRRSVRKFkqDKCNKx0OFSV1u/0mLgJ9KxOG0SdmkJkkEzo1Kbcy3Tof68UkIISNKuwGnSISKkkq3s5tKmJuySexpu0hsCklKO5YhSaw6n0rBvL5OC1KKS7VQV0sGmydKc/t4Sp5hqknjEppKGqIGSsrMyEq198FIooY6SovYxU7MQDxM6ijNSlzLhErkiDhJn6LsSBuHJUnM3VFKK6l2SsnYS0lzYmhK7ZzTTuLdZEqZlydKcCwLS6VUqkn6VR9JYCvFSHJynkqjdghJxDmaSTfhrknO+9NOzM2USpIlckkFuHNKU4IvSuVLj0liFDhJeZnDSWtVoEnD2tVJf6tUSkrU105RwbFKkBDhShKkLUqJtHRKxDFcSG8rbUqEcrFK7t8ISmeUHkktd/JJ3S3PTjIxkEurdDtKXcYuSRQn/0mUxOBJTua3SQzEx0sGaC9JZxCZSVY9v0o+ccxOT6mGSq7ZIEp+UG1JPX+FSoSGt0lZS+1J5cwoSzmWb0qx5TJJPJ7sSXTuyU7pZgZK7iudSfHFMUrs6OVJuhI4St1qcEhRVfJJMMeUSFWBjUnIlIBKsMy9TvkcKEvTKg1Kxf7OSXmTFkq3QdlJLFMpSnxIbEqSjTRKpYsCSXRV60nBN7dO/8dhSwKTG0kUWYxKa/PnSFL4OUo9HiZK9wYvSrV1OUn48QVKf5dESZgFs06+8JdJRjUWShpfIkr+VO9JVLg1SgOmPEqZtA9KG7dPSexgT0nRmHdJDfi0TqpUZEq72E1K0i3MSEQUOUqODS5KaHKtSmikPEl+r3pKm/8hSj4o9ElyoqxOq49vSsniHkl/PrJJABvySR2wQkmw1AZItZmfSfgSa0rjFj5Ix4cSSkp6qU5dk21KpFseSYru2EgojG1IyICaSGZWDUoTrOJILqqkSVLK0EhCI9pJHm6iTsj5mkqUukVKxn1GSgLXNEgUdaNJN13YR1W4w0lqpL1JGEO9SCxWlUn3ipxOfsJPSs15Ekq+LelJklv0Sd2rM0pOqhxKzzpkSZ1KwkkDvoNK5tRRSaCvoE6gSRpKhwwHSsfIJUl/Cl1JMyMdSm3EiUmQl3dJF+kGSjLfUEgyQx9J3MamTsSzkku/KyFLZWmDSm/pgElwKNZJwBiLSpOXgEibg2pJOQcYSoxl1kgv0apOHAA1SiybAEqStoRJO065SWvNt0rjK4BJox4PSI+fC0qV/wxJvnUfSKX+qk5+kXFJ4NuySG5t/kmf6uBIv+SHSZKzbkk4qWJIx6aUSsxyq0kQO5lJdsmzTqn0AEqo0tlJUNgXSlhNgUnMFv5I844XSqNZ2kr7b2VIHQacScGuCkjWp6pOTQGQSj6QxUlR2b1JSJBdSVx0fkkubQlK4HzlSX7f00ipLGlIu9k+SfPayk5kqpFKtHxFSjFwX0oVb09KXCnESH7nV0pZoCZK8SMMSiUMnEcbp5NJAhvKToOCn0kN375KH5N3SVmokUraEWdIL+cFS0iEl0lRAz9Kfd2ZSsCyHEoMdrZOWrwvTHoXdkslbmBKSk6hSfn+m0meO4tJnw87SoGQDEqcSuhJ2ecCSi3y3E5Dew5JkF5aSoRTqkp0K0BJhbLuSBEVaUlYf5xJmimiSrJSZ0m9y81JC7bRTknaL0pPHBxK7iGISY8jBUpTGBFJENxYSeW33klIGBlJJ6BDSqN4YkmCa+JOWQlySmZnN0vKAXZJJLboSbgNnEvd9GFKtQj0SC8BkUn2H7NKFSmNSiIZ4E749atJvoP0Sb9Jm0gYcGNJKqHdScPP5kmNL4BKpObDSGuKE0qbSqNI0oznTtnIdkoG5bNJUXaXSlTv90nSdPVH8GbMSXdY5EjhHy1I1YczSWbaKkl11+ROP0CCSa1sD0os1ihKZcKySUAs4knuYIhKnTPBSdNOm0oJjJBJiPIlShyT3E4g2zxKvVuDSYuQgEnV8ohKsRYzSF0FuEmoh6BJX9PAR/sOokmIOY1KbFvjTkefAUv3DyxKqVHDSbyF6knpvCdKi4kkSfGyN0o4UaRJSIk/SWQBikddQNtOlK1FS4mMFkhamhlKmWUCST65b0q9+IRJNWiISXNiW0krN4pItkXeSfdozk5QHNdLMXvPSUql80m+TIlJx9erSsgSl0g3oexJz+11ScwqyUmD/VNIJmfQTpGsCkvaLcpKnEvLSCxqG0kvzIdKs4r9SSabB0qA6yFJSGEsSUyJyElDwsZO32qwShsWdEkJeUNKsKEUSJWDWEqi1dNJ1OULSgg7L0kCox1JjOWdSYVWwE77QINKoRgySz8Hi0gVYJVI0ywNSjvkOEqR0Y1KHwfeSYl9yEgG3whKnp26TuwThUv4ITJKLpeQSl5sxEmsY8dJXTWMSfLKokotQzlKBvoHSv0P30mLPK1OkVGHSr5PcEpV8h9KILmQSYjZLEp3DxZKjszkSXuVKkgzBXFIaMhYSpyXo057hcFLrRwASitbp0rEJAtKkYRgSVaKH0qmN/JI6ufkSAQX+klFXlJIwD+bThh+dklva9dI5CRsSRaKrkn/T9RJtbwHSVNahkk8219JUud8SX/Xn0nhe6VO9JdYSkPaNEqeUK5Jk3MTStX+RkpF10JJLkVpSW4YGEoEMHlJpziVSSTznU401+ZL5OLZSXCoYUozu7lKacmOSf83mknSez5JLLF7SeKXNkrxNDRKnV2uThWJjEqqu7BKPr4bSkOfK0rWJLxKm004SUNECkrTQTRKe7E7SSFdY0rx96xOVpZqSm7wx0raiIJKrok0Snds/km2iyFKq/JESEQhnEoryx9ItAFnSqZKsE5LkC9KtYeFSWvQsklC2DdKG0eoSdzs70hR/YRJF48mSTCuc0r6FJ5JkcC3Tg05MkuPl/ZJSl1lSh8lx0jyYe9JsydzSRe87kfeohVJTXbWSYUnEEjYa7tO28gaS28TB0sQw4VKw8E7SquwkEgF4J9I7XsUSGhPM0j+1A1Jy+YuSHMAv06ntyhLHMPTSX3CYEpNfFJKZFgpSnClP0posHdKfRKOStomjUnNd6lKjpGtTpvBgklTOn1KdPoiScktDUoH8jZKNBZ9SQPDLUo9hipKLLAIStGsGUrg0rlOgdAoSie7jUmxN5JIRrFsSjaK9kl63a5JwHTRSJDCm0luDw9K/eINSZ3CuU63K1RKzlODSXg410kRKzRK3s0mSb4fHEooPJ1JrGkISTPnukkwphFKHP2xTsYvg0pcqAxJy011SY7hpEn+elVJcADMSKoCE0q1QD5IeLydShw7PUpaP6pO5M+gSret40lOncBJX+c+SjhAZ0l6IulIhFxXSiDs8kmBFo1JBEdnSmt1qk571QpL2wC2SQqCcUppPEZK5y3lSGtXX0p2MSZKJZlwSiMZUkoKZjhJTXOqTo+5BkstLapJBIxGSjVwU0qBus9INApuSfhw60kpIUtKNeUjSqiAKEpwTrBOjWvwSi5AsEms+7JK12BaSoR2uElI+PdJ6oHJSYYVcEiwiHhKxq+TSUsXsE4p96BLtHirSlgWPUqIhDJKxk9iSrthgkr1XClJssebSWTgM0quUEdKO9O/Tiaqrknn+4pKXOUhSUnyVEkcsYRJDD6ZSWHV3UdU9Y5K0zYFSmTO0krWp69Opv/bS2qJ2Uh+kIFKPbqiSMVfzkk5tg1KkqDBSfFumknQtaRHdBwBSreHx060q4ZL2OACS9RzbUoQs/dILL5OStPBA0mpZVtJHXwCSYNRJ0p6sllJHkG+TgCUEUryQeRJFxHTSEF4d0k/hIJIU8+USvXCHkmkUpZI9C1WSrn0tUdsULpO4TclSq1kCkqx2LtJp0O0SS/A6EoS6ApJ5+EMSUvHe0mSUf5H74w4SZtev05/TENLpRVQS/rMJEsOYl5LMmASS+NaJ0l7/nlIsXmZSs7mEUq0GM9Hty7JToO+h0kmKYFJoA00SVGIK0mG3g9KXE57SimiGUhr85ZJ3I6gSa3Ce0qV2OJOBV7MSqYYtkoRVqtIvqanSWttKEpg9aFJLOYASFW1dUiD47ZJU/F1STa8x07oW4RLs1i2SU2miUmeJxJJGpmlSQEa3Uhr0hFKTV4tSU0k7Ek0jMdJIT3TToiSpkmBEiZKKkK6SQvTREpx/19Kgv2hSuOdl0mPZG5JZOUoSkL5s0lR4udOHWz7SjjGMkvP32hJ0+SgSlY8QEtgFj9Jq1kXSl7dNEhzUXRKNAY1Se5v1k5ySndKa+ALSqvNCUrOhgZKwVDMScqqXUqyCy9JL02bSEVMtkk487pJrkHSTrX78kpXTz5JRxEmSYmBt0lyFMJJcMxTSQNqHUl8+IVHjuIKSnTHAkl6GNdOAayJSj4eN0oMZadKXA+gScIJBUp3Ro9JtktiSlMt+EkrEq1JdeWvSFdHwk4A2LBJgsktSnO6VErZI4tJJYWLSdHpwUo5CwZJGQNOSS0JDErdzZ9JVdjITpT08UmNl9lJa0F0Spb3CkrKMW5IMe+WScjKFUp6Ae5Jn+6dSSnMlEj/NttO91WbS4slMUpj4BhKXkuYSC1OGkm8MbFJYfNiSpoEM0oB1PVIWKXWScxG1E4atqJLYA8AS1b6CkoA72BKqJAoSTSmqUlF0epIbuMCSof2F0pY4i5J3/XQTliLDEr+UeVJ+GAOSnGDkEqd7OZJQIIiSYj7K0lAwe1JzR4lSogYKknUxeBOWegyS8RbNEnfm8tJDve/SSjEDEnXtAtIQRIuSbrGVEnz/K5IwsyEScfL106tM71J0elBSvzHOUkOpihJgeoCSVy5rEmNvt9JZHEASkpZikny1tpJx7vaTkEtoUnMvBhKtTk/SsrHsElixxpJLg8mSv6Ie0oGqBxJJRGcSWS1FkiAgsJOlDtYSrUSyUmptzdK8uXhSVmyHUnvpgdJzO7+SWXmukn7gntJlKTXSTRGwE5X6YZKg9p6SO4m9EkdOttJlAI6SakbfElzc9BInvBCSGv6YEmv0EtIO2TGTp1RNEowHQVLEDUwSVZZjkmNdkRINMJ8STlrykd22ZhJHpVkSZ3elEcA18BOqhdNS3ow1EoaAIRJBwl5SA9BPUrnS+JJ1AcASnf9i0pQXYZJ1dsCSpDouU5D27JJzZiRSa/i1UmR4u5JNBZzSdq3Xkop3sdJuiHySfsITknySItISmS1TvsEDkoNYRlKmhGKSayNOkrsSSJK+Yf8SDHfuEix7+RJdbkuShrrjElzmaVOFbRVSs/lF0sQny5JbxNNSYi8kElniXhJ30KKSWqKUUnYe4pJyWoESQ7zoU7GnBtLAKQKSgGX6UhQehdJArZgSPrfHUpZrttJn0L0SdH6XEjvKNRJ7xWYTvwU4Et/4KJKWQt0Si+9zEmHO4VIvzNrSVUwpklKpxZIm3ukST7KqUmmmZhO05I5S91rKEsLXQ5KYPuCSQrwM0pECpVITx1OSMteRkqqyr1IbxAQSsgrqU6A4dRJrLJ3Ssvybklc6yJJ1Eq6SEXS50dKnwVJurJqSn1GDUlKSrxJjd2STqy2gErH2jtKDynaSXCYzkpgektJJhzvSdhvG0kthPxIKF4ASqzVLkmdAopOpa2GSKoJLUl4E15JuT8cSUsGaEkS0+RJxh/oSUtHKkoFlv9K9FNGSZBGj078BL5JNLSTSuSe4kfxZRlJUF/PSUPl8EmSG6hJ9km8ST0HqEhCBblIQ2aHTryRiUsjux5KVO9RStwHgUkSXxxJ9ir2SE9JqknjVplJbAveSHroIkpkfIpOIi9MSdir1EjRXFFIVC0SSsMSgEh6YodKHW6sRz6EFElF7CtJSdyOSWA3fU4LuA1IPgOHStcF2EmEXgNJX5fLRzE9s0doKZpJ0ATFR2evA0qA041JDrl0TpGsNkqo51RK1/RkSYQYmEq9F95J/2UUSMzFt0jwKUNKAxDUR3zXs0r0hX9OYSqnSro910qRsWpKzmABSsj7IEr5bTJJ8H8SSMFYIkk7QLxIUVURSUzIZE7nk3hKZlYiSsVIKko8EXpKZwWpSap5JUpxzPRJ2hCJSmf6KUo9IzpKYgpvTmjuQkt4ZT9KQPhFSdg2FErgYrFIK+63SD+JHEorrbtIi9UQScls7kmB1W5OZRcgS2ZcDUp02spIMuWCSU73YEk64BtK6TkBSZ6baElF2oNJm14lSVNgc045LIdK0ALdSbCqVUpSJ2NJGN9TSas+mkn9/BNJRxz1SX6ENEmEqwhK3+N8Tt6YNUp8KgVKrnXOSYzKwEkgy9hJEgcUSXnoUUhdKsBJAyPKSdyi30iaN3VOeI/gSsWF80p3Q09Ljh2WSQRacEp7A2xKNXLySUwpQklHsExIhGTzSZQyiU5VUCBKVu+JSTZSu0g/nRNKoYG7SU+FUkrHgvhJft1ZSJ0XGkrwl0VJ62qCTj5c10pIijZKsjGBSqGH2EnJfmtKhUpcSnMCB0oxmC9JeGIHSnGVf0kVh4tOpZ/JSXo+V0kD25JIHkhtSU5euEpbUa1IEpsLSoKqFUotJ0VKDQH4ST79j06vWB9KKU6tSpwn/EkBcL9J/RjAR5FtgUnbUppKfVTrSSpjGEnBcUNJH/KVTlzLf0tOrJpKmdGvSa8z2klSm59HPIM7SgOPUkl+Fi5KvEOkSW4mAkp+jpdOH8psSrxRg0ka5ChKmZJKSW7BGEpcL2hJ9egRSpr8qEflQRhJchTySexxoE7N73FJmqclSfwF8kgwr41KO+Z9Sc6Q20olFhBIny4lSW9Vu0mqKVdKmh6fTgnd8Eo2vSFLOJ+xSctqgkpl6H1J8bM+SHz4KUn5CLVJL+PISUasnUiANJtO2QKSSsJEckr0gyFKLO/aScqew0lOrPJJDRrlSW+p8klkQFtKETMFScUEmk5UxN5JyKuHStco20g0W8tJUt8ESvpaIklS3O5JEOoPSQY4rkgnAh1JVTCZTue0jkn1dC1JVdplSNm4CkqzYEZK6+q0SYOIC0pTllJJpqIpSRez3Ec5raBOvsOjSt6GE0k/RS9KfhT2SbIUGUgDn5dJsWaOSZ3xsEkICiRKWIb+SVxymU4/J/RJseY4SRbUQklY0i5J40qBSXvbskkM4YJKi48FSVa+DkkY2hNI+vudTlfUPklXH0BIxIcZSpb31EnbxZlITu3ER0gAnEe7tdFJGOcqSsJRaUpu/pROLp+ISddbXknd1c9JgKPKSvS9JkqJJ3xJWpWJSYma50njTiVKEvrjSazxhU6ms6dKIcr6RykeXUiCTBNJpfEISFHP9UfWyjBKXGoKSsMiCUrYZ7pJxVGKTuK4xElzmCxIi2qZSRGOJUkKxRFJKOnqScF0SUlMYmlJEya/SStjWEq2zX1ODztpSvRMFEodzzlKwS8BSnpkHUkJ6w5K+R3vSaYnkUhY1FdJvl0tSoBMhE7ceaZK9jk/Sexu9Ud5Z8lJVSBISJn/pUrPWolHTiuBSGGLBEkXIBJKhZ2ETuqSBEkwA0hIBvpdSi1LE0lPYelJe8EBScHIw0gd8wxK01YeSib0Y0miMGpO0oBDSgnpo0peqZxKMa6eSRKubEhgwsdJXESnSRpmE0kyPmxJnNKJSfQra04j145Kze90SvEjDEkmpkpKLSshSNpqyEjFptFJm0zkSAgpOEkxGLVIfi9vThKNNEpXEYlKnbFOSgGFFkpw7Y9KPzjkSNkHF0nQv29KlcbXSgBVJUp6o4BOadPZSqrWEUu+NYNJ8P/fSWtoB0q6EVZKvXkXSTXhAkrp+BFKk1+JSEBbgE4GCGlJDWwySsBpRkkwM9xIKpqjSBN1iEmL9N5JISV6SmF7Fkhsv8FJsXqCTj5ITUq8IrZIW/aqSlrL00nqNjNJTLw0SpMTkUht3OZJWj+XSSX5hUnRApJOxuKdSgdKuUhHwYpJjhjtSHD5EEiyQp9JpM9rSBp+hEqrqq1KrRiUSYBzmE4zfR9KeoEVSu4KjUjU+Q9K1JnySZIAhUm9DFpJZIZXSUD4TUnBPgBKDmu0TmyVwUog1i1KA7rsSSo8LUi8koFIIcdTSa0UlUm8I4ZKf9ejSZy4iUku779OX/MrS0hvgEq5/oRKU+wlSYkThEnzi55IHdwuSv1QWUo6SXNJdrsSSuwz0E4cwXpKQpYZSqtX8EgENMpJx4VjSSwmG0gUah9Kb6g+SY8sWkn/7t9JGtTKThaVoUkvWJdIUWOASZFG/Ul1MPBJ4VetSWQzCUqzZLRJHPeXR1d9Okn7sMpOfyiwSQ0kaklMxDRJABi8SfoVM0o+9x9KDZ0RSRsihUlXMJBIrnj/SDdKx04ze4pJduTqSTslPEmBNuZJh9RaSBRbeUngiXpJhTOaSaCGoEkB8ShJvNPLTvPONUp0VwRKBfQjShSoYEkxcy5J46kiSkIJhkl8orFIf1EGSUq++klAHshOWAv9SawT+kl4nCpKvB6ZSWndHEiZ4HBJdH8nSl6UPEnmw6tIChgTSZuYw061eFdK/5FhSRXBJ0oz2FNJjRXMSVCnDEquUrJJCDljSS54BEqWP6VJIQzETr/Bo0mVgkpKKa5RSvPqSUmhLVpJ3WyLSeSv9kn7lD5Jvdw+SdTa8ElJ7MdOXeusSuHxvUlvg45Jy/YRSpvGQ0mg1SBKN8IoSEI85EjpTzxKKMTxSZtIrE4yYVNJXmHfSM/ps0kT9hlJukfXSJ+zAknIONBKo5OxSaK730lJADZISGm0TslTGEsOYB5Lc4gHSk09IEmB1VBJsDnhSdImpkqtLLVJPcJ0SRqx8Uk/TapOuEuSSiIdOUlg3t1JEIGCSdmU3kmajxhK690eSRlvbkkDS7pJRD95SRZspE6Bwj5KKiNrSmaAakhYrQhK3CsDSg0tDUrvOyBKZyG7SZeLFEqKYeRIPeeqTg9eN0pa4GlJ29kBSger10nBYltKXvg0SU/xg0lVHJ9I3WOZSYIS90nifaVOryOTSY1UJUqT1OlJT3uZSW1b2UgiAB1JPhw5Sb60s0miwxBKiyk7ST9ZoE5hu1NKFsOtSWnBuUmT3pNJZLkdSqpSsEgnCrVJs/LmR5FWuUncufdJSomuToTA5Unk/aVJ4J0eSDP/CUoJDLhJAvTOR/PAAUmLhN5HR3eASUUmfUn3MpJOjjtbSYQRT0oZbe9KX0ehSfbKV0mFPCdKuvuOSbmnGEkEkwdJfQarSnrdj07Sh5dKq/0yStpVP0qmRypKXM8tSrfgoEo6CE5JskYoSGY65knQY19Jj/eMTsof1kpky21Kr4l6Sd7vu0ifNt5IjZlwSP3CQkntmh1ItOqsSRxZDEp3Z5hOjaYxSiLQx0k2bzFKcn04Snvao0n4S3tKIfrDSXyLSkgBHJpIPKgwSXG/ik7AwG9KOGQCShzCKUotzQZKwZw3SyIYNkq/p0FJi1kUSZMBdkmuIOdJ/gWFTqge90mg14RJ27mXSXVRpkkQHepI+OXGSdwV/EgKYxFKwghbSTc4bUnwQoxOYUOKSXrVdEo92mdJfyV1ScbKakpriXBJN4IUSvJ0xEnkLGFJDk9ASIy3kU6SOM5JSPEfSSX+E0pYmNNJRDbfSLbHMklmqdBJAxowSV0Mgkm+QBVKzD2EThyIgUoqlD5J6HrPSAPGIkkH2hRKFmz/SUz14kkmhP9JqbiVSVzrDErifZZO4i1sSskqKEqHKiFKx3I8Sa+KA0qlsaxKZETbSTuXZErJugJIcDnUSV4ghk6qzORKLi6ASs2UXUmhaQBJfmKySeGu+kiISq1KGraZSI4110nyaidKFBSaTo/JEUgcgolJaRsISvXOgUrfkEFJeE4gSF5SB0pSrJtHxjdUScKpvEk8yJFOYTHwSUOHIEqbVxFJ/8peSTBR2Ud0SahJUY3GSJ0skUiDpLtKJYFLSe5okk7RwX1LDusQSs48PUlfkDNJx++QSVFWfEnBIeZHzlpVSMfPTkg6pThIqh+YTuYpwEvCoRxIao3GSU4Cl0mtabRIayPhSWYwCEvS961JD1MjSaKerkkIH5NOazBsSsD2hEr9xlBKpmNXSsn1JUqbtv9I/tDySIVgwknHnhNJGL1TSNwll078X5pKkSsISv09qUhIlzVKnhYDShTq/kgKgeZJJgJrSV3IuElyTf1JFACRTnnPGUpePqRJ2hj0ScY7EEk6ghdJt14vSorqXUlgmrFICS71ScqYeklkHJJOQEu4SmKzyUieWSFKSmAYSbPeCUlTAJhJtpg3SfiElkmFgpxJujxMSTr6hE4IF1ZLzRQgSkZgEkqjHd1I1QuXSfTnd0pQipNJAdsASgSGRUlttq9Jv46ITstwDkojHrNKZcvQSX6ihUrNeXdJUOnxSYzGKUlggIlJRHdESWKksUhx/olOnQWoSnIF/UkJ9j9KDAB+SbrW1kgacs9J/3tsSf71A0kCV2xIUj2/R9HKek5fyxZKEKEsStoHg0m29oNJENShSeUpG0k+KxhKZSr/R9Sv7ElnNBxILKKGTr3xFEoBlpVJOMcWSsOcCEpuIgBJ2VbBSkm0hUnr/oRJi6LRSJQWFkrzUYBO5JJDSh/3LEqsQYVJjSdUSghrh0l0kN5JSeAJSYI1AEoquA5JZJAFShcYik7Tq6BKj+O+SWe9PEosZgVKBpUzSlwuU0oiWgJIomRNSR2BCEoWVAtKEgeHTik4g0pbsVtKWaivSvqlAEpCzIBJDSlCSfMMmUksAaZIxcR+SZjcOEqO9JVOflYLSxpY2kkGqZFJ5k9ASjCSDUprJkpJLU8WSJR+BkowIzlJRn3ZSXNVkk6CVqFJKiKCSuZpdEkcQj9J1F06ShWaJUmwLctI4vO5SbykgEmm371IxvWQTvaj0UpXGe1J2MhsSstRQ0r3D8xJfafASTaaXEmgIRFK01hLSn9tj0iHxI5O4IZ1SYEp7Un1OCJKcvY+SRNvc0jdkQpJBUtDSnhnLEkxTLxJQVlhStjLmE7lTbFKrGRlSLyVuEjdeCpIG9RXSaJqpkg7g4pKHlRbSS8tBUrlMr5JHYKjTje7z0rpGJVKK28kSioDAUpwNqFK4HvBSWZ6LEmdnQtKzpiBSWYS3Elr05dOb/KXSSL4ckiKOIVJAt8wSozNIUi39DhJjMRJSYQMR0iYjgZJexXASbNSnU4vjppKwwoFS79Dw0qCTDpKi0C8SSAesUjvthJKEuXrSb2NMErGwLJJ0z2qToqHwkslhAFKtxNpSjCOFUpdQwRJ1+JnSawX3Eh6D5ZJYQL/SZNnEEr58ZxOeCHdShQAdEr5PKxKo+PsSQ39xUnc+1tI8zW6SSCETUjhPNtJzkYYSIMRpU44NuBJvw97SP6k50lxSSpJhF4KSmogwEkuQNNJRF4fSmr43EmTYENKDuyQTosowUkisWpKT7ZiSLl6BEsyH6NJIUk9SancMEnfhKJI3StuST8tKkp+bJZO+/PWS8sG20mz7MlHlpbNSWOIrUkmnY1KMrsqSBd+nEliU8tJWcwnSvYAkk6CHS9KITqmSJ5kgUqEkEFJfOF4STxb/UkbAypKi4OiSInpiUmjSgJJsQOSTpBZBUp51hFJJxy1SVUZ7EmSgLhJI1dpSocuF0mWqiBK6Sd5Sg7KnUkF55JOqqgJSzset0mAQLZKE5AwShwrZUl80QtK+DFJSHjs20kCSJxIlxP+SOCChU7Pu6xKcddQSm9rCkqDrEdJLO/HSXkyikk0OiFJ67sKSqpH3Enf9SRKIjeGTh46IEqHJYhISufoSVzJCUqUDTFLjKj9SBD52kkBHylKiI4qSSy4LEn+BI9OuzMCS9Yr8knLQBBKN8wVSnZ41Ukab9tJ6v01SrMJLEnRwehIWGACSTRLik7lhwNKgTpYSZ6OK0pFP2RJUYH1SLIigElooMBJlAjKScMIB0qFh4hJQ96ATrwGbkmTyDBJAtZoSeavLEmRVw5KJiSDSTVIokjbV7VIAsUiSHJ3hUn79o9OU0bESRE6EkleCidJ7DilSAnyAUl6EnZKFFTUSeWpEkqmZ+BHebZ0Sin4cU5D9UJKiwVFSvZc7Em3q4FJL00FSef+mknXt5lJ/P+2SX9/U0k4t1JJWTyHTnwGp0t5mxJKRbM2SsZrokmUO6VJJtc6SWhnYUlYTRRKfPytSWffl0iRu4tOYblCSjI2PEqM9ixKH1MGSQDIekkLLGtJQrw/STnjIUoCETRJtrOqSeEmhE6Uc+1JNDzrSeWJhkkclHhJ14z5R7ZVDkhp3L1JNQMsSdQQpEmBZAJJpvOKTqk7TErAfK5JjzSXSYaDA0iYXQ9KuMQ+SClLqknrjx5KE/QCSo7FlUeB+49Oida8SWRWikr7KctJutSEStDfr0lKzNJJBiy6R5oKfUlNYeBHR1KnSQz6hE7BHUFK12m0Sd2QoEjOMvFHmT6XSjSvlknnGxlKm00lSbrfGElsmBVKFdOHTnwd/kosygxLwKdIScoGH0kMtGdJFBraSM8zyEm8yGdJDCHDSTtOFUuWVYhOopb+SeOLNUpOADZJ1noQSnlb2UkdafNJp9/ISdqr9UixF9BJlZUbSSCfjU63bf1J58ghSsTfCEpMkABJ4Zm2SY71MEk+zQRKoCJCSVHdnkkvl49ItOGeThFJrkoZ/iNKapgGSXrY+0mnLy9JjMt8SWJcoEcPSYtJPnvPSQJVBUkcZJ9OvOiqSrw59Uk/AMNJMKRHSffIIUoVLgFJtIAtSfWXs0gN7ypJ6KvKSJqhpE6nilhK4NEjSTexSEll7x5JYSJ6ScU8hEjTle5I3NdySCORJkmPBdNIZDCbTvxJzknToiFKmFFUSQjyYEmWHzhJG7s/SRncGUgCnEpJbtWESa/JKUrvsLBO3XgzSvHGYEpjDG5KnCAmSi4r10gAOGFJLCMASJ+1c0lUOF9KUUoPST/ymk6yZNFKtqHoSVntrUnH1CdIa6MySVhTzEm2yexI2i+ySD+3u0ni08RHzdygTgxnrUnYfwlKQYpBSq1bTEjIYdxJ61seSWjj6ElMn8FHCCcISrWpGkpmx5lOShPFS9E+p0kQSgVKNNqLSV35gklZfDRJS+E0SIjkp0kg441JM6aWSdXknk5XdMpJ+raBSt5OwEjpXs9JjG95SVCTm0lIhDdJUSQgSLofz0g+PeBJ7VWbTsqkBkuP+SdKNQsNSnggOklrfmNJFo3XScftjkgHIzFJGeSRSZGLrkhKJKNOq62gSunoi0lrpoVJdzjRSfvBEEnu+V5KqtBtSbYQ0kexqQtJeZRKSdiMlU6FjyFK4tdSSScMRkqrcUBKJGTqSSdYGEm0mwlJfCrLSayj40lmuLtICN+ZTlhyC0q0KhRJ7JAOSZAjnkk4n71JEtmNSV+uC0gBiDZJ5NAQSlraIkkJDqFOKijySU7+AEnSwgZJoeIkSWeFy0m/ztZJdmxiSSprjEnXikZJgPD2R7IHo07tAXdK59fKSqykhEkWtwhJDEanSKP1AEmGzP9JeCYxSNxJ7En0c2ZI9qiLTvylKEvFQeRJi4FdSaiLREkwpiRK4a7dSLw6CUjJ34lJyICESZMHMEqpYJROEFAZSTc3pEkLZKpJyPX1ScNdHkrSm/1JW4BYSecIJ0puOCdJXCNvSlUZik4Z8AlLV6jlSurnT0oRV5hJwJr8SeP6/0gC3KpJIl5KSTD3E0kb65RJtGOPTqPA8Em+xUpIYQ3iR6dITkn9p9RJU85PRx4QokjWyBtKqJbHSb+tOkmZk4ZOYIkwSn1eH0nCaqdJXMu1SYisNUq9UB1KBkgTSZkz0EhCKlRIm68/SVGuiU6b3zxK3q8gSqnniklofqdJPsGxSOnOWUmbUiRJukBpSJcJA0k59S1JGM2UTmf3fkomt/hJoGAqSh6pO0g6cjJIx4+5R8loiUlOk69JZN6HSMEMpEljkppOMHaNSlG5S0mLzwRJl0eMSXxdaEl6S8dJqW4kSvfYakpW5lRHFUetR3Lapk4QWotKal2zSR3d10hCMSxJWhFOSdGhnUmKXfdI1pWiSZs7v0gfo5VJeaeUTiw2j0pX7bxJCbMUSC0DL0rkCbNJhd2lSTmWLUkvMRBIrGlISRVgCErw0JVObyY2S0a6u0mTKNxJDJkGStIt00mJuJBJBZyhSV/DtkfywYhJAp/ESYQnhU4XhGZKcZJjSUc5vkg2eaBJ/bq/SOiKykkNK61J289aSTs4AkocZMpI8JeJTtVziUk+CNxIROgQScBBlklqD9tISyccSnpB8Uirm9NI8qdiSMiSTkja2ntOObkOS8Yv5ElIDZZJhFVsSpZLDUqMNqlH7diASLbEIUmw0ZlI/efzSQbYhU6By05KKUA9SAcDlkk9YfpKABiESbKvoUmZ8cVHi9C2SRZoikhg2JZJS32ETrthUkr8++JJ5uSXR40QL0nekpRJK6OCSd/pi0lIH/FJ16MZSVjIEkj0XndOCf6SSZCrvElcPvZHJDSQSTABFUk0aY9J9fHrSNhg1Enw3BlJyuadSMb4gU6FchZMXsfiSi3ZjEkZZR9KVLw4SV7PRUk2WBRJOUTPSafhlklUvJxJdFWITo9yKkqerAdKwc2iSTeKeEnSFhpJ2/NSSW1T4Un2MLRJFr3gSW6M5kkTnoNO5PJWSiHSAEpmxTJJ7s1VSazncEmrM7dJWR1fSd2P10laskZJWznfSQx3gk7VuJVIUTzBSVZ240mjMldKsiQDSXbgbEm1ZRJJ8aEZSJo9zElSCrNJwy2FTs095EpSbD9Jxy+SSTHuw0mDuqZJCRASSWCq7knT58pJ44LaSb6K2kcqGIxO8aQASxiMxkmoQatKSGA8SgI/nUd4eQtIiQO5SePWZEilW9FH6PXCSYPkgE7CeDVJ3a3eSJc0EEnYBolJWoEWSm9cr0mtqOlIszMpSLnNPUk15OVJv/J7TmzOGEsXG6BJ4lDTSWahDkoQbbxJPPAFStq4n0kkNAxKu8k2SVJAt0lknnJORaOMSuycn0ngod5JFBdLSQR8AkrrVJVJQLSRSv0WUElU3ndJMl76Sca5e07QLlxJMXj+SdGQQUoYkxdJGBqbSHE5Skro8bhJ480HStXS4kgk18dH09aATve6jkpdCJRJCLeySq41W0q9dfBJ7Cq0SdVAN0mm+vFJo87ISbCla0lmWoBOZNJpSuXqikmN5P9J/bV/STP18kgHgElK6vUCSps0LUn8lYxJiySUSdelhk6qJvBJUZZQSGW7U0omVTtKdOYgSYKgVEkt1SNJwWoRSUwYt0dX5LJIsBCJTn4vR0hLwphJkBMPSbglBUrmf5lJ9K0HSlY/f0k45DZJbvq/SauXBElWE4ZOFynrSb+KcUmLokRJZSJ/SH+SRUqvJNRJo3GWSWl8LUmqPChJcLYQSHuOiU6L9aZJgGlgSU4Zn0kZOF1KOFSYSgU92UmsgfNJYp7fSWkcmUhV3N5JCpilTqIuR0viTTpKZWIzSqpvBEq/869JpOHMSMKB30ivvxRIVX9sSfuzsUnvp4hOb0hdSsgqmEhca+hJdrIUSjF2SUk3/rtIOUMTSktWlkl+7zdJ6YLISRdagU7CfLdK99RKSU+us0kxMrhJDeU7SU+xSEmPwIFJcUYSSLnXRkovdppJ09eCTlLrkEsHgIlJ+CUhSs+cOUkn6+NJZaOnSeDLtklpKABIYJqYSZP3pEk7eYVOBHToSRKUpEptdRhKOZdmSv98IEoncYNKiD55SXeRlEkvliBKueWESRXAeU6u5EFJ1bsOSIl8qUnqSqFJE85LSE8KokksExVKjYQJSu9vk0mllUpKvAx3TraX9EkScJ5IYRtdScs1A0qxEA5KBFb7SUUNFEpBp3RJhJLQSRngeUnQpoVO9XHzSfvU1km6epdI3l9lSc2iTUnwL3RJzWqiSb+2pElBea5JDFRRSQkHj051pT5KeHX+SN8TXUir/YZJm88ESTWrsEmxwq1KZ2x/SS1XnEkimhdJMKiSTkmOK0p/a8FKCf6xSaM0/Ui5VRRK6jd0SBARuUn3NmBJ6cmOSLYKFkiaTpxOEybzSp8wIkrY/k1JmOSySf/NyUn8SyZKmNUFSp6CJkjfnAJKwMdKSCsDj06PdvVKWPfWSVmez0kXl+BJyoQRSdE6NknbgqtIfmujSXm0DEkoKkFJtKuUTrLf+UlV/WdJmPf2SS7oB0ltPqtIfKW1SNpgwkgrHZlJV6iSSfw210l7nJVO0Y+LSdMjBEmArL1J6aPMSVx6BUmLu6VJcGSvSY1Q2EnG8w1JlbSPSW2Zkk6CoBVLhVjjSTguIUnFNbtJ6mWRSfyJ4EleHXpJyxZRSTpcDUnMMq9IAgiTTl2jD0t6H0RKZWO0SqMizkiTJk5JbeB5SeW5BUmNT19IgO60SIi/FUpE94pOSxhjSsCMKklV1LpJvimRSZhiBUgW5rNKCu8zSXo9VEpDQq5HhXCJSTtOkE6aHCBJk/AnSVd3eklwQalJ0x8qScCoQUpFR+BJtnRGSoHhXEl2ilVJbbedTrJ3Z0qpY95Jc3PUSWXSe0qXgjpIVCEQSWO9vUn535VJKTUMSjOfx0k7eZBO8XY3TBIw50naD0ZKe78HSajAw0k2d+pJb58RSdFe6EeN/9ZJtrvpSaLzjk78kDxKV6CwSU68KEnQG2RJQ/dmS+G3WEoMAeFJeW/xSGX0qEgCnjtJm8eRTjdvzkpiUV5KsyW+SRoLhklnYRFJMcfaSSgJ10qKGhJKfutcSbUKO0ijuI1OtyeNSnRFXUpWS85JVZZpSVN+lElZSgJI18hjSbRAE0pl+8dIgXvnSbLugE6dAKBK/cqjSR7uD0nRGxBJEImLSQUmRkr25D9JLBoUSo52HknXLxVJio2CTgp1kEtYYbZJX2nsSDNh/EmavdRJfjC9R/iewEk7U7hJBMdJSCytFUrBNYROjZXsSYgVMEqn2JJJJnEpSS2XT0jWibtJYykHStdaukmBE8hHm/1KR8CQgE47UmlKtEAESorDH0miIGtJRbsOSkeyi0kYvkhJPZNZR+V/p0eOVyxJUidzTiqQ8UlYLsxJOX2RR6vXiUni1JxJ7ewlSIioFkm+3ndJ6QRcSeLO7UgML3FOFv7ySYXZlEkFK9RJVcoBSj5G7UiaeftIIfk3SO5ewEnvmqJJb0PzSa1VaE6xzQtKrmXGSb63u0mdfpVJAFwnScHy0km5rxRIY8cxSMZJdkkgCjNJDsVVTnDxiUqsk31KGio1ST95FEinJ/xIkEvpSJve7kloJKJJHvuNSa4ixUiI51VOf2gOSTRcxUmYAJ5Hf9uBR5I3+EhlUYlJrIj6SGr5pkhXKshJL8WDScCkWE56M0VKoKYjSc5utklxqglJrioQSSujEkqrp7xI/vGgSOvQZ0m8U5xI9mtJTvCaXUqRzPNJsES0STlJqkhZheRJSLgiSHX4rUnw5nhIlrx9R8fPiUm6KVhOmDcpSusxh0nhdjNJgDloSZWJWUkXAMVJkCqcSbEDW0niettIDQwRSvi/VU4YJPVJkz22SYOiiUlPp6dIz6jqSfg7oknwhbxJYSwVSZjnH0hwdRhJ+lhgTjkVBUpe59NIn6y1Sf5fVknCUFZJJu7QSPUwmUeOEhVKHPmCSeAQ5ki5yWdOVAfVSkQNa0q0dIpJl3plSki01UiRnwtKzadGSS72IEnem6VJQhC7SXtCdE5R9wNLrbOsSFwZ+kivfAdKRf1ZSbzJJknFwmBJbmBVSa6roUlZ/CpJpu9gTnmO6Un6t7lJdHSeSaggi0lix8hIJ5rsSIuJUElie3pJSmSGSW1vhEfUTnhOdCaISuXG30h4hidJPq4lSWio4EjE3ZlIrOXCSPlc/Uie9IhJoFbdSPO/e04IuIRKo2HWSZ4S+EnspA5JgL6LSbjdMUl9pBhJ0V3aSbQ4JEmmhitJS+N4TmSNtUnVoPpJTVKoSbn5mUiBkMVJFCsnSO1r60mOfstJ+5hnScQW3kgVEXNOUxVkSLz+Z0kFCAlKIA95SdKqwUhN8/hHkezfSBO+gkmq69JIpltYR238bk5ddRFKFYxBSYSzwUlhE5hI9+eISTHiEUmMShRJVSShSCk+6EiGoyxJDc57Thpvq0nUwENJl+OLSbFiTkpuM/pHQAg8SXow/UgRVcBIUTLvSBFph0eRMHZOQ4AISmd06Em7jw5K/7HbSaQpokgWuvtJgv3sSHGmM0iWZyRJWKMZStgJkU5pM0xJkokgSrwcykksYBNJNI/DSqtJKUnmUOZItvroSNZVDUgNBQ9J3hdwTsYVrUrK2YFJUH5NSbVUPEkphuRJt/LpSLXoyEdpmwRKPkAUSmkDCEiOHYFOrjSsSG3l8EjHDM5H0mSOSRgykElhG59Jy30lSRVLJEmHm/dIkv3kST2aY055BJZJe/0xSj1ypkkq1wVJh1jESXb22UnVBphJ+DWHSYlTo0iqdnxJusppTsLxBUqeeNdJ/G8fSRgDj0g2IlBJWQhOSW6piUfHvP1Jf2OrSJqHfUnwq2JOuJESSv4CMEqk5txJW6rsSFG76Ul63xJJioCfSUeyjkm9YSJJME+8R7bcVU59uRtKeqvGSX0vZkkpWbBJJjTuSSqSeUk2DsRJqPCaSAtFk0nVvihJLlBZTgtmK0tS6y5JSDznSXucQUh0kqdJxFjmSLDU/0gRXY1IF6NTSWU2oUlYa0hOgH5jSW2DJEmceqxJ48J8SeemCEobf+RJX1scSUTWeUmO5RFJOVUjStVNRk7eiQ5KT2a7STTMl0qR6pNJ6rjfSbzAukmBDLBJM2pgSWdWEUl8EJZJiD1MTueFMUpzQd1IOu3fSUnAHkmjjRRJKXqVR1UXckp+CUpK+HUASgMclEkTNGBONhGOSESq2Enbur1ImP/ESTSOH0mOFzFJWEGfSBMtwEmPX4FJ1BN6SaQAWE43BKdJvwb2SDbc4Ej2pCtI5SksSRtkmUgIa1xJyh4qSAY4MUkvX55HFDlkTm2xGkxAZGRKg6yESYnGYUogUEpJ3NLmSRF0ZEk41NdJF8YPSsEiFUmnnnhOqSyTSQHxkkqg20NJ2mzgSfvcgUmI1JRJSDUuSadyD0gw7LBIDayNSC+FgU555hVMFwQgSUMwG0jrMUpKsJLZSUo5jklptcNIwvQVSSZczUlJi51Js72RTlKlyEmblAxKtg5ESUWu7kndYUJJHvcsSl4IaUoQVgVJex17SKGd3kip35NOB5A3StZH30h6+IdJ/KGJSVG34Ug+y3hJ8pVGSY3O9EkDMuFJ2+UCSuPWpU53awFJDVfCSbZQuklGSbtIxkKjSKbNuUhTyUVJfZkGSRExSUnHQYNJoeWjTvv/aUr76yNIr0MLSr/tskkBmENJ+tv0SZVTS0iR+w5IL3xlSJfbWEkk06lONkXDSJRoYkksaeFI92vcSC7SBUm9EVZHYf8lSVjCbkg7dVFJmsqsSbChoE5B5mZJmCH9SYgXcUnKkXZIARFdSf7Tz0g1W6hI1p5GSHx3t0hJtJ5FIOCmTg0ThUkQ5vhHFG04SvYZWUnIBjRGZjgQSQGFBUqrwslJW3lkSEV+tkg+hZpOLPGISpZTQUoATtZJf4QHSPMt8EgltR9JR4FoSf0zo0dyYhhJFmLESOKYqE7pThxJb4PKSTvNAEnLyBVJ6KJ6R6vrP0lE03JJjWBiSUeugEmH2bFICVuTToW7L0tpYdpJ8eTgSRr1hkdPdzNJKhfTSOkAU0n+Z/VIEUG9SPhg0UeqVodO4xEfSrIwBUnOQTFJ/2vrR3EBDUl3v1JJeMIrSVmY7EjqVAFJF1LgSBiCh06fIqBJ3I5dSdGg0UfkF9lIRdOkSGRRhUfRA9tIpCtjSdh+dEkJU5JHs8JgThH9tEm2HCRKXJkESb7pjUmKqt1Ic18mSGRHpEgb7aRH1ekkSd2Q70hASVdOJQBkS8VaMUlHCLNJhmj/SEm8UkmNTBRJS7UZSZCZMker8bpIlHWUSOV+Vk6EEKVJInFcSbCwxkmbn9lI4dvwSZ8i/ElnH9ZIkxiHSMwruEgjyNZJjt5LTtWplUktfLVJ4z6HSQkddUmcs4NIEvgPSefXBUr4w75Iisk+SbouLElfUi5O9GUgSsmdIkmdp51JGtOVSf89wUmmjjNJc5WcSc2OjkeAlQ5JGyx+R/rtLE6LMwpK0MDtR2FeFUkd9tJIiPmmSb5aD0qDiUhJl6o7SU4DNEleb55IpFkoThHrHEoNQp9KqWPXSSaAxknLsSlJ+PK3RxAklEkfNlpJquyISIvS8EmxJiVOncWGSjTphUqMSZNHvK45SujXUkkxG6FJl8FsSOMuLkkfw6tJtKJKSeTHHE77UxJK3S0pSvFxHkmQVAdKJD0FSeRBN0lnL5hJNKuiSXb5CkiYR/lIOkMrTnTl2UquVvtIelHFSQZ+H0lLmxZKuR9aSRw2JEkVsvJI9IdOSdrb3kiqHzBOEhUUSaPIkkdnrJ5J5MCASLxkr0dSKLdJziedSbEHLkkB4YFJMvm1SXqQOU7WyDFI0xCWRz9jmkiRayxJNK7ISOinqEextH9IOeVsSd6CwUg9nI5Hz+c3TqcvrUlA54hJJ+uWSUv5O0mdCRlKLpqfSX/IU0mRTpdJ49tVSd+xWEcx/DxOsEv7SXnT50i1CLVJpI0BSYayQ0lZKuZJKh6WSe0di0h9JvZJ91N3STwaOk4edTxKZUMKSmlK30hXfPBH0Xv6SEoplkkGrkVIgj7aSoupYEjHu4xI4dxNTna0BkuLshdJAXesSS00jUm3E5hI/Z4tSQFT2knJ4BtJFSY0Shiul0ngnjtODkPuShdYG0pWqSVJWgjCSOqyIEnqH05K3vxzSWf5+0jcw9lIxmOySORTP07lNAJKjiWoRw+xwklQmnRKIDWiSLWJcknX5b1H9x+wR0XPX0lTo35Hq9g6Tg76oEqKvSpKQX0PSj8fxUo6GJdIPGMQSakzGUmlhn1H9umbSVIhP0p6T0pOz5ObSsvHokmDTa5JCye9SRs/u0gFUAZJEfxsSewyJUm5dv9IZ+tDSZ2oPk67aDVJ852uSOwSrkn6+VZJDv0USWNgrUhihhFJMVX8SDFR2klwl4xJ1GBbThyBWUsmaRVJ6eDwSVp8I0qoxcZIPXJPSGbwsEkmf/dInh6LSX7xK0pzH0ZOuKWBSv6O10mGQatHn6RESUTag0nKe/pIe7uQSR8px0n8uTFJbKixSep2SE4qAD1KeCJASe2x20m7F3ZJXj1jSGZ6VEnUZIBJgiTOSAcRs0kJ0DBJFNk/TsemKUocM91Jr5nUSbZCw0nmoqlIEsUzSUzcdEilMnxJI5eqSSzIyUmNdGFOgiPlSXiw90n80SRJW1TSSKaup0lJWQlISkvCScPvt0rW3d9IgmpUSaa+T07p0+ZIZzoBSUm7aUnhxmdKZ/0fSURKhkl9sdRHJThfR1aKYUeTealHMHNfTpncKUowAspJCHMJSU39IkmFdPtH6uVUSFCXBkqVY4tJTxhnSXaEYUhSDGdOyfZSSbHGjkk46gJIGjGNR3QAxEnOqHlJzmBTSWj6jkkAYYJJ8cNdR7+cWE5rQstKHvXPST8yjUkG56JITgE8SWM60klWgLtJFMnUSdzl0UnAV8NHaWNETqMCikpZ3fFJ9NnFSF78XEgzV6BHjZfLSbCSC0qJyatJqsifSMbLv0eWlEFOExvQSWySeEn3LN1IDQUMSjGAC0nsKBhJQaDdSG0eI0nvo1tJhS4sRhtOP04dy3JLRUXBSGIDOkm1mRVJ32PWSLhR1kdeeThIiLNSSdbsOUdR+wFJkC4/Tn4KzUr9bg9KgfjFSVFex0lNTCZIUrSaSJX1xkhjZ6VIqKmeSe7oIEk8szdOxLbeSQzLSEoAxHdJ98OKSdbqwEiyhvxI2j6VSE23bEl3LJ5INeW5R/ynQE6kYINKFO1FSr1JbEkT0+9IWeUHSHapGEnP9XBJ5omTSOHhhknGVCRJOgJCTi/zE0uisxpKFDSCSdsSpUkImgZJJIWmSYhSgEnwui9IlFo0SR0cP0my1DxOSp4ISr1d8kk+YI1J1hzcSDG9E0i4JudIfANZSGcJ2EiHO4ZJEKGFSJ+2KE790jNJ12IMSafuP0ojw8lJb04ESg4pF0l9itNIwydmSW/a0Ugki4dJwhcyTvrAJkrc+vlJsl2USb4DEUpYpwtKWd4oSdtbkUlNb+1JXtz9SEbBhkjFby1OwN/1SUqVmkmmIvxITVI1SRa/kkm00x9Jckz+R+WB10m++pJILPhqSLDwNE4xpxhKTIbRScWHwUhZ0ftIV8ypSCJTGklQ3DBJMylwSSLjjEnFVE1J4W0zTn60lEdFyStJndyOSQmWSknI0g5J83+LSdEM+Ujf0UdJZKHSSIgkpkgYujtO8l36SYxlLkmn9QBKtKI0SYPwK0mH0RdJ+JBxSfbPzUmalpJJ1/9ESSgiU05Qo/dIQCOuRzf+F0lXdItJBKAxSal3gEkB6FdIutDcSde4EklllYdJDSNMTrseDkrQKCxKR/hzSfCxj0lxTAVK5p44SfIrlEmGXeFIG07nSI1zskcNTDROz6sjSSO4aEmpJvpIq5GdR1x26UmAbeJIq+JZR/ndFkhr9D9IA2VjSXyhO070TKlJlJaQSdfrzUmY0qVJzGTjR6VgO0mEPFVJKD6AR1HD5kg4r0FIHqEvToSGs0lroJNJEn1CSfAZDUmQ2w9Jg568SRI00klmaYRI+O2HSRqJqkeV4CVO+kTBSb18X0lkYMNIo55cSTDJHkkRxH1J3Co4SU8h6Eg9rX1HsJh3SHNxJ04F4llIEbbTSbzAI0mKwpxHrR/ZSLsrc0md9AhKqDqhSbTAA0lQWZ9JENgpTiwTCkqJJkBKaRcBSnEFikq+Q0JJkjaQSNF6wUgK7ydJIdgZSVrGw0msDiVOw/osSlUq4EgrlzhK08NqSeEuAUm9b8NItSiXSbyQ3kkAl49J0jSRSNtULk6u+LhKD16OSQeFjUnjtYdJTmk8SXpweUiUuwpHHHf/Saj2WEkgKdtJtGkqTlthI0kQFqlKf2HHSDFJI0pGr59JQqOqSdbdvUeplg1J0JQTR/l+yEfq5T5OuOIXS3qpKEjMVxhKhHpgSZdeJEm5MFRJ1+AcSf5qjklm9vFIvQLeR/vqP06WgTFJhfJRSVGqWUnKcKZJEh+aR/v22klPuuJIPanASVCa70jz0ixJG2NHTmk4+klp1U9JtrrUR6CZb0oKKvpJryBfSN0NnUgkSChJxWXpSLQGZ0kVSlROgsZmSeJxFkmuWOhI9Ey/SMi+tkkaCB9JBJr7SI6f/Ef5Qn9JIO+bSJwYTE43Kg5IGEiYSXgFI0kk6IxJ0AmkR8EhYkn8DpxIk8q6Se+bxkgsSqVI2itJTg9nuErc0URJ9NYJSomZF0l4JrdJr8DFSYoJ30gbCL5JlXa5SRLH0khFTUlOcupFSuJxNkoX2ylIBwKeSDWkA0r3o+5J/jYFStdXL0kiGk9JknJ/SUkTQk6OMIBJCFucSSoAhUno7ZxHInKpSQkiZEmsld5HmL8nSfPESEiUnplJ5XNBTkDUJkqUMMxJsvC0SUxey0c6SNFHNDIWSqvWxklNuA1J3fFzSQokekkIUUROeyWlSqNII0qSIydJhz7+SBqGQEg2Gg9Ioqx/SQIjgEpSfpxJUgPKSVO6Rk6p4xVKn2LDSRPkPkpG+MdJCsG/SQ70V0g7APBJV6GnSWCcgEnWAMBIbCVETrafm0pds0JK7WLmSQFSM0rMC+ZIsPQuSenUM0l47WhJbqODSQiNgUllNUxOmhI9S0uSQEqaTkpJZeCiSoSpiknIkr9IhNpZSGRh1Ed+uOtH3ic3Secvh077HQxKmr0cSlaocElR2qFJjYCdRx9apkllMbpJ6tWXScdis0i3NTRJsXdtTpuMTUo7HqlJGvsSSjUvVElTnLRJ2gVVSP01hkkO/KhJptq1SXiAZEobRGRO7deTSvSTEkrGwPVJRdHXSKqu3EmHJx5J8m8USHMBIkgjpJRItW7jSfrjck690ClKDSwzSiMy1EqIfk1K26vPSfJ/2kmtgBBJ/McjSXtlj0kTitxIHtuBTpmv+UlFRiBJdwc9SevJBUo/TAlKWJh2Sjr8k0n4wD1IouoNSdnNpEmO+3FOyQitSu1GLkrop8VI1ZAOSS6VZEi+xc1HyhrfRx8sxUl8hMlIQiIZSUM5a04VPU9Kjpa+SbUlIUgMuydJfwF7SQXg3UdBXwtJq6mASeotF0mYr05JpplWTtvwkUpeULlJzNaISRCXu0nawh9IEjMpSN5lcUf88TxJ0eMZScbhdUmHimROp1uDSnHVTUj3Yo5IE2zBSBWIWkoRKkJJSs+2SOBmJkouqANK+qM2Sf4sZk4E6BlK9F2WSr1h0UhO2wpK16o4STOm+0j5+hZJ20O6SHIK50e9DehJ+0xVTtFv90phNiRJDADmSNnUD0q5YwpJqqynSG7sykktyGNJmfjkSciJXEmzfFhOMUMbSnIudUlwjV1KV+veSY5wyUmZvTNKcHEWSZP780hZbxNJSYUDSUbKVU73OChIIjqzSSw3okm5ozZJ0KWESTsIiEkcXOZI9wDGSHLXFkhZYYxJTSFhTmQCA0mMOBJJ1CbwSSdoLElhrvZJvFZPSHuGCEqur+xHemKkSOX+w0i6ok5OfZCkSk32GEokldBJkT2DSfV/tUmKkm9J4nYdSEmd0EnxKaVIhfmOSeD6gk5Mh4JKR8ihSZU2KUmoZqVJNrisSUfat0nSz+ZIFEWXSQAct0is6JZJH99rTvM9jErYa6JJ7A3iSP9pIkqBL3dIUKZeSVkSA0pRzLlIS0dhSYR0JUjZFopO0pf7SXJkIkqErEdJjoGYSSiRD0ocYc9IGfjPSNFGp0mcn0xKUFqiSK6Ca04bpqZKG4rTSVft6Ujfk55JB12VSTCW5Uj/B+lIy8e2Sf+sv0hW4bRIfu54TuYKJ0o3659JZjlxSaboy0kQRV9GImPGSGHqw0lZ4VFITO8oSM5+HEloB4FO+1CmSXe4oEmeoPVIihvGSQabTkkiQahJAgMdSEfYn0loONhITSiDSDgefE5KTJ9KFMgMSnWliUmdNBFJ5C6+SNJBD0oIFv5IlybZSNbHk0nQYlhJhEh3Tvs2+kjKBq5JfooiScsLGEm8DC1JTZScSaIrHElFvQZJUbqBSTfjm0cGeX9OYBfLSNNn50gWhvBIvOKeSZdUBEh0iZRHtgaOSc/rjkeP5JNJ7zv5SOS6kU4b60lJgQILSTC5YElOJtRJg2iJSH3lhUl67sdHt3baSFQr7UfoZAdHFI50TgTSaUoDy6hKET2CSXLb0Uj4ACxK//xcSOZgLUlJiZVJ/DmYSCDLx0hUKm5OfQsYSkRWjEn2ZpJJbWLmSZxykEkF9aVJFK1zSDYKhkl0WVdJ6DJ+SaIHe07BlzRKZqzESZ+diEhvvRZJibHVSbJlLkhhY5JJUuHDSG997EgodEZIBDd4Tp7ZX0mADPlHimDTSHPipEbU2cVI24bJSCq8oEiuiYBHLYCrSYjdHklWZl5OPnKySm/7TUkuN/dImIy9SD8qnkdMpYpIc7IZSXXml0nGvIpJh/mOSKeCPk5usQ5Jn54JSSsDpkm7yTRJ+jdwSRnLV0lnyEJJaeaWSUjzD0kKxY9JmYwzTgKJ20n5tCxJKcfMSEIRG0mH0sBIeeIJSdpKGUnyAStJNxuBSXcl8UcdHSZOtigFSoZOqEcqx5NJoVOMSNooJUnztixJowf8SIsNYUnWx2BHReywR5/pHE54ufVKrcMoSnHUVEl3T7ZH6UVXSWivqEheh+JIzOi9SOpqEUllmAdJmBMQTt6yuUk2FPlJCUBnSVdma0lgDIBJD669SYbpQ0j60dxJE8lJSbCWh0ii4BlOycj8SPnjoEhR3QlIeF2QRyJbq0fZTz5JCNR+STjf80ji5ZZJ+BmPStkWCE40ZMxIkp2HSCB8fEnmDfVJAE2eSTkPjkmAgphI+yaCSWhiA0kGU25JBCb+TWvNXUonyFlJkoaXSfCrIUr1F5FJXPoySc4OUknm2ZlI4tBuSLto7UkZxwlOXaEFSQ7UK0lCwzBHNtH0SKKjFkkdzXJIUHavSA2agUmbDHRH1dolSUnMB06Rk1RKDya1SYkVAklracBJ3rKGSTw0ikn3KtpIODRDSZ7r0EjulwdJPYv/TYXlkUny3r1IrTl1R2IanUiCMzBJ0H4qSDMQeEjT7A9Jo3wLSW30BkkhPABOJKInSaIybEkFSxtJau62SRbmMUhAFWlHK/HGSX5Zz0kX4T1Je5CQSQF/Ak5e8aZJUQwBShMrJErH2M5Id2ukSLNhuEgTJIVIpCoESSV8iUn3p5lII4IATsoBY0mK65ZIUUToSU4+eklFDK1IyDYgSHRGlkn6e6JIivOdSXVf6kjoUAVO0RodSoKMWklfd/5I9dwrSibc1khuCuFIxzTnSLn6kEj6+tNIbAe1SWnSB05CXYBJ6vUuSTkHHEr0h7RJL0vXSCEEcUlk07hIIkeXSLU/Ckj8A0JJpWkATkMDLEpYTbRIsyo3SYMaf0hFLFdJ9FnASaAivkiYmw5IJbXzR0AXE0f0Jw1OZumcSjpcE0g+rktJ8x22SGwupUgOekFH7seYRrBKG0gd5CVHbkcvSVuUDU5culFKUZgsSYNt6Ekpw0BIXXYDSaYM7kkxZJZKhnFRSWnnTEnj3ONHm3AMTt47P0oEYCNKTlYNSB1N6EiVpRNIl7CHSZmUp0jpTOVIkOTbSMAyi0nuAwxOLl98STl7yUnmXANJy29GSRN4XUhvv59IWQOLSBT1LUmAoWtIosO8SACVDk68OgNLVqeBSUQQnkmT/w1JZ/FZSUD2YEnQr05JduLlSCrkXUnA5M9JajYTTpDSBEt28PxJJvxZSfI6WEnZx3tJZhvMSBKK40mlBEZJn3CqSGJRB0kaCwtOYwykSTMmT0kt149HX86zScgxFEnu8Z9JUuK8R2sVnEe5tbdIqv6+SJUiGU50EvtK+dSlSk/C1Umdcd1JsN0zSTrzvUn+S+dJbHzdSH2UzUlY90VJSDsUTqLt/kev84xJFu7FSHr5HEn61cFJEcS6SOv4+UhS3dlHMfEDSQqEnklffidOsG2+SZr0RElZwotJ3dOCST07skeQpbFIgWbESIhvx0e/t4tIwh4HSHeqJk61B4JJGBaISCORnUig2JdJnzEDST5Ikkj5dKxIsccLSN38cUnlzmRIUUUnTqsBtkkaOFtJxnsISchc20feIw1JpC8fR9zXyUlTw29JXL2dRzIdkEd4szVOFePOSp5JSkskkg1KmVAySUIjWkjJM7lIu5qsSPt15kpWuI1IqAm5SWlCNk4WYVZJhOjUSWIAIkngE8BJI0CISK+6mUgGdBFKnUXiSMNidUf+3z9I8FgxTjCJXkr0uRVJq8CiSURXlkkQVPJJaI1rSeSL8UhFz4tJgcIBSXV0k0nPKDxOycyKSnJTTUp97UBJmsOySar7F0oKtRJJgagPSEO6hkkkAwVKcnpnSbmUTE6A/FNKNg9GScI4rkjIBANKOw8oSCBFJ0lL3J1JmsExSWfrokeB98NI4OEzTuyWv0lbLKFJ+BgCShpPr0gFZh9JwOkMSWbgpkeb87FIiGqkSUnmsEi+sDROYP2jSf88dElFcQdItxTxR0ktVkkqmWBJzhfHSOJfkUdzKrJJNUfASLuSJ052mxVKveucSaaUskmp6J5Ji/UaSRYdLkmOm4FHeLavSLRWr0eg9q9J4/opTreNKkmxdORIv6KlSEah5Uk3+FRJJsG9SXnUzUmStTxJG1OtSKKXiUmKwRpOFyypSLPW3UneREVJ4scxSTZxW0laKKhJwV4hSYlnDUm/d71JmyqFSVzYHk4T19RJrYKXSVi1tkivXt1JDp3qSfZL9khKLoVJtw70SMhCbknicZZJ3EwnToIBuUnM4PBIfCMISSiMtEr3NA1JJOisSNe420iUrTxI5lSXSD4SeklMTB5OA/geSnQSDkpxmLBJ3S0/SN12Wkmt95ZICiTZSYVNZUkpHLBIzSyvScGXEk5b7HZJBjI2Sdnn8Ug5ZfhI8tMzSZxeg0jkYR1JV11gSdm5xEjEc6BJulMfTgbEk0nTn6lI6I9ISMM9CUmtF4lJCzVgSWIh8EcuQspII/UxSbkWdUm5ZCVObFEgSukLLkkrHWhKK9brSH/Uf0jpFYRJAT+ZSKxOy0iobPxIe8MZSv16GU4DuCxKsdKSSWM7eEmMZQ5IN/KvSc8zWEhsntVISqg9Sdw6z0jxG7BJdocRTsWvN0qejVlJevM2SWWQFUjTUppIeKrFSGR1Y0muggNJ58GpR+fb4Eis8g1OJNc/SQaBsEmnTnlJe9uZSJm52kjGON1ISq2nSTHYQ0nO0CdJRQsYSXSGDk4JcCdJXmKoR4IGG0niFK9HqWF4R6TXCEgTA+ZIb/3GSANsxUjPJnJHb24PTj+Ro0kzcqRIvMTKR5JVkEi2PxhH/1QGSQyJLUl2hV9J/AYwSZMgRElPtRROMLsOSt5bsUjNC7tIUnLzSEYbAEmpBYdIaC6GScN+H0lzFRBIzYG/RxWQGE71S4NHu6EqSQYwf0m7RtpIFS6VR0N5q0noytdJzo9oR0KTJEn6V4pHmAwZTqg9A0qa4LdId8icSBXfDEl0lFZJ7cG+SWsll0mUOapIfsJCSS5kh0Vd4QtOJZL9SOz25UjwsAFJORs0SXtW4UhB9wFJizmqSLD+VEm/LzVJ7jWbSB3dMk76kBZJcbypSH37XUm6UBxJ61VzSZHsBknkarJIqzuKSTiPU0fLFTZI5RgaTs4cgkntRL9JFzoHSf9pdEnRFkpJ5NA2SVwRBUnYwkZJ6KfzSG0lJUiz4xpOj/MySktsskl16D1Jp9UmSfg+rEgWdp5JmmuFSYXojEmmJRRJQgJaSTPPL060k2RK+oMSS+pockjKANlJn0OHSdfcE0i+OQBKBgPLSC/dwElvNZBJxWYnTnf5U0rC4QlKOvK2SBHLxEkfWbFJvUiASfzUoknyZVdJtFU0SVIzA0mDZy9O2uW0SJxmqEjR9Y1JSxN2Sap8+kgPYQdJksUZRwG8cUmFZ2pJ2COZSHLZIU4DcehIl8ZvSToQn0eTz5dITGsrSBDhDEnoxI5IwBOLSGngKUi+4xZG1bswTvLyq0iDkzZK0fvPSLClwEgvaJNHO5KVSbnXikeB9lZIraqPR7sEwUjhSCBO8aaqSa0DGEriC5ZJ7QmdSYm2/0eU+/hIIk1HSWc/cUjwthVJM4q+SDLEH07ore9JMsDHSXkTFEk6ndxIuO/VSWK+AUlQBjlKpnMKSUrVEklr9AlIEGksTmLatklVnLxJPdnCSR/RmkmysfZJWEe5SSxSFkkOgiJJPT7pSB6Q2kgKvjFOcqhjSYX3LEihgh1KNYMwSQvb80dGS2RJK3lFSJ6Td0mkWdZIcgEbSRloPk7afWdKbX2kSaUIq0mSpIpJbBSrSfvjdUn1B9dH2mGaSCfOqUhwYgpJ33ZLThHEtkpwuJ9JpMGhSfOeN0kuvTNJkUcVSbEvS0fLHFJI/e6OSCJ69kjV21FOLBbNS9ClW0qaNdlIIk9WSQr6LEpglR5JLNOMR4rRakgzvClKf8WcSKgFXE7weQ1JvCJ6SWqdb0lGa7FIICVHR4qVhEmMt5pIrw+7SB6Fg0k0WgFJ3MBgTjBVsEmF+PFJIcmZSHmQl0nU+4JJCTWRSe/X3kip5VVJDwrPSKIrgUc8a2dOp112S8++gUm1ABFKr+H/SeY1Gkq5Q6xIzMN7SX/KSEh+5ixJSKkxSfcoW05EjxBKhpbKSe0xiUkI6lJJyEpVSXQRN0nAXvFIZOGUSQ3HcUhnQVtJI8pQTtTQhUo00BxJNTjnSVhWokreZiBKLPWQSJqWh0kfD4hJd4/bSJGHRElMiWNO1xZ3ScEZAUml0QxJc3/ZSKj+t0hBRcBJ2YVVSWz63UhZnUVJA7epS9ZFU04FugFKp3ivSRwZ+klrtsJJMsniSfbkuUjhKEJJ0nbeSBsvmUl8n1ZII783Tif6I0nCSq9IepR4Rwb0HEmxe3lIQAbUR0EBHkijVthITfrBSNlI1khOSDFO3m9cScBQlUgO0ahIDnEBSe6DgEiJ3HZIxHipSCyETUiOSjVJfjeGSBKxPE60ckFKPSR/Sfk2B0kWwsdJrJZLSe64QEh6YZdI0K+nSCWMmUlQjYNHGKUwTmh3G0rkTZtJhYHhSHQJukma1gFJpfsESTlQGEnSJrNJKfEYSYpciEku3CdOXr5jSbDoWElkcLtJIp3eSJqKsElBsYpI8m1FSpOHMEe5mOFIzZ6kR2TPHU7AkctKQeANSWqfXkkW0PVJscQqSXZJJEkHlf9IridtSQuJTknOvGdJyJYpTgluwEmWwZpILyTpSUzwb0goqkVJOPlBSUtw8kiTDzBJq+yhRzOcQkht9CtO4WLDSTxKJklct7tItfu8SVZ+8kl0HB9J0sF8SUiLhEmw4wVJhU2RSUvpLE4HChxJKNr9SF11hkhUFGRJ1Nl8SBlj8UjZ9YNIahQ+ST3V3kloNA9Itc47TiFzBkvjQZZI1mw/SId3XEnjbVBIvxePSJ77A0mhATRJWFQcSaC+C0jaKUpO3zQCSz2Z6klmA5BJekhGSK2m40ja0cxJBYNLSSrkVUpbLJ9IB2FTSQeQRk6cValIv+AgSuHrm0jLbi1IOPUSSR7FHUnU6F9JWWWWSVBnjEiTNBlJ5T41Tr9WLErbexNJyNn4SBsmFkmKe49JnrKaSMAjD0kuSYxIiExkSWtnsEinSjVORVCSShZ/ikmaA4BJqjgrSEH81UjFRQVKGpG/SIWlUUmAyQxKI28KSbw0L066JvdLqurCSq5b0kk/yBlKSbjZSMAMmUjYKshI94i6SHycckijsjBJNTwpTsUzLkpsQ7xJ7TJySW8HbErGKlJJbah8SNH9gEkwk6NJWvqfSdk/K0eMyTJOFflzSSRwFkr+ErBIk1ijSRwBp0lE4CVIioqXSG/khkgKyV5J8vyaSOxIKE4WhwlKMZ2DSQAcmUhEEX1J/eLGSJKsf0jClDRJW5p0R09hEUqC24hIe+wZTr+ZLUo3dwFK8FaJSSWStUmfWl1KglRwSG95+kgtsLRI87PpSC1TOUlYJB5O0h8ASWOwhElHi5BHH+wvRhGHqUjVfvZIRuY9Sf5Mj0gODIVIGI+LSAcyJ04S56BJKUKZSkSZoUlu+AhJG9Y5SQgbMUl9K4BINUQpSerXjEisMaVIieghTtXmc0lV1vdIvT5WSNgtBEhPqUJJn1eKSaT8A0nCwI1JbRSsSITM6EhTNi5O7/YUShlikkmww0RJJLnhR7vFoEkotf1I6GjcSDQWdEntEQJJHpcHSdsyNE7T6gBKn/lhSd6ll0dSRgNJcqvXSB7ZqkgtOJlHOakUR0aQSUfNGoFJTg0uTvpQoUvLGK1JGmcMSk0boUlixP1IwTIcSWVtgEevtHRJolI+SNXUT0n9PDJOxKODSlcb3knWdJNJMVq/SVq1uEcNpW1JWNrBSCXtW0mUB5hJGw+MR7cJO07CxNxJJsfHSMKcAElqAcRIDwmeSNi5fUne2yhJm1YZSRMAe0dIQdpIQWwyThGF8UlrWtJJE6gISTsWn0kl+H5Iv9RRSDy1+kjonzNItmygSG5KJ0mO0zBOjoQrSgpWxknsuatJloWJSTog0kjbLp9JaWWrSHUhDUkTHKZIVX4ASWZ4P04CB0pLaYpqSTAGmEj0b6NJ4QIOSXEI/UizmqlIrflUScL5IUfsT/RIYG5RTu+7tEg9EKVILEXCSFUNWkk/znZJTRtBSf+mtEjSn6dH8lSKSTxHgUdMUFdOchbXSQ0L4UkkGhNJMiv1SLYBkkdnbClJ/CS+SA6WPkn38UFJJXgbSTYRWE7UCyRKKVEGSp4jOUlcvoxHi/KLSX/NRUmWVF1JkBeZSBNfRkmWi/BIZjZLTu4W50gJ+bRIwMcdSA+6m0hWB4NJnmKkR390GkkIoYNIzHD0SNC4AkmMIFZOmo6kSmiIFUqKq6BJ+wY6Sckez0jJiyhIzNzXSG7tQknVfNtJMvLZSJHvSk4gWKhJ7nMxSUW/3Uh/NkZHrjHiR+p7qUjMiahIqzDCSBuny0eBotxIqMQ4TrhKyklgqb5IWn5iSQih2kfhzRdJL3MrSWBSjkgpYKVIpuvkRwStWUhNiiRODyK0R6nP2UiLSTBJ5S0FSfqgz0dXRhBIyWaeSPFPl0cFfgpJDYkYSVKqJ04yCQVJmDItSYv2tklKp6RIgCh1SaOxC0na9DNH8XXESRepPEnHgLBI2JkzTiMVMkp5GixJFYQdSM5ARUkbrNVIvN73RxeVVUhdqGtHuVkdSbVqI0l63i1OE3QFSz2LlUk5OgpIyojuSMlBQ0YvmhlJj5aRSZofjkfxIblIhieDRfhbKk7Hp9BIEzrjSOdeIknjnntISfJoSU6xH0nwrkxIRVK/SFpY60e9WX1I0lVPTnKRl0nt899GiMqsSJ6xfkgQQoZJ3egRSWHvIUiQONxIwT0zR/rmJ0bQ4kxO1wwiSUUT5UfhvT5I0Ww+SWwkzUlWcV1JFtN2R7jUIUm5wNtFbeOJRtY3XU7EhV1JDVCYSONw00gmQfZIET+ZRrNYYkh3sS5J5DV3SJCMNUj8uE9G3F9tTrp4h0pSPdxJVtSlSTP6J0jE7i1J1WQbRiekrUkjcGRG/r6bSAKokElWbXxOLIbdR/aJPkmqOpVHhRMoSNiWTUmXOU1Ihc+QSCgtiEnSeE5G2pBbR8t6Zk5zcKZJKAysSSTvSUfKiMNJ05SgSFAIO0nrrEBH2finSObT1Ee6BYxIewJXTlKNp0kqrTVJv+JfSaF/6kh8E4FITo1gSClA/0jEwgdJEnb9SNFuh0cfvVFO6PDsSdqSB0nIg6VIVxXgR2X8oklt7nVHpKCCSW+CmklGmIhJWOppSdTaZ076XQpKejOMSQoLnkkPFqlIA9fySMSbhUmwKURIlTXhSCuDW0lO0jVJ1686TnrlBkmlCspHEsORSC4DsEk5oZJIW1gjSHnwD0nxZ9VIiUMfSebEU0g53DJOwAIvSTAcs0cjT7RJECzdSNojiEu+sidHTXvsR2HFhUiBoiBJGN6lRzs3Ok5dylVKVVSGSb4QdUlzBU5Jhc4gSRjii0mS0dZIVvSOSUP1s0jxqcJIU8grTpU+PknFHI9IeJS3SL3JI0mZ6p9J0oATSWwfFUkC2GhJJ1gHSRsrqEjjlRxO+kItSo5YiUmFM2xJPjjHSWWM4kidxw1JerCdSGEQZEgq4XVJg6jGRsMsDU768xpK+DLzSJNQSEncWDJJ25ZJSCjJ+Efg1dVIKhz6SCB1+Ud9GZtIIHsVTnrZI0r3yQlJ1XOaSUgIKEmOeg5JsVRHScc/x0lNDgxHgKG9R0WJi0mbNwlO4Q4NSnK1OEmN7ZlImLmRSJpUsEi4NOlIvlCRSeuZMUfApUpJ0Tc3SUPdA04T1oxKJC+qSC6DxElL2PFIJgpfSSkoi0guxvlIrz+kSQMAO0n16kVJnyz/TcjraUmfXrxJeKcFSaAeCUm0WJNIqBuKSSz/PUdN8rNIWwqASJqRrkjESgpOEYR1S/EImkmHbUtJli4OSR1MmEhZPjxIVd8ISe1HdUhmgrdItEEPSa059U3kWd9IUjXWSOkglUidFHhJuTQdScbfekjtMVtHjPDRSITdKUc+UTlIveMHThHoI0poUzJKSw+eSUO6CUnsuFdJhgCiSOKrVUlMqUhJqlvFSC+bk0itbxVOyGCGSSB6dEnuo1FJXQH+SS5pSkntHEZJRBZGSfbv3khW9C9HLQjQSMEJ/U0gMRJJRBUDSmjNp0hssypJXWHBSHzpFEnLem9JZmwZSfxVY0lsQL1HpzojTvlXy0kUzM5IZU5kSQQfkEgR3ABIGQm6SLZebkhS9EhIOtgwSTO9vUgkDRRO3FwJSuHql0n80tJJS6KuSOBONklU3F9JI7j4SBGg1khJT0dHkrgMSQEdGE5kviFL6L7bSGPoY0k3xkBJD8kPSUWfREhPRrBH2S0mSOE5Jkm6Sb9I+FQZTr2CoUvR8DlJKQfDSCKTlEn9+5FJ498SSUOgAklgdJZJrbJaSNXdm0g/TSNOIMaGSXBv50m2fgBIUdmnSUCG8kjI+7RI6DlHSahsEkpohQVJrdMeSX8/L05Gm5JJFu9QSuVudkgTE2NKug2tSI/9jEkScTBJ+ZWDSZDQuEjzp8JIzyBDTqwQekmHQDBJ5xPcSQaRzEeJFzNJLarESPrBN0kCYCJIEdv3SDvwMElwY0hOImimSeDocEkOZH9IqrwhSWGIo0eO5o1I3aSfSGfo30if8jFJDj+KSPl8SE5Tg8BIXCsgSKAhLElsTRJI75eHSW6Y2kflawZJmLAGSXPkpEf03B9IsUVNTp3mzUn/IwFJqhpzSV6pMUiqZrJIcDdaSWRIX0f1QhJK2GG/SGF6I0k3aUtOfP84SeALOkhWz+lHbt7DSB5PSkkFD2FI+p7GSeB66Ek+XWFJPZmvSGrOXk5ImZtJfupbRxTJXUmiLQRJiQU0SCzPK0lHF8JIELDZSGWOMUmop5tIf+JBTkp1bUysIQhIM6AeSYd3u0n6fbJIy6/fR+tyl0kJPCZJY1lRSSlUAUlNWzdOeds2Ssv64En5xl1JMSEZSWj2PkkQUI9J4byeSBXFhUglSGhJEzFwSCNXNU75jTlIOEQbSdKKGUl1yo1IsNnCR888HUnNBIdHRylXSM7yUUfojoZImuovTrqCm0iCEgJJ+qaHR9zBtkiJk0hINhc2RyM6cElB9YBIG07QSDsnYkmdBx9OQEq7SQI9JknO3tdI7QxRSabkbEnIfuRIVw+FSDUP7EgSjwBJUk3dSIe+Lk4BsENJ6Q6vSf12o0jfrgtJVxACSdig/EgLJmVIBiYdSQe400jZWfFI7uMRTiFgZ0k9mUFHZ2sDSUXNjEjkE3NI52cPSViknEe4JZlI8SbfSGJADklW4QNOB5oBShGWF0qbLZVJHnvXSO1a5EgqviVJ3h/YSOVOEUnJPa5HbTMQSDRzFk7v6LFIoPJBSLE520hIUcdI0PApSdXjW0iLCN9ItV5RR3n+rEd98zlIfFbzTbgZTkkg8IhIwalCSdpSP0ipORVJLjQ0SEybmUiGWYJIOYZRST5ZdklNnAROMrZwSVpFgUnNAcVIWDPqSD4i6kjtUcJIyJOuSC0vZUj13h5JujukSIu46U17WvRJgg08Sbt4bUiWs79IQ4ETSe5Sikox9QlJWa+WSEqhhEhEocxI22T9TZC60EmtaHRI9HNYSYxP8UrOY1FJZhXISOFY+EgmREtIQMB3SZIeMEmTKANO4JkCSqrU40hK2zhJgoltSSxEYEihmuhI5RcPSehMDElnH59H9oQFSKSHGU7wA3RJyNeASVzw1EfY57pHt9LcRxl8TUkNJRlJRvq8Rxj0CknYg6FJGNgPTkBrQ0ns4mlJPUGcSL/BFEmN9cRIoX2mSMn4M0mv/O5InHIHSSW3J0lfnSFOkPYwSXTHikl2w6VJBepZSVChnEibmbRIbjiUSGx0rknFujBHYE0rSc32JE4uSTxJzjNiSYKLBEr+Yc5J0nH9STtoz0gzeBRJTKOVSGa9skfb84xIEwMsTqS34ElyYCVJ5ehVSTBSn0m94ABJkwgISTpsCUlTN1VJowSdSPjy40f9NjFON4+8SVYHI0mxsslJHPVgSDCIlEmNAnpIKTLzSEs3sUgFC4dIQe4XSZ+VOE6plTBLjI4LSn8ngkiyeTBJw4emSSFzIkkBNZhIVTeGR7x1IEhUyrZIwjcuToSiU0quiKZJ93iiSD/Eekl4AWtHtM/LSXiJMUkfILpI0NDPSHnF80i4ky9Ort68SJ1FNkkura1J8IABR3ymakhL245Izu14SPcBoUlKaLlIstePR0JCKE7NwGRKMYH9SUA/80lg+gBKx1t8SXtOgEiAvAVJj5BRSMq3V0k8nXBICLQoTvnjgkp+YrZKwjahSXys/EgGwYlJFnCKSI6da0lLRApJIrkISlaXIkj3+ElO0eZHSyGyJUl6folIMYuVSR4Q8Ujb/7dIjbiISbBAU0lPolpJc0DRSDcSM04m+fZIL20mSC+8S0kgHb1IOxwESdVdGElIiwxJFtiJSXSE6UiTyD9ITjIuTp/MjUlA0UlJYXDLSEIAZkfhHutGkG1vSfNXI0mob5tIWRCGSPVUL0lMrD9O/zAZSdbWp0h5VEBJPNPgSIe3JEhyE4BJFeNMSZDzV0hxj5VIA1VsSZdVLE6pMRVK4JmbST9hY0lk+fRHdI1ISI8v8kjx7fZHZ1d0R/kNW0nby/JIUFshTmgsC0ugiwhKy3HXSBzKxkjIQMBIeL6qSAEjCEmpiWpJlwszSStD2kf7W05Op+mISQYA8EiYmWxJc06PSKN5t0louixJe8U6SM0LPknWjRlHb+swSadoKE7Nna9J65usSKHWqUi7iodIR9khSMJ5F0mz+sFIo46hSLwKM0l4KQRJEgMeTqsSm0kQ15FJ19aSSaL130kQqKpI5BjJSP2pEElAVTpJbiDVSJHcdEkZvidOnER0SWjFJ0kYfAFIOk9FSDexWkhyutFIU+gESa9iwUjXUx9JvTa+SDDKDU5sZdhIqk7ASD7ym0gyKqpJKLLbSNbjQEjqBcNIimPNSEbtoUgxS31INmAXTimrhkoeU3dJPLlnSgSvz0h+T4pIAefGSAoy0Ui8J3tIfRMZSXySskjQMgxONaTpSdKlOknvMkNIr5JkSe6XakkvYjtJI90WSVnP0klKzAdJXGVdSPSMCk6TbaxJcuEmSVs8OEkFzEBHGRRTSUovlEiZChdIRx71R5Mk+Uj6P5lIajkATqRFUUlacgNJNuPgSSDRAEkDyG1J+jeVSQOvC0nUk5FIkhz6R9YFwUdkHvxNN1XQSd8eIEnh3W5HX579SEGtbUkAoxxJ4hSCSUFbnEm4HdFID3qESHCG+k3c0TNJcYwXSYD8hEcix3FITveOSLPZxkga+PNI4xMLSSvjjkhWuR9J8aH6TTbpFEivomlJ9bU4SVv8Gklh33pJMV8lSfQiPkffA4RHjw9yScb3k0iU8wROllMPSUTXfklzP7dIgXCoSHlMhUk38NJI6JjuR+CoAUniUcxH96B+R4c7/E2yH45JOAPFSdS2Z0mSJudIiAAZSV9JxUil3zdI5VigSK1rB0m6Xp9HL0wTTt0RwUlwbCNJo0l8SbGKuUiOvdFINtepSSBcJkmNHTlJfo+HSMw7ukiauApO6jqWSa5Q30nDKzdIbjcJSZrKGke17ZNHXnILSQ1WykjvH5ZIvU94SS6q9U0TzQNKTl70SLUErEm8RoFIZMuSSBksp0i7xlRH/f0fSYhxDUmofXFJymcFTm8uGUlFSTFJ+BoSSAdOiklR6dhIfu+6SVtBL0nObQBJu7cISdIGIEkUOgZOsAbASYgTa0loDqlIhqlKSEcDl0griLNIbVHpSJ+RAUdzNAJJdfusSJGfCE7r+jNK1zZHSaJlgkezaP1ItLajSTBsR0kacGlIoqIASSIhjEiKZYVILy4DTi3GVknXvp9Ju2lHSJueREkusLBI+gBJSXJxv0gHwQtJStQbSVXys0j0hwZO8doqSSCfDUrlBzZJyW0SSZt+I0nK43lIf/jBSFXG60gKwOhG8NUhSQNFGE46CY1JZgqYSZGMgkmUgyhJHxsASX2vaUiWA1tIANLPSFysNkjPKTVJ02UWTqwc30lBVwhJhs2rSWQYCUkawrFI1FOrSK7vsUjL1BNJaObQSFwI60iDWBVOo62ASQi090jzopZJ/ITHSHhyF0ez1RlJ67drSMkIgUfUdYVII/HlR9zvD04v/jZJy3EBSO1whUjhSbZHMasvSTyrhUk+BR9JB955SRGyY0ezNxBJVxQfTuPMI0mu/y1JHjZwST8Hi0kabg9JL9VXRxyMJkkFWF9HUEz2SLtiFkll6RJOAAnESUk+90gejyVJzFJrScQNQ0nZb9RIoowYSftW9kjyPaVIqPcISWyiJU7L1LNJa9fTSdS/XEmvlZJIWw5iSHXY9EiQ61NJu0ckR/pzJkhTIsZIB1MPTrNcGkoR4CJIU76DSBXG7UhS6tFI3fENSb+tq0geHYtIRkOSSF3CDklUxAhOSKY4Stc0cEkSy2lIL1qASVhF/EjiIy1JZ/njSLnmw0gOhWNI72YnSRJOFE6IeRZJt81USU36kUjDPJhJJ3dPSQCPRUmVGmZJE46USCVKiEm7YQxJzV8YTja93UkUWMRJ0fO9Sa8XKErXIwtIBgs7SVPSy0jr6BxJ9Y6BSZ4wk0jstPRNu6TISDjlwknGKkxJZDtASTTCDEmpNJ1Iwtr3SPAnO0kfsf9Im1iDSOkP8U3BMYhJIbdoSU3FI0k1QwBJlvvySJ5jLEkwvZdI376kSJovnUdRTKVIKuDwTQDdsklAcfVJ2rBGSZRH3Uidr7BIY+fMSLlaDEkaHt5Ihc2dSIu0EUlEjOhNdmeOSciS+UifmhdHuhhsSQ6T00hNPFdJqpSwSA/ciUjeTqdIrplkSNa5702fWNRJCcg3Sdxn/kheAuRIjiaaSOms+0gSu31Hp+kMSUZFIkmKxVVIQdDmTZzt4EjHWzNKJoiYSJAAjEf4+zdJrGyDSbAUhUgTt/RI8eKsSLhHNEgRjABOELUMSab+DEnj6klJu+43SeBbiUhJ/upI4TUJSaq5BklIyPhI5p56SVpIEk7MKFFJM6tASaWoH0lRXllJLT3/SDDpmkfxOJdIKsxPSNd/Rklw6m9HTh8NTnI0BEnb7GxJ5CIcSY3jO0kH9M5Iv78LSUO/mkc31rRIzt1cR+tJwEa4zgtOuFvcSekHWEgISSZJx43QSP0Wc0ljg6xKGf+ySENXQ0lVinxIfAKiSAHzKU5+/shIVOikSOcIhEjm7J9HkPm0Sbba8UgZg6lIdRgzScdxZUgObKdHv0AaTnjiwUjZdlhJWnZHSTqgB0nW3wJJ7X8sSYYk6UfcuHxHcxjbSJAJcUhDTxROa1kpSTCzdEfZLQZJU8tsSY4T7kjL54ZJWMCgSR1oikixhEdHiu54SL0zFk4yPTxL7BeTSYBO40mUxJFJ//WSSWoi80hlaodI5OGqSIEQIEdB/z5J+bccThqSm0mxA+hIQCfxSOI6aEnnrttIoPjdSDUrtUjvMFZI9Y20RwiRzUfktydOQxc6SHs+EEnKBQdJqSblSM+oAEkJFTtJJAMXSQcupknG8KlIhQxWSeMnHk6MNmtLP68WSZ3IkEmebMlIV4cESclLSkfK1MtIWcQ1SZ6m1UjRXppIexseTkaB2kmPxFRJj7MwSTLt6Eh1vNZIhPrMR+W8TkkwGZ9Ii+IkSTTLd0jVahpO4Du0SWt20kkqH0NJlSNWSXdHkkgAxBlIM9jSSO3+MUlkvBZJj0P3SF6fH05XqgdIouWxSVd5bUl4LThJiGiESbjD+UjBIHpJ/W5JRw9KnEhwYIZI++kjToVWlknOTxhKOtP7SZ6WTEn6R4pJCIabRx4yGkiw2VRJebISSQVo7EiZQBROPESsSV/V5Ego0D1Izu+TSE4PI0nViJ1JCeQcSXaakkn4OkRJYvfCSG0hLE4uGyhKUnZGSYb+40jZA51I7ghbSCHnwUhKgLxJW2CkSYewREjEBUxJywY7TqXxyEgIWhlK1EePSM1sHUnRBhxJDZ/sR+NFREj7ZitIp1mWR6Z/LkjhoiBO0UyHScvGmUmQ9TtJ2+4DSdHsBElzqShJz6fmSDVv+UjfEG5Jr/kHSc4UI06YBrpJb1SBSsl6c0mpsT9JuKxnSVi2YknUIjNK+pAESFJPrkjUbYtJ8gArTu1JlEl9KuBIUVR7SZPkmkhdPypJKzfZSOaUNkjGCTlJ2eAvSlJ+ikdiGTpO5LZzSlg1dUnEwSZJXd/RSREujklfAmxI8bmQSJW730nSlntJR7UkSUY2Nk7Be/VJ/gmUSX3JEUlIkcZIh3B7R/I910hf/1NJJXisSBt6N0h6AbhIYRctTjjfzEp2QQ9J3s1LSSlpw0i43plIWfMcSftlkEjAUUxJMGDASTdTY0iS0jFOwF9ISj4a/khwFN1J04OASWtqvEiiR9JH2nbYR9GXaUnQYSdJD70ZSZLQG04fz/JJMT6dScTq5Ugt9qNIaUxBSaUH1Eimib5Im2SUSGXEHEmlD0NIwyYYTnoRBUofbB1J9QClSQOGZUcCFv5IW49CSieQk0jx+DtJ0srQSKeRY0hWkQ9Oy72fStswTEkwCpJI67C5SHC5H0mqbiFIsPi0RxFzQklXgaFH1BcySRiyGU7hJzVJ5B+pRwDWDUlPB5RH0WCsSNyn4kj8PDRH0DPfSDLgDUkP2bxI8PIOTgtCAkqgtJVK7SMfSKmVZUlZ5VNJqr6RSPdnbkkI/SlJEv5tSA9EgkenrRFO4F2GSfhTEUguyFpJExQ+SX/a+kgFvYJI8jnKRwfjUEeWTSZJ6rv2SHITI07Fn5BKfpYFSdsZ9kjd8HBJaB7jSKbNbEcPjuZJqYk3SRUOyEj6aEdHcUEmTlBymUnwt2ZJHpGeSbTR/kjMWVVHz1TIR3YR2EhaVsdINcW4SCxdBkhH/h5OU98USsRjwUk/ZLNHSAIrSebjsUiAf6dIv6PHSIed8Uix4bRIv+8gSS0yKE4ESk9KzAJ+ScqjPUmgspxIBE+gSOEPYEmG5QBJbyypSPfNL0kP91FJA9VBTnvV7EohZvdIZUGnSYWYxUhCj9RHxXb7SDmOAEm0gQxJ8f87SYlEhEigGEtOtulZSagHrUkBLklHnHIWSBJ10EhIlIxHRUAOSRDGQ0fvE6dIAQJ9SC3HKU6u0VJJHj7cSHCEdUe/fFNJu3NtSadOL0kCnoRIjXrpSJt/10inMB1ID10qTilnEUkB6LBIKILDRm7QlEhvbaNIb4GnSEOKGUf+vpdHQugiSaCH40jBLipOlSUpSYUK+Ei0j0VJkGvySQnI2UjaQuhIIjlvSU8MM0fxBL5IH5IQSeSTKU4PfdJK6Zp6SE4TYElAkxtIoG07SZMTs0iywQFJONe2SF2fLkl+hiVJilYUTncVcUl/tlVJlMotSU8ED0k+tXBJ441TScngX0gkwi5IE0LKR3fG2Ej/AgdO7+4eSgrwF0nioqRJPDplSanNS0livTRJThvvSHjbgkj3UJJIKcUISXpd8037mgdKTkZXScMhB0lBTaJIciGtSLEs/UhmGgZJ4GP3SI0I0UiYmVdJvofyTUX2lkmCiSpJZpzJSLp2IEmnzolI+93YRxHWEEkXvx9JOyd1SYSRh0iDsvdN9k5GSDPT7EiHKppJpZwGSSRpjkhMsJBH0+abSHehi0if7bdI+s46SQ6a9k1qK85JGb0rSQCdMUrQErZIVKaBSZm0C0j8s2JJjv0nSQTV5keWhR5Jyr/WTWBgy0hfK0pIgT1uSWFhjUcJqVNJW8F3SeMUlkc82gtJEx8ySRm3AEksrgJOaEvxSNtncEnhy7RIfiHWSM97FUeMu4dItZ1XSceqjEjGN/FIJCnPSCrH9U0IIfBIQFOjSdc1Gkn5GB1JewZnSaAbEknffo9IoMTuRpm5vUfjagJJaxgATqWXZUrdky5KMooqSStnVEn9HB5I+cwZSQayLkfx2YdIf0w+SS3gBkkeYgJONaeRSVpgz0mbCc5IPmVlScoFHEghzTVJi9TmSGzcO0n0TOFIvYClR501BU6Ym0ZJP1QTSTIXI0ghnWFJVptYSYoFDEiSCNtIPm1WSLcarUjf+J9IxaYQTqwHwUq2jE9JaMEJSk71BEkblHBIwlFBSnasJknyBuhI0qslSb27yUhnsBdOSEU8SQc/mUmcQhBKl3xZSSEhZUkfb1NJD3GmSDrUp0jZRI5IfkQxSQ5KJ07j2YZJ6qMdSAsJfUkHOYhJ7I6ISS4XiUkaDPBIo1jaSdMAm0dEEyBI3YkvTmirdElMbZBHi6iNSclJO0koiopJCPmFSVd+z0gE0ARJ3fpxSapSqEg4hThOVRisSaW/yEnFFqFJUg45SJtwGElHypNIWToHSBqX+0mMI5tIp5H7SBlQV04XzrhKlUMCSSU0RkjOgYZJvMLrSWeJEkkUe2hJvxf0SDpu6Ej+Ua5ItL5NTolYQUmqokFJF/nhSPJHrUmSL45INtUbSYetJkn7v6JIX89NSbi7vkfp7mtOB14XSYgJBEhp3bpJ4vPsR8fECEkoG5NJG/oCSUO35keqvTNJLfECSStqSU6lnsZJ/z0GSaN7LUmcLlVJNKaySWswKknmAkJHye0TSW6KEkmn1gxJce5LTuCDlkkCKmNJSffZSNwV2khuUO9HGUiHSSl6m0bCDzRKUOouSD1WR0mJ5kROzuyISXKi/khdgwhJVRvrSCTmKkm1rIVG0ooQSQgjWUlblgxHanwdSb7yO04+ZkBK2n7USXV6n0iy7/VI8J8QR/Ken0c/YhFJEbshSUYOykgOa8hIyIcuTio+WEkFzTdJnxHKSUuYkkjZbL1ISdbjSGLCL0mZYK5I7cfJSFLWqUiiFDJOcvcMSSVsi0l1sKxIJXi/SLl4lkloLthJZIeESS/sa0mYQLBIM0oESIqEJU5aZ25KcxCvSf05jkkZQ+FJn4UtSoMGc0mzHBlJS7n0SD79PEdMtsxJoKYPTrMlvUp6U5VJjyCHSCHzo0kOM9pIetL2SLVJjEi6u6xI52/eSJ3Tc0hGJxBO1Y9QSXmfNUq2TUpJYhZlSa0TEElNlZ9I0YMhSHXeAkjrZhVJGDXQSCbIDk5zIilKU+lSSuiyP0iqFdxI1xDVSThamkgWI0tHUSioSNvSwEjALrdIdFYNTh16h0lXJx9JSkUCSbV1GknMAn1HKg83Sd/P0Uhp3AZJGvwvSSSMDEqNMRNOFu1GSZ18nklrXI1JfviMSeUOAEk52ARICfi4R8El8kgHVL5I8UBiSeQEDk6MgcBIpJxRSalGWUkNnd9IN6O1SHjeFEnf8gpJ9CZFSf58rUjTlRxJCcUSTt9BlkqBBxRJp8rlSXi+P0fehgFIsPYPSSBf+Ej4WThJBboSSPkkxUhbXgpODAiHSm1JR0gSKCtJYNU9Sf3JVkpjKGpJQrbHSPut3EmP58NIlsK8R2RAJE4eGjRJbTjjScgiF0nwMbRJTHtJSVxOmEcT8txI0eUgSfssYEdkdPFITNsYTmcyFEl/eQBJOc32SH4X9kguLS9J4CvpSL1uHkjjYBxJPBcxSaFG1kjPqgxOpy2dSQQ2REmiFehIC+e2SAfIOkj6EQ9J+sD2SDp7iEcGBitJB3nSSI6FEk6xXgZJoNg0Saxdh0nwek5JjUP9R06E9UjSmFlHAJuJSB54jkh+nB5HgW8ITlcWl0lenY5JEpJFSeiW8Ej4l6tIGba3SLeB9EilxoFJYJvjR7dOQ0enchVOEw3fScydHklU8zZJz80VSXW9w0hssMlIPO5hSes8CEnOdSlJoXyPSSdVF06lHfdJ8eo+Sd6ht0ig0dJIMEy2SYekTUmMQ+9H+dURSbfRUUnSflVJvokfTlBkSUl4WHxJRKUeSZ7pBEjcT/dICB2VRyeb9Een4ZRIycqFR3+JsEk0pBZOUogrSGkpO0kXqaVHibfjR6B5EEmWwqBImfSHR3Aot0i6d81Iuhj1Rx4dE06HQklKwIOaSRKjv0f1crJIQH6cSZbJ4UZaJbJIEZVcSHSwGEq8JbVIOkcnTnIXmUkLzEpJjB/ZSLPIpkmXutFIx+6ASG4Wxkj7jTFJV7iQSa7dDUhkciJOcYmDSkY680gLIqRJ+uDkSFwjRklwTNhIhBgLSXewMUli08VIcpUdSaSaJk4GgBRKhCgzSJMwm0dO8VFI7MUYScK49EjLMOdIU9jvSJ1EnEh+7VpJA9cxTvs9YUn/LLtJPafbRwpHbElaZpdJLQFhR9rp2UnZCFdJ6e7zSL9CrEhzfzFO956JSWfVkEkTDNNIiXN7SFiQy0gBbIZHmlOsSFmnIUk/eUlJw1uZSPz7ME5UR8BIiVzKSK1jq0hRhYhJ90rNSN1urUdwHINJuyFCSUDqBkmZ4pZJEboeTtCivElKoAhIWoiSSCqAzEg/nGxJ9ENZSUcIQ0f6xMpIi04cSefpOUmg5RJOxU4HSvKOYUhbo7ZIy2ZcR4uK1UjjUPRISHsZSWvKD0lciD9Jt1qDSfnRE06jTGhJLmyUSZ6vnkg2oxFJuteJSZXGk0c3Y4RJDbmNSNXEHknX1thIeJMITmmbl0szkPdIgHrSR3UElUlcuwhJB1HcSH94vkg2xNJIP4KCSOPLPEiQ1AJO8flsSRU0gEmZiypJN5ktSaoQcUg30zpJglPyRoLd0khweCFJwQ9XR4T0DE7ytYxJDo0USco0p0gzsqlICOmASCUpVElMW45IvJQrRxVHqEiRduJIi2sATmu+9Elg2gJJJFr0SBEvpkhLZ4dHYwlDST9jRUdDtnZJf0QdSTt5JknwMw5OmbwMSjxs4khE6sVINYHORo+avEf0Gh9JLYtqSfAujkgP76pHeeszSTAgAE6qtY1K0LYtSJWkikmDRU5JiVKLR0AnOEhC+eZIOPwFSQaBCUkwMbZIgtX/TWr1WUp9D4RJ+ItCSWy0dUhLmktJh06qSLL010gANw5Hq9UvSTFhCEdbKQZOOr39SajyqEcLr8pI2nsFSSKzlkhHOohHMvnCSJVQpEnst2JJrmaUScixCk6I1URJgRNlR1Rq0kgQ9yBJXmdWSW6OMkmJ+LNIyEPhSN5DLkkVP6JIzaMWTggByUmYumxJCKTtSL9HZkgmHu9ITZ0ISDna4khwoWlJ4LtGSOC2A0m8gCpOoQeRSjbNwkjmbvRIPdGRSLUn90hiJ7FIX2iWRzAOkUgZ1rNIcHBgR6lCKU6V1zBI/cy8R3iYP0nJeTJJeroASTITOknP71FJO0t1SfOow0gzxlNH88ckTgkm+0nlRT1JctfTR08rtEgj6s1HCY6JSfp7QkjNrTpJxtWOScMzD0gHoC1OmNqsSocZ/0cYXUBJgA4DSETaK0mi+dFHUVhRSP1MFEk1fvFIP1nQSPL8QU62/4pJw0V8SZnuakrhsehIT/QaSfX6AUlP+R1J1a66RjJeMElTeKhIe0FPTmnnWkn7psRJc5/BSIOaiUhvpRxJJebFSFTWJ0lfUlpI9PUpSUCOokgLyUNOMyBoSa8pyEmvTbpIOF+1SKWMykic9QRJG6Y4SCa2s0cA9/BIoLxSSGJxVE4CddBJDnUASUkwfEcpnghJscUMSTVRGknuC+tIGE3pSP7RREkfx5xIWQFMToqP0kfo9ZVI3YebSGKvMknBovFIg3j/SCPvykhxRGBJbKQYR4eQD0k8WEhODAnESnJ7q0n8m6hIKSp6R4ZY0kjjcZdIKXKmSNGd8kmlnBVJjN8hSfHqLU7lTGRI5zIhSSz/P0kQmNxI/UekSJFl0Ehz/nJIarJ2SJlR4EiPOVNIXOksTit+F0lc1rpIi1oQSaMVg0mghNdIzACeSD9KfEh9MxpJhw+7SA9YW0hndi5ONPkZSZHJMUnbmyVHWNuLSPzGHUllHtVIR/XGRweVNkjrpDRIal6wSJU6HU72e+pJ/4R6ScLbjkiV+a1IE48yScsOZUkBldBIi2YPSdJlgUgwCqFHSL4cTh5pIUkyDVNJDFWMSEudF0myrNNIKggjR+Jg1EhMHpZIZOtbSMBHVEj9zAdOxsIkSrijnUlsmAVJBXPySJKFyUhXnkJJhGk9SdLG8EivVsdIjQOASBIiB05GHj9Ja661SPy2CknwUBFJTTrJSLByl0j1cTFJ/cdNSU/jm0iMZdJJwUkLTovAqEnbEtJII6mPSQmIF0mffz9IC+9WSDUmAUlafe1IFtT0R4Gonkk43vtNz1bbSKiMiUhsJylJcOb8SC4+HEkVBAhJJWM+SSwk2kh57MZHxzhsSPK38E0KQdhIXeEZSc11gkf+7NhIqhYVSWl+EkmoSrVILJ7JSJReEUl1aTJIsK7zTZOf10jp4UBJI08nSYMSaEfRBElJjNQgR0/lNkfocQNJIY4ZR6Qt+0gllvJNoYnuSR30sEl1BzFIvz63SAaTmkg/Rn5I2572SMOYuEhUzOZIVQa0SGgM8E2rcSRKDWcxSSQaw0lZmd9IDrdLSaOnsUimCx9JNSWYSCo2gElNNhxHc935Tf7/AElPjwRKV1laSfGrrEiatQZIb6BzSbLDCUlV09tEkqW2SCFPBEkbqfBNxolpSQyDMEm5RgdJQTblSDBFYkkO9O5I2BH6SLuxL0iIKelIhwBhSdNOAE41JTlJd72QSR7HS0mCvgpICmehSGfCAElFUohI5iT4SMk+y0i/ObtI6+P5TVNXq0qkp/ZIFnn5Sa/kh0moyipJ5ROiSecgJEkIkYZJ8b62SEA1ekg8AANO8NiHR/kQjEjjHpVIlo43SU32h0dlgB9JnEA9SJduH0lxIBNJO9MxSWCPCE6p81NKYor+SI0XDUkCazVI1q1JSUovIUkpVk5J2mA8SR/8Akit+C9JKDAITsCyIElCmj5JIx1zSVkFhEaO1cxI87a9SD4Im0dfOjhJLrNfSTtiDkmvIQNOXxK2SddeWEkXUY1IGXyISdGXokblul1JtPTRRyG9aklnfS9J6Y4YSdlp+E0euQdJEJoYSQltgEgw3gBJFwgJScnZ80efFB9JpCKlSZ3iIUkXb1VHFRj5TdPpEEt4ichIpwx8ScEzn0jpFBVJM+iNSf36r0hawCNJ0+RBSeeyKkkZ9+NNXqOlSQGmDEmzmupIq333SC7MjkhBrRdJ9s/ySMnzD0l5CoZI58HuSNgN5U1ZvFpJt+33SL6WqkgorphHCdqfRlMfTUe3/xVJUSocSRYux0glYsJI2inJTdVFI0n7CJBIqO6NSBOVyEiG3/dIFoSUSJOpkUj1N1dJ3a9PSd3maEd8KdJN0P8kSW4QHklk/TBI7oKQSJ5lZkhfFQtJO/mqSHrTGklE3BJHoriVSN9Pz038OYVJ3Pi2R/N9tUnN+JVJIgLHSPIEK0nlJCFJ5PnOSePxCUmz0WlI8u7kTYs+6kl8m+tIn28pSXEuuUiCxIJIZt9kRiHJm0hDamlIDV0HSZnUn0hIK99NzrktSXcdwkgEnNpIkpgDSbS41UhuRylJEKwjR+3W50gKZ4hIPww1SUVz3k04jQhJMKM9SaqwOklZ+ehIxoqqR9hm7UgaNZhIS5IsSeWLn0iW7JVIjYjTTerDR0kbdQBJLzrNSFvDvUd2cCRIBcESSUlta0iauexIsChMSQGBn0iiEM5Nc+P6SFhKpEgeIjtJ5XmVSNasOkefncJI5uukSKg/wEm71qNIccoHSsuxyk2ucRBJx7l+STY5oEY4Xt9IE1HoSbvJ0UhLPopGwuXOSN/Htkju/L1Ipci2TboL2EnggjNJJSTPSFZgwUgQtF9I4zYqSRauw0ij0ghJ1VA6SViBIUlArdBN3RxFSA1FNkeF/pxIxc2gR8P8mkgcgBxJ8hQbSYum9EiGS1tJhXLWSC+FuU1+m/1JCrj0SCEtgkgvpTBK5lFFSUBHF0mhOBRJEGjDSI5e+0hUaRlJ16e2TWUqokmQG4tIfNzjSGHHGEmvUKlI9odWR6dvAEmyQ5NIOerlSDI/0UhzLbdNiPk1SidyekcvQV5Ivb0GSfhwNUnKpzVJ1y8ISLwvvEi2UVRHBO2dSN5gsE2Zfb1JSLkdSdGjoEiLQCRJ6fkqSboRn0g26DdJ7D7HSIQVWEcakG5Il8CtTU16yUhLmbdIpsUASfFmSUlqdo1IQNFtSOUxo0gr5aFI+JmeSJh0hkgpNrZNYUmgSaCdz0hXHwRI0Vt3SWV29UgNQJxI7MDiSJy/jkhJEfBIS6qNRw7z0E21fNJHndwySBuOGkknwStJztvpSOj6MUlwc65IApIESNdwmEigLnVIcaHATWfalElXhptIz7rVSIkhcEeP5klJlBiFRyAg4EiMUspGoQnBRll/rEf/MMhNMnNXSM94lUgjGytJN/FTSAoAokcyxCNIOHnxRv24bknwgvxHaBrISJeyxk3gpbxHedUESZDm4UiUBblIqjlUSSXhpUgnGJVI0yyLSEffhEd56NJI8WXLTVy4lkku+txHSqFISZH0IEmcd4ZIetNtRvDX+0jI/KdINgN4SEwwNknOQsxNLT71SPpAwUi/xrpIzEvVSIqatkg8xIlHhPaNSLgVT0gtiApHDtVASeW+zk2wiJFKFpxaSUaWR0kDUx1Ig8QBRxD/40hudoRIIv3uRm1UtkgUzMFHcYvDTZ8dykhLH1lJ0894SULv10beC7pJ/burSSwgHUmlghVJ0KwhSTB2i0gnEMFNAq2OSN3KRUkSwAFJamjoSLHkPklK74tHiVdgSRS3QElm/vNIhOKxSFh9vE2Vhf1IJhcgSNqVt0jMGGhIIT9bSLzVvUg5x21It1r1R16pCkkgoiRJj0y4TdPzWEjWqFxHyxczST48vEdpeLFGmUDdSFIhF0lEJhxJ1uyRR8vjAkk7XrpNKrYSSU6xo0hjnLxFDaqLR+rdCknDkOBHoSsKSZ0JIUkieetI0aJDR3vW0U3UsIVJVaa2Rmb1zkh99vhJFTydSeW1eEgVc4JHJKQBRw+GDElepxRJKXe5TVzqlkgREGpI83/rSJEAskgLyoFICybGSEXGEUmJjANHYhu7SBUTfkhlW8ZNozoOSqWtC0mvi2RIyPlnSdA1yEiSTTFIUQ/qRxOSXUaPLyJHL5KiRuR2u00RMjtJds6gSLAOqkiT+gFJbYkiSXbJo0iLRjdJasj/SITAj0hslXNIfy6xTQSxcUlUvIdHyyNPSf/dUEkeLXRInymUSHNtxEi3KT9ItBbPRm4TwEiyMr1NJLH4R7b3k0gRjIVIRgb+SL4DUUmViwJIpT0ISadifkjhEwRHLY4kSec1uE2MM5RJUvoeSdeL2khHzn5JtaPbSM4Hd0iLdeBI9+0MSawDqkk+CnJIarzATQSe4kjasQZJ5B71SLuCiEj03IJI1hidSJpWqEj7TZpI6twtSPJz80cirrxNhiWJSX3L20k8zDdJC7yHSYviD0nX4HtIoaQLSfAoHEkQJvxIuojBSFHdwk1Cb7RIlXsPSbzBp0lQQhxJyDUvSdVIAEm+bTNJnScMSV6KVEgoGeFIKWrJTQgVXEhsoo5Ix3OQRxCWXkfEbXhJWRQASeUNhEhOfUNIY6CBSISxLkmiMNJNkG4tSWvY3EjciNhIiIKuSHjE7kgBhJlHqxahSBfwqkdJ9M5HMzfFSOmC603WxOtJZHsSSGXCKEku40RJ9N3NSLmy3EjVYhxJjoSRSHnmtUhv3axIuzvcTZriy0lvaEVJqandSH+IqkjXKLBIheAHSOSo80hpdgFJ4jNASYjCXEeL2txNe5CKSSrEA0lDbBdJBe9dSRy0zUgodYFJ60APSerES0nZzAlJ1YQmSfid6k1X0RpKVnMpSQZYakmfWVdJlMGTSSwU40nfWS1JMRaHSJtjvkgUYWNJnGbJTe23L0n8qStJNoezSH4cH0nlKTxIC8WySPjN0Ui6zwtJhIICSepO3EgTgtJNvn2RSRjk60joQVZIKltOR4oKk0fLjs5IXoUISSFK9UhbVJRJby0tR1y6yk2RAoFJVIPxSEtLJUmfwrlIbbp4SPHaqUjqLJpHXVe3SLE8FEf8xBdHwza/TWD9T0qXGidJU0ilSP8bq0g9nglJWeMrSdkyEUmk8TtIP7rGR+2VdEgVv9dN2uweSmsECEoRDcpIUdsySTBccEjHLwRJSSOiSYbiK0k9d4ZGsMOdSLxfz008Yb5JaQ6PR58bw0eS8kRJ+j3CSHZ0Q0jAVwRJUitnR43HrEd5cddHDJX2TehQcEhtiqBJue4PSRnoXEk66bxI31QWSatBB0kU7i9JG+uySM83xEgunPtNhvhmSePtekiG7hVJ6r48SYeaaUnhzA1Ij9GnSGL/SEnOG8xH6eeQR1iLA066AoFJQOMqSSDXWEl2lhlJuCc0SQdDJkkzXYRIZ0AESWsdC0hxE6hI+OkcThMJbUkW/B9Iy8SDSWkbeElLvERIInncSMmi60aGksdIejYNSSlE0kf7XxtO+yBBSWRgj0cTnANJsnDnSA4b5EgGNk1JLzSMSEq5oEj8Z1ZITLXESAA3FE401Q9JY1LNSCQS3EgzYzxHztAPR34wtEgybvVICNo1SacF/EjSel9IuyURTlfPqUhjCNRHPW2iSEabz0hIaohJ83MmSe3EeUeNcMVIFUzXSGbSVUlSLwhOLuSTSURGq0is/MhIPwK3SI0MA0lJ341IH+EmSXEMT0kidhFJMMXLSHSaDk711S1JutLfSECoH0mCwZRHFVwFSdwGEUnt2gZJnySOSMNtEUn/4RZJ07DsTafnjUgOn9lIwJxaRxzOh0iFjDhIU03oSBrRf0ggaNdILAlHSMSDQUjOC/JNIqYsSR0cdUgZmxxJes6QSDnMl0fhqeBG5dIESeN0kUhVBzlJbSTxR9fa000khgFJsQXcSBGtZkisjstIv9QURwcUl0iFOaxIdRGeSBDrwUgyprBJAxbITS0YUUlMWTNJ8Hb5RgKvF0k15+VIQpsISSGt4kj90SlJkv8KSKZh10i3ytBNXh2ZSdIzz0iSjKBI9sv/SB941Uj3B5xIKp48SMD1gEZJRSdILVCYSC3VtU30odVIfuxMSl1/GUm0AtRIfiE3SfgFYEjJKXNIYxC2SDgQ/0hB4k9I1yikTUbEPki/42tH4iwGSQV6PEmSwkFHCMsSSXPtuUhqDZRHJQEhSdcS1Eh51qFNQ2O5SKuevEgtGKNIqjBwSOJOq0g+T0pIoEfzSLxcxEgiEwFJ/HuVSB8CkE16eWJJmupfSPL0kUfsLDZG+8DySI4z1khq/4RI5c/nSEF7gUnGh1tI6cKITR87RUkD/DNIEySQSElopkixottIs5c9SCvwsEg44RRJGis2SCPCKki+fYtNVPEhSUihJEjO1KtH0jxoR5sl5UjX1tFI9V5bSJjMmEicZaRIbqkUSFCZek32FB1JzDo9SPSZiEjE7gNJF0PQSBPLjEgHt99Iu7ATSDbntkja16BIxcaYTUMxd0jh9LtItrvwSOMpgkj6D6lI3wKdR305xkgUA6BIDaOqSIRhY0jdaaRNdo1/SfojqUh4DrFJ4746Sas6mkip/Z9I9RsNSQu6C0kWUSVIGGkmR1hPk01bnq1JPN7DSD2NhEgRowhIiBZCSKYqNkgwIW5I6PulSIsni0ntc+VIk3KaTd9E9ElC/ZdJlchFSA/BmUdzV39IUnNHSVPVeUfH38RIKOdVSE7rMElbZ5RN8vB/SeY0A0kdnRtH49NPSAiV3EgHdvpIv/BRSFglT0gaZI5FpdljRwdHlE3xUgFJYYcQSFtCZUhHvGtId5cNR7OMTkhyWytIy9RwSEShiUdvgMJIJ+moTX6ZTElDP85G19OfSGFmjEiWxclIlIGMR6a1c0hBlN9IE1OBR8yIL0eTwZFNXYXjSPGv8khRzXxIWbyfSPD+/0gyw7pGsY+5SAIHK0ceEclIy4FzSD03tE217AhJm497SCbVl0hvBjVGk6ulR8o6hEjtYY9IiqfLSOOpqUiw48NIwHquTZYP3kgPxrJIaOSbR9hE8kgDUWRIZWYfSAZLKEkzmtlIJmhcSEC4ckhT445NpNboSDAsHkg6dEZJcJzLSGXUWUggwrNIsaqfSDPr50iPMDdI+JwaSF6mjE0dL85JwzviSLKFBEmWTOBG/PISSYFTPEjQ8IVI7N9WSOVyWkc7SiNID7maTbSRA0l8SC9JB8ecSDoPd0gZeZxJ3/mySJKk9kiy+SRJtBL5SP1YjUj0RZhNg3WnSd7zv0kda/tH534CSbCN4UhWkq1Is2JlSHgjvEdQfxVIgzYzSMnLrU04LudJ/OXoSOfBBUgiM6hI15QtSPGHtkgofS1I5bQKSFd5O0hRQ7tGR46eTWaTB0koeB1JZ/VjSX12u0i0AehHseU5Sfw75Uh/byFHs3oeSY6bCUnl7rRNNkXOSE0X6Egtmx1IOvQvR1OKiUiECZBIcIzsSAOfNkYRL5ZIbauxSB2wqk0UGrlIQTfASHklC0hbjH5GDJtlSPXU+kjOFoNIU7joRjJ/EUnbHSxJqkOsTUqy10hWloBJjIkuSZL4fUiMbb5G1Y1eR3/mqUYISypJkpagR+5MlkhF9ZtNzpDUSUK9pkhpgzpJOIinSIJNr0gEz+BIU59ZSMr5nkhx+p5IFMvoSFO2lE37aCxJkhXrSGjd6kb1AAJJlHqvSNuutUh1wbRInOVYSG2gwEiTQNNIXIKITb3YRUmLPmFJajVMSM8zCUl2+KVIiYj+RZ1ZN0c3FhtIo78ZSdmkI0jkZ49N43dSR4lCikjm46RGtRoKR0+oW0h/fTFIcMv8R8eIs0jJUmBIZ84kSJUOjE1L3cJJudHHSJYQOkl8PzJIxn6ISLB99UhB1lJJpUfwSLjlQEnq3ZpIFSSGTUu3K0kRo69IUSzQSIyyOEjrV+lIedSTSPf+IUiyYhZIDVQHSHYYD0j2D3dNd8tTSYKlZEhG7RtJJpj2SJU590hdvN9IRxLHRx/FaEg3cyVI8yPhSIEbgE2xGYJJeI1cSA8om0hJXmZIcw9WSbimykhGY65GiDOlSKBRlkhcPzVH2V9yTUcdAkmTXmBIWfQXRyIAjEh9SIRIOUiaSDKNDkmoYENJboaJRzoy1Eg0wINNSXwUSR2pWUnfAzZJr5MhSS5/hkhM+QNHEczPSFj0GEkP4YVIvYoJSabxfE01xJZJ6fWuSEImmkn6mUpItUn8R4OQREjnIidIROBaSLV94UhqyQJIsvuCTfS+hkl4QPFIc+xiSO/Jh0dG7oZIg9rWR88rIkh+7ktJ4prcSKt54EXkXX1N6LaESEgmvkhCvldIUFk3SIUzKUj4NwlGfOwISFBwp0gq9jtJxszpSEBGhU1N4stIHgR5RxXxhknz+QdHqf+lSCcMtkiqogBJ7Lx9SFvv30jiqAxJEG2GTSXoGUnrKYRI0liYSRgKcUgtM4BIRPhJR7UBHkh1IrtIhXc3R+CIBkjEhYRNS8SQSd3BrEgfc4VIGiMQSR6SMUh9HVFIjFZKSCxICUiR1I5GXzqDSH6tcU2DG6JJxUhhSNvcqEimrLtIasUsR7OsAElnkANJU4M3SB3HfkhuUiZJAlloTWbJ80iZE75IUqYhSCPXAUlcqaJHhs9dSAj7ikjGE0RIgPoVSDes3UjDxnhNe6hnSIFT90d28qFIUOAHSDZuPUj8ejVI7nlCSF6LgkiR0gJJwz4CSQLSb028W5BH708sSBoUNUiRkBFJOUlDSWKuPUcwII9ITPwsSHDfl0iZz65IWUJYTbL0hEh3FjZH7qfdSBw8i0hRnX5JXcFuSMnoY0gwlN1IgfVhSPUv0kflZltNiNk8SdY9k0iShgZHHwhcSBPD0UjdYDdIHWGuSAv3z0hR2txISDUQSdEKXE2yvTtHU6NTSAEziEgISIFINeylSFBfhEh7CsFIAjgSSW/tj0hxgMxGys+FTWxgzkgBDEhHEraOSIlRjkiy0/hG+nB4RwJ/Lki1N4lIL6SrR1twSUgY5oRN5NXWSbNPMEmQsjFIUMZ9SMvDsEhmrTxIOPASSNTFAUgqovRGbp12SE3elE3GvldJOE6FSC7E3Uh/jF9ItCWNSEqjR0j6KbRIJa8ESdSQREhc+zxIB+yoTVYVzUiMfB9JYyQ2SND8o0cJQkVIMwm1R/anm0goSJNHLueXRp3+X0hHNZVNFJ7ASAyGW0h/KkJIttZDRqkfKkhndxRJywJ3Rj/axUj9axhId2z2R+4wkU0u54JKixmSR4Us2kiJAWhIiwEOSFvQnEg0agJJSD0RSF/uskjYMWxIr4yRTSRtzUj846RIQhV6SNt81UcO4wVHWW4HSC8MiEjvFexIfZoASOpj20g4wYNNH5IjSW41nkgmqAJIv4KESJHrsUlf3HtHICecR1elGkjzpypInxvWSPDyiE3buklJ0J00RyDflUi6l85It12dSPGYREizA+dHNMV0RusSD0kekfFIAJ+FTYKjgEgTgzdIWWixSMK1PUbZ3atInxuRSN+ogUiYntJIKqbvR6+Dl0buVYpNGUYgSeZlLkmNaPVImfmUSIHGu0dYMiVJj+1hSHlfu0h3pNdIzQFzSCXEYU2dL9hIIeCaSLgJL0jk4ZdHccTxSAwBIEgc0iZIcuQNSdTJKkgg11BINYmCTfv3B0r+hVxJypraSOM0ikgx2V5Hlp0NR0d4CUk38m9InqeXSMLYQ0gM+IhNyPKUSC8ZvEjsOAtHUjfYR6Zri0hATiRIRXkmSE44ZkhdrA9JL3vPR2gQik2T2wdJvbwlSQYOsUg3WJRIwQocSU79GElEgR5IzvVvSOTYakivV+NIOsCDTVCPNki1fDxJC1fLSBM+BUm1GjlIx495SfTFOUh2rypIwJVZSJun70axB5ZNI6FGSksK40iAMKNIODegRnTKAUc3wR1JZN4RSBueqkiwyYRI6cBESJSnhk13dPhJ0QWTSdn60EjtcVtJeoURScPhX0iNnLhGXiT9SNE6lUgYhz1IAMqGTeqeEEkYhsRIflA6SJh+FElnaFFH2cYESSb+y0iT/UNIXLAISLPDiEXlO45NooyCSI7/O0dZbL9IpWORSE/thEcfpwpIvikySNOAD0giEIFIsMEESAlPfU3qkGlJ3F4nSZvWDkizhYtGrvRLSADs3khl/5ZIeB/sSA+fWkh3F69IeIyGTVAijUifwCpIwbUvSEH4TEjGafpIK2gLSemxekglbdtIz1EaR/ul60iO5olNcnUpSsCyvUnQkUhJIoHUSCrRp0g+KvNIgd08STOoA0jHKchIZUaJSGcYg03JwtdJWixtSBEev0jTSU9IQCuPSBJHA0iwIJpI7AojSNHgpEYnFCZIIEqHTeePHUkjxdRHrKz4SIiNBkjU8DtIdXD/SODCC0hPVN5IRg9ISGY7cEjQUIhNqp9dSQviOEmcs89IMn21SJvOeUiLzeRHR8Y0R4/EOkiTOFlIZBy8SLPcjU2VMI1K70hsSHVlu0hZutdHLMZISJIjt0bxGWpHxa6zSF+WLUj2OeJIJBODTZ6gkkjOMK9HY6f0R0T+GElHtR1H1T8kSKjrK0jeWA1IXnIgSOpSm0i5QYNNBAaISUCyJUcKgZ9INR8MRZaWREb6rchIA58QRiMOHEZJH31I2+fJSPQtgE3Jx79Ij4mHSCFgDUiZLgJIjEbySL9AikiUZspImeubR2ITukiOA7VI+ciATcsMj0j8DPVIzrxwRgx6OkisMi9ICVfVSBJIK0c8lzJIosmjR8gfP0iaPXtNjcgpSUDTj0Y0aNpFpMCQR10BBUgR4PhHPIL6SCBzOkY3vIlFAkCoSOlGgE0xVyNJNflxSIPaEUiTrEVIjqfcSByRVUggT9dH7sxURuhCHEjYiAVJrENcTdBsNUnd3XRIjIXPRltfpUVAxo5IIpC5RyxhhkeILEVIDKOsSLKz4EaddVBNmF4lSa/TwkhBdYJI2fFuRpeFGkcBzuhIcogSSIaOo0jkha9Is4rISCwNVU384HJJs7WSSLXw4kg9thFJF233R6H9d0hvxD1HLTA5SMoOrkdm+SVGSiA9TbjzHkhD9t9HC6t9SKkX9kfUldVHV5T/R443V0dAiIhHG1//SGfKmUhIk0VNNhwvScdvJUhIy2FI7G3LR99LQkeMUhlIzBr2RnyUpUi5F2xIBeHCR07xT00UyGJJpnFpSNTBp0jHP5JHObXUSIvyWkjfW4JIArfIR+ea3EegVI1IIgBfTSc/fUoNI45JPyyESPDR/UiRc5hIssDWSOoc00diu6VIx61zSCF46kes5lxNwMtdSvSSKEhgJUBI7wuWSFteK0g7BIlIpi04SOpc50hfjahIEAlOSNAMY03aZKFJrKuQSMVDykjyyCdIG01cSGnz8UgHhf5Gv9sMSV9TIUjuaF5FBghfTVvm+0i5zbZIsedeSAXcsEi84E9J/NTbSGBchkgXfJBI98fFSAKYZ0hAKmxNaPBvRwDhPUhNRiJHh8onSIbc50eWb0dI/xwDSe4KHEe4/4lIOKI3SNuOTk36WHJHRsbdRwT24UhOudFILLgfSEgVnEj2HD1I1XJfSMwnRUizZyNI7c4+Td4AekmzqBtIT+kPSRhuS0lhQAVJvMMWSM8dAEgc8SVImZjQSAw7rUiqElFNt86qSft7dElWeAJJV5FLSPjiCkeVGk9IYrf3SPFD7Ed0P7tH8xYtSBhkT033MG5JSA+HSOC1dEjKQLFIJlw9STlcokfnQRlJYQ9FSMZ+TkiXfwZIKwZOTa/W2EkddsJIpnmuSAb1l0iziEJIrxPgSMG0JkcUpMRI4S/GSFr9vUikTlBNtx2aSfDQkEcjprhI1PIlR0vv2EhxRgFINOxfSA1WD0g1WCtG8TbARkU7cE2Z49xJKLw1RxjsSkgD4NpIH0EMSDlhvUhEBxlHvvIKRz39oEjxz+RIUoWJTdalU0hNJ95I6g6iSNyiDkfSZHBIGQl/RWfb40eRq/FHROJWR+UkgEiLfXRN80+RSESii0gvwpxIS+uzSJOXNUaxrgpJsydjR7jfZ0XCxSdI8KucSPHni033hzBKlG3JSCFKjkjo5N1Hc2YfSOc3fkgwu3JFeUycSLKQSkgwOVRHDn6XTS3TBEn87qFISCIOSZADGUhiM+9Ip7gMSHtG8EfvegtIBxZkRUwG3Ufrmq9NQcOzR+P3tkionDhJI8c0SOxRCkiFZwFIS7uBSA8GGUlqoQBIo6HfSCxYrU2lJ9tIJYROSL7Xu0iTixpJfJwGSGKfI0iTbqxIVa8NSOSrBEhEyHJIwZCqTUDIzki0GwxJ8o0JSSrXPEjDq5BIGokqSBc+xkdRkTpIDuL0SEnMhUeFXqpNmO4TSZjup0n3ggFIK9dNSP1NtUiShHFIo4riR0bCC0iM0UBJdcSvSPqRs01xG5lHlWWgSKlbIUkWgQNIZKJ0SKXZfEjH0rZGDeYwSPe3LUfEMStIzSjKTQM5rUhI1TxHFn2sSIu1uUgbOKhGCAcsSE+/GUkDzetH2eLVSB7LZ0hAPLVN1r+0SHwWQkiiHdZIH92KSFl4mkjoqzVIbxsZSMNIWEeEHWlI/EiCRvZV1U1i1/pIf8p1SICReEj8cq5H6V3HSFaKmkhFQilInX0OSQbEfkgxDbhGh/rJTRMttUjoJgNJSw6uSO3lGEgPmxdJVh0dSDzp5EftRedHQjhkSGCpSkfTMcZNCjzOSGrb30j/jh9Juv1KSLRXCEgA9n5ILJqSSC2ymEhlH4RIss/6R4vRzU0k6RBJRPgaRxMQX0hTDcxIdDuXSF+qikdA+4FIqILtSHBD0UhTLhlJxgTMTbwBi0hDSmhJyW9CSbC5YEhvJR9HJyfwR6Rj8UgKkRtIZQWfR8/Fm0dvf7dN4h2MSF3KJkiXvJRId7+LSKtSqEgkCIpIlouYSLEDSkg9JhNJ/VgcSYUztk0oD15KQOP0RqKaEUiccfxHJ1gXSLjncUi56CdHWbGOR0GqZkYhUARIykqgTbtiD0iYU7JIwX4ESXKahEc/AHFI7Bh1SAONk0hSsrxGnfboR5Fk4kdC8Y5NvZ8PSiWVBkh5OAlHjV8RSKA3KUgcnotHiV8USBIRCUm7kIBIOmOeSDdwfk2oU3NIsgESSM4ITUhvrJ5Ina74R64J1EaOpBNIyJDESSOB9UXshDdIYvNlTX/rQkmRPeNIqUkqSX1xQUj7JnhIbkKBR8YZykjkGXxHKqJoSCZ+GUgDj3FNhOCTSd4EgEjSRq1Iy4FKSM+M7Ed4HMVHjtOtSArhRUjCqWdIrdEqRpW6UU0TavNJ/2xfSAUkTUgY5gxJZTq5SCOWjUbsiSFIYrPRSAYB20eg3wpJHAJPTZIe00jNHplI/2Q6SJlZ5UfmtF9INmolSLpZCEgzWK9I40SRR6uOA0jl1EVNonsKSTUoqEjjnQZIdgpJSGbzHEdmGu1H9w/4R9g7VEg3XqxIL6IMSfVjL038cxpJNaWGSOURjUjzx6hHQpkASEdB3Ec7jHZGsJmpR1o74Ue2Na1ITORLTRHqp0jbeilI5SP6SBKBE0jc3xRIY+qtR9IRV0eWfZBI9C/IR3VclEbMFjFN2D1CSiQtA0lF8mlJImWbSazgxEiCeA9JSYwaSH7OokjqtcFIo3a7RwceRE0bmexJ4W7XSCoeDknD8xJIDxsKSMqA0Ef9PEFIPnwWSDD3B0ioVslHlhxOTQldhUiMTHpIp8pxSELqDEcFj+tHBZcsSMOWg0hYSQ9IMcBVSOfWhkjlrz1N2TiaR9x5V0eZo5lIXcaPRyplhklTj8FIp1TFSKd5j0dunQxI2G6DR7ouKk0+9xVJh/61SKeFkEiYGwZIr0CNSBroh0h/n9JHW9cGSMSddUjR5rFHeLk5TcDwh0j9a25I1WlLSGnDOki95EtIH7YcR2LRCUkpD+9IauYESPNx+UdR1S9NPfZYSE7S7kcYVOhH9+VISK+pLEg5+qBIBCwISNORy0f6IDtIXkHpR7L6RE1jkKdIbNlYR8Zr6kei8ZhHIpYaSI+kVEZrfcBIXHkUSJfE+0dsqINIs605TbVkgkWIcstHYFvQSCIAqkgpyMVHaJxjSL3krkhvFB5IulSLSLXKDEhU20lNJ10rSFVMQEj2sw9G464/SLbfNEj3OSpId5OHSHD+IEid029INzTqR9I9P01kVchITey1SCa61kg+OhtIKb7vRTu5zkWomopIJ6oHRpf2t0ibyoxIw89VTWOwdEgGEkZIGyq9SPS8X0jm5RVIV50rSDdS80b/YJJIvMKPRx+RkEd1pFBNSqU1STIGC0jMKfhI+UyiSKe+XEhaoJZIYkniSMhU60bzpYxHwLeIRzS0U02kWohI6bJ7SO9kYUXeFghHD/GwSPw4lEgE9Z1IvQ13RinQHUhWuFVIgZtYTcyBzUnyiwlJQFdHSLLUEUh8sKpIDy1ySHJqaEiDpi5I/EN8SEu7yUgLEGFNSjVWRxdzgEhPXjJGdKsLSCeR50c78K5IUGxVSA+19EfMdoJIZctyRXBOY00OLuZIsYWdSHZ2U0fb3gRIdOSoSHDckUihJqRIKBr5R1/j90h3v/FHsDNZTeHRgkmwhZ1Ig1qkSEwu/kfbVOJIb/TuRdRhDEh83zxIc5fBR1liAUi67HpNT4+eSBL34khmZS1IGio7SZVrFUc5gnJIFcc3SAXSxUdut/FIjqTaR50GU01tgJlI0D2lSOuaYUgKfzVIcxshSX8eGUcpq5VI/TAUSLsGxUdS3mNHtrI1TVeDM0hbOKRIlLafSFcSLkk4Qo9IY0CNSMIfl0ia+oxIAf1vSPTs50e4YkFNfphmSGta+0aPxClHTw+LSH0sJUiVD3lIW3tfSK6UmEjDaOZHR5y7RyNkRE3H6nxIRXNYSI9AhEgifi5IlG4iSMmnp0ghjY9IECCzSAvyjEYoXdJHIkMyTTCKY0o8uVVK5OngRw/97UfNe1ZIO92VSMBZRUj2xsxHjM6gR8W84UeBgEBN8FqRSQxs30jXhXpIuGzwR1zXOkjgtShIgWKyRzd+CEdWva5HQEW8SD+rNk2eYUJITLGPSGwuD0ldCDlIuFOGSLm82UQguIxIuJ0CSTWTqEeJhe9HPYs5TUEGtkimypdIQZ5KSKw2wUfpKZJI8dN8SEPKIEihDCJI6vb+R27mikcoaxtN4kGgSa/Fj0ggmIpITDrbR7DZJUeymAJIFXGcR9DFm0gfVeNIuzDLSHExHU3JbB5JdB4cSO8vF0gSN69HRPHwSC76jEjwEhxIH4CQSAislkiHnZBJW28UTQmZgEhHdQhH/8xNSFJ2Ckj0tX5IeJosSDNJakbI59xIFbwfSE0fkEjOVgZNR8IOSVsIkUha4wpHZxnKSGMQcEgFTixHvFOmRmlwx0dbQ6FIdaXIR6c8DE25+eVIlEiuRuYB6Efkel1HujvBR/Fnakh5vI5IECCRR65I7UWi2KRI9cICTcqZEknAMZxIwHKLR2YdukfiBWBISRShSPh5J0YGNbZHxF9uSGQZq0dH8AJNeqLrSP1qh0gb2hVJNMbsSDMVQUeGbBNIX/TmR5ICxkXIsbhHxogRSIwZEE3cmudGzOKeR1jF4kZzZZpHuULcR+ede0hutKZIQzc7Rkubg0hZE1tIRJghTWdaNUgFzxZIVJvZR5pdaUdh1GlIRINxSL+vREg9Z65HRA2cR7LFykWEixRNf0q8R22QckjpxK1HYbYVSFiP+Ef7hrFHRj4CSV98wUeTGVFI1pUCRzZ8Gk3o/RRIibjGRwW8hkidj2BI/t50SK6K0kfqMfNHrawhSD5IckiYudBF+IIUTYifYUiMdLZH/mYLSMTwiEiN5vNHu2J9SIAmUUgUMRBJ4tjhRbdKwUcrzSpN7ZjoSdk6nki4TR9JQpaZR7pbiki2KG5IH08xSBzFi0e6M8BH6WG+SAMpCU2hlRpJByHoSFG0XkeEZBdIHAaaR0O86UYIzoVIuw/qRd0cVEgQYZZHZyrxTEgm7EiD9J5I1Zf6R+qmFkhLjYFI+zmfRxkKo0easAxIYiyhR9tiXke0tQVNGfEeSQVwIUi2H+FHv39oR0cBpkfX4a1H+8f5RUAhy0cePx9IMWjPR7WW2kxNvQVKtirhR9pbV0Uu52FIcCU+SDzyhkiNPAhH8rU8SOfIJEhznNJFYbfkTEgEjUezGl1I2wccSGjqtkcNi6BIxt2YSD2+5Ueh0qFIcujOR2yWEEYYxPBMxFCJSPJcF0go7JpItQg8SLCCAEieWRZIb+A3R/bZhUWZv41H9KhKSBPu90yzTB1J2EPHSESi2Ei3xKxHtJZ9SATqwkdWCoFIgjQ5SP851UcThDRIU1HwTGeBYkpwW4dJUF31SFkQcEh27aFIBisLSMlmoUhOiE5InvlbSI5DBUjxHBxNSs1ySIW1SUhrvWJIUUUVSDOsHEkl5xxIzJeCSGcC7EdTIcdHL5+jRxJGAk3C8CBIS+BqSMSOk0jWV4JIQLgpR3nIq0f70JRIlAzPRyv5u0eXA2pIq1YBTe8pDkr0TcdIw85sSOfAwkhS90tIHi0CR5apdUiTKpdISu5eSJMLGEeH1QJNQ51OSRgXmUgXc5hIsZypR79kUUhgAgtIylFDSBdwe0gT19NHSJzORzLuEE1imitJbX65RvSAXUh6/Q9HZPqnR27ZuEeLUuNH6efRRYkDX0gS50BI1EwKTdUPkEq649hIxyaHSN+utkjR1ZZIvcXzRnoNGUlSJiJJdKEMSbz2hUh4awFNnRWPSH9l20c+PL1ID1ehSAh1oUVv4LlHtAMJRxSrhkhybpNIUlkLR5Xr8UwfyR5I4l4DSDRnqEiyf3FJHZNnSHwi4UeFc8tF7fK9R5B/t0gmyIFIkKXUTB+GUUjmU09Ikc0pSDnWJEiwwI9IV0w8SPT7p0dQdAlFJBleRz78AkjgedZMaeECSAkHCUmSMQ5J2giGSPgAEEjD2s1HZBOkR8xPiUhxKL9H7L18SIpI90z0EFVI+MfESAgPLkgYGKpHKBcMR+Tqy0cbVatH7+bYR8kXz0cy4VBJGQD4TIZJR0g5k6VHJ18lSDNnPEihjNJHDY6vSImGFkd8nWpIz8eiSGGR8EcUJNpMDbxKSLCoxkj3RFxIPGHOR5MLDEhvPIBIGbTjR7/hR0gO1JhI+keuSKCR80xDfJVIy6VVSE9f1UjiWoxIhiwKSAC6Z0g3aalHfXFYSG/LiUiuwitI8GrYTO9/9UecOR9IexTMR5MO4UeVcsVH1p+hSFaoxUfWubtGMcSrSHCuiUb2gvRM4HTySLMDmEjF3xdI4iiBSIgQakjzloJH/A+CSND+Vkgg1l9I4qxpSOjG/kz8hwxJkS49SILyhkh9uphHeGBsR+1rpkgT03FIHAwRRzCM4UedsDFIBrMJTZPruUgzEDNIfw0KSFa/d0jWGX5I6YGdSKfLnkjDSqJGQEQZR+quxki/5Q1NaWACSXIquUhV0ddHI4CNSGt6zEcR4wVHUj4ZSMfKI0icwaNINCCeRw+BDk3VP09IwxwNSFS050eHeSlIO2sfSPgflUiLMNFIeAoERvDwIUaFu7tG894dTTK5/kfCutpI6RieRrNYgkim8ORIh02/SMaQLUlonYhIu8aDSKYXtUfMoxNNQwR9SEKyCEhL/x9IPg8hSOuSiEUrjvFGJGwhRxhxfkisxRFI+0AsSFbBGE2Sr4FJX4TGSAetnEcEfZNHWooiR7nUkEcBmYNIz4IARsDWMUhEzFxHF6YOTWgiAEiebbBHQWzORYGKEkjH4cxH6KGPSG2LBEcqXztI2KDKR5CS80UUuAtNkiVESGxU80fdVnlIi9bQR9lJ5kif/x9IMWhBRcD68kehoPtHV8W7R6V//EzEFJVIQfOnRrBy0khjuWNH7xC4RwAsOUjzJvtH6hS3RtvhhkjDbXhI1IkITZ4jC0jQDPlH0GyDRj37BUhn37hHDMU4SLCB8EUlZP9HOuKQR5bXfUjKFQJNPR2rSBDBVkjvLSVIiHwfSAx/vEfsnCRI2yX3R9f790fMR71HckAjSBke8kx7hotIQCoYSKszg0iSuCZI+ayPSAfnpEgH6shHcdxSSLqC8kVaT2ZI7DX+TPWtMEn6PRxIaX8nSP/E3keW5YRIxm/eR7vMHEaZ4SVG53o2SDJV3EaKf/BMVEsfSQ6I5kil1ORInXLWR403D0eJYJFIDTbERrKf/EdRcOZHtZCSSP6KC02BCaxIliOzSEAs9Ufm1KhI9PWCSN6/jEhTzWVI6xkLSRi0lkckRpJIFuD/TP7igUhn6bZIvyDVSBxpskdNkxpIib1rSDkJqEc9ORZGnQnFR5pByEejKeRMvYRTSAAvBUUpmC9IImpjSJoqO0gzA9pHyTOtR0Wos0dBmYdH/iHWRyeY1kzyr/VHP2KVRrDtlkhoPKZI+E+VSI0c0Uh9YZBH/jaESMAXNklNQyBG6LD3TCEtt0jJC+1IzlGxRwHpFUjU5zhI8cpiSGtIn0fFzt9HuIQRRUmNxkduK/1M/T4iSIXn9EdmceJHBJmuSKZ46Eesi5VIUQzpRxjA3kd1QAVHJsRsRoOn5kwb7i1JwZPPR++4AEhJtcFHrNwISd5HSkdQhH1IBak5SH4lzkdN4xVHF1nMTEYSN0gfkDdI250xSNyZ1kfZkQJI5LT0RzhJJEeTozVIH8v0R8mSjEXFuOJMLbsdSDDw7Uf1LalHz7CBRhXWhUjRW9NIMU7wRSc1skgHvARG+FgASLdquEwJfBFJLdIRSDirk0jFNUFHniQmSOt/gkjAacZIpC/xRzsqikhVjD1IsTXMTFoPnEj3hdpIDsmpSEGGhEiL5tZHjfq+SDutmUeRjN9HSGHIR7ri4kcosqVMfzfOSNX+A0ibNy5I70LhRyIoa0gbmW5IfgFHSAU1CEftrR1Ha+HURnUXpkxrOsRIhEm1R6A4ykamK4dITWnTRbUFLEhCXm1I8EZjSPN790e7YA1Gtn20TD6Ofkg7fYZIK0WNSGVYJ0h6NLlIaEynR7xrtkfUjMRH8jDuR/pGMEdrF6pMLL2eSPXQgEg6hbhHBw/FR9YlxEU4rFlImQ84Ro5lZEWcMWhI+P9QSJkFtEy1JTdIOkvkSEFGxkegl6FHJVZpSL2j3kcEOoZI6/3SRxSp8kb2NvJHAAmzTMcdJklosbdIbAYnSAXM3ke4YtRIXjmyR0C6r0fmwSpG3MmeR3eD70jXLrRM4mHHSAIZpkcUjhBIGuVXSMzXHkhhVntIG00wSJ40y0c3gaNHldXWR27/w0zi0iRIsqFQSJY8dUdi9hFImvFwSKLgtkUpiepHC3lsSPt4oEdlErdHvaK3TPvKn0eZD2dI4zpOSNKls0cjHCRIJiQYSIW0dkfPkiJIQM0HScILeUjc5cZMEzqRSOozs0gL6dtG19wzSD7bE0hd5BdIenW2R7CDt0c6JxBJzVrAR+mtzUyfirFH5A3eR3Ac2kcehwtI+yDSRxiVjkcfjalH56LDR69n30ja9gdIRPfETGusSEgewBRJ5SBESMUmRUgj7M1HuzyHSKdbAEY7Y/hHg7u6R/UElEdKvtBMt7F6SNsqFkjfzwpIeYvuR4CMn0U9ljhIXDYDRs2B4EasLmxIEdDpRbaNyUxA2v1H7e3GR87+h0jQpm5INyfERxje8Udg0rpHqJbmSMR+Kkdm1dpHClHUTJ6fR0hjvA1JJByNSIZrvEfitAVGAiYNR0R7t0fKsZ9HRB+jSJMLikfDT7VMyhyXSGos20fBR+BHqZwPSOGIGki/KQVIOjWxR8JY4EdAANFDXLbLR9Noy0yMD6tGxZcqSDxVmUgrHaZH6ejMSG541kehSAtHYFWkSL3Ec0iy9aVH2vSsTIP6NUmR/oZIG4hhSD+9IEjbN6lIL9AFRgt6bEkVeoJI6aPVR1xNhUjRUc1M3x9ISakICkmjIctHfxaPSIsYn0g1bt5HYWo+RS4qD0g0AoBHdRm1RpvI1Ezmy41HGs3vR87lBUgDJHlI47z5RfzUsUYEottG7ru8R4vu40VX+jRIQx/+THkPEEhQ0hxIYUk0SI3KW0gxQDNIgletR0J7rEcz+0BG/dxdSD4ypkhRFMxM4CSoSI5rwUetnYBIjARbSEfGx0XaOKhHpzoKR6OgZEeNvLtGf8jYRcrYvEyazNhFu2MZSDn2XkiLoxRFyttrSCxjcUjj2X9FeA3XR3Yz6UVV6q1HhY2pTH82HElfGkhIxXcSRt+iXkhwPYFIc7kQSDLPiUcfDRFIABtaSFCKfUdvaKVMvCPpSKnGhEgMWwNIiXivSHXhu0ftLslH1CKJRTJlLkWQxEdIFBMESM77k0y1Ow5JcxWsR6d0cUeb095HWoCLR7DwyEhnuDtGo0lERzSSa0dH74FIntOdTCX7c0j9BlZItLwgR6euCEgKQORHruIZSKmu0URMZExIsjLTR+4zr0eFcJ5Mkk0MSMt5cEgFNWhIncajR1fMwEdSy75H0VWoR/7grEdvCV5IA9fGR119j0wf2iFJegYDSQyLdEj5TihIcDw8SF9MoUcShVdIOwXfRz710Ud9f6RHqXucTAxjF0ge/wBI6q7jR4Rxo0cA2UhItmL5R6wIp0dnzv9FyWi2R+zDIUgrI6pMgkYwSCTXMkhQSa9HHMyVR22JWUi+6Z1Hi6u4RyCWs0ddKqtH3HVRSNoGmExhnEpJmmKmSJMh/kdmDa5HfXOCSDnxakhkPo1HnC6PRBUtiEfDCG5IyOyMTLO2wEYHGzRHmzf9R2AUYEd7ABVIrAYFSPP480dX2mZIx/EoSD6BRUcAon9M70JRSHmesEZUUaVHU1QmSP2mG0giqjlIBBjkR+XriUcq1z5HrQlCSE/9eUxULCtJZxCUR36pi0iBMWtHO2NuSITMm0eicC9IIqMlSLG9kEehvG5HcZZlTI4nhElh5shIw5klSGDwMkg1+ApHXD2ER+8oEkgjQTJH/+zXRmTBP0WYWWlM9hDJRiFkbkirnpxESoq2SFxssEY3PJRFtJntRyfVfEe4L81HESWhRSBibUxXB+NIkdS9R3c6aUchepVHhXDHRQFBtkfIlvpH/XKuR41PQkgtmZBHA0GNTIPJHEf5atJFIx4ORjQ1T0fRu5lHZQz9RlCS1UbKcp9HyMR6Rxz0LEiLNIpMfIk4RrHGmEcBztZF48yPR1DIXkgRzbdHrrKBR/QgsEbs+8hH9lplSBQbi0xDRZVIe7qYSE0BeUdSTo5H31CpR0+h0UYnp7xGWJxqSNGnJkjFNcBHq72HTFagIUhu/4dHC13tR1au/Ef0IYJIoQGxRVT90UcdlGFI+WCOR3AGmUcNr5ZMCgQCSIG/m0g0uW5IKaWrR05KtkemjLZHTBdUSGXVI0hYUb9GJMxrSHBJlky0vf1Hlm2lSHDFuUfA5GZIZg0JR5X2gkguys5HIsztRZxFXUhpWpdIXSmgTGJpjUh4w2hIzkj2SIUXVUbe0eBHt4OAR6XGkkdr6k5IOtBmSLVR1EfOL4xMVCvHR/E/0Efi+EVI1vm4RXPPKUaTgJBI2c9YSAQzkEg769lFjWa9R5FvlUyZ4gRGHZyARYsi0UezDb1HhgeURy+yzUfRWuNHEp+QRZSunEe0EnlI36CPTLLW6UctiDNIP3pvSCiqiEd7ab5HZm6xR/ye/kXdBflH45B/SI1TlEe/qp9MJd3UR4I6g0deTkVIkCDnRyQm0ketWtVH06ZsSISBuEcoJ6tH9JmdR/e4dExwXUxHBSArSJIOB0hhyIJHMZyRR1aAh0emRaxHxFReSIIc50SxwHtHH7CMTETBJ0eh10dIZiO1R9YxzUUkLV1ISHaWR9gXgUj0/sxHHNRnSH4LGUja5IpMdSFzSORgnEcRLwZI+szPRYEftUUETWhIZJGrR+NfN0gcqH9HTSZXSDhne0zAF1RIQJcdSPTzikhKr3hIuAONR0ziWEhIUptHWu3ER2P9r0dp7KRHWRZfTHftfkiHF05ILyJVRyGGN0iSn7ZGY06oR+SnAEdVx5dFCt9jR0xxl0fWKXpM9+FYR8TsuUXcqIZHAxowSKi9r0dYurVHdNWRSMTu30ivHlJHxIBHRVXOb0ziS4RIoah+R6fqeUXwMHFHN/S7Ryhsf0j/+ydI53e/RzMtOEUwG8dH82V9TFnxCEiRP6NHAxazR8kpgUf6gqNHAD7XRWk6DUaTUGNItrrPR25+o0dNDIRMMSEHSWAm8Ejn2dpHNpYPRnzg10frKXlHdXu0R0iGoEdK0X1IpxWWR2DegUzxnn9HrKcSSHDXYkcV9gFIa7G4RzTigkjvs8NHCCQZRuRlnkgxmNtF+ZNtTPVaNkgjyspHRbhMSKvbmkjN5IBItK3JR4YDdUdNUYRHLUjNR9WBg0hH6XpMMMSJSCJ41EfZrpFHLJVVSOB1ZkhN375H+FqqR6X7w0cqT3hI2ky2Rwtce0xS9htIJwv8R1ML8Uh4FoFIn61VSMyOjUjuZRZIyDcDSLfOpkelf0RFtShhTIKxTEg2r4FIfi6gR3sDTkZF1OFFOp6XRx/No0cO9w1ItdVSSF4M90dIQIdMhIGNSK9zX0cDTgVIrNKAR8doukcxKalHVDHtRWWJoUeY/hpICzUuSBxGfEzQNMVHbd4PSP0PmUd+xj5ItwwzRa6HlEc6E/9H2+lcRwEDikf3h8FFJo1tTHo21EZ4zq1HVgD1RIiFeEX5vFxHqBKdR9rrgEfJ7OhEWgxlRzUkLkgA63RMgXGRR7iD1EYgKC1FZVXTRxFDXkc/lK1GaXViRfNWbkei9Y5G8secR5EdSEzuMJJHCmtKR1au+0f8qhJIxPmuR8lrhEfTd1pIZ0KkRz3rWUj4s1NHag1CTELAXEhYDGRIHMumR/6T/kXEdUxId1yHSM5eP0ijfL1F/rqiR/iyOEjgqk1M4a61RRFjoEc3QgtIqUoUSM3kiEfzCJJHV+pmSExCG0ir609IasNrR5GjR0wHeRBImRG2R6RulEeTL3FHTEuFSFqsskeTWJlFoCSyR7rklUWSLZFHC507TKR9OkjQLBNGJ2NqSNP4HUhgh6tHtQsPRjHugkfq5UJIS35uRKHWN0hMFmJMM7eTSNnmA0ijgp5IOEBDSCTtK0eYtENIxPT+Rc/3pkcCbzhINay/RthBWkyFgzBI5hVJSGPmX0hWRKdH3iHdRjcwfUe416tH9JnxR3+7+kc6phRIma9DTAZ9rkiFz45InzE+SPr38EVdEI1Io/GzR7OZB0gDM3xIAuxnSN+UgkffgWlMY+dQSAlzlUdv8apHNedESLsR10fUxilGoPbPR3hGmEdh8zJGhMIJSHxyfUw+NThIIHcBRe5WoUdyMUxHIOFnR7HtPUjuq9NGRtA/SMvkckdg+XdIx6hVTMapPUhRX2tI6+qfR/1+skSFlY9HbELQR+gsZEi9G2FIrER6SDWI0ke1/2dMEhuLRy4pRUeGXJpIDhwqSGdoYEdGkItIt8lyR8+Ve0c2HlFHEhqdRst3jUwRfGlIL6byRwvYr0ezujtIxCCURWnuDkjfs5xHmpchSLp3T0UKG1lHeaKFTI/sd0hjLQZI769KSMnIGEjbXxxIXw+FR+0dD0hg6wJIv5YlSOgojkU87pJMUjqPRbTsNkclqmpFfFmNR8nTAkiK1BNIA57bR+2h8keC9oRIWxknSOadikyaaqpIVuwTSEkqTEgeYO5HOVWnSPxCj0YAXDNHTOSoRt3JlEYQuC9HmmiMTE0WNEh1BihIbIwhSNcIOUjsY45HYsZyR1xROUfGdCxHHMCJR+quMUgJjohMne9VR5wVRUgX8WNIYiF3Rwu3aEfqCopHirMfSAddgEdl5t9E75+7SC6VgEy0E8xHGK2FR00Le0grkihIs36eSJbnikf5Z3VHg8YgSJsOSEhYaUFIH29bTEPZeUnpl7ZGo6nkRxQPkkdveZBHQpZaRMLv8Uce8YtIqMVTR7FIkEgJuUZMB2BwR5UojUfQAY5FQpCBR/XZhkdPclNH17G9RZfETkiWeWVHuGg5RZ6rXUyvWztI242LSDJHIEhassxHslFeR0L9bEeod6xIsrMDRefXl0chrJVH2D9hTFonK0mxMa1HFfWBR8g96UeAMjdI/DkvSN+YfEdv2UNH291nR34ps0cPDEpMuP8PSN6Gjkc2UgRGcO7JRV1KKEh5kC1IYgaiR83qeEeBq3VHfYhuR9jjOEzANCFGNKwkSIqeC0ggCXZH87ozSL35KEgO0HRHNSaNRYdOeEccsIJH14Q7TCujAUjTsNVH0Uw3SJ6CL0jlHuBHVFYfSLH5hkdALrhHirdrR8fnr0X5UUhMlAQASQWWgUdOa/RHG7hHRyDjkEcHfh1IiQl5R//leEdVRFBHj4pKSMPwIkwUPglGeZAZRx3XiEhSA4BHPEZvR5KGoEfgvz1II82WR5cIdEeb+y5HbkQ+TIR1jEZ9qqhGV9x7R5H9gUdHfrRFOg6NSPRvU0cSIY5H6HtgR2skbEaTuENMpBR0R8v3okbQTohGvi23RzZycEcI6WZHI7sqSK1aFkg/xm5H/RoTSJCUL0zLo2dIdcQuRyfPIkjaLHFHwX1LR5iHFUfgtihHPkA4R86MQkW+g/NHPM83TN2JAUn/z4tIIN2NR6xQJkjXi4tIGB2YR7tDbEf7NWNHBQp2RpHU70jWaFFMzU7lRw7sM0jcROFH7qOpRlIQTUdYUKZI1iaARRHH4kSCMw5IKBF1RZxgJ0ydlXhHVU66R8g7v0eeYTpHTuR7R7LLH0h9D39F4OthR6zCGkiC4YlIirZJTMrbxUZ7IJxGTQLeRD3KJ0gVK0FH6lKHR3TUR0fQd3JHZ1GXSBUif0ejAS5MbX0mSNFst0dwRUNHl7pvRzO0P0deDE1IgvKoSP0ho0dyV8tGNZmQR1znVkwZhaFIT/fLRVZ+PUfMDURINmJLSO5ee0eKtYZH2ZrBRjMjUEgoLndHnCZdTF7cpkhUkl9IwOhySAzpCEg7py5IXv5XR4sNY0fMHRBIBoWiSO6lxkY9E05MMpVlSBCqcEUog35HdEQfSKlbLUgjQmNHRDBvR9S7PUgYQIZH6dhcR+B6UUyZD4ZIuchrSLh5uEj2W0NIcRXRSFKsc0duCrFIcUFQR/Z/KEeAneRFgLo7TI8dVEfx8TlH0UGOR4t6FEe418dHq9VcRwkQtEc/xv1HIiJER5TIkUeskGBMU1EWSBOVlkcfER1HdJk8R+pPM0a2OVhH+rfERClpr0idVUhHjtO/RcT9MkxKrzNIFQi6RsBjtUguau5HcobtRJXWpkW47J5I+riFR9XSSEjK53RHNABQTLWNWUfarZFINHqYRwADU0gJJSpIxB+MR8UHKUiqEi5ILwpLSJkCXEiZBGBMXBAeSIojvUcBt2tH2/EwR/sxNEgZd0RHrhe8Rz4S40diRh9Igs5IR63AQUw/+zVH0e8BRYM2IEhrd0lIslIiR3SjHEgmOxtI/b95RlSNb0g9CTBIJHVOTIbhn0gkmwFIz81MR6+Ap0dauulHGewzR+xiE0hqo7pHI6opRUlaG0dfLzlMasavR5f3cUiXsLFI2o2VSG5WN0ij1kdJvIaZSIez+kdKMMJIfIJYRwyQXEzzLSpJV9iaR8eVg0gQ9R1IhVcMSOyZS0evwINI/QQaSAu0j0dQ3RlI3xZvTGsjSUilo/BFgG9KR/QPJ0dpa+5HQWYOSAN2X0cWC6dH08uJRzq9eUblfnpMUhvQRz3tfkiLJQRIx/WPRku75UdyWixHEJyXR22D3UXgEvdHgPkaSDhUlkzwjbNIOMCmR3SGbUeNQ+JHpgcWSPqZqUgxHHZE8TGJR6QAG0UlNhVHyZ+hTHt/NkX425BHTwM9R/JTZ0c9G2lHlNTgR9G950cs6WhGMB1rR6HciUUBg4hMOuQKSLzh+EdcccdHOfIVR0Y3WUchCnZGk1IASAywGUhDnA9IA/9lR4bnrkw1zglGja88R20GUUUoSs1HHcV1R2q6aUe/uDhEV9uwRdIMHUg8FFBHvd6rTICWlUh7wB9IuKneRwtxIUgiRmBH1o/nR+F/R0cE9YpIl/A5RyytPUdz65JMQTSuSG/jfUhgIOdHM+SLSJRLcUfWgPlEhOuTR5C0Q0eaek1HG/9mR7gHrUxm4rFKw7uKR2SlWkd3w3RHQNJDR6U3V0fOpTZHrq0oRwNpUkcJgbxHMNrCTKOJCkhQvIFGgTRaSNrkdEhm+CRIVVVLR/jda0eyfvlHgnheR0NCbEfhuvxMf3ZKSODYVEfUNwtIVh4mR57qvEcIKoFIPctvR36OdUc1QVdHCGLGRAyl9UzkvL9Izbe2RsnC+kd0Rm1IC9NgRwSjYUfC6z1IqYCTRXGwJ0ixx7BIcOnjTEb7hUWg/pRIgkoISNVwT0hE3hFI7BBdR2Hw10e5qxdH3DDPR6rUvkgBH8xMng72R8Z1i0gXAl9HmMCPSBB7EkeCN5xEfLWXR5ZufEfMV1NHjNiVRphIoUyq2elIYHnKSNK1n0d/a0xIgyZ2R9uhYUdARZRFKaUFR2TFbEfuiE5HnxdzTKwRSEfF/RhJymKSR2YYa0joK3ZHtbQuSHFhkUaPephIB1+6RXIt80flf4RM60ecRwpnwUYEYx9IAyc4SPVSNUf//jpILK45SJr5W0fOgLBGe4hRSKutdUzUPdBIDKi+SOe9oEi19h9ItlGqR5+1gUeVlohFIte8RdrPQ0huzZBGX/dTTImfZkjSsp9H0zMoSZ6OgkdeFY5H03eLRw9dKUhNyDtIkhWrR781a0fUu3JMTTuMScp3jkjOu15IG0HDSPCoV0jgiz5IZheMRZQqOUidykdIzMj7R6Y4Q0z2YFZIKuhTR5GC2UdkK5ZHGimCR+B2PUigicFI4SehRiYqRUih64dHqyJnTPiUrEnW/CVIc5vLR89mwUi03IRHXWAPSKteX0dnb41Frwm4RiHczUZ9e0xMt7EMSCg0kkeRqUhI6tshSKr/yUU4+N1FGfnRRTJIJkiV5ItIW+WVR1YVLkz6Di9IEZ0pSDRBWUj9p1lI08qVRzxOpUVSI0BIAg2sRlM8R0jfvlZImjVWTOygG0jOgB9IGFjQReDcIUffQJtF3s4wR+vodke0k0pIMaMESFrIVEcFbipMxxUXSHJfCUjucTdINvM9RytaX0dDNZNF1g80SFX8T0j96ZJFLcu9ReUlSExVTz5IV+FyR/PZcEf48ZVH7gzrR9jgjEeZIg9Ii5CuR+lihEdzkGpHNvNZTIRV0khBzKFHLS6qSAshu0f+QFdHfzekR/gzjEf7ra1IzZNDRZ4G0keO9EBMDzEnSRuLY0jLNs5IySB/SB7WTUhBu3BHKp2RR0eeUEjQnKNHJx3GRdo7dUwqp2hIDjJjR4ClG0j90sNFaQSPR/4LmEep4RNIa9FSSJY7j0eJwZ1HNVtxTH2vzEf/WoxHQRBqRyRRHEhe+DNHTudmR20b3UfxQqlG3CZdR+KD10ipmX9M3IZeSUPMREhakIVIuXJASFUJfEeQoURIWeVVSGfr20gWFIpHu6CpRi/9hExOMaRH5iKTRyn930XMJ2VHSaNiR6caLkitpIhIegpRR/+msEXlQGRHPflKTEfjlkhuJjZIv2gBSPpUMEjgcCFIvKmKR8GRUUjDlxlIy+wKRAb3ZkXQ0yJMuYYQSPL290eiAPxHEh+jRcxsXkgTf19Hm9z8RXClSUeevoxHX4PKROPHWkwGN69IJJZ0SJ/bRkcQwiBG3MRxSDDNrEbSdshGx32YR/KzHUgVmDJISVBeTO9Q+EWMb4FHqhMsR6yAPkizrdtHn5wJSKG7X0deBR9IQfgVSIKaOkhf8EZMPAHKSI1+MEhji7VIytO8RzzhjUfITkdHSwthRx/NaUet5qVHET+HR4gkUExFsppH6zTGR7wZJ0hssllIWawYSA+1XEc5SEpHPTOcRlitz0ftybRIxYZ/TL2/WUfhLnRIjzndR4f/a0fFQ0RH5TZ8R8aIjkf/6MBFc8BCR460q0ff50lMf3sHSBER9kf7Z1tIcZs5SM1G0UbKVU5HpaORRpgSu0YugaJI3HRgR+S4S0w4TlpHfIf9SPxST0ij+X5HHuqbSJLMWEiMlhJIePVbR1l3D0iPpVxH1NAyTPe9KkjNrThIbhPmRye+ikWEJVpH4Al8R1zMPkirfSlIXo1ESI6UDkjtkltMzR4OSMIbFknJd+5HdIZDSBORXEhoM2RH9SOLR5tMmUY2OZxHvS0GSGYkU0z+825H4maoSHjQgkf7gU9HtCThR729MkjbPl9HGs5cR3l1gEibBshIo+hlTFXh7EisQZNI7/m8RzLtR0gjI6VHKPtVRy/PI0iDvUFHVjhJSEU2iUd5XUBMCNlrSCjqJ0jyKhNHMsO8RU5Kl0axZvpHb/HoR+O0rEdQJKFGcV6YRo7VZ0xfU5BJTrSeSFL5UkjI1YJHmkv+R9FzhUV+hJtIegqxSOQ2wkgKbwtIRDpHTAClWkjkOpRHvd4hSKeM+Uf/EQ5IAlSPRuNwukf6cXFHp181SLkN7Uck20tM2BoASSWZhkivV3hIfjRNSFo4vEhz1FlEykaISAWh3UfncHBHeRZ0R2oYLUzfuXhIjZiXSN9aR0j8NVRIy3UyRdgRskjSGn5FspiRRy4okkVDWbBIWphTTM7W/0hnwvVIMshLSAIbnUde4ltH8k2mRgodkEcs4YpGVAx6R281aEft7lBM39CdSZ6XOkgYyVFIqEOqR2oulUdd+XJHMgsLSLJEEkgUwzxIo+QrRyGaWExP/zhHA78vRxIODkgDLVBHCb9uR5qsqEVqryVIscETSJDBHEjzOYNH2MdXTA8jh0i43iZI+k8uSBlk9kd8hQ5IkEZlRkI6GUgG6/dHVjaqRTfIW0d39DJMUxoZSMscI0eUTI5FSaV5R4TbIEjZWmdHPjN/SJcUJEjDGkpI9HBdR0B3U0weK+tI8KLeSFK40kdbX1RHYc91R/0BTEfY8JFGsEd3R3ZbK0f7qWhHFORDTJC4DkmxQaVIiO0TSFNqBUjyWG5HzCgySKOADkheV1JHQ/tPRy7oL0c+OyVMXAxKR7ctj0epuERHwodcR0GZHEiais5IkxAGSIu8S0bY+05HsD9CRzmdI0xNNYBHkrJjSGCqM0cvgGtHeaawRecXYkfLUCRIlY8kScqigUWfhkpFRRVBTFxO5kgFZxdI304JSE7fEkhFt4lG1G9aSN+u90iYkIVF2QobR5W5CkR3R0FMi9CZRk3UiEcB7atIhjEySN2FaEYirRZIz5fSR38LIUfjmWtIC1deR63WSEwqMLBIrFK5SAh9uEdTaCBIbgsySCUjTkjVWW5HdWwBSJViVEXw+ghIaN85THqYiEj1xmxIz18uSNrqT0igXH5Hi0E4SJEkkUfe9m5Ht9VPReccHEgzbXJMmrOoSP+aX0cCOZZIoXwfSNt1tEhtdYJI2e8xRzggTUd1cZpFkMVDRzvgXEyVcUtG1SEtSFa6D0id2B1IaC6BSMwEaEemtQhIfSNGRwf5SkXGblFH6TtJTGR6MkfFIWhH82fKRVEJckdsItVHDJztSCH2WkjpOE9HKdKARzbNGEcW8kNMo7XkR9hCaUeOXJ9Ig0pyR8qGA0gQJzpHqB9ER6QbOUiAcZ5FIQ8CSGAlTEwmn7tH5MAGSAWDgEgyRgpIShm9R+gXQ0dFMThF+9BNR3+jDUVNXYZHx9ojTJeP8Uje9mhIznLoSGRK10ehao5FlmlNSI9kEkhYF2pHT2JHRwG5T0fxBTxMJJFTSMCzeEiu8qZIGAFpR1aJQUftYLBH7aVERx+pX0bHEhZIDdKMRl/IIkzlKWFHbTMJSOsFqUev0EVHQ2AMR33/LUfI7otIiZsrRza1ckeJF+FH3OpQTIHlu0Yj7yBI9XA+SH1WtkXDdBFHOGZzRyZ50UivTShIpbo5R3ueDUiKl0xMcLUrR7e7o0jsXVNH5w9LRwWozUjb6WJIRzNcR7Dm3EcRCgRHLwpWR36hQUyFViZIDA53SGvtDkgje75HPlxXSE8DmkfDV91HCNNCR4YjwkgpoxBIJl8jTGW6i0eBRkBIcfkWSADUlUikUoNH+QSDR9WPo0W165hFIRuXRYDeIEjhrD5ML4kaSAZ0YEjpJU5IkY3cRMgSZkZdrPJIlHMOSCI9FEdy21ZIOxYPSDZJSUxzGURIWR1aRpgNqUerazdHwj5HR1pV4UcaEdpHbvYLSNr93kczknZHXD8pTCfrQEnU4lZI5nzDSGHrZEb340tHR3r2R/hoS0fFFI9ISSjaR81wVUfFODJMSMIyR23d1USpQJNIKU20SPMwbke23iBHg89GR18SBkhbdDNHWrGNRhv4LkyenJpHEEVSSMUfmEYBKVVIYBESSGKiGEiZzJpIb+71R3qrKEgKtSZHJjAqTFGa0kg7LYhJkxGZR95ae0gb1w1Ic5NGSPbPOEd2eRNIxZpKR5MQBUh/MitMO5kaSMI03EeaexRIaggkRyUEa0U6nVdHLfO2SCjkTkhygDtHYA+JRWbRLkzPY4xIkKmPRNSL7UcdASRIwPrHRzKkCkg4olFHJjsjSHa1HUhCAe5H02A3TNvhLkcfgFJI5YgfSBVKI0jMnn9GAUmxR16JCUd3XDVFDwlrR5Bn/0aFGjBM7BDCRzFPoEhbfQNIe4idSFHKj0dYClNI3xU5R6itlEZXWDNHfC41SBeaRUyvcDFJyumPRwFetUhdzVFFosonR2cqSUdtlSZHSeElRw/BpUeB08xHv4U+TPX9ZEeB7z9H0PezRyYRXUcIBKdINBtcR48BEketPjVH+NIuR+ScDEhCdiZMXihMSSqYn0ddMH1IWKUsSF6TdEaFOw5IgnHWR9LkQ0VdzC9I4RdAR6vdKEzzEUVI5pCOR0vsCkhuF05H2oULSDuQykiBztFHCsbYR0ViPUeTRiRH5Fw9TKhMEUimvVdG4ew8SA/dmUjfamFGdBr8R4umk0glB6VHW4A2R2nSJkiAwUJMg7uTSLcah0gPPIZGOQMsR+AaEEiTm4lHPuILSCpSS0dH3lhIqnsyR6U+ZUxuYV5InVViSEiIgUizLC1IKQOPR/1eVkijRVpICRQjSLTc0EexGT1Iydo9TGzekEgJEbtIFbBOSL7sMkds5lxH9MkGRdcBlUVkOa1HkIs0R5n+J0fvdzxMHmDaR/SO2kap4elHkerlRzy0JkjgvRBIiwAuSN/IiUjFeARIholDR+LZN0zo349GzVHZRzMEY0dFPFtGgo4HRwobPEfKSFxGI8IZSLea7kfI8RFFJq84TDnomklAStlI6y/gR0YEFUh0iU1HVJ4yR/HoIEhLdTVIEHWUSL/xlEiMoSdM+b5rR5TfV0j3NDVHx+tAR5WIWEdeUUpHE6n7R6VoG0hjtiZHE3lHRwSkIUwpEWhI96YuR+t6GkhxBPhGZkfoR9anJUd2m+tHtImXRIZ0LUcrK6JEEjQUTKGEZEhJIFlI513XSG9DEEg1NhxHYLenSOw2YEjamMRH9nIjRzEAzEc/PipM4oyYRZbUKkeD75BGKD6ORU1k6keWPUlH1qxwR3ABbkZjXSRH9RvVR/0ZIExkxhxHLS7ESHcfJ0jW2C1Hx/E1R/fcBUjwcT9H6L1sR2nPc0c3jKJF93MoTL0IOUdL8iRHJmJFSHJYj0jtVLlI0b0PR0Kno0dEQOdHSrO/RE85eUi/JBlMbsxcR+bpIUeZCEBHzizhRzpaIkdxWmZIGFZiSNzCGkiI3RJH/ENARyhdVkwhYBhI1u64SECe30ieVAxI2s99R3grD0Z8aRNIrrdcSKJP4Ueb1zpHElQfTGNeSkhmvBRIYGv3R+IcGEi2bG9HVa4ESF9OLUfh759FKpyTSGoNZUjkK0VM2LNaSV5nIUhVon9IP7FsRxhnIkilYUhHch48RzhLG0ghDF1F6r4iSFtxMkxTKfRHvLs3SInwNEh1n6pHYaAWR+BoZUfs1TxH7z8USAbiUkcyftZHGZsyTEb6GUkNSGRI+Z9CSPf0TEfKrcdIyT+mR+gSfEgxFe1G+49JRy/7RUer/CFMisCHSP8Vykg8NSNIzIRkSENqbEelA4BG+CN4SJobi0dxiIhHZ7gSSGHdRUwtCSxITihmSNEB4Ef/7gNI0w81R4nHt0gXMZRHKbqaR8PNT0hQj85HkvFATEh7WUk+dC1Imk6gSEqjPEgTnWVH9rfXSC1/jkgEfwxH2jk1R77UAUhQUkZMFmzXR0C+U0fdLRBHHzIlR94+I0hGkH1IV9TBR9bQK0j0byxI9NA0SKtGe0xDwEFIziRARKqPh0dcIgNHltUnSJ1HKUeK9ipFShxWR6ilYEdGIZVGY7CSTO85u0cOwK9HFT96R0CnP0jc6x1HH9KySJroCUjF+kJHBOp5R+C4DUiYXbZMIGk/SQC3gEfudrxIuHV4R+7FIkhrGVhI5t8fSCi1KkfkSwNIJ+9lR0vZhEzaXwRITqigR6cwoEiEPCxHmJe4SEHEcUiJZxFHutPBR6KoD0eupYtHuXGETNckgkmVEYNHA0NmSIpviUVsdddHUq8RR5CW80fTKpVF708BSJOhakdtK5ZMu7iwSuAgnUet1WdIqNUKSOa5a0fesa5HNHRtRz8XLki3cCtH3BDmR0exbExT7yFIelUjSHFZvUiVWAtImVsTSN9TQEhPxeJHCRqPRTQ6O0cGFhlI10dmTGIWzkjfK3NI8i6DSGrcXUevS4BGU+ERSC40GUhvxltHLjwiRwMOJUfhRXxMOwKWSNeYDkmdfUlIkBWBSHmjc0dOhqZGSzRPSCHFQ0jdRGlHefl5SLuEcEx3nolI/uJeR3ETD0fa+JZIi/RyR1zVWkgbWFhHoJgHSMhHAEj52EdHZ1tjTBx+ZEjF0QlIr1nySLuaE0hk3mxHRQR4SLjbFkj1A9xHAAcwRzgl/0carTBMmZIwSPYs10fokQVHzR80R+4iIkegkwVIkXBLSBPtFUjyxQ5IiXOPRSgVMEwa5SdJllRISNFJqUgCVMxHGuINSJIXVkili99I4cHARW1kaEcrSl5HdmdaTGJXj0h04BtIZyqgRjKRYUfMPwVIoTs7SJol/UeP6CBIaXQJSEyyUEd9sjFMy/orSPDDO0jgd+9HWwsmSPt4NUjGQEhHj3Y7SFMlJUfMjyFHoTciSFyvSEz2GqBIQjUUSXV5CkmfTIlIFXqeR5YB1Egl7A5I5f8RSLhqa0drniFI6VJ2TLronkYiSIFH3U0bSEWycEdA019H6T1YSPm6Okf/l7FH5nhuR/fUcUgD/jdMUmwcR6ukJkbYeEpIOgJHR2IRkUjLvhBI4TA8SAjnyUdOj2RHPW5kR5dqeEw0K0BHLk2oSQnETUfP38JICJGwSO34qkacUGJHVrKzR2gRgkhP4F5HiNZqTCt/aEeeFSVIIg+SRwbxUkaf3PRGYMfsRDwIeUeG6TlIWFsxSJRRH0dolVpMLWQQR2QmtUhC4NNHkazdR/iXDkgnud9FfNqESDXqCkeIjaNFqHtoR4UsWkwL7bhHipa0SNzGXUiydwJIitNFR40dOEjHYUBIQkktSHdQP0hhGDVIj4JOTMv32khgzDFI5NdmRmqYKUgfYpNFBzgdSCPG3Ub41KpHF2E5SKP1Oki2qDhMD6I4SES5/0ctr4lI20lTRSe/LkfNw61H1gUCSJIOFUd4brFHBqM7SCiaMUxlOeBI+LOrR8Mp6UfvQCdHnvWISPzod0i3xxhHijr6Rl9STkhDj49EGwBXTCnDLkh7KGpIV6woR9C9oUhzHZ1ICAaKRzOX80ZjsgdIzVzQRyHMAkeHcChM9mI8SLlgAUj7ANFGXav8R4j1Ukj8IftHT3GqSIZpMEjczz5IhzltR3ZkZExGTqxIa61XSRacpEhS2eJHD1nKSGCjKkjpQUpIfCvtRzH9IUgrrdlH9icyTHCsfEbYhD1HNFYqRzpUR0hNDKRHyr5dRXol80boSBxHcUS0Rw/fuUfa0T1M28cbSFD6H0jj3kdI+3ZGSElW4UetblFHTAYvSL35J0VjqAJI4v2rR5q/QUzRbiRJc/FDRzXRmkjcaklFlCdwR7gtFkdAI/hHDo0NSGICSkd9f8JHWTdXTLk2I0n5eRFIRegMR2+XC0dRHLxIxOQGR06JFEcrEvdHq0NOR6dTGEXGIEhM6/zuSAiFC0fHLFRIuVa/SLmNvUdVTkNIjyBgRy6rU0enp/FHGPZNRUUtSkwB3gVI9VfER+thiEXlF0lHaQcNR5j+aUc1WzdHcxtoR6eLA0i8oRVH6awsTI1DW0efBrVI/OROR7pltEQnTFNHdNHuR45vuEhKKqNIYCtuRaL2QkeAHF1Md/KkSI8dHEiUsQ5IzAYGSAbMjUS9FhdHN+jaRoRo30afE0xIj/q3R+5dY0yY2qhImfkXSDTbDUdWfzxICd6FRyMWGkjIoYtGFH9yRrZd6EZkOd1G7+I+TJdVLEgMxSVI4GNTR5G1Vki1BR5HeIYoR1Pm9kfg4hNHf2YoR4ZOF0ix9GtM6fYaSLpazEdMTB1HBZcXR8ZEAUdQxbFI/YUuSBFdMkfUpDxItkcRRVUsQEzb+ItIzOACSNyONEcjJDVIMWUWRyvVzke/sTdGo5OzRGtSlEcurEdF6Xw6TPdP3Udb2AhH0OASSNGYpkeeA/9GlqQ9SA1HREgqsS5ImQEDSF0eFEgbYCNM6WAISYwxKkn2yARID++YSCauH0cdT7RIgBHdRwESM0hxNq1HKz8ISHzyOUw2mUpInj0ESOMqKkhPHxhHPpIRR7ZC3kb8hP1HAwimR/m1yUf+l7tHrJA7TFRPOUjSp9pGnKzyRqdKh0iv3UVIHRIsR3Ax90d6Kw5HuAgjSKWFLEgD0TtM5z8QSpfYoUhlq91ISFevSJ9p3kfzkiVIfWxZSDoTekZJcTlIA7JNRjg+WEzsHXZHQpP8R13dyEgRJA1IN2uWR3hJBEiMpzxGwsgNSOt0FkihNX1EF8krTPRfM0h6IZZGv+XqR3UgmkefgctHdkgeSHmPEkjnORVIDsXGR1GSD0iV0WtM0/H1RuCOUkfNhFhHUhfQSDvhc0dJ8TlHDcsRSATgykj2RR5I/mBASIyMbkxazn9IqyNaRyJo0UfAtQtIi0gkR/1NzEckgbBH2AUGSKuUBkejO45Hk2qUTMCJVEgHmLpHip9sRyPFy0ZpwL5HVTtcSLCy/kcHYshH5N1FSDqHIEcIt3RMDyXvR3PuKUlctW9HxJM0SE+mukdeahdIz3wTR73nOEimDWZIImHSR2uos0xtBNNIrRUiSJIqcEgT7RFHxuXNR1dUnUeFggNIzQ0oRzGTMUgtm/xH7iaYTEQ+6UnAMihIld5lSKvtMEchvqNHAUA0SD3QK0jJdB9IPlb7R9ox90M7ZHRMjcS2SOvZyEc5wbZHcJC9R5yLf0iNUBZIi7HGSBu+I0ig39tHxhO5R9D+jkw29b9IzoC4SJsULUh3HLdHS1Y/R6nTYUdhXI1Ii+ExSC6f3kdhJURIztmgTJALpUgt7u1HEbTESHkbZ0eZqYNHvEGrR3f1AEef2U9IRr6nR+PBj0jf3ItMuSxtSa/xo0iV2x5IIh1CSN1b20fOpplI2LTzR37C90d40CZHF92uRwsMjUxxYCdIKt5+R3EyA0g6zAJFLlTbR4/BYUjB3B5I6+ZTRtC1Nkg1HjxIjTmWTCGPz0dT6SRIj+8SSGaDQ0Y8WNZHLveBSPAxEkga0WVFdScpRdEINEfh8IZMxTUHSKZb+Ej5A3VHdkS0R6G4MkgY0ShIe1VwSGRJCkiR/wtI4TJRRXzhv0zJtytJ8rAVSEWzzkh7EA5IDI2cRcYppUiCyVxHxQyARQJm7EQ6lepHzqOTTCZLIEhc6ApIkY0BSEZ0rkct8lBIS9poR6SFGEU09PxE/z4FSJ/Sg0YA2pNMWbPIR5XTC0WzbqpIiuTZR10EJ0glLCNIhx+LRWtQ4UhjluNHCUeDRX/StkzCsK9HP65bSNJHRUi3EA1IO2IQSLRqdUUnh9tH/JqKR/2Yc0flEilIQe+gTEJh0UcI1nlHLJw+SFcGZkjiLy9I/bI/Rq/YKkW5G7xIBb4ZSLWNA0iowp5M84mLSJBx8EeeDYlGlel8R/MKSkdUL0ZIK+eiR14HHEj4t05H4T4JRhdnmkxESkNIdViWR62Qg0c4GUJI02GBRwsmQUduP3lHoj3bR2csLkhkYDhIWO+pTPxLTUg0mOpHJ0OJSJmNh0g6545HIs9wRwS4a0dNIR9IJP+USECHl0daMn1MDbzbRxPaZEjj8mFGJvwGSBx8TkhSQd9G6wMsSHVuQkfeMg5IvulcSD2bo0wwjjdImrGkR/Znl0bpAqlIylutSN+9Rkg7RmRIXmmDR+aLR0joKY1Hms2mTPVzAUmdMzBFR/9wSK3/1UbR7IVHWDXRSJ55bEeVx6pHfRN6RzPlCkjrQo9MOnMASI1nZUjnG85HSnzAR34OOUh5R5NHGLIuSMn/FEg5FTRHXqhhSNhZiUybgZJIxPQ0SKkL1Ejj1jhI4SJWSKSSaEeLq1BHnvw+R8kLv0cQ85pHxkKVTEXsBknDgOBIFN5VR/irQkjsHcpHR0PCRydLikfQtGZHFwlzRzjWdUdzcpBM9vKLSGjx70ewcJ9IAUmUSKT1b0jaRBRGl6CXR4Ivq0dL6aFG/i+dR6TyjkzLn25IFPuYSFm2SkguBctHXduFR/SuYUhNbIdHi/4TSFAFFkgWGEdI7tyOTOIMi0e6NxNI13uMSAU7K0gXMxhFO43KR7goskfu3q9GkN/YR+rmm0cVz4ZM6zv+R6cx1UcQ3V1IUjewR3B6iEWc+BZIqvB6SGnaQ0g6MIBHryZYSETQjUzx+xtIBlYuSDy5kEjeTjBH3TgsSCyzPUhi2vxHGmryR6dHZ0eH3mZIQTd8TMcySkhR2lBIdMhpSIa8mEXNYlRIWnKoR+hXk0c/XZFIuSQ8SNjvykdVP4hMU/KqSGt0jkgzxY1HBVZUSC1fd0e12GNHBm9ASDpPMEfQ7S9HhjyjSMtgeUyI+nFIiwcwRi0ZmkgFKTVI4eBLSD2rrUiterRH0jiOR+T0hEdSWlRICT92TKejfEgQhIVHEU1qR4M9kkQaIodHuI6HRw2pNkcqOnBHs7V1SLYBUUgE9VJMfFixR8TYyUjiPqZGGMamSPzIiEji6phISDmdSEGVqUigHYFHiDE3SBmrgUw4Ry9IBWe5SOIwRUhIDkBHo1a3Rr2aqEdikTZIP9ltRw2ubEf2wlFHSVqHTII/0Ug/XmtIYsClSHSDa0ijlQ9Gk/45SCDX90fjvZlHibWHR8nYPkjOkG5Mtqb1SErJ50gJfY5G2iggSDUKSEe8TaBHsfQgRzkwMkfSyBdFkwexSJe7hEyOvElIZ4ZfRlDDU0jhOi1HgpCDR4k3mEdMno1H4CuHR5wZNUhcu0VIkPRlTMDXY0hJAFdIFC1hSHEZj0cKUj5IRNIBSPh07EfEtzFHuxjaR78nZUWpJFJM9hZiSAmzykjjr4NIWX5RSO0AcUd3GhJIi4GYR1y+NkjNXANIbOJ6SNZjhkzg7zBIivG3SOjwFEh4HaJILMxVSMe6HUhKEUpIiDkwSJpcZ0i584tH8/htTLY2VEjquLRH2mpTSALfm0cxcihHwwGdRzP6Zkh2IF1IMCq+Rp7cVUh0AoxMoWZRSOWlDki+mYxIbwjoR5u2KEe2KiNH6zUVR9LxLUirS7pHHgILRxugcUxYyGlIKTe7RsEDpEZJ6BdIOYo9R9b/Xkit5ixHve9vR914OkiHZw1IHohSTAZoa0j9TkNHW7V1RgwzlUaIeypIivVAR7qnHkYH7sFH1haAR59JVEcxUHhMHXRcSCneUki8aCBHCxU/R+WoQ0jTk11HtBF/RzqVaUgRE2pIbGIJSIungEy1DLZHeZwCSI0bP0S1KCVIzRkwR9QsFEgn9T9HnUU1R6SWjEcHfFZIhG1cTEwcZ0iZspFFO+82SEOhhUeal4RH9xVgR6vrRkjNVSpIsX9UR2I7G0jkuotMq8tNSPg7BUinCr9HEWNlSIJUUkhjDlFHBfZgR/bhjUcfJSFHhdeFR7YQi0zCsu9If6AjSDnHB0f5PY9GmQpPSDGDC0fX6w5H1aYTR27Nz0WlJDVHyxFwTCg15EfmGnNEKMkZSMOxV0isOaFHC5E9SEvmZ0Zw6itI844USL3flUdolYJMqFoWSPp/M0ip15hIcuwxR4no7EeimCdHmlSGQ+/XxURrkhRH3RmURS+hiUwjk4hIHCpUSFk4Jkj3YCxI+nyiRXlPiEflHydHBYkzR005QEeHZTBGokFqTJiFxkdlqGVIEucER+uhY0ZMW1VHDi5qR6WvaUgWEF9H4YtuR7ssmEVyWotMaAc4SB0UhkhU1RtIKr0wSBTvEkWL6I1HUckRRfVOTEWy7ABIee1hRjUOaEwW2I9HyCQsSNuqDkfQDRZHUq7nRzlur0dbhWVH6sAoRBJpzEcUVYFFjjSATP11K0fpnHBH7b4yR61Fc0cEbQdHkSVARvzIFUhXstNHLeETR4vMckeTDWNMAla1R44Ejkju9dBHtfsKSMP8jUacW1NHB4B5R7ytbUjj4+tDv0JdR4fFjEzQPchHeaw/SE3jwEc610JHBkIaSDRrY0edsE9HUzUoRGkP+kfLAzlHXP2LTO9uuUd3dYpId4U4R94R8UZRYS9I/sBhRepRSEeVlARIfRaIR+ZOHEgFWXhM8mDQR946EUcC1ThI+AwzSDiliEeaCetGReXxRpACwUfiLPRGF+sTR0Q4cEyX1PRExqQlSLEGwkecdFRHPmnJRkoaXUfUhZpHvabkRhHcEEc8Fh9HajCATLK1REgHzjpIB4RRSOejo0cKiilGNB+XR2Tq6kcSGmhHWzKJR2/9QEeePXdM4FapR6IVJ0j2HfhDjh+NRzGuVUewYhdIPcf4RvIVEEdg9IJGjjhLROIZYkxHb9lHg/tuRyzJb0aQrAdHdOAKSORiM0dzwTlI9YCgR9Dzg0ebDMhD9q2JTE+MjUaz8cZIvxdCRmN+AUijK0hHf69aR9Nli0czD1JF5Z74Rl/QQ0Z4n49M+mwCSIptXkfMwLFHd4pBSJTcQUfnC1dHOjmlR6RGjEXQtcdHozdBRp4kcUwTSrdHBrc0R8lCWUei0IxFL0c4R2TgTkcCkAVF9m36Ry6OCUc626dIFQGCTHNSpEfWHeVIYud0R8QUz0dCThpHVVUWRWtFH0fAfw9INIJFRv6nTEeEGG5MoRaSSbWlf0ns0UNIIrGbRKjl5UfoXe5G1q0WRzbOa0drWjZHck1ARyFVXkzsvZZH5j5dR7XCx0ePAjhHelILSCWXA0i2NZJH/YrcRxn/FUfMTGNGUfRpTH/44EUwpAhI0sxqSErZKEVabtFHuFaFR+C0HUd/9R1H2d8iR9bs0kRwK3VMmhhlR7oAI0jB8zRHu8UuRy5XMEdPEeZGybwIR8rIKEfNZIlFSuUJRVaqXkw3P2JG1KgjSCxXBEefhppEmGsoR9mdoUdFV3hHaEj/RkVR70ahXVlH8EVYTF0h50fn1hpFEN8qRzF4C0jxc+FHiIQFRxUOA0jtrxxHtoEaQ7W0U0fd/kdM/t3oRM8XNkiEYMdHn7LhR58d3kaN1Q9HdJYXRdWQIUdKIDlIcP4WRxsSSEwpXvBIlQ2bSHu0Nke9LRFG/3xJR7n2rkZLKBVHxNmtRg8YCEdentpGCnEcTIiFy0ZkvMlG61I8RjUQ0Eee5zRHAiM4R8d9vkZpQldG5SQCSKCG9kYkDBpMPORLRzyz8EZy8tVGVChBR1hroEdHISJFu8r8RkIEBUcMbiNHc/cAR5DfLEzZ3GBFJnlVR91gykQzcBlHUq32RRIv5kRjWwxEnZk/SOkR9UT8ARFH0wIqTKtDJ0gpq7lHH2tLR7iKu0cQfR5FUOAURn4cFUeznBxEPOWnRZsyDkfAMxlMlz2HR2LyEEWJAdhGHS3LRVdHl0X0NBFD3ByWR4wN8kaOKNdCg2i/RihrGkwm3nhJg0+dRzrEc0Z71QBEXE3ARhkVyEc7zLhDXoqpR3nGH0anOftGKYMyTKpbPUcQsP1H1cOrRof6N0RbHGhHKVFZRK5WLEc0ikxHA0PnRtAankYGyRhMGKTWR0qS+Ua3i0NHL/3HRtWmykYpxpFH7yMJRHaTqEavW7JHXXcrRopH70sPAwhIjWeqRsiusEdgzdpHea2PRMxGtUe+2vlEm3UcRaoOmEe3jgBHOynjS2hUCkjlpLBGxY65RznIZUYp0qpGEEABRSz8rkb+bWtFzLO8Rfd3CEeSxNJLctbwR1hIo0WBWFJHj5v4QuHMuEbyxXtGVjBrR1CJtEYdmZRGkRNwR/4c50sc/rJHmKfFQyyhhkcILppGnpcqRxRt8EbYuSJEqtzPRvdTi0Q7OrVG7QC5S5kgTkcvF35HmJ9AR/5SgUd/PqFGVDxURr/ODEQk8GNEOLl4RAU1+EZkY+lLOJSlQ95+j0dwO6tG4p6xQwJ60EYn/K5GkFM+Q/5XrUYT3ExGA85VRLsqsEtl08hHPTqoR/hs9UdltadD53SbRODjUkd3kKdH/l9HR8A0d0dOd09HvomlS6Rfr0cXPnpHDbXjRl7Bq0asGWxGX94fR9WZjkZOiYhGu+IkRmjzXkXEXahL2VMjR9ICf0YrMhBEVlJARFoD6kX+nEZGNG59RAK8p0VE5rNGsnqrR8VPqEv3xWxIt561RQAAAACRLz1GsE0ARo5+mUfWKA1DRsMDRvPtzUao7itH+DSRS379vUTfFKxHSsNMRaQFwEO6lfpFxKbWRia6E0d5lWZGG0C/Q4IlXEbxe4RLjGODSO1o60Vtuu5GCuguRkeqGEbsG7NFRf3FQt3ojUQHDWdGJHViRGSXiEs8gINGy75FRkx0S0biguVERLmsRj0KI0Z+W21FMTUnRkPACETRNAdG85eES9AztEdBD2NHqkF8RKK+ikUa4lhG+4qXQ30dFEdKXQFGNl89Rvx+2UbxYXBLlOduRhRmKkcKDANGFZVORBWHOkTXistF18apQ5zR6kQf8WhGSoRARs38WkuwOv5FYb06RxkhBkQPyfdFuU9xR6pHg0YP3glGop0JRAj4DESOPFFEm6Y+S7jETkRRAUdG+zbORhwVYkW7JFVDiDRzRC2uFUO3gdpFmfnZRcRGW0Zlxj5L56fSReV0CERKFw5DuE0ZRrd1DUORgnlGaNwGRqoajUPDTIdFqWXpRVseQEtW72REmO4mRZGWjUWg1YVGbSkRRtXEgUSLt5NF1dTuRUDgjEb0SxNG7p47SzUHL0XRopZF/J/mRVli5UU43DRE9QhORJ1VmEN4z+NDSwULRlGPdEXF6DBLJwncReQxJEZo1tFFv3tTRebyFUbBiLdFDx2FQ5y+CERiLQFE6j/PQxe8NkvAxiBH34geR90t0kM0pCpHEuDBRoO+A0YyUGpFM42+RMDv30OJAGNHEqYoS319hEVEUDJE73XIRRgJi0ZrxJBEdO+8RTCtjUUAAAAAPbeYQenFY0UD2xJLxRxvRRiKPEU45MpEGtCkRZBj50QDZJlF8//eRbp3N0aW9FZFGso/Rg9+L0tS+LNF+rOTRf268EQE451FUu7FRudBp0X24DNFXxWuRYIMCUTsOXdCz0MLS0VMkkWeIoRGAgCTQ40jQUa2TkxGnzn1Raj0p0MXWIJGXwEfRexx/UMgSQJLrhpxRabdkkbg5xFHGrktRE78lEZ7YCdFO1IwRu152UO2ckZDMAY3RtxdBUu+pnhFPG5tRlRO30bkH89E/rYWRW+y0EVNZUhFBIsjRcLYEEUl5o9Gvk8BS6AIM0YCL0hGSdmiRhzM/UaIZEpE3e8qRt5CsESjiB1ENQJLRHX/t0UO29hK+vw+Rp7JaEVNBEVDak8LRixJj0OTpxpGA5m7RRkmNUFbLAxE+lMHRR0z4EoMcwRGRZvNRgdvM0WVAw1G77NKRBLn3kV4HVhF/qfjRQNDIEUnMIBDODy5SgE9MESEKAlGn8B5RZrmhEVUFHdFdoWHRgAAAAA731NGTuMsRqtZ3ERP57ZK5T8jRvM+BEXfsHRFx/x2RjtmUkMFSq9F4DweQtF6P0XWNoxCSJWlQvioqkrC4MZGFpIWRrqE/kPaiC5EaCJ9QYwdKUWxKPtF3WPzRGqL20VeXH9DgNuaSqWHYUJnXB9DVxotQ3/4L0P0WxBEiMSsQ9JkUEPUvZlEznCLQnZ08ULN+p9KGZe3RkD58UYAAAAAQIFPRu/rH0Y+6ctFCRuxRFcfJUUL9aBFkS7rRd0dhUqp/RZGOpeMRWZfX0WbpedE+mbPRMdYHUM77LFFwoiGRdbZbUX1hapE4iFjSn6B20QCq7REiFubQjGVgUNsqahB5SXSRCTQOUW/LrxFb/i0RsUFMkY3SFRKPBb7RgAAAABUDl9DnZONRIzrDkTYdGZFr4fmQgAAAADcgzpEieUnRem9PEqJKepCkhT5RGltrEWUo6lFnNrFRe/fr0WjmGpFAAAAAI7pgUXfdu9Fb0dMStYbbEa17/BEABK8RCtYa0Ou+gFEqigNRJHguUXdTvdEax+sQmBMVkOP3ixKQ1cNRkgZg0NQeElFV8ksRLKnv0KitdtF/KAfRdr/lEUHMdxFDPQKRrhjIUoOPKBBTttFRtnzaEUAAAAAv99mRXzJcUV6AFVCIutaRBFjqEQw435ElM4pSrk/rEVCSeBE4ErgQyJPPkNfW/hDabErRczlrEQjrvpFyvwfQl9phUUkQRBKJ5/NQq2fbURCPURFA3T/QoT4E0JrGLBEsDYgRSvg0kTPsOxDt1JuRSzUCUoAAAAAAAAAAAAAAACU0KxF7D+IRR5IJEQAAAAAhqVoQutUn0X2UlpDwXfwSbSYh0UYGYJFzsS6QgAAAADumKJFxZKjRb6IKkXfFI5EQIQeRQAAAADEXONJzDoMQ0/Z4kMAAAAAddYbRKrIrkTho8BFw0bBRfSco0ThII1EybCART5t5kn+8cpDw+LGQ8MQiEUAAAAAmBOrRVFzDUb6mjJFLBthRGyxZkRdRZJFAc3TSaQAsUNg4shEPKn4QwpG9kTABWtE3OmERK+8IUWI9rVFMkf1RAAAAAC2GudJxvlmRhdXxkVrq8hE010ZRmrDrkNn+etE7TKvRSXuR0InBp1E5smtRJ+i7knqQJ9FsCm2RWB6mUXsGhhDXqmXRQnys0M7BqpFbsRTRKtxNUVTTbdEuC3JSTngA0Ox1ANE97dBRIRye0LYOF1EorbZRF0wl0PB5rFEWMkBRfJnOkSIwLhJpMeJRICVbESdFGhD1s4RRRzpH0EAAAAAgVraQ647DkU6vn5E0g1HQzeUuklOFb5F2W5tRSJGQ0VMR1hEo9RSQ8VQ90N9fXdFXv5RRYMw+UMAAAAAbYarSfMKHEYAAAAAAAAAAG6HjkWEKqREKZfARUvCy0QUdp9CJDmCRSLAdEXSwLVJrfyGRbSPq0UAAAAALyqHRR3QVkUAAAAA0BVQQjvLtUTz5jBF47GdRVTutEnHXIxFAAAAAAWNg0L1uTVEhA6aRQAAAAB6fWNFtCJDRcgxNEWS5QJEDimSSfq4t0Vb0pRFAAAAANlYn0W59YlEHyQwRMDwnUTfu0dEREsUQ/pxOURYbZlJPzOoRb1O00SuUn1EFbr+QuBlnUSbus1EKHGFRabSB0bC7qlFZruLQ3SUjklQt35Fsvm9Q536l0Q71KhE34mdRawaHUSoexxEg9O9REHHikX85cdE5aetSeg9r0RdmthB77RzRWT+UEVXFodDxF8CQbbsqkReViZCxDfKRS/6bUXFh4ZJNBaORpDac0PLs3tEZbhTRIV+Y0XQGV5F8TCDREXaPUbW7+FBVPB5RQJ5lkmP4+RFMOAARiyUk0XXeHJFyWlwRXmdEkU1aBxFALidRd/ueEXv7oxDhLeZSY/jTkaF5IJGkPkVRhGXqUVdKbVF9m6QQlbvgkLRud1B94WaRag5bETUtntJWXS3RQAAAAB62IxFCrYvRUKLx0OONYhEwTaXRN79tkTOw7BEvzhgRIjnekmtJ0tGRHmRRaskXkMBwEJFC5JyReHXckWOaiFFVheCRf+4Y0UAAAAAHJJ4SdB5kkYAAAAAmIICRElJnkEnO3hF0jg8RQDd5ETIog9CtPuTQvT/oEUcV11JAAAAAOU4dkV3m1lEiZ8BRV8+bEUyZJxEI8tiRWYvTEQNPCNEGBdURaCYWUm2rRRG36W6RblMgkV1inJDfOxhRb1ivUXRTUlFha9URd1CBUT0x31BGIleSZncD0RM4VRDFMtmQg4g90FH+V5FSE7pQPOeTEW2STFDqicrRUnkIkXHglZJqCZ2RBZ+LkSSumhFNcOKRCB7pUVLERhEEQM+QYSLwkWo4ThFQsWLRGvFRUkjfVhFAAAAAKTUREUAAAAAWX5uRYo6AkT9QrNEHBFNRELvY0XitGlEGxtMSYN8XUUAAAAAIK1IReSmC0SqcTdF7bL8QwAAAABckOtDINtSRBqJw0WFAkRJjjBCRB9GKER1+bJF/5qJRCgZjUNLE4BEIh0YRTE0R0JMk2dBOC8gQmRjVUlQL4ZFUngwRAAAAABV2mtFxe0aRf42ZUVr9pBFV/pJQv+k+kSUTThFCFE1STiIskMg8vBEK7nFRAAAAAAAAAAAPcIARByeBUMAAAAA0v+BRTfagkPnPjVJd7iqQzNRC0RnVgpE8a9ERbQqE0OaU4BEnWcuRCgwqUVTKNFFGuUKRGPNOEm5zR5G7EGnRU227EDHsXBCQxPBRfrgh0QAAAAAAAAAACLMMkRiI1VFMjs1SX4azUPRY01FAAAAAMVoJUSwkoNFB5M/RLwU/UMVqodFmUlARBbPx0VjPzxJV1EURC8ynkOGKj9FOE5QQwzk60N8QKlBXp6GQtMdZ0GKkLlEbJo5RWpnL0mIIilF2R2NReHMbkGhVChEOomXRYJGF0XKNzhFiXv8RAAAAAAuu/BElRYbSZc9gEVA5KpFAAAAAKp+BkV73+hEGdKgRBMMc0TKgS1EfgwWRfv+wUXCXR9JtGgDRtWiukWq7HtFUOygQ0otoUFJ4qhDlD6oQpOuj0NSuLRAAAAAACYfNEmKrKNF7h63RQAAAABopGhEXu7/Q9LECkVxxkdFV1ZyRQAAAAABtsZDCAA9SQLvhEWrXRFFAAAAACg0AkYgBm1FdeHvQwAAAAAAAAAAS8wNRAAAAAA49iRJzzZ0RWTUO0Xgi4ZDqYUrQ8xJhEX9TN1EGmg9RL92wkPefRRDe4MmRH8WPEmOhJ5FEQJzRQAAAACf1/1EjqhzRRpuw0S/LupEpGf/RIMQhEX0+yNFEAAoSY2eg0PxEyFEAAAAAFkaVEUpDyxEvQngQxpla0KYQbtEe6mcRYWKAEUF6B1JPDCNRQSMD0MAAAAA/vbdRAAAAAAAAAAA3AgiQbrqKUURZOpDJXWfRdzoKkkPCI1Gwd/5RAByyEX8qrVCrVbtQ09t+ETGeINFEOd2RYcMDUU0MBlFm1AuSQAAAAA7zzdEVmw2RaC1AkVRiydFXlQJRdWBSUSzIC1J8NVHRuivCUei2OxF3AKURS0LyEPhNX5FeBg7RMt+jENF+whFdBufQ6zsIkm6+xpFom31RDhuYkUAAAAAv8DPQ8sIkUXeqZFEEWGTRaoZrEWrtrBFIFAWSXgBH0bfnWFFa9KJRLMOuEMAAAAAhdUORRQt5ESA7LREgOSJRSrb8kh+3hxGhFxhRbpCZkQMzoRDlHGwQtJ6aERPfZhFFOABRdP0nkQjNtlE5WsBSQAAAABpPo5DAAAAAMrJrEPI7QdCDJQCRT2XUEXJquVE7x+wRahKD0lgbgxGcqaoRcsygEX/GKlFvVvqQgAAAAB09qVFNsu0RJ7y/EMAAAAAU1QVSXhlt0MDPk5ESOqWQVEfCEVex1NCr/UBRTRHE0XUHIlDhF7MQwAAAACPHChJcFEuRReidUWwbpFFJ3C/Qg/uh0UAAAAAAAAAADZUfUUAAAAAt/MBRRu+F0lMHGNCSkzPQTYFokUAAAAA6KynRebXAEVG215Fy/QuRWf4qUTb/x9EFzEOSUSYWEU0ogRFygsJRPEJLUXgGyZCOSTyRAhTg0WsgbJFAN8RRelVi0TW6QhJAAAAAAAAAACEmodDAAAAAHXi60SdcsJDMXKwRQAAAABtM+5E+MAaRbbJDkmOVYpFAAAAAIWRnUX97vpE/APIQ7i4AkVzLZtFR7EOSQAAAABCS4JDZI2hQ4MhP0WH8VZDtN0TRSGolkUhzSJFhisMSWfEgELdXRNFqXelQ3I1AEVrSJ9DKAPHRAu37kWXn6hDA1kIRczCg0XJ/wFJk5cERvGLr0WqnXBFAAAAAAAAAAA6qhFECh4FRqenIUV1z/lEk3kwRfmYB0l+Fv5EozuuQ8n76UQAAAAAUp+dRQAAAAB84EFFjKDSRZeRvEXcuhhJYPCoRAAAAABEVmlEkxNFRBYTd0EAAAAAL3sxRQm5AUYGz3dECkpJRdlW/0iGyD9EricSRBNzn0MAAAAAbHeTReUVqEUAAAAAjnwzRGxHkkVSTD9FefP9SAqjAUbefLBFoDfHRYvBCkW+QxZFSLzwSLkNBkSezeRFyVeDRcoGA0Vk4W5FmoHdRXX8pEUuuh5J9xkkRpNtxERsFl9FxSM/Rd2dkETYmYNFBazDRRkn+kUIuL9Fgi3oRRCJEUkshsRFR6+ORIFnc0R7/9NDNIh6RUA2bkWjTY9Fnfm3Rf0b1UXulSFJ8xbwRfyF+0X6hNBFos6BRGojy0UOD6tEYnOeRFzEhUWh/g5FpZvnRdC3KUnJs4dFjV2kRViQhUSaUZhFRaP0RXWi3UJw2+9FFDqGRd9Jr0Wh9hlJRfGcReVqQkTwO4FFS3fjRRsicEX4tWNF34rDRTShakWRE8tFJJQERpYQHEn2+yBD9g8QRvRfCkQzEB5EI+CfRY2QU0V+LuRCrSDeRSjrIklcxANGaQ4rRgAAAAB2AqVCk6CBRVAIBEQW3RNEZWdXRYTYS0XzCstFO6nnSKCWikZYHsZDz6MxRkHoG0aR+ehEEFvJRb4L6UQSYulFb23jRHe3W0ZVm2BJTGB4RBhz+UU2bBlFgtdfRqtCC0a26o1FIqGBRdFOB0aAW4BJc+K3RvbD9UaZcABGTM93RpDiA0b04vxFm8IoRkAmmEU+FxhGNaIvRgJMhUm8HSFGPF/VRKXOhEQNz59Ed7BiRM1kwUUP/JdF9j4fRjVPz0Xvpu1EHqdtSTPWlEb39RZERJICQ9QguUTLTYxFETDCRT6YN0b0/khGwWDZRXQTKUbH2YhJ3NsPR1vGDEVupXtE8tcGRiGlg0X5gn5EezENRlI65EUS0OZEeWUbRoe/eEl8gd5FLbPBRLHVl0Q8i7lE48MFRcS6UEYYYohEHSfsReI7xkVewadFY5eCSc65WkYypH9DOMnBRHfHIEWvuytGAAAAAJgjYEEiVaRFAAAAAM9jxEVjc5dJNvWMROsiLEUeSWlIlnN5RZ6RCkb3E4ZFcGsmRSDDxER9AsZDfFfORRNMqUl2agBG5W7/RcxcHUYauQlFE+PxRA/uvkmPobFG1tqZRf1MSUW1ur9EcPsgRkDcaUVuToNG/Wg3QeGW9UfeBAlHTfZNSpF8FUW8cIRFrptvRHH0VEb6WLBGUwhqRmWgykVK4oVGG3WgRhMZh0bpvkNKBtuPRu+f0UaawqNE/CQURgPNckZHOStGYxK/RD8ktESC34ZFqFmURW6uC0o6YR1HZaeuRuKWZ0a4+2xGlCkTRjnsN0YC/0BGXTw7RrUrskYHiqBFt0OCStez30aUWx9G/K9YR2eBd0OBoqJGd18JQ3WgmEQVeZFF5tONRVuXJUaqEZ1K05wAR//HO0dN1wtHNBTIRrbqDUcXe/JGvri9RvLJ6kZapLpGfsT4Rg==</binary>
-            </binaryDataArray>
-          </binaryDataArrayList>
-        </chromatogram>
-      </chromatogramList>
-    </run>
-  </mzML>
-  <indexList count="2">
-    <index name="spectrum">
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10071">4554</offset>
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10072">19569</offset>
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10073">30427</offset>
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10074">46121</offset>
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10075">59647</offset>
-      <offset idRef="controllerType=0 controllerNumber=1 scan=10076">76129</offset>
-    </index>
-    <index name="chromatogram">
-      <offset idRef="TIC">85058</offset>
-    </index>
-  </indexList>
-  <indexListOffset>612412</indexListOffset>
-  <fileChecksum>75daa67238e1bd634ad0fb35d07768816bd49d0d</fileChecksum>
-</indexedmzML>
--- a/test-data/msgf-test.xls	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-### Query	Rk	ID	Dot	Delta	DelRk	DBias	MzDiff	#Cand	MeanDot	SDDot	Fval	PValue	KSScore	OpModMass	OpModLoc	Status	Inst	Spec	#Pr	Proteins	LibFileOffset
-msgf-test.10072.10072.2	1	VMRMLR/2	1	0	[0]	0	0.5	1	1	0	0.8	-1.000e+00	0.000	0.000	()	Normal	Unk	Raw	0	70299
-msgf-test.10075.10075.3	1	FKWNGTDTNSAAEK/3	1.000	0.000	[0]	0.000	-0.003	1	1.000	0.000	0.800	-1.000e+00	0.000	0.000	()	Normal	Unk	Raw	0	17206
-msgf-test.10071.10071.2	1	GGESIMNAQSQPQA/2	1.000	0.000	[0]	0.000	-0.009	1	1.000	0.000	0.800	-1.000e+00	0.000	0.000	()	Normal	Unk	Raw	0	37387
-msgf-test.10073.10073.2	1	FKWNGTDTNSAAEK/2	1.000	0.000	[0]	0.000	-0.005	1	1.000	0.000	0.800	-1.000e+00	0.000	0.000	()	Normal	Unk	Raw	0	111
-msgf-test.10074.10074.0	1	VIYTTNAVEAVHRQFRKLTK/3	1.000	0.000	[0]	0.000	0.343	1	1.000	0.000	0.800	-1.000e+00	0.000	0.000	()	Normal	Unk	Raw	0	53188
--- a/test-data/msgf.ms2	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2878 +0,0 @@
-H	CreationDate	Mon May  7 19:27:23 2018
-H	Extractor	BlibToMs2
-H	Comment	Library	/panfs/roc/groups/7/galaxy/galaxy/tmp/bibliospec/msgf.blib
-S	1	1	784.865
-Z	2	1550.64
-D	seq	FKWNGTDTNSAAEK
-D	modified seq	FKWNGTDTNSAAEK
-222.15	215.1
-226.12	430.3
-231.15	2031.2
-232.24	955.1
-241.22	230.4
-242.50	344.8
-243.29	93.3
-244.33	770.5
-245.10	291.0
-251.73	315.3
-253.21	348.0
-257.19	370.3
-258.25	1122.5
-259.30	683.3
-261.30	602.0
-262.20	234.3
-266.27	451.5
-267.18	294.7
-269.20	232.8
-270.16	212.1
-271.24	124.4
-272.11	215.8
-275.34	328.5
-276.20	7651.9
-277.25	861.3
-277.93	72.0
-284.14	644.3
-285.15	262.7
-286.39	243.0
-291.42	459.6
-294.19	207.4
-295.43	455.0
-296.25	276.5
-297.18	396.1
-303.36	614.7
-305.27	216.3
-308.28	454.7
-310.35	793.8
-311.28	1132.6
-313.27	324.8
-314.28	148.8
-315.28	707.1
-324.29	862.0
-325.25	264.7
-326.56	311.0
-327.32	272.3
-328.29	148.9
-330.23	162.9
-331.36	155.8
-333.12	323.8
-334.09	178.8
-336.20	547.7
-339.28	419.3
-340.80	530.3
-342.43	389.1
-343.33	858.5
-344.23	641.2
-347.28	1662.9
-348.50	338.7
-349.50	504.0
-350.34	137.8
-352.23	174.6
-354.65	561.3
-355.46	328.7
-357.48	241.0
-359.15	169.6
-361.22	88.9
-363.25	208.1
-365.00	1175.1
-367.46	251.3
-368.27	126.7
-369.16	321.0
-371.18	1050.7
-372.21	291.4
-373.30	976.8
-375.25	480.5
-378.77	287.8
-381.28	989.9
-382.09	222.1
-383.31	721.1
-384.43	245.6
-385.34	307.9
-392.29	129.6
-395.04	1013.0
-397.28	657.8
-398.35	412.4
-399.07	211.3
-401.38	761.4
-403.17	392.7
-404.45	382.6
-406.07	529.0
-409.30	941.1
-410.45	401.6
-412.32	1822.4
-413.45	196.0
-415.37	886.4
-417.45	556.4
-418.43	1548.0
-419.31	909.6
-420.27	1269.1
-421.35	100.5
-422.27	1072.7
-423.21	733.0
-424.26	1664.9
-425.52	643.1
-427.33	1110.1
-428.25	813.2
-429.21	968.2
-430.18	209.9
-431.36	980.7
-433.36	265.0
-434.32	230.9
-437.21	165.4
-440.34	3389.4
-441.23	1414.0
-442.38	767.9
-444.27	961.5
-445.50	639.4
-450.58	210.0
-452.31	453.2
-453.58	506.0
-455.46	820.0
-457.42	328.8
-458.35	1172.6
-459.84	792.2
-461.34	558.4
-462.34	6647.8
-463.49	2858.2
-464.38	507.9
-466.55	218.5
-467.39	393.0
-468.51	816.1
-470.25	367.3
-471.43	1705.3
-472.19	819.5
-473.45	849.2
-474.80	1453.2
-477.43	287.4
-478.45	331.7
-479.32	704.1
-480.42	1086.9
-481.40	552.8
-484.42	248.4
-485.43	927.4
-486.38	960.0
-487.12	1621.6
-488.43	291.9
-489.32	388.4
-491.26	484.4
-492.43	922.4
-494.34	1188.2
-495.43	1722.2
-497.45	435.9
-498.20	270.1
-499.33	553.4
-500.42	208.2
-501.42	654.3
-502.35	191.0
-504.47	395.3
-505.32	2859.5
-506.07	1331.3
-507.34	813.6
-508.50	269.9
-510.34	143.7
-511.47	848.2
-512.44	349.8
-513.33	183.0
-514.37	1457.9
-515.39	1279.6
-516.75	138.7
-519.84	385.6
-521.34	707.9
-522.48	831.6
-523.45	420.6
-524.68	332.5
-525.38	138.3
-526.30	917.4
-527.50	218.1
-528.36	492.2
-531.44	721.0
-535.55	141.4
-537.52	1206.4
-538.36	175.6
-539.36	1106.1
-540.21	361.0
-541.38	600.1
-542.39	2197.9
-543.27	1295.5
-544.18	263.3
-545.49	111.9
-548.34	523.6
-549.41	514.1
-550.44	284.6
-552.33	137.1
-553.37	903.2
-554.46	1225.1
-555.52	2405.3
-556.65	1106.9
-557.49	786.3
-558.86	1888.8
-559.50	1591.0
-560.46	332.5
-561.38	878.1
-564.40	680.8
-566.47	491.2
-567.50	1182.7
-568.47	250.0
-572.36	778.2
-573.35	175.1
-574.83	201.4
-575.88	1850.8
-576.52	4304.3
-577.58	7036.5
-578.41	3519.4
-579.43	790.3
-580.48	239.0
-581.39	178.3
-582.35	276.8
-583.32	706.7
-584.44	862.5
-585.39	820.8
-587.65	1797.1
-588.39	681.8
-589.43	1309.3
-590.44	107.5
-591.82	1806.1
-592.72	128.8
-593.55	678.9
-594.29	966.4
-595.55	332.7
-596.22	529.0
-597.26	791.3
-598.07	885.6
-599.01	1687.5
-600.07	1972.0
-602.62	969.3
-603.78	1327.5
-604.52	727.6
-606.53	707.3
-609.60	377.1
-610.49	1431.3
-611.49	613.4
-612.62	707.5
-613.29	946.6
-614.39	936.4
-615.38	1696.7
-616.58	1958.4
-617.30	51.2
-619.43	4515.9
-620.42	3058.7
-621.56	2387.4
-622.59	1527.2
-623.59	1839.5
-624.41	2587.4
-625.41	1202.7
-626.57	674.2
-627.42	424.7
-628.42	922.2
-629.36	321.4
-630.28	2294.3
-631.26	573.6
-633.46	4293.5
-634.38	994.8
-635.50	1300.6
-637.28	1310.6
-639.15	6815.4
-640.44	4771.1
-641.43	2247.8
-642.26	990.3
-643.43	992.9
-644.46	1600.0
-645.38	165.6
-647.32	5624.7
-647.92	1085.2
-648.54	1520.0
-650.77	1051.1
-651.51	980.8
-653.27	386.0
-654.45	1395.7
-656.64	2493.4
-657.37	190.7
-658.37	380.0
-660.38	723.7
-661.81	2816.5
-662.47	855.0
-665.74	1114.5
-667.70	648.6
-668.70	611.5
-670.59	528.2
-671.70	3173.5
-672.61	858.7
-673.37	518.1
-675.28	202.1
-676.46	784.4
-677.32	891.8
-679.30	559.8
-680.74	727.5
-682.52	410.6
-683.41	57.8
-684.24	1861.7
-685.35	608.0
-686.55	413.3
-687.44	373.9
-688.76	1118.9
-689.48	446.2
-690.44	1531.4
-691.80	3243.5
-692.43	793.5
-693.74	2091.2
-694.54	3539.1
-695.74	605.4
-696.47	80.6
-698.75	1746.8
-699.71	902.8
-700.37	442.0
-702.68	6153.2
-703.57	5776.3
-704.43	1245.5
-705.70	576.8
-707.78	1771.0
-708.65	1508.2
-709.56	1246.1
-711.55	8745.4
-712.43	4402.2
-713.14	142.6
-715.01	645.3
-716.60	3977.7
-717.65	4870.4
-720.45	26895.8
-721.41	7756.3
-722.17	2128.9
-723.32	989.7
-724.34	698.3
-725.67	245.8
-726.44	154.5
-727.49	612.8
-730.35	343.5
-731.52	709.9
-732.92	2950.4
-733.66	3000.5
-734.52	1696.0
-735.62	3270.2
-737.40	1717.4
-738.44	243.2
-739.28	2173.8
-740.63	184.0
-741.47	2744.6
-742.08	388.6
-742.70	917.1
-743.82	443.1
-744.63	959.5
-745.67	4948.2
-746.40	2072.6
-747.02	264.7
-747.99	481.7
-749.39	2365.3
-750.34	1523.3
-751.38	2000.3
-752.65	18627.3
-753.62	4943.6
-754.50	3111.5
-755.78	1725.1
-756.71	1234.9
-757.54	2362.6
-758.58	3455.5
-759.51	320.3
-760.76	1380.4
-762.27	2400.5
-763.03	3926.8
-763.94	1856.3
-764.79	290.4
-766.67	15190.9
-767.66	31097.7
-768.54	9313.9
-769.28	1613.3
-770.30	2269.9
-771.80	708.7
-772.56	224.6
-773.53	234.5
-775.82	28382.5
-776.65	62637.0
-777.59	7367.0
-778.21	352.0
-782.47	191.0
-788.52	273.4
-789.53	162.0
-792.77	638.0
-794.45	745.0
-797.45	364.6
-798.56	185.9
-799.53	330.3
-801.72	1330.7
-811.54	1388.5
-813.51	158.0
-814.46	1694.3
-815.51	1337.6
-816.54	234.0
-817.58	665.7
-818.49	981.8
-819.61	658.6
-822.54	173.9
-827.89	334.6
-830.11	605.3
-831.62	2185.3
-832.58	3591.4
-833.42	524.8
-834.45	338.2
-835.44	8816.1
-836.62	3783.7
-838.67	1190.7
-840.55	563.5
-842.70	239.9
-844.63	779.8
-846.60	512.1
-849.57	12136.6
-850.57	3998.9
-851.74	1094.7
-853.63	393.6
-854.81	81.2
-859.36	182.1
-867.46	317.4
-869.66	236.6
-875.39	280.1
-879.00	135.1
-880.48	612.9
-884.21	1250.3
-887.63	117.1
-888.60	111.9
-890.35	360.1
-895.45	274.2
-898.69	386.7
-899.55	416.4
-901.69	567.5
-903.43	216.5
-907.48	213.3
-908.44	397.7
-909.45	3061.4
-910.81	1370.6
-912.39	1802.8
-913.57	889.8
-915.51	563.1
-916.54	576.0
-917.39	381.5
-918.84	307.3
-919.62	311.9
-921.06	1028.8
-923.48	924.8
-925.45	277.1
-926.88	419.2
-927.70	140.3
-928.57	759.5
-929.63	851.4
-930.61	552.8
-931.69	140.1
-932.62	377.2
-933.40	110.2
-934.62	256.7
-935.82	808.4
-936.63	5353.9
-937.45	3296.2
-938.06	906.5
-938.69	157.0
-939.90	1255.5
-941.93	107.9
-942.71	595.3
-944.64	312.5
-947.40	242.7
-948.83	512.1
-949.84	1085.6
-950.72	585.3
-951.86	1329.1
-952.64	851.4
-953.58	903.8
-954.49	400.4
-955.81	271.0
-958.80	89.0
-959.52	499.1
-962.35	757.9
-964.63	88.6
-965.68	1260.4
-967.02	1344.8
-968.50	1087.0
-969.38	1273.9
-970.45	1521.2
-971.97	486.2
-973.02	1172.7
-975.37	3043.5
-976.62	2757.3
-978.55	621.7
-980.42	346.6
-983.30	475.5
-984.69	249.8
-985.63	196.3
-988.78	163.5
-992.48	3458.0
-993.56	18198.6
-994.68	8532.4
-995.60	3634.7
-996.86	113.0
-997.91	264.2
-998.71	433.2
-1002.52	513.4
-1003.45	192.6
-1004.53	227.9
-1007.65	595.9
-1008.67	577.4
-1010.75	410.0
-1011.61	1210.1
-1012.67	717.9
-1014.64	519.0
-1020.41	1351.2
-1021.02	1176.7
-1022.99	220.4
-1023.66	823.9
-1024.87	859.3
-1026.53	481.3
-1028.19	1272.4
-1029.62	159.8
-1030.23	115.1
-1031.67	675.0
-1033.11	328.5
-1040.75	569.9
-1046.43	684.6
-1047.56	556.1
-1049.54	679.2
-1050.83	202.0
-1054.96	201.7
-1055.99	329.2
-1058.38	453.5
-1060.15	660.2
-1062.63	255.1
-1064.68	869.2
-1065.92	897.2
-1066.74	382.8
-1067.80	321.4
-1069.53	227.3
-1070.72	378.5
-1073.84	912.5
-1074.89	706.1
-1077.42	2053.0
-1081.71	341.3
-1082.64	775.3
-1087.53	361.5
-1089.81	2140.6
-1090.63	3634.1
-1091.59	1005.0
-1092.44	258.0
-1095.85	305.2
-1096.63	244.4
-1098.64	310.1
-1103.74	898.3
-1104.55	295.0
-1106.49	414.2
-1107.62	19912.3
-1108.60	11504.9
-1109.74	2027.9
-1110.64	666.1
-1111.32	256.0
-1112.70	682.1
-1116.78	1351.0
-1117.92	197.0
-1118.63	656.6
-1121.71	777.5
-1130.83	609.1
-1133.29	618.6
-1134.05	235.4
-1134.72	1351.4
-1135.96	448.8
-1137.96	247.2
-1139.80	68.1
-1147.35	358.6
-1148.43	1030.7
-1149.86	1004.4
-1150.86	1562.3
-1151.77	4737.5
-1152.65	904.7
-1153.40	940.1
-1154.64	1004.3
-1155.88	457.9
-1161.46	256.9
-1162.68	648.5
-1167.73	173.1
-1169.10	568.1
-1176.54	522.9
-1183.83	356.9
-1187.89	589.7
-1188.87	867.7
-1190.62	284.9
-1194.94	748.2
-1198.97	226.2
-1199.70	909.0
-1204.72	1023.0
-1205.75	1904.3
-1206.60	570.3
-1209.87	294.8
-1213.72	210.8
-1214.71	549.4
-1218.30	382.2
-1222.56	2222.2
-1223.67	973.6
-1224.90	1159.9
-1236.89	139.5
-1237.80	86.4
-1240.89	209.0
-1242.04	231.2
-1245.63	477.2
-1248.60	292.1
-1250.90	241.2
-1258.73	1915.9
-1259.84	1370.2
-1260.77	346.6
-1264.19	116.2
-1264.87	666.9
-1271.15	233.5
-1275.95	2237.8
-1276.81	3059.9
-1277.72	1607.5
-1278.74	418.6
-1285.49	561.3
-1287.81	374.6
-1290.71	509.6
-1293.69	45114.2
-1294.72	30144.4
-1295.68	11608.2
-1296.48	296.7
-1299.91	279.8
-1300.91	254.0
-1308.27	409.7
-1308.94	390.1
-1309.61	789.7
-1310.68	115.3
-1313.74	415.4
-1319.81	249.9
-1322.71	350.5
-1360.81	712.2
-1387.66	60.8
-1389.08	385.4
-1394.97	416.9
-1396.13	166.4
-1403.84	429.0
-1404.85	514.8
-1405.68	1268.6
-1407.81	343.8
-1421.63	1608.4
-1422.83	3651.5
-1423.79	2601.8
-1424.90	1284.5
-1440.02	145.6
-1442.08	251.2
-1442.91	456.2
-1451.93	218.1
-1459.69	232.7
-1472.73	339.1
-1505.74	292.4
-1565.08	294.4
-S	2	2	523.6
-Z	3	1550.6
-D	seq	FKWNGTDTNSAAEK
-D	modified seq	FKWNGTDTNSAAEK
-155.13	280.9
-157.25	605.4
-158.28	866.1
-159.24	189.5
-167.44	1114.1
-168.21	246.4
-169.14	777.8
-171.12	582.8
-172.02	916.1
-173.09	622.7
-175.07	4567.1
-176.10	130.6
-177.16	566.0
-178.33	172.6
-180.03	224.8
-183.16	1033.2
-184.04	222.8
-185.17	1890.0
-187.28	616.1
-188.03	131.3
-189.19	524.3
-190.07	240.4
-193.12	112.1
-194.21	712.8
-196.30	573.9
-196.96	252.6
-199.15	856.9
-200.24	1197.6
-201.24	755.0
-202.36	758.4
-203.12	1505.2
-204.13	376.7
-205.13	819.9
-207.13	297.2
-209.19	1813.6
-211.13	1736.9
-212.04	267.2
-213.15	704.2
-215.15	1774.6
-216.10	565.4
-217.01	1742.7
-218.20	1244.7
-219.10	742.8
-221.13	6419.6
-221.82	115.0
-223.11	144.2
-224.17	359.2
-225.19	463.3
-226.18	1373.2
-227.24	2987.6
-228.10	4079.3
-229.84	3421.2
-231.19	3218.1
-232.23	532.2
-233.10	100.0
-234.27	383.3
-235.19	206.6
-238.17	205.4
-240.10	854.7
-241.14	285.7
-242.15	337.5
-243.14	95.6
-244.22	2239.3
-245.22	1260.7
-246.20	820.6
-247.24	880.6
-250.18	234.0
-251.10	144.9
-252.21	116.6
-253.30	1107.0
-254.36	885.5
-254.97	183.7
-256.11	1648.4
-257.31	249.3
-258.15	3643.6
-259.18	2208.9
-260.31	538.4
-261.52	1833.9
-262.28	227.7
-263.26	623.2
-264.35	410.2
-265.31	128.8
-266.46	497.5
-268.28	526.5
-269.09	399.5
-270.15	146.3
-271.24	663.4
-272.22	675.1
-274.24	434.8
-275.25	248.8
-276.25	17819.1
-277.17	2398.9
-278.26	1645.1
-279.27	2844.1
-280.24	627.5
-281.25	225.0
-284.23	3891.0
-285.21	1866.7
-286.26	878.9
-287.19	786.7
-288.29	2827.4
-289.29	580.4
-290.35	350.8
-291.13	493.5
-292.31	399.4
-293.36	1343.0
-294.31	76.5
-295.24	852.0
-296.17	310.3
-298.61	1961.6
-299.46	408.7
-300.30	334.6
-301.26	4465.2
-302.27	1865.5
-303.44	677.6
-304.32	4508.7
-305.20	1948.8
-306.44	1779.4
-308.47	5418.3
-309.28	1256.2
-310.17	3335.4
-311.16	1715.8
-312.23	1160.3
-313.21	513.1
-314.21	108.8
-316.29	474.5
-317.25	186.8
-318.18	715.5
-319.17	526.5
-320.18	1668.3
-321.12	2183.2
-322.18	4088.5
-323.18	621.7
-324.26	1015.5
-324.89	1080.5
-326.25	387.3
-327.42	522.9
-328.30	1041.0
-329.27	285.0
-330.11	709.6
-330.71	703.6
-332.20	2056.2
-333.34	689.4
-334.34	816.0
-335.29	742.3
-336.32	3142.0
-337.12	1366.4
-338.13	869.7
-339.16	1268.5
-340.08	1997.8
-341.15	764.9
-342.38	2361.0
-343.32	1993.6
-344.50	2481.6
-345.32	6969.3
-347.23	10510.0
-348.10	675.2
-349.06	1265.3
-350.40	21768.7
-351.99	9913.2
-353.52	6440.7
-354.29	4828.0
-355.29	1325.5
-357.08	3565.5
-357.98	2003.4
-359.22	50327.7
-360.57	15523.9
-361.32	4528.0
-362.35	852.7
-365.31	1090.5
-366.30	111.1
-367.58	9738.7
-368.25	2648.6
-369.30	489.3
-370.27	153.0
-371.35	2079.9
-372.25	2016.4
-373.48	1343.5
-374.33	688.5
-375.23	586.9
-376.53	1807.2
-377.31	3634.3
-378.26	2048.1
-379.26	1351.4
-380.41	2908.0
-381.87	3484.3
-382.83	1287.1
-384.04	1014.2
-385.39	224.1
-386.36	1053.0
-387.26	21966.4
-388.60	1668.0
-389.35	178.1
-390.55	1018.7
-391.82	3269.9
-392.78	1152.6
-393.48	1750.2
-394.41	969.5
-395.27	277.6
-396.28	466.4
-398.48	916.8
-399.32	772.0
-400.58	3533.8
-401.24	1107.0
-402.44	11277.6
-403.19	2056.9
-403.99	589.3
-405.23	27207.9
-406.22	228.8
-407.55	2516.5
-408.54	3456.4
-409.38	16457.5
-410.33	3430.0
-411.32	821.4
-411.92	2124.6
-413.70	1975.0
-414.75	5656.1
-415.51	3052.1
-416.52	17509.3
-417.34	3362.6
-418.30	28746.9
-419.44	2384.5
-420.31	804.6
-421.28	4312.4
-422.41	2094.3
-423.52	2068.4
-424.30	2637.5
-425.36	38153.5
-426.42	5340.0
-427.31	405.3
-428.11	129.1
-429.48	2478.5
-430.39	1182.9
-431.35	1576.2
-432.49	2555.4
-433.56	2583.4
-434.43	1866.0
-435.24	754.3
-436.21	397.4
-437.38	6503.2
-438.31	1210.6
-439.21	1129.3
-440.44	4247.6
-441.31	1589.0
-442.56	2677.9
-443.45	3092.5
-444.55	3055.5
-445.38	3143.1
-446.86	1499.6
-447.49	1449.7
-448.35	1028.4
-449.29	2071.3
-450.08	2299.1
-450.70	1872.6
-451.58	9103.8
-452.47	8577.1
-453.43	5305.0
-454.88	12551.7
-456.08	1365.0
-457.17	4190.9
-458.37	27349.0
-459.51	11485.1
-460.49	3796.4
-461.18	3666.3
-462.29	12965.8
-463.38	3378.0
-464.53	1829.6
-465.51	5865.0
-466.60	8303.5
-467.53	18167.7
-468.69	7543.0
-469.31	2108.5
-470.48	6178.9
-471.34	1227.0
-472.26	3092.5
-473.29	1813.2
-474.13	5861.9
-475.07	5855.1
-475.74	14452.3
-476.43	8136.6
-477.38	629.1
-478.31	5349.5
-479.65	4044.0
-480.44	1503.8
-482.11	1304.9
-483.29	2425.9
-484.50	6682.6
-485.35	443.3
-486.41	2557.5
-487.53	5911.3
-488.39	39605.0
-489.30	7936.8
-490.28	9620.2
-491.15	4098.8
-492.79	3689.4
-493.48	3045.2
-494.84	4047.0
-495.57	1992.6
-497.17	19601.0
-497.97	9143.1
-498.97	1673.5
-499.68	4008.2
-500.57	16588.0
-501.49	5361.7
-503.00	27478.0
-503.97	1645.6
-505.32	51744.8
-506.23	103815.1
-507.32	19532.4
-508.64	10637.6
-509.41	6293.1
-510.34	3715.0
-511.89	401549.9
-512.70	17866.5
-514.10	45957.2
-514.95	42617.4
-515.92	6740.1
-516.97	16481.9
-517.72	24749.0
-519.13	286.1
-520.22	144.9
-521.03	157.5
-522.05	264.0
-523.39	779.1
-524.54	216.1
-526.70	1095.4
-528.19	1000.4
-529.37	446.5
-530.53	1756.3
-531.28	1270.0
-532.98	4352.9
-534.34	5512.1
-535.47	1858.6
-536.42	5112.5
-537.26	796.6
-538.35	444.7
-539.49	8398.3
-540.60	3112.1
-541.76	1585.2
-542.38	489.0
-543.51	2771.8
-544.65	1686.1
-545.51	11766.2
-546.67	796.1
-548.21	3012.4
-549.57	2279.3
-550.41	519.8
-552.42	1394.4
-553.74	4964.5
-554.66	3925.7
-555.42	410.6
-556.41	680.4
-557.64	4685.5
-558.51	8097.1
-559.41	7892.2
-560.24	3352.5
-561.31	5882.8
-562.75	6546.8
-563.75	10326.1
-564.91	2906.2
-567.14	8174.2
-568.00	14618.3
-569.47	1302.3
-570.22	2281.0
-571.72	1860.6
-572.66	12251.7
-573.57	884.3
-574.57	4261.9
-575.49	3405.1
-576.42	12818.9
-577.41	1276.6
-578.49	20383.2
-581.28	935.0
-582.47	495.3
-583.31	942.9
-584.50	3527.3
-585.58	3790.0
-586.38	1095.1
-587.39	1855.4
-588.45	331.3
-589.70	2633.7
-591.52	1511.3
-592.16	1186.9
-593.42	1177.3
-594.72	1978.4
-596.29	349.2
-598.15	1180.3
-600.03	2374.7
-601.46	7857.8
-602.52	10026.0
-603.46	5057.1
-605.15	3934.4
-606.25	951.5
-607.42	1555.5
-608.21	1062.1
-609.48	615.9
-611.29	1972.2
-612.00	3294.2
-613.60	3323.1
-614.72	3325.3
-616.35	5120.3
-617.55	8573.6
-618.34	364.2
-619.38	28990.8
-620.60	21284.2
-621.79	9066.5
-622.88	1567.3
-623.55	359.8
-625.29	3524.3
-626.46	4297.3
-627.29	1518.2
-629.18	8732.8
-630.12	8935.0
-631.19	2706.0
-632.73	1685.6
-633.37	6063.5
-634.27	2386.6
-635.49	3305.1
-636.43	2112.1
-638.57	35161.8
-639.53	7982.7
-640.43	2173.3
-641.52	6707.2
-642.86	735.4
-644.19	394.0
-645.37	3461.5
-646.58	2226.8
-647.57	17031.6
-649.10	884.9
-650.23	1428.0
-651.90	1781.9
-652.83	2961.8
-653.63	4201.7
-654.60	1455.4
-655.78	1559.7
-656.58	2601.3
-657.26	710.2
-659.17	4548.3
-660.22	1754.2
-661.29	2473.3
-663.33	12908.7
-664.42	11679.3
-665.56	1020.5
-667.45	851.1
-668.56	1417.4
-669.59	987.6
-670.76	3001.2
-671.84	1759.2
-672.58	3127.1
-673.68	6360.8
-674.55	2144.6
-675.45	2472.4
-676.57	4804.7
-677.77	1937.7
-678.52	1010.3
-679.65	2972.6
-680.57	2470.4
-681.91	6073.9
-682.75	2735.9
-684.39	2046.9
-685.64	6547.4
-686.68	1459.5
-688.36	1351.2
-689.48	3655.7
-690.37	3159.2
-692.65	1738.6
-693.70	3801.8
-694.59	2720.8
-695.58	288.6
-696.51	3668.2
-698.55	19347.6
-699.47	2193.6
-700.46	1719.8
-701.48	1360.7
-702.61	11399.2
-703.48	10612.8
-704.47	1817.6
-705.52	1529.2
-706.16	1635.5
-708.10	587.9
-710.50	26147.8
-711.69	11866.8
-712.35	3205.2
-713.14	2876.4
-714.51	809.8
-715.47	968.9
-716.57	9213.2
-717.52	7594.2
-718.51	3731.8
-719.71	12575.3
-720.40	24008.5
-721.51	9205.8
-722.45	1169.9
-723.69	312.5
-724.42	503.1
-726.46	158.0
-728.46	2111.1
-729.53	3858.1
-730.49	899.4
-731.63	2455.2
-732.57	669.0
-733.39	1064.4
-734.41	8519.3
-735.49	4824.6
-736.48	986.0
-737.53	933.1
-738.40	461.8
-739.28	360.4
-740.39	1387.0
-742.58	2668.0
-743.84	1387.3
-744.74	219.8
-746.61	301.8
-749.21	2703.1
-750.52	1345.9
-751.95	133.1
-752.68	808.5
-754.19	5906.7
-755.16	758.3
-756.49	1173.6
-757.47	1073.2
-758.54	388.3
-759.37	4139.7
-760.35	4574.7
-761.37	579.4
-762.52	4155.3
-763.50	5191.6
-764.38	803.7
-765.69	1042.0
-766.49	382.4
-767.85	22446.6
-768.51	14710.7
-769.32	916.9
-770.50	689.0
-771.40	1726.2
-772.55	1480.4
-773.50	1659.8
-774.72	1048.6
-775.70	3066.1
-776.64	901.3
-777.44	175.9
-778.58	762.4
-781.75	287.1
-782.58	1124.6
-783.36	669.2
-784.46	276.9
-785.61	178.1
-786.67	632.1
-787.67	2076.2
-788.63	743.9
-789.58	805.9
-791.60	375.9
-793.52	584.9
-794.56	1233.1
-796.34	341.8
-797.72	155.6
-799.58	1438.9
-800.53	1876.0
-801.64	8026.0
-802.66	5659.4
-803.52	3112.2
-804.47	10066.5
-805.45	2544.4
-806.65	2205.8
-807.79	525.0
-808.72	2526.4
-809.48	1668.9
-811.50	513.1
-813.44	2221.5
-814.64	668.4
-815.58	794.6
-817.52	24187.8
-818.57	16401.5
-819.61	5819.6
-820.50	683.7
-822.42	1459.5
-827.09	487.9
-828.43	2766.0
-829.68	967.4
-830.34	1139.2
-831.60	1679.0
-832.41	2216.6
-834.19	508.3
-835.49	28437.8
-836.39	7020.0
-837.12	41.0
-838.54	933.9
-839.49	547.0
-840.41	1797.0
-841.34	239.9
-844.81	805.8
-845.69	1989.9
-846.74	2390.8
-849.47	7133.7
-850.62	6060.9
-851.53	314.3
-852.62	286.3
-853.51	429.2
-854.59	564.0
-856.54	564.8
-858.31	219.7
-859.50	1153.3
-860.42	977.9
-861.59	1061.4
-863.61	517.3
-864.69	2034.7
-865.59	1990.8
-867.80	299.1
-869.79	278.0
-870.58	1277.8
-871.83	1063.8
-872.59	1684.3
-873.65	238.6
-874.64	341.3
-875.72	145.1
-879.60	815.0
-880.56	768.3
-881.69	532.1
-882.47	465.2
-883.50	572.5
-887.85	261.4
-888.58	714.9
-889.86	987.6
-890.70	400.3
-891.62	412.6
-892.79	618.1
-893.87	402.4
-894.96	499.3
-896.61	417.1
-898.75	638.4
-899.61	528.2
-900.54	469.6
-902.76	3014.6
-903.56	1126.1
-904.59	632.6
-905.77	603.3
-906.92	126.5
-909.49	305.2
-911.39	292.0
-912.55	89.0
-913.51	658.9
-914.86	557.0
-915.48	436.1
-916.82	150.1
-917.56	801.4
-918.48	3222.9
-919.73	851.9
-922.72	456.8
-931.77	766.0
-932.66	2160.0
-933.76	953.3
-934.41	539.5
-936.66	1679.1
-937.53	1219.3
-938.77	430.1
-941.47	518.6
-947.61	419.1
-948.77	271.3
-950.62	1135.0
-951.54	874.7
-959.44	412.6
-961.76	492.7
-964.84	509.2
-965.46	575.2
-970.65	939.5
-972.66	504.7
-975.74	408.4
-976.66	117.9
-977.41	246.0
-992.46	192.6
-993.67	1415.6
-994.67	303.6
-995.67	174.0
-1001.58	176.7
-1002.48	576.9
-1019.73	218.9
-1023.74	442.2
-1024.90	157.3
-1025.92	989.5
-1031.47	154.7
-1035.39	426.9
-1043.44	251.1
-1049.59	169.8
-1054.82	1392.3
-1064.72	310.6
-1065.76	133.0
-1079.56	471.0
-1094.81	352.4
-1096.69	328.4
-1099.58	682.9
-1112.87	542.5
-1119.51	538.9
-1122.81	480.3
-1129.48	512.4
-1130.50	150.4
-1147.69	302.2
-1158.81	222.1
-1175.63	366.0
-1180.63	413.1
-1202.13	361.3
-1227.90	100.2
-1276.95	362.7
-1277.70	348.8
-1294.67	165.7
-1295.77	171.0
-S	3	3	709.3
-Z	2	1399.5
-D	seq	GGESIMNAQSQPQA
-D	modified seq	GGESIMNAQSQPQA
-187.14	117.7
-200.14	347.3
-208.09	48.8
-209.16	151.6
-211.16	225.9
-212.08	333.8
-213.73	251.9
-215.20	1497.3
-215.83	94.7
-218.06	75.4
-222.16	144.6
-223.17	85.0
-226.21	1314.7
-227.35	169.9
-228.01	311.5
-230.04	134.3
-233.12	126.4
-234.91	74.6
-237.20	356.4
-239.27	248.7
-244.07	746.9
-246.21	202.5
-248.15	52.2
-250.19	167.4
-252.28	287.5
-253.68	126.8
-257.30	889.9
-258.21	187.8
-259.07	136.7
-260.76	164.5
-262.30	343.8
-268.11	273.5
-269.26	609.1
-270.20	444.8
-271.27	125.6
-272.26	840.9
-273.20	213.7
-275.32	1135.0
-276.23	282.3
-280.19	171.3
-282.17	227.5
-284.17	1324.8
-286.12	2939.1
-288.21	119.2
-292.27	131.5
-294.68	156.0
-296.19	342.6
-298.18	729.5
-299.23	291.0
-301.19	234.1
-302.36	593.5
-303.18	346.2
-304.28	331.2
-307.22	252.9
-308.49	455.7
-310.36	335.1
-311.27	195.5
-312.18	129.5
-313.22	571.5
-315.19	17840.9
-315.99	70.4
-321.35	181.9
-323.20	330.1
-325.19	286.8
-326.32	548.2
-327.27	161.0
-330.26	247.4
-331.17	712.4
-332.16	627.0
-334.30	36.6
-336.33	210.2
-338.18	368.4
-339.06	821.8
-340.25	275.5
-341.28	348.5
-342.44	193.8
-343.32	555.2
-345.22	411.7
-346.21	712.0
-347.26	1071.0
-349.29	915.2
-350.18	486.8
-350.93	137.7
-352.24	202.7
-353.46	146.8
-354.27	105.6
-355.16	603.8
-356.17	278.9
-357.32	160.1
-358.30	567.4
-359.46	630.2
-360.41	269.7
-363.17	706.8
-364.19	439.8
-365.36	480.6
-366.35	663.6
-367.18	173.3
-368.46	372.7
-370.26	257.0
-371.47	1439.1
-372.38	1413.7
-377.20	393.7
-379.35	495.9
-381.26	295.3
-382.29	223.8
-383.45	195.1
-384.32	851.1
-385.32	573.6
-386.38	281.9
-387.44	372.1
-389.18	1092.3
-391.35	143.0
-393.55	313.4
-395.20	188.5
-396.36	872.9
-397.35	174.3
-398.35	1475.0
-399.49	397.8
-400.36	422.6
-403.48	1135.6
-406.60	198.8
-407.34	428.9
-408.45	628.4
-409.37	1911.8
-410.35	1031.5
-415.41	272.8
-416.31	287.6
-417.20	245.3
-418.35	258.9
-419.28	185.4
-422.28	571.1
-423.26	471.1
-424.30	149.1
-425.42	1245.0
-426.32	7255.4
-427.18	259.9
-428.19	1130.3
-429.42	416.6
-430.81	285.8
-431.41	357.6
-432.36	240.0
-435.32	909.4
-438.64	361.4
-439.27	54.4
-440.27	809.1
-441.36	201.5
-442.57	1096.3
-443.42	1637.0
-444.22	1651.0
-445.22	174.6
-446.36	224.2
-447.43	448.3
-449.30	630.3
-450.25	116.6
-452.39	1079.1
-454.48	546.7
-455.29	392.5
-456.43	846.3
-457.33	2153.8
-458.15	103.2
-460.37	731.6
-462.30	404.7
-463.45	965.0
-464.31	754.6
-466.65	327.7
-468.43	259.0
-469.40	123.8
-470.45	334.1
-473.27	80.8
-474.36	296.7
-475.18	389.0
-476.35	275.5
-478.84	1268.7
-479.60	350.2
-480.25	478.7
-481.28	770.2
-483.32	627.3
-484.36	135.9
-485.28	121.0
-486.59	154.3
-489.34	509.7
-490.65	256.6
-491.39	626.4
-492.46	443.2
-494.55	1090.3
-495.26	191.5
-497.45	221.1
-498.27	412.9
-499.46	305.6
-500.41	634.9
-501.31	85.2
-502.09	2311.2
-503.46	436.5
-504.45	585.0
-505.53	213.1
-506.67	397.4
-507.44	114.2
-509.46	2200.0
-510.64	2040.6
-511.61	252.7
-512.43	636.6
-513.35	158.5
-514.40	247.4
-516.25	1191.0
-517.49	374.4
-519.29	1001.2
-520.59	670.9
-521.44	395.9
-522.43	360.9
-523.77	499.9
-524.65	242.1
-526.34	1341.7
-527.37	538.6
-528.43	566.7
-529.37	1119.6
-530.39	5931.5
-532.43	1483.7
-533.54	1449.0
-534.44	1211.7
-535.47	1938.9
-536.48	224.0
-537.60	442.1
-538.23	303.7
-539.39	205.9
-540.37	662.0
-541.40	359.4
-542.44	193.3
-543.47	205.7
-544.32	1001.0
-545.43	758.5
-546.45	2967.4
-548.63	265.2
-549.47	697.3
-550.44	127.1
-551.78	293.1
-552.48	1240.4
-553.60	526.4
-554.23	115.9
-555.30	161.4
-556.34	750.7
-557.40	1208.4
-558.97	1287.7
-560.37	844.6
-561.69	1191.9
-562.48	812.1
-563.42	1502.6
-564.74	1271.9
-565.38	136.2
-567.19	8214.9
-567.89	153.7
-569.62	2036.8
-570.58	169.8
-571.29	127.0
-572.22	730.9
-573.25	614.8
-574.20	125.3
-575.33	2576.5
-576.51	1125.2
-577.47	2884.2
-578.94	3577.9
-581.44	506.8
-582.10	101.7
-583.98	58.8
-584.85	275.1
-585.45	1952.1
-586.49	1193.3
-588.16	637.2
-589.36	529.6
-590.85	1117.8
-591.63	301.2
-592.67	1227.3
-594.30	2050.2
-595.62	1253.1
-596.39	1209.9
-597.45	120.3
-598.46	298.8
-599.46	469.8
-600.38	561.1
-601.56	2286.4
-602.55	20799.3
-603.81	2500.9
-604.62	386.5
-608.38	202.6
-610.53	684.2
-611.38	881.9
-612.49	7092.8
-614.63	150.6
-615.52	765.4
-616.55	154.3
-617.41	1141.4
-618.31	983.5
-620.59	775.8
-621.93	206.3
-623.36	304.0
-625.43	103.1
-627.16	520.0
-629.11	894.2
-629.73	206.0
-631.54	212.4
-632.77	291.7
-633.53	432.9
-636.15	1842.3
-637.09	1245.0
-638.46	394.5
-639.50	462.8
-640.47	210.5
-641.40	834.0
-642.30	294.5
-643.51	513.1
-644.33	339.9
-645.01	743.9
-646.67	830.2
-647.55	1401.8
-648.67	432.1
-649.42	376.0
-650.59	473.6
-651.58	158.1
-652.59	1572.5
-654.83	1355.6
-656.18	7619.7
-658.19	7473.3
-658.83	810.4
-659.50	895.9
-660.53	93.1
-661.45	616.7
-662.41	847.9
-663.48	232.1
-664.80	2414.4
-665.64	1775.8
-666.53	1901.9
-667.52	775.3
-669.48	213.6
-671.22	2566.9
-672.26	1757.5
-673.46	1861.9
-674.50	5050.3
-675.44	1522.8
-676.67	470.7
-678.35	850.8
-679.10	338.2
-679.83	487.1
-680.53	434.6
-681.42	520.5
-682.60	436.3
-683.58	243.0
-684.64	533.2
-685.72	1118.4
-687.29	2174.5
-688.14	1280.1
-689.43	2423.3
-690.51	2316.0
-691.53	17932.5
-692.50	8279.9
-693.98	203.4
-695.53	106.8
-697.21	1832.4
-700.28	20565.9
-700.90	5958.7
-701.61	2060.8
-702.25	497.4
-711.35	405.3
-714.49	212.7
-720.83	225.5
-721.48	273.2
-724.49	455.0
-725.47	299.5
-726.52	160.8
-728.12	1126.8
-729.51	3461.0
-731.27	207.2
-732.53	153.1
-734.55	3542.3
-735.67	2515.8
-736.62	493.4
-737.57	576.0
-741.38	154.2
-742.31	512.5
-743.37	2444.3
-744.57	335.0
-745.64	633.7
-747.62	169.2
-749.21	225.3
-754.53	91.7
-756.46	117.6
-760.42	4986.1
-761.33	59.9
-765.14	618.6
-770.58	279.5
-771.60	393.5
-772.38	60.1
-774.42	758.8
-776.46	264.7
-777.44	139.6
-780.39	69.8
-781.62	371.3
-782.35	85.3
-784.62	715.6
-785.55	676.6
-791.47	391.9
-799.57	795.7
-800.60	1440.0
-801.50	599.9
-802.46	253.2
-806.06	402.3
-806.88	402.8
-808.35	1624.9
-809.99	1121.0
-811.53	346.8
-812.59	671.5
-815.78	88.7
-816.74	401.5
-818.56	225.2
-819.66	324.4
-821.29	2712.9
-822.95	356.5
-824.25	773.3
-825.50	626.4
-826.43	402.1
-827.74	56.7
-828.61	1686.0
-829.37	182.7
-831.47	323.4
-833.55	3633.8
-834.45	536.6
-836.28	373.1
-837.39	174.0
-839.77	954.1
-840.53	233.3
-841.87	794.2
-843.54	8619.3
-844.21	176.6
-844.92	562.7
-846.46	1131.8
-849.77	115.9
-850.75	384.1
-853.30	212.3
-855.48	1278.3
-856.34	449.3
-858.65	596.3
-859.60	366.6
-865.40	406.8
-867.92	180.1
-870.25	2073.5
-871.49	2720.9
-872.68	416.5
-873.53	1112.4
-874.49	1071.1
-875.59	248.9
-878.23	2425.5
-880.56	536.2
-881.92	183.8
-884.64	94.6
-885.82	1701.1
-886.64	861.3
-888.50	9227.9
-889.41	987.2
-890.04	378.7
-891.37	330.9
-895.00	603.6
-896.43	454.7
-897.78	584.2
-901.57	87.6
-905.52	79.0
-906.61	313.2
-910.57	343.4
-911.55	322.7
-912.87	370.4
-913.55	641.1
-914.73	186.3
-916.66	251.6
-918.64	354.4
-920.17	254.6
-924.84	190.2
-926.91	153.8
-928.03	689.1
-930.64	553.5
-931.71	318.2
-937.48	137.3
-941.30	935.4
-941.99	104.6
-942.78	500.3
-943.65	532.4
-944.87	558.3
-946.50	85.3
-947.54	266.7
-956.62	598.5
-957.70	2436.0
-958.66	1637.0
-959.69	433.5
-961.56	742.4
-962.45	1897.2
-963.73	615.2
-964.54	826.7
-965.24	103.5
-968.82	307.8
-969.64	823.3
-970.85	677.6
-971.93	250.4
-973.76	728.8
-974.67	7455.7
-975.55	1835.1
-976.22	356.8
-986.67	86.3
-987.67	149.6
-989.76	1630.2
-990.83	697.4
-992.80	293.8
-997.46	855.2
-998.67	96.6
-1001.66	712.1
-1003.53	577.1
-1005.60	125.2
-1008.58	244.8
-1010.71	182.3
-1014.75	164.5
-1015.80	286.4
-1017.65	433.5
-1019.62	14427.7
-1020.76	4851.9
-1021.56	510.1
-1023.55	215.6
-1025.86	115.7
-1026.72	286.3
-1027.74	838.1
-1028.66	799.2
-1029.78	278.0
-1033.60	239.8
-1034.74	625.8
-1036.10	391.5
-1039.66	166.5
-1045.65	374.3
-1046.85	430.6
-1047.81	279.7
-1050.70	158.1
-1051.68	498.8
-1052.66	261.2
-1057.72	134.2
-1058.68	1367.1
-1059.45	194.5
-1060.41	262.8
-1064.68	163.4
-1067.60	507.1
-1068.58	1551.3
-1069.79	231.6
-1070.56	173.3
-1071.31	399.8
-1073.47	489.5
-1076.71	518.2
-1077.54	354.2
-1085.59	3654.2
-1086.62	5105.8
-1087.75	2585.0
-1088.40	70.4
-1100.60	508.2
-1101.67	65.6
-1103.60	23720.7
-1104.49	336.1
-1105.15	106.1
-1108.82	397.0
-1109.66	277.7
-1110.98	250.2
-1114.94	138.9
-1115.65	514.9
-1119.68	112.9
-1125.99	681.8
-1126.83	432.2
-1127.98	819.7
-1128.68	976.6
-1132.93	2437.7
-1133.81	1286.1
-1140.63	429.1
-1142.65	88.0
-1143.85	304.0
-1144.90	823.2
-1145.76	1772.1
-1146.76	1031.0
-1147.67	358.8
-1148.81	248.4
-1149.95	80.9
-1151.68	257.7
-1154.07	316.0
-1156.75	1098.8
-1157.77	1098.4
-1158.98	209.6
-1160.41	199.1
-1167.72	97.2
-1173.66	214.1
-1174.66	872.7
-1175.94	506.2
-1180.61	306.7
-1182.56	78.7
-1191.68	321.1
-1197.61	606.3
-1199.13	91.2
-1202.00	282.0
-1203.80	2311.3
-1204.84	1621.6
-1205.90	398.8
-1207.06	215.4
-1208.77	189.8
-1213.85	210.1
-1214.70	652.1
-1234.81	66.6
-1236.72	134.4
-1244.99	225.7
-1252.35	393.9
-1254.82	285.3
-1269.65	120.5
-1271.79	1256.4
-1272.82	441.7
-1274.05	247.6
-1286.68	329.7
-1288.98	143.3
-S	4	4	792.5
-Z	3	2356.7
-D	seq	VIYTTNAVEAVHRQFRKLTK
-D	modified seq	VIYTTNAVEAVHRQFRKLTK
-225.98	98.1
-229.08	365.6
-231.15	159.9
-235.04	444.5
-239.32	202.6
-240.28	285.6
-241.11	397.2
-242.14	145.8
-243.26	111.8
-244.21	129.2
-246.25	157.3
-247.13	414.9
-249.15	1701.0
-252.07	520.9
-253.21	962.4
-258.31	145.3
-259.18	213.6
-262.27	350.7
-263.15	240.0
-268.13	414.9
-271.32	320.7
-272.06	400.6
-274.33	417.9
-275.22	671.3
-276.22	268.0
-277.15	253.5
-278.17	312.3
-283.11	120.8
-285.13	87.2
-286.09	129.3
-288.20	265.7
-292.17	7058.9
-292.94	155.9
-293.56	205.0
-294.17	425.6
-295.32	232.5
-296.18	1102.0
-298.20	2978.7
-299.37	279.7
-302.19	130.7
-303.28	784.2
-304.29	347.6
-306.28	82.2
-308.12	1243.0
-309.32	105.5
-311.17	509.3
-312.23	222.2
-313.16	2815.7
-313.84	655.4
-315.43	51.0
-316.16	408.5
-317.21	4814.3
-318.19	1220.8
-319.18	54.9
-321.23	872.0
-325.22	569.9
-327.40	358.2
-328.37	671.8
-330.22	81.4
-331.17	218.7
-334.17	241.4
-338.34	1455.1
-339.16	179.2
-340.22	219.5
-341.24	625.5
-343.20	86.2
-345.24	233.8
-346.27	819.3
-347.20	149.4
-348.23	462.8
-349.11	360.5
-350.25	243.9
-352.50	236.4
-353.28	531.3
-355.11	553.8
-356.28	1893.9
-357.20	465.8
-358.21	904.5
-360.10	426.8
-361.34	329.7
-363.13	13003.2
-364.14	585.7
-365.25	845.2
-371.31	449.3
-373.30	2172.2
-374.15	333.4
-377.26	716.7
-379.54	276.4
-380.62	72.0
-381.33	2352.8
-382.36	165.1
-384.20	111.5
-390.22	856.4
-391.10	1032.6
-395.26	579.5
-397.28	285.0
-399.24	804.4
-400.22	348.1
-401.35	585.4
-403.18	1057.4
-405.24	4587.2
-406.25	148.7
-407.24	374.8
-409.23	4016.9
-413.26	720.0
-414.18	313.0
-415.27	3102.3
-416.42	723.5
-417.18	580.2
-418.35	350.1
-419.67	73.5
-420.47	704.1
-421.27	318.7
-422.19	143.0
-424.23	747.4
-425.46	604.9
-426.37	2784.2
-428.33	276.6
-430.36	4042.1
-431.23	3610.8
-432.37	275.4
-433.25	636.7
-436.50	147.2
-438.35	93.6
-440.56	181.2
-441.38	385.6
-442.40	1042.8
-443.30	755.1
-448.32	5891.3
-450.19	244.2
-452.33	187.8
-454.45	321.5
-455.53	53.5
-456.41	100.6
-458.42	1238.9
-459.30	2878.6
-460.39	1069.7
-461.33	2632.0
-462.74	521.9
-464.51	180.8
-465.20	65.8
-466.20	1268.0
-467.23	1396.7
-468.63	189.3
-470.38	399.3
-471.38	304.3
-473.42	1474.8
-474.30	138.2
-475.32	772.8
-476.25	18076.6
-477.28	1068.3
-478.39	1270.1
-480.67	402.3
-481.37	95.0
-482.40	462.7
-483.33	293.5
-484.44	393.1
-485.36	58.3
-487.13	394.9
-488.33	1593.4
-489.30	1145.4
-490.36	576.7
-492.26	152.0
-495.09	166.7
-496.37	49.9
-498.45	132.5
-499.16	167.1
-500.15	686.5
-501.38	7922.9
-502.34	211.8
-503.37	472.4
-504.60	1394.0
-505.49	643.3
-508.38	311.8
-510.59	103.2
-511.33	465.8
-512.28	263.5
-514.50	615.1
-516.27	1500.4
-518.35	1513.6
-525.35	103.2
-526.30	524.2
-528.09	1069.2
-529.35	810.7
-530.37	1752.4
-531.35	242.8
-532.31	549.0
-533.28	4312.1
-534.50	228.5
-535.21	349.0
-536.35	357.5
-537.00	213.5
-538.47	926.0
-542.15	174.6
-544.21	6565.5
-546.14	1258.4
-547.42	627.0
-548.16	474.7
-549.48	390.2
-550.43	343.0
-551.44	77.9
-552.35	627.9
-553.34	560.5
-554.35	1253.2
-555.27	266.9
-556.58	421.7
-557.37	800.2
-558.44	212.7
-559.90	1227.1
-561.31	7686.6
-562.20	1566.3
-563.45	641.7
-565.16	1369.9
-570.43	576.0
-571.39	1127.2
-572.43	3524.0
-573.40	392.2
-574.43	1254.0
-575.51	444.0
-576.50	680.4
-577.63	1327.2
-578.39	78.0
-579.35	584.2
-580.45	385.2
-583.24	368.6
-584.48	518.1
-585.54	16430.0
-586.35	38.9
-589.29	13074.9
-590.40	603.9
-591.47	88.9
-592.35	264.5
-593.40	717.7
-594.71	319.8
-596.60	193.9
-598.33	182.5
-600.77	433.9
-601.46	1661.3
-603.13	783.2
-606.68	6970.3
-607.39	29106.2
-608.44	581.4
-609.74	358.8
-610.36	235.4
-611.52	875.4
-612.38	1308.1
-613.43	213.6
-616.32	633.0
-617.01	365.3
-618.45	1516.8
-619.52	984.5
-620.46	294.7
-622.41	305.5
-623.36	422.0
-625.35	293.6
-627.77	1938.1
-628.47	2151.6
-629.36	1342.3
-631.58	127.6
-635.56	117.5
-636.38	1576.8
-637.61	351.2
-638.30	169.4
-639.32	213.7
-640.27	370.2
-642.14	2070.8
-646.25	2289.4
-649.47	167.6
-650.44	719.2
-653.28	76.4
-654.33	2244.3
-657.46	508.5
-659.44	131.6
-660.68	464.1
-662.47	322.5
-663.41	710.4
-664.52	1510.8
-665.52	486.9
-668.84	15673.0
-669.81	2321.8
-672.42	271.3
-673.08	262.6
-674.50	501.3
-675.44	564.4
-676.83	418.7
-678.78	249.3
-680.33	160.1
-682.34	85.2
-683.29	979.4
-684.89	630.3
-686.56	1023.5
-688.50	569.6
-691.71	1030.2
-692.49	2119.0
-693.34	765.6
-694.39	500.7
-697.44	613.3
-698.61	319.5
-700.35	1469.9
-701.52	578.8
-702.39	154.1
-703.44	96.8
-704.44	236.4
-705.65	409.7
-707.03	289.9
-712.26	615.6
-713.90	872.7
-714.53	292.3
-715.28	863.2
-716.52	194.1
-717.44	458.8
-718.62	1473.7
-719.51	1258.7
-720.95	3451.9
-722.46	949.4
-724.72	1002.0
-725.56	167.8
-726.74	1348.3
-727.78	2936.5
-728.49	1121.1
-729.40	1374.7
-730.59	133.2
-731.40	173.2
-732.45	399.9
-733.41	342.9
-734.91	1461.9
-735.80	696.2
-739.50	333.1
-740.65	439.1
-741.54	341.3
-743.95	2372.0
-744.95	1639.0
-746.64	554.3
-747.58	239.5
-748.62	1705.3
-749.43	3021.0
-751.45	1257.9
-752.38	775.8
-753.11	437.1
-754.24	372.5
-755.57	684.1
-756.40	2253.0
-757.50	4004.6
-758.51	4782.2
-759.26	1482.8
-760.78	1689.5
-761.55	888.6
-762.54	3019.2
-763.43	2451.8
-764.38	703.7
-765.56	390.5
-766.39	833.7
-769.69	656.5
-771.51	291.2
-773.57	4070.3
-774.51	17664.1
-775.52	11178.4
-776.44	7010.4
-777.72	491.1
-778.68	1173.6
-780.26	1388.8
-781.44	1367.1
-782.78	18719.8
-783.60	18549.0
-784.51	2777.5
-795.35	1607.1
-796.28	893.6
-797.53	421.6
-802.51	117.6
-809.02	390.1
-811.36	86.4
-812.47	60.7
-818.49	737.0
-819.75	572.1
-825.61	242.6
-827.59	1072.2
-828.60	664.3
-829.52	329.3
-835.44	228.3
-839.94	537.4
-857.80	630.9
-862.61	227.1
-863.51	109.8
-867.53	246.3
-868.71	167.6
-874.34	83.4
-875.66	415.3
-882.44	133.9
-883.67	459.0
-895.16	1067.8
-903.47	1018.7
-906.59	403.8
-908.52	385.8
-911.53	156.1
-913.70	173.8
-915.37	315.9
-916.61	96.6
-917.76	767.2
-918.45	217.8
-920.54	325.6
-923.81	391.1
-924.83	422.2
-926.45	257.6
-927.68	137.6
-936.48	529.7
-937.78	295.6
-940.61	94.1
-944.03	282.0
-946.58	436.8
-949.95	130.5
-950.62	543.2
-956.62	439.6
-964.00	293.0
-964.98	880.3
-965.71	52.1
-967.23	125.7
-968.38	559.9
-975.69	246.0
-978.66	1595.5
-980.26	1037.9
-981.70	556.6
-983.58	213.1
-986.07	280.2
-993.61	734.6
-994.47	951.7
-997.59	206.4
-999.41	409.0
-1001.15	188.8
-1002.17	1120.3
-1003.08	348.8
-1007.42	877.9
-1008.55	384.7
-1009.62	1114.4
-1010.77	226.5
-1015.74	427.9
-1018.51	481.1
-1019.48	64.9
-1029.99	489.0
-1032.54	436.6
-1039.95	160.4
-1041.86	169.1
-1043.57	59.3
-1045.11	2047.8
-1048.53	419.5
-1049.70	466.9
-1050.63	379.2
-1055.52	298.0
-1057.13	893.0
-1057.88	340.3
-1059.80	432.9
-1062.81	1594.1
-1063.56	490.5
-1065.06	3223.6
-1065.85	1120.7
-1067.69	177.2
-1068.32	835.1
-1072.25	899.0
-1073.80	5874.2
-1074.59	758.2
-1075.70	226.4
-1084.94	291.9
-1094.88	287.9
-1096.36	157.7
-1102.65	346.2
-1107.66	765.5
-1109.10	392.2
-1109.75	243.6
-1114.88	1223.5
-1118.70	54.2
-1122.08	218.7
-1124.15	964.0
-1125.63	583.0
-1126.61	377.4
-1134.02	618.8
-1138.61	402.3
-1149.21	108.5
-1157.72	326.1
-1161.28	205.0
-1163.01	219.3
-1164.56	238.8
-1166.71	372.0
-1167.73	550.6
-1169.80	1058.7
-1181.80	174.7
-1191.58	407.9
-1193.45	314.5
-1205.75	182.8
-1210.57	84.3
-1212.86	189.4
-1222.72	597.1
-1230.87	82.3
-1236.56	358.7
-1255.90	125.6
-1263.63	431.9
-1264.88	205.8
-1268.80	181.4
-1280.70	540.3
-1282.78	71.2
-1296.96	112.8
-1307.60	1382.0
-1308.74	508.7
-1309.97	250.3
-1317.53	444.1
-1318.57	464.4
-1320.32	134.4
-1337.48	358.0
-1339.30	413.2
-1341.64	369.9
-1348.55	289.2
-1380.81	109.0
-1383.70	91.3
-1384.32	491.3
-1402.81	354.8
-1403.84	276.4
-1408.88	152.6
-1410.81	92.3
-1417.65	557.0
-1419.17	159.5
-1429.28	347.1
-1445.73	113.1
-1455.15	414.2
-1582.90	247.7
-1611.73	251.4
-1643.21	322.7
-1647.00	465.6
-1663.82	211.6
-1706.91	302.1
-S	5	5	403.7
-Z	2	787.1
-D	seq	VMRMLR
-D	modified seq	VMRMLR
-110.12	252.7
-112.23	266.2
-127.17	506.6
-128.35	1371.8
-129.13	9472.6
-130.09	2111.5
-136.10	2477.8
-138.08	689.4
-143.04	588.7
-145.04	271.9
-147.12	3861.2
-148.24	293.9
-153.42	174.7
-154.16	463.9
-157.00	6902.0
-158.17	3452.9
-159.13	1992.8
-160.12	233.1
-167.08	300.8
-169.02	516.2
-170.28	192.3
-171.30	885.7
-172.19	1884.9
-173.13	667.4
-175.10	17585.0
-177.19	379.2
-178.07	134.4
-180.10	218.9
-181.12	1143.9
-182.43	798.5
-183.16	333.1
-185.19	260.7
-186.21	3935.4
-187.20	4079.2
-188.09	592.1
-191.22	532.2
-193.16	530.0
-195.51	522.9
-199.10	2081.1
-200.12	366.7
-201.15	5326.1
-202.06	140.7
-203.15	581.5
-204.16	10758.1
-208.05	1359.0
-209.18	241.4
-211.16	1200.8
-213.16	562.2
-214.36	711.8
-215.09	316.0
-216.16	1109.5
-217.04	587.7
-218.15	7243.7
-219.20	2733.9
-221.28	712.1
-222.07	588.5
-223.48	245.1
-226.02	565.0
-227.14	618.1
-229.22	4637.6
-230.22	636.5
-231.20	1164.2
-232.03	1612.6
-233.09	610.6
-234.19	2793.5
-235.25	2660.1
-236.18	736.3
-238.19	431.0
-239.17	983.3
-240.15	748.7
-241.13	563.3
-241.85	294.7
-244.21	8771.9
-245.19	3373.8
-246.53	5290.5
-247.49	3916.5
-248.29	527.0
-249.24	2091.6
-250.22	1591.0
-253.26	411.4
-254.22	394.1
-256.20	2758.4
-257.28	2298.3
-258.39	2186.3
-259.10	1531.0
-260.18	2096.9
-261.25	562.2
-262.13	475.2
-264.98	686.8
-265.63	211.6
-267.13	460.8
-269.18	1139.9
-270.31	2664.9
-271.23	6914.1
-273.26	190.8
-274.28	2458.3
-276.21	1554.0
-277.19	1264.0
-280.21	1494.1
-281.84	531.7
-283.23	11389.1
-284.26	2693.9
-284.87	1114.7
-286.28	1743.4
-288.19	191936.4
-289.21	32335.5
-290.17	13779.2
-290.97	4230.4
-292.71	574.2
-294.14	868.7
-296.32	11800.0
-297.26	635.7
-298.29	1427.9
-302.23	1802.1
-303.25	161.8
-304.34	3430.4
-305.20	808.6
-306.13	982.0
-308.21	32854.7
-309.18	1269.2
-309.91	5966.0
-311.19	3851.9
-313.28	6078.4
-314.18	2241.2
-315.33	104.8
-316.79	970.1
-317.69	1395.7
-318.66	42722.2
-319.31	4268.1
-320.20	1993.6
-321.10	698.3
-322.21	10550.7
-322.85	2879.3
-324.07	2669.7
-325.41	2745.4
-328.28	1991.7
-329.35	176.6
-330.31	1303.1
-331.24	1675.5
-332.37	550.2
-333.23	1263.9
-334.20	503.3
-336.67	793.0
-337.75	1283.4
-339.31	1329.3
-340.02	579.0
-341.08	1066.1
-341.78	2212.7
-342.40	2135.2
-344.35	1673.0
-345.16	1868.6
-345.80	1152.7
-347.25	4687.3
-350.29	4467.0
-351.09	1114.9
-353.05	2031.8
-354.27	3229.4
-358.81	8820.7
-360.16	8912.9
-361.26	285.6
-362.76	744.4
-365.33	983.8
-367.71	4753.2
-368.32	6103.0
-369.37	8101.6
-370.13	501.4
-372.23	21235.6
-373.53	4058.2
-375.23	8752.1
-376.24	2800.5
-377.26	1202.4
-379.04	1388.8
-380.05	2109.7
-381.52	10376.7
-382.87	3507.2
-383.59	1630.6
-385.04	13829.3
-386.22	40298.8
-387.61	7779.5
-388.51	3646.9
-389.34	945.2
-390.34	1586.9
-391.18	4189.7
-392.17	2260.2
-392.83	2758.2
-394.35	389341.9
-395.30	22181.1
-396.70	10698.0
-397.78	30156.6
-403.41	235.7
-410.69	847.9
-411.74	1207.0
-413.25	741.5
-414.38	892.8
-416.28	1197.2
-417.29	10833.2
-418.47	3862.4
-419.32	10421.7
-420.30	957.5
-421.37	527.8
-423.84	1305.1
-428.88	930.7
-430.27	785.3
-431.35	817.3
-433.96	1141.0
-435.36	274.3
-436.37	2226.2
-437.29	1542.5
-440.40	1268.8
-442.12	2193.9
-444.53	2283.1
-445.55	472.0
-448.73	2254.2
-451.01	835.6
-454.41	404.0
-455.34	519.5
-456.41	771.9
-457.27	1019.3
-460.58	1930.8
-461.26	2116.5
-462.31	2951.3
-467.79	1239.0
-468.42	407.0
-469.25	234.7
-470.36	354.8
-471.44	837.2
-472.50	2608.6
-473.48	1555.1
-474.71	2923.4
-475.35	909.9
-476.17	2608.9
-477.23	1345.7
-477.93	1246.1
-480.34	4109.6
-481.69	25206.6
-482.49	60629.5
-483.39	447.6
-485.37	1519.8
-486.35	1196.0
-488.48	1835.0
-489.34	1535.3
-490.85	451.7
-492.13	5389.1
-493.13	1364.9
-494.34	297.3
-496.35	23173.0
-497.28	496.3
-498.53	5168.1
-499.35	60038.7
-500.28	25246.9
-501.35	2488.9
-502.67	145.9
-503.42	2054.2
-504.58	2156.4
-506.46	759.3
-508.58	1500.0
-509.56	480.4
-510.63	1927.7
-511.59	699.5
-512.28	1875.7
-513.31	938.7
-515.95	1209.2
-517.33	1699.3
-519.83	1306.1
-523.35	1201.6
-525.37	802.2
-528.37	3993.0
-529.82	4392.7
-530.60	4753.8
-531.58	2319.6
-532.49	1480.5
-533.80	2361.1
-535.39	554.1
-538.23	21389.5
-539.11	13474.9
-540.02	51601.6
-540.79	1093.5
-543.75	839.1
-544.97	1402.7
-547.12	7339.3
-547.75	3405.6
-549.56	555.6
-551.73	1641.5
-556.39	1011.8
-557.57	487.3
-558.35	535.4
-560.41	1978.0
-561.53	345.8
-566.44	8961.7
-567.62	4998.6
-568.47	12812.6
-569.43	2164.2
-571.40	11632.0
-572.49	1417.8
-573.34	176.7
-574.36	408.5
-575.40	5182.1
-576.45	1369.9
-577.71	1758.8
-578.50	2202.4
-579.29	643.9
-586.57	252.6
-588.39	4323.0
-589.45	701.2
-590.69	406.0
-591.42	692.8
-592.37	423.2
-593.42	800.1
-594.37	1050.0
-597.54	604.1
-601.74	280.1
-603.43	1071.5
-604.47	3201.8
-605.37	2343.6
-607.38	1113.0
-623.55	216.0
-625.33	773.4
-629.50	631.9
-631.47	795.4
-632.60	485.6
-636.54	2480.1
-638.76	388.4
-640.40	736.4
-642.51	944.1
-643.43	8469.0
-645.36	602.2
-648.41	11978.3
-649.46	35299.3
-650.40	6514.7
-653.64	870.0
-656.86	1215.8
-659.50	2042.4
-662.45	729.4
-664.36	908.8
-667.53	795.9
-671.46	357.0
-677.50	184.3
-678.51	131.2
-679.55	741.9
-681.51	8984.0
-682.43	4643.0
-692.74	1851.9
-693.78	507.3
-698.22	354.9
-699.61	3988.2
-700.64	1040.9
-706.83	309.7
-708.48	628.2
-716.38	405.4
-733.63	715.2
-756.64	385.2
-780.72	431.5
-788.48	666.6
-789.73	717.3
-814.99	166.1
--- a/test-data/msgf_filterd.ms2	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2878 +0,0 @@
-H	CreationDate	Mon May  7 18:58:18 2018
-H	Extractor	BlibToMs2
-H	Comment	Library	/panfs/roc/groups/7/galaxy/galaxy/tmp/bibliospec/msgf_filterd.blib
-S	1	1	784.865
-Z	2	1550.64
-D	seq	FKWNGTDTNSAAEK
-D	modified seq	FKWNGTDTNSAAEK
-222.15	215.1
-226.12	430.3
-231.15	2031.2
-232.24	955.1
-241.22	230.4
-242.50	344.8
-243.29	93.3
-244.33	770.5
-245.10	291.0
-251.73	315.3
-253.21	348.0
-257.19	370.3
-258.25	1122.5
-259.30	683.3
-261.30	602.0
-262.20	234.3
-266.27	451.5
-267.18	294.7
-269.20	232.8
-270.16	212.1
-271.24	124.4
-272.11	215.8
-275.34	328.5
-276.20	7651.9
-277.25	861.3
-277.93	72.0
-284.14	644.3
-285.15	262.7
-286.39	243.0
-291.42	459.6
-294.19	207.4
-295.43	455.0
-296.25	276.5
-297.18	396.1
-303.36	614.7
-305.27	216.3
-308.28	454.7
-310.35	793.8
-311.28	1132.6
-313.27	324.8
-314.28	148.8
-315.28	707.1
-324.29	862.0
-325.25	264.7
-326.56	311.0
-327.32	272.3
-328.29	148.9
-330.23	162.9
-331.36	155.8
-333.12	323.8
-334.09	178.8
-336.20	547.7
-339.28	419.3
-340.80	530.3
-342.43	389.1
-343.33	858.5
-344.23	641.2
-347.28	1662.9
-348.50	338.7
-349.50	504.0
-350.34	137.8
-352.23	174.6
-354.65	561.3
-355.46	328.7
-357.48	241.0
-359.15	169.6
-361.22	88.9
-363.25	208.1
-365.00	1175.1
-367.46	251.3
-368.27	126.7
-369.16	321.0
-371.18	1050.7
-372.21	291.4
-373.30	976.8
-375.25	480.5
-378.77	287.8
-381.28	989.9
-382.09	222.1
-383.31	721.1
-384.43	245.6
-385.34	307.9
-392.29	129.6
-395.04	1013.0
-397.28	657.8
-398.35	412.4
-399.07	211.3
-401.38	761.4
-403.17	392.7
-404.45	382.6
-406.07	529.0
-409.30	941.1
-410.45	401.6
-412.32	1822.4
-413.45	196.0
-415.37	886.4
-417.45	556.4
-418.43	1548.0
-419.31	909.6
-420.27	1269.1
-421.35	100.5
-422.27	1072.7
-423.21	733.0
-424.26	1664.9
-425.52	643.1
-427.33	1110.1
-428.25	813.2
-429.21	968.2
-430.18	209.9
-431.36	980.7
-433.36	265.0
-434.32	230.9
-437.21	165.4
-440.34	3389.4
-441.23	1414.0
-442.38	767.9
-444.27	961.5
-445.50	639.4
-450.58	210.0
-452.31	453.2
-453.58	506.0
-455.46	820.0
-457.42	328.8
-458.35	1172.6
-459.84	792.2
-461.34	558.4
-462.34	6647.8
-463.49	2858.2
-464.38	507.9
-466.55	218.5
-467.39	393.0
-468.51	816.1
-470.25	367.3
-471.43	1705.3
-472.19	819.5
-473.45	849.2
-474.80	1453.2
-477.43	287.4
-478.45	331.7
-479.32	704.1
-480.42	1086.9
-481.40	552.8
-484.42	248.4
-485.43	927.4
-486.38	960.0
-487.12	1621.6
-488.43	291.9
-489.32	388.4
-491.26	484.4
-492.43	922.4
-494.34	1188.2
-495.43	1722.2
-497.45	435.9
-498.20	270.1
-499.33	553.4
-500.42	208.2
-501.42	654.3
-502.35	191.0
-504.47	395.3
-505.32	2859.5
-506.07	1331.3
-507.34	813.6
-508.50	269.9
-510.34	143.7
-511.47	848.2
-512.44	349.8
-513.33	183.0
-514.37	1457.9
-515.39	1279.6
-516.75	138.7
-519.84	385.6
-521.34	707.9
-522.48	831.6
-523.45	420.6
-524.68	332.5
-525.38	138.3
-526.30	917.4
-527.50	218.1
-528.36	492.2
-531.44	721.0
-535.55	141.4
-537.52	1206.4
-538.36	175.6
-539.36	1106.1
-540.21	361.0
-541.38	600.1
-542.39	2197.9
-543.27	1295.5
-544.18	263.3
-545.49	111.9
-548.34	523.6
-549.41	514.1
-550.44	284.6
-552.33	137.1
-553.37	903.2
-554.46	1225.1
-555.52	2405.3
-556.65	1106.9
-557.49	786.3
-558.86	1888.8
-559.50	1591.0
-560.46	332.5
-561.38	878.1
-564.40	680.8
-566.47	491.2
-567.50	1182.7
-568.47	250.0
-572.36	778.2
-573.35	175.1
-574.83	201.4
-575.88	1850.8
-576.52	4304.3
-577.58	7036.5
-578.41	3519.4
-579.43	790.3
-580.48	239.0
-581.39	178.3
-582.35	276.8
-583.32	706.7
-584.44	862.5
-585.39	820.8
-587.65	1797.1
-588.39	681.8
-589.43	1309.3
-590.44	107.5
-591.82	1806.1
-592.72	128.8
-593.55	678.9
-594.29	966.4
-595.55	332.7
-596.22	529.0
-597.26	791.3
-598.07	885.6
-599.01	1687.5
-600.07	1972.0
-602.62	969.3
-603.78	1327.5
-604.52	727.6
-606.53	707.3
-609.60	377.1
-610.49	1431.3
-611.49	613.4
-612.62	707.5
-613.29	946.6
-614.39	936.4
-615.38	1696.7
-616.58	1958.4
-617.30	51.2
-619.43	4515.9
-620.42	3058.7
-621.56	2387.4
-622.59	1527.2
-623.59	1839.5
-624.41	2587.4
-625.41	1202.7
-626.57	674.2
-627.42	424.7
-628.42	922.2
-629.36	321.4
-630.28	2294.3
-631.26	573.6
-633.46	4293.5
-634.38	994.8
-635.50	1300.6
-637.28	1310.6
-639.15	6815.4
-640.44	4771.1
-641.43	2247.8
-642.26	990.3
-643.43	992.9
-644.46	1600.0
-645.38	165.6
-647.32	5624.7
-647.92	1085.2
-648.54	1520.0
-650.77	1051.1
-651.51	980.8
-653.27	386.0
-654.45	1395.7
-656.64	2493.4
-657.37	190.7
-658.37	380.0
-660.38	723.7
-661.81	2816.5
-662.47	855.0
-665.74	1114.5
-667.70	648.6
-668.70	611.5
-670.59	528.2
-671.70	3173.5
-672.61	858.7
-673.37	518.1
-675.28	202.1
-676.46	784.4
-677.32	891.8
-679.30	559.8
-680.74	727.5
-682.52	410.6
-683.41	57.8
-684.24	1861.7
-685.35	608.0
-686.55	413.3
-687.44	373.9
-688.76	1118.9
-689.48	446.2
-690.44	1531.4
-691.80	3243.5
-692.43	793.5
-693.74	2091.2
-694.54	3539.1
-695.74	605.4
-696.47	80.6
-698.75	1746.8
-699.71	902.8
-700.37	442.0
-702.68	6153.2
-703.57	5776.3
-704.43	1245.5
-705.70	576.8
-707.78	1771.0
-708.65	1508.2
-709.56	1246.1
-711.55	8745.4
-712.43	4402.2
-713.14	142.6
-715.01	645.3
-716.60	3977.7
-717.65	4870.4
-720.45	26895.8
-721.41	7756.3
-722.17	2128.9
-723.32	989.7
-724.34	698.3
-725.67	245.8
-726.44	154.5
-727.49	612.8
-730.35	343.5
-731.52	709.9
-732.92	2950.4
-733.66	3000.5
-734.52	1696.0
-735.62	3270.2
-737.40	1717.4
-738.44	243.2
-739.28	2173.8
-740.63	184.0
-741.47	2744.6
-742.08	388.6
-742.70	917.1
-743.82	443.1
-744.63	959.5
-745.67	4948.2
-746.40	2072.6
-747.02	264.7
-747.99	481.7
-749.39	2365.3
-750.34	1523.3
-751.38	2000.3
-752.65	18627.3
-753.62	4943.6
-754.50	3111.5
-755.78	1725.1
-756.71	1234.9
-757.54	2362.6
-758.58	3455.5
-759.51	320.3
-760.76	1380.4
-762.27	2400.5
-763.03	3926.8
-763.94	1856.3
-764.79	290.4
-766.67	15190.9
-767.66	31097.7
-768.54	9313.9
-769.28	1613.3
-770.30	2269.9
-771.80	708.7
-772.56	224.6
-773.53	234.5
-775.82	28382.5
-776.65	62637.0
-777.59	7367.0
-778.21	352.0
-782.47	191.0
-788.52	273.4
-789.53	162.0
-792.77	638.0
-794.45	745.0
-797.45	364.6
-798.56	185.9
-799.53	330.3
-801.72	1330.7
-811.54	1388.5
-813.51	158.0
-814.46	1694.3
-815.51	1337.6
-816.54	234.0
-817.58	665.7
-818.49	981.8
-819.61	658.6
-822.54	173.9
-827.89	334.6
-830.11	605.3
-831.62	2185.3
-832.58	3591.4
-833.42	524.8
-834.45	338.2
-835.44	8816.1
-836.62	3783.7
-838.67	1190.7
-840.55	563.5
-842.70	239.9
-844.63	779.8
-846.60	512.1
-849.57	12136.6
-850.57	3998.9
-851.74	1094.7
-853.63	393.6
-854.81	81.2
-859.36	182.1
-867.46	317.4
-869.66	236.6
-875.39	280.1
-879.00	135.1
-880.48	612.9
-884.21	1250.3
-887.63	117.1
-888.60	111.9
-890.35	360.1
-895.45	274.2
-898.69	386.7
-899.55	416.4
-901.69	567.5
-903.43	216.5
-907.48	213.3
-908.44	397.7
-909.45	3061.4
-910.81	1370.6
-912.39	1802.8
-913.57	889.8
-915.51	563.1
-916.54	576.0
-917.39	381.5
-918.84	307.3
-919.62	311.9
-921.06	1028.8
-923.48	924.8
-925.45	277.1
-926.88	419.2
-927.70	140.3
-928.57	759.5
-929.63	851.4
-930.61	552.8
-931.69	140.1
-932.62	377.2
-933.40	110.2
-934.62	256.7
-935.82	808.4
-936.63	5353.9
-937.45	3296.2
-938.06	906.5
-938.69	157.0
-939.90	1255.5
-941.93	107.9
-942.71	595.3
-944.64	312.5
-947.40	242.7
-948.83	512.1
-949.84	1085.6
-950.72	585.3
-951.86	1329.1
-952.64	851.4
-953.58	903.8
-954.49	400.4
-955.81	271.0
-958.80	89.0
-959.52	499.1
-962.35	757.9
-964.63	88.6
-965.68	1260.4
-967.02	1344.8
-968.50	1087.0
-969.38	1273.9
-970.45	1521.2
-971.97	486.2
-973.02	1172.7
-975.37	3043.5
-976.62	2757.3
-978.55	621.7
-980.42	346.6
-983.30	475.5
-984.69	249.8
-985.63	196.3
-988.78	163.5
-992.48	3458.0
-993.56	18198.6
-994.68	8532.4
-995.60	3634.7
-996.86	113.0
-997.91	264.2
-998.71	433.2
-1002.52	513.4
-1003.45	192.6
-1004.53	227.9
-1007.65	595.9
-1008.67	577.4
-1010.75	410.0
-1011.61	1210.1
-1012.67	717.9
-1014.64	519.0
-1020.41	1351.2
-1021.02	1176.7
-1022.99	220.4
-1023.66	823.9
-1024.87	859.3
-1026.53	481.3
-1028.19	1272.4
-1029.62	159.8
-1030.23	115.1
-1031.67	675.0
-1033.11	328.5
-1040.75	569.9
-1046.43	684.6
-1047.56	556.1
-1049.54	679.2
-1050.83	202.0
-1054.96	201.7
-1055.99	329.2
-1058.38	453.5
-1060.15	660.2
-1062.63	255.1
-1064.68	869.2
-1065.92	897.2
-1066.74	382.8
-1067.80	321.4
-1069.53	227.3
-1070.72	378.5
-1073.84	912.5
-1074.89	706.1
-1077.42	2053.0
-1081.71	341.3
-1082.64	775.3
-1087.53	361.5
-1089.81	2140.6
-1090.63	3634.1
-1091.59	1005.0
-1092.44	258.0
-1095.85	305.2
-1096.63	244.4
-1098.64	310.1
-1103.74	898.3
-1104.55	295.0
-1106.49	414.2
-1107.62	19912.3
-1108.60	11504.9
-1109.74	2027.9
-1110.64	666.1
-1111.32	256.0
-1112.70	682.1
-1116.78	1351.0
-1117.92	197.0
-1118.63	656.6
-1121.71	777.5
-1130.83	609.1
-1133.29	618.6
-1134.05	235.4
-1134.72	1351.4
-1135.96	448.8
-1137.96	247.2
-1139.80	68.1
-1147.35	358.6
-1148.43	1030.7
-1149.86	1004.4
-1150.86	1562.3
-1151.77	4737.5
-1152.65	904.7
-1153.40	940.1
-1154.64	1004.3
-1155.88	457.9
-1161.46	256.9
-1162.68	648.5
-1167.73	173.1
-1169.10	568.1
-1176.54	522.9
-1183.83	356.9
-1187.89	589.7
-1188.87	867.7
-1190.62	284.9
-1194.94	748.2
-1198.97	226.2
-1199.70	909.0
-1204.72	1023.0
-1205.75	1904.3
-1206.60	570.3
-1209.87	294.8
-1213.72	210.8
-1214.71	549.4
-1218.30	382.2
-1222.56	2222.2
-1223.67	973.6
-1224.90	1159.9
-1236.89	139.5
-1237.80	86.4
-1240.89	209.0
-1242.04	231.2
-1245.63	477.2
-1248.60	292.1
-1250.90	241.2
-1258.73	1915.9
-1259.84	1370.2
-1260.77	346.6
-1264.19	116.2
-1264.87	666.9
-1271.15	233.5
-1275.95	2237.8
-1276.81	3059.9
-1277.72	1607.5
-1278.74	418.6
-1285.49	561.3
-1287.81	374.6
-1290.71	509.6
-1293.69	45114.2
-1294.72	30144.4
-1295.68	11608.2
-1296.48	296.7
-1299.91	279.8
-1300.91	254.0
-1308.27	409.7
-1308.94	390.1
-1309.61	789.7
-1310.68	115.3
-1313.74	415.4
-1319.81	249.9
-1322.71	350.5
-1360.81	712.2
-1387.66	60.8
-1389.08	385.4
-1394.97	416.9
-1396.13	166.4
-1403.84	429.0
-1404.85	514.8
-1405.68	1268.6
-1407.81	343.8
-1421.63	1608.4
-1422.83	3651.5
-1423.79	2601.8
-1424.90	1284.5
-1440.02	145.6
-1442.08	251.2
-1442.91	456.2
-1451.93	218.1
-1459.69	232.7
-1472.73	339.1
-1505.74	292.4
-1565.08	294.4
-S	2	2	523.6
-Z	3	1550.6
-D	seq	FKWNGTDTNSAAEK
-D	modified seq	FKWNGTDTNSAAEK
-155.13	280.9
-157.25	605.4
-158.28	866.1
-159.24	189.5
-167.44	1114.1
-168.21	246.4
-169.14	777.8
-171.12	582.8
-172.02	916.1
-173.09	622.7
-175.07	4567.1
-176.10	130.6
-177.16	566.0
-178.33	172.6
-180.03	224.8
-183.16	1033.2
-184.04	222.8
-185.17	1890.0
-187.28	616.1
-188.03	131.3
-189.19	524.3
-190.07	240.4
-193.12	112.1
-194.21	712.8
-196.30	573.9
-196.96	252.6
-199.15	856.9
-200.24	1197.6
-201.24	755.0
-202.36	758.4
-203.12	1505.2
-204.13	376.7
-205.13	819.9
-207.13	297.2
-209.19	1813.6
-211.13	1736.9
-212.04	267.2
-213.15	704.2
-215.15	1774.6
-216.10	565.4
-217.01	1742.7
-218.20	1244.7
-219.10	742.8
-221.13	6419.6
-221.82	115.0
-223.11	144.2
-224.17	359.2
-225.19	463.3
-226.18	1373.2
-227.24	2987.6
-228.10	4079.3
-229.84	3421.2
-231.19	3218.1
-232.23	532.2
-233.10	100.0
-234.27	383.3
-235.19	206.6
-238.17	205.4
-240.10	854.7
-241.14	285.7
-242.15	337.5
-243.14	95.6
-244.22	2239.3
-245.22	1260.7
-246.20	820.6
-247.24	880.6
-250.18	234.0
-251.10	144.9
-252.21	116.6
-253.30	1107.0
-254.36	885.5
-254.97	183.7
-256.11	1648.4
-257.31	249.3
-258.15	3643.6
-259.18	2208.9
-260.31	538.4
-261.52	1833.9
-262.28	227.7
-263.26	623.2
-264.35	410.2
-265.31	128.8
-266.46	497.5
-268.28	526.5
-269.09	399.5
-270.15	146.3
-271.24	663.4
-272.22	675.1
-274.24	434.8
-275.25	248.8
-276.25	17819.1
-277.17	2398.9
-278.26	1645.1
-279.27	2844.1
-280.24	627.5
-281.25	225.0
-284.23	3891.0
-285.21	1866.7
-286.26	878.9
-287.19	786.7
-288.29	2827.4
-289.29	580.4
-290.35	350.8
-291.13	493.5
-292.31	399.4
-293.36	1343.0
-294.31	76.5
-295.24	852.0
-296.17	310.3
-298.61	1961.6
-299.46	408.7
-300.30	334.6
-301.26	4465.2
-302.27	1865.5
-303.44	677.6
-304.32	4508.7
-305.20	1948.8
-306.44	1779.4
-308.47	5418.3
-309.28	1256.2
-310.17	3335.4
-311.16	1715.8
-312.23	1160.3
-313.21	513.1
-314.21	108.8
-316.29	474.5
-317.25	186.8
-318.18	715.5
-319.17	526.5
-320.18	1668.3
-321.12	2183.2
-322.18	4088.5
-323.18	621.7
-324.26	1015.5
-324.89	1080.5
-326.25	387.3
-327.42	522.9
-328.30	1041.0
-329.27	285.0
-330.11	709.6
-330.71	703.6
-332.20	2056.2
-333.34	689.4
-334.34	816.0
-335.29	742.3
-336.32	3142.0
-337.12	1366.4
-338.13	869.7
-339.16	1268.5
-340.08	1997.8
-341.15	764.9
-342.38	2361.0
-343.32	1993.6
-344.50	2481.6
-345.32	6969.3
-347.23	10510.0
-348.10	675.2
-349.06	1265.3
-350.40	21768.7
-351.99	9913.2
-353.52	6440.7
-354.29	4828.0
-355.29	1325.5
-357.08	3565.5
-357.98	2003.4
-359.22	50327.7
-360.57	15523.9
-361.32	4528.0
-362.35	852.7
-365.31	1090.5
-366.30	111.1
-367.58	9738.7
-368.25	2648.6
-369.30	489.3
-370.27	153.0
-371.35	2079.9
-372.25	2016.4
-373.48	1343.5
-374.33	688.5
-375.23	586.9
-376.53	1807.2
-377.31	3634.3
-378.26	2048.1
-379.26	1351.4
-380.41	2908.0
-381.87	3484.3
-382.83	1287.1
-384.04	1014.2
-385.39	224.1
-386.36	1053.0
-387.26	21966.4
-388.60	1668.0
-389.35	178.1
-390.55	1018.7
-391.82	3269.9
-392.78	1152.6
-393.48	1750.2
-394.41	969.5
-395.27	277.6
-396.28	466.4
-398.48	916.8
-399.32	772.0
-400.58	3533.8
-401.24	1107.0
-402.44	11277.6
-403.19	2056.9
-403.99	589.3
-405.23	27207.9
-406.22	228.8
-407.55	2516.5
-408.54	3456.4
-409.38	16457.5
-410.33	3430.0
-411.32	821.4
-411.92	2124.6
-413.70	1975.0
-414.75	5656.1
-415.51	3052.1
-416.52	17509.3
-417.34	3362.6
-418.30	28746.9
-419.44	2384.5
-420.31	804.6
-421.28	4312.4
-422.41	2094.3
-423.52	2068.4
-424.30	2637.5
-425.36	38153.5
-426.42	5340.0
-427.31	405.3
-428.11	129.1
-429.48	2478.5
-430.39	1182.9
-431.35	1576.2
-432.49	2555.4
-433.56	2583.4
-434.43	1866.0
-435.24	754.3
-436.21	397.4
-437.38	6503.2
-438.31	1210.6
-439.21	1129.3
-440.44	4247.6
-441.31	1589.0
-442.56	2677.9
-443.45	3092.5
-444.55	3055.5
-445.38	3143.1
-446.86	1499.6
-447.49	1449.7
-448.35	1028.4
-449.29	2071.3
-450.08	2299.1
-450.70	1872.6
-451.58	9103.8
-452.47	8577.1
-453.43	5305.0
-454.88	12551.7
-456.08	1365.0
-457.17	4190.9
-458.37	27349.0
-459.51	11485.1
-460.49	3796.4
-461.18	3666.3
-462.29	12965.8
-463.38	3378.0
-464.53	1829.6
-465.51	5865.0
-466.60	8303.5
-467.53	18167.7
-468.69	7543.0
-469.31	2108.5
-470.48	6178.9
-471.34	1227.0
-472.26	3092.5
-473.29	1813.2
-474.13	5861.9
-475.07	5855.1
-475.74	14452.3
-476.43	8136.6
-477.38	629.1
-478.31	5349.5
-479.65	4044.0
-480.44	1503.8
-482.11	1304.9
-483.29	2425.9
-484.50	6682.6
-485.35	443.3
-486.41	2557.5
-487.53	5911.3
-488.39	39605.0
-489.30	7936.8
-490.28	9620.2
-491.15	4098.8
-492.79	3689.4
-493.48	3045.2
-494.84	4047.0
-495.57	1992.6
-497.17	19601.0
-497.97	9143.1
-498.97	1673.5
-499.68	4008.2
-500.57	16588.0
-501.49	5361.7
-503.00	27478.0
-503.97	1645.6
-505.32	51744.8
-506.23	103815.1
-507.32	19532.4
-508.64	10637.6
-509.41	6293.1
-510.34	3715.0
-511.89	401549.9
-512.70	17866.5
-514.10	45957.2
-514.95	42617.4
-515.92	6740.1
-516.97	16481.9
-517.72	24749.0
-519.13	286.1
-520.22	144.9
-521.03	157.5
-522.05	264.0
-523.39	779.1
-524.54	216.1
-526.70	1095.4
-528.19	1000.4
-529.37	446.5
-530.53	1756.3
-531.28	1270.0
-532.98	4352.9
-534.34	5512.1
-535.47	1858.6
-536.42	5112.5
-537.26	796.6
-538.35	444.7
-539.49	8398.3
-540.60	3112.1
-541.76	1585.2
-542.38	489.0
-543.51	2771.8
-544.65	1686.1
-545.51	11766.2
-546.67	796.1
-548.21	3012.4
-549.57	2279.3
-550.41	519.8
-552.42	1394.4
-553.74	4964.5
-554.66	3925.7
-555.42	410.6
-556.41	680.4
-557.64	4685.5
-558.51	8097.1
-559.41	7892.2
-560.24	3352.5
-561.31	5882.8
-562.75	6546.8
-563.75	10326.1
-564.91	2906.2
-567.14	8174.2
-568.00	14618.3
-569.47	1302.3
-570.22	2281.0
-571.72	1860.6
-572.66	12251.7
-573.57	884.3
-574.57	4261.9
-575.49	3405.1
-576.42	12818.9
-577.41	1276.6
-578.49	20383.2
-581.28	935.0
-582.47	495.3
-583.31	942.9
-584.50	3527.3
-585.58	3790.0
-586.38	1095.1
-587.39	1855.4
-588.45	331.3
-589.70	2633.7
-591.52	1511.3
-592.16	1186.9
-593.42	1177.3
-594.72	1978.4
-596.29	349.2
-598.15	1180.3
-600.03	2374.7
-601.46	7857.8
-602.52	10026.0
-603.46	5057.1
-605.15	3934.4
-606.25	951.5
-607.42	1555.5
-608.21	1062.1
-609.48	615.9
-611.29	1972.2
-612.00	3294.2
-613.60	3323.1
-614.72	3325.3
-616.35	5120.3
-617.55	8573.6
-618.34	364.2
-619.38	28990.8
-620.60	21284.2
-621.79	9066.5
-622.88	1567.3
-623.55	359.8
-625.29	3524.3
-626.46	4297.3
-627.29	1518.2
-629.18	8732.8
-630.12	8935.0
-631.19	2706.0
-632.73	1685.6
-633.37	6063.5
-634.27	2386.6
-635.49	3305.1
-636.43	2112.1
-638.57	35161.8
-639.53	7982.7
-640.43	2173.3
-641.52	6707.2
-642.86	735.4
-644.19	394.0
-645.37	3461.5
-646.58	2226.8
-647.57	17031.6
-649.10	884.9
-650.23	1428.0
-651.90	1781.9
-652.83	2961.8
-653.63	4201.7
-654.60	1455.4
-655.78	1559.7
-656.58	2601.3
-657.26	710.2
-659.17	4548.3
-660.22	1754.2
-661.29	2473.3
-663.33	12908.7
-664.42	11679.3
-665.56	1020.5
-667.45	851.1
-668.56	1417.4
-669.59	987.6
-670.76	3001.2
-671.84	1759.2
-672.58	3127.1
-673.68	6360.8
-674.55	2144.6
-675.45	2472.4
-676.57	4804.7
-677.77	1937.7
-678.52	1010.3
-679.65	2972.6
-680.57	2470.4
-681.91	6073.9
-682.75	2735.9
-684.39	2046.9
-685.64	6547.4
-686.68	1459.5
-688.36	1351.2
-689.48	3655.7
-690.37	3159.2
-692.65	1738.6
-693.70	3801.8
-694.59	2720.8
-695.58	288.6
-696.51	3668.2
-698.55	19347.6
-699.47	2193.6
-700.46	1719.8
-701.48	1360.7
-702.61	11399.2
-703.48	10612.8
-704.47	1817.6
-705.52	1529.2
-706.16	1635.5
-708.10	587.9
-710.50	26147.8
-711.69	11866.8
-712.35	3205.2
-713.14	2876.4
-714.51	809.8
-715.47	968.9
-716.57	9213.2
-717.52	7594.2
-718.51	3731.8
-719.71	12575.3
-720.40	24008.5
-721.51	9205.8
-722.45	1169.9
-723.69	312.5
-724.42	503.1
-726.46	158.0
-728.46	2111.1
-729.53	3858.1
-730.49	899.4
-731.63	2455.2
-732.57	669.0
-733.39	1064.4
-734.41	8519.3
-735.49	4824.6
-736.48	986.0
-737.53	933.1
-738.40	461.8
-739.28	360.4
-740.39	1387.0
-742.58	2668.0
-743.84	1387.3
-744.74	219.8
-746.61	301.8
-749.21	2703.1
-750.52	1345.9
-751.95	133.1
-752.68	808.5
-754.19	5906.7
-755.16	758.3
-756.49	1173.6
-757.47	1073.2
-758.54	388.3
-759.37	4139.7
-760.35	4574.7
-761.37	579.4
-762.52	4155.3
-763.50	5191.6
-764.38	803.7
-765.69	1042.0
-766.49	382.4
-767.85	22446.6
-768.51	14710.7
-769.32	916.9
-770.50	689.0
-771.40	1726.2
-772.55	1480.4
-773.50	1659.8
-774.72	1048.6
-775.70	3066.1
-776.64	901.3
-777.44	175.9
-778.58	762.4
-781.75	287.1
-782.58	1124.6
-783.36	669.2
-784.46	276.9
-785.61	178.1
-786.67	632.1
-787.67	2076.2
-788.63	743.9
-789.58	805.9
-791.60	375.9
-793.52	584.9
-794.56	1233.1
-796.34	341.8
-797.72	155.6
-799.58	1438.9
-800.53	1876.0
-801.64	8026.0
-802.66	5659.4
-803.52	3112.2
-804.47	10066.5
-805.45	2544.4
-806.65	2205.8
-807.79	525.0
-808.72	2526.4
-809.48	1668.9
-811.50	513.1
-813.44	2221.5
-814.64	668.4
-815.58	794.6
-817.52	24187.8
-818.57	16401.5
-819.61	5819.6
-820.50	683.7
-822.42	1459.5
-827.09	487.9
-828.43	2766.0
-829.68	967.4
-830.34	1139.2
-831.60	1679.0
-832.41	2216.6
-834.19	508.3
-835.49	28437.8
-836.39	7020.0
-837.12	41.0
-838.54	933.9
-839.49	547.0
-840.41	1797.0
-841.34	239.9
-844.81	805.8
-845.69	1989.9
-846.74	2390.8
-849.47	7133.7
-850.62	6060.9
-851.53	314.3
-852.62	286.3
-853.51	429.2
-854.59	564.0
-856.54	564.8
-858.31	219.7
-859.50	1153.3
-860.42	977.9
-861.59	1061.4
-863.61	517.3
-864.69	2034.7
-865.59	1990.8
-867.80	299.1
-869.79	278.0
-870.58	1277.8
-871.83	1063.8
-872.59	1684.3
-873.65	238.6
-874.64	341.3
-875.72	145.1
-879.60	815.0
-880.56	768.3
-881.69	532.1
-882.47	465.2
-883.50	572.5
-887.85	261.4
-888.58	714.9
-889.86	987.6
-890.70	400.3
-891.62	412.6
-892.79	618.1
-893.87	402.4
-894.96	499.3
-896.61	417.1
-898.75	638.4
-899.61	528.2
-900.54	469.6
-902.76	3014.6
-903.56	1126.1
-904.59	632.6
-905.77	603.3
-906.92	126.5
-909.49	305.2
-911.39	292.0
-912.55	89.0
-913.51	658.9
-914.86	557.0
-915.48	436.1
-916.82	150.1
-917.56	801.4
-918.48	3222.9
-919.73	851.9
-922.72	456.8
-931.77	766.0
-932.66	2160.0
-933.76	953.3
-934.41	539.5
-936.66	1679.1
-937.53	1219.3
-938.77	430.1
-941.47	518.6
-947.61	419.1
-948.77	271.3
-950.62	1135.0
-951.54	874.7
-959.44	412.6
-961.76	492.7
-964.84	509.2
-965.46	575.2
-970.65	939.5
-972.66	504.7
-975.74	408.4
-976.66	117.9
-977.41	246.0
-992.46	192.6
-993.67	1415.6
-994.67	303.6
-995.67	174.0
-1001.58	176.7
-1002.48	576.9
-1019.73	218.9
-1023.74	442.2
-1024.90	157.3
-1025.92	989.5
-1031.47	154.7
-1035.39	426.9
-1043.44	251.1
-1049.59	169.8
-1054.82	1392.3
-1064.72	310.6
-1065.76	133.0
-1079.56	471.0
-1094.81	352.4
-1096.69	328.4
-1099.58	682.9
-1112.87	542.5
-1119.51	538.9
-1122.81	480.3
-1129.48	512.4
-1130.50	150.4
-1147.69	302.2
-1158.81	222.1
-1175.63	366.0
-1180.63	413.1
-1202.13	361.3
-1227.90	100.2
-1276.95	362.7
-1277.70	348.8
-1294.67	165.7
-1295.77	171.0
-S	3	3	709.3
-Z	2	1399.5
-D	seq	GGESIMNAQSQPQA
-D	modified seq	GGESIMNAQSQPQA
-187.14	117.7
-200.14	347.3
-208.09	48.8
-209.16	151.6
-211.16	225.9
-212.08	333.8
-213.73	251.9
-215.20	1497.3
-215.83	94.7
-218.06	75.4
-222.16	144.6
-223.17	85.0
-226.21	1314.7
-227.35	169.9
-228.01	311.5
-230.04	134.3
-233.12	126.4
-234.91	74.6
-237.20	356.4
-239.27	248.7
-244.07	746.9
-246.21	202.5
-248.15	52.2
-250.19	167.4
-252.28	287.5
-253.68	126.8
-257.30	889.9
-258.21	187.8
-259.07	136.7
-260.76	164.5
-262.30	343.8
-268.11	273.5
-269.26	609.1
-270.20	444.8
-271.27	125.6
-272.26	840.9
-273.20	213.7
-275.32	1135.0
-276.23	282.3
-280.19	171.3
-282.17	227.5
-284.17	1324.8
-286.12	2939.1
-288.21	119.2
-292.27	131.5
-294.68	156.0
-296.19	342.6
-298.18	729.5
-299.23	291.0
-301.19	234.1
-302.36	593.5
-303.18	346.2
-304.28	331.2
-307.22	252.9
-308.49	455.7
-310.36	335.1
-311.27	195.5
-312.18	129.5
-313.22	571.5
-315.19	17840.9
-315.99	70.4
-321.35	181.9
-323.20	330.1
-325.19	286.8
-326.32	548.2
-327.27	161.0
-330.26	247.4
-331.17	712.4
-332.16	627.0
-334.30	36.6
-336.33	210.2
-338.18	368.4
-339.06	821.8
-340.25	275.5
-341.28	348.5
-342.44	193.8
-343.32	555.2
-345.22	411.7
-346.21	712.0
-347.26	1071.0
-349.29	915.2
-350.18	486.8
-350.93	137.7
-352.24	202.7
-353.46	146.8
-354.27	105.6
-355.16	603.8
-356.17	278.9
-357.32	160.1
-358.30	567.4
-359.46	630.2
-360.41	269.7
-363.17	706.8
-364.19	439.8
-365.36	480.6
-366.35	663.6
-367.18	173.3
-368.46	372.7
-370.26	257.0
-371.47	1439.1
-372.38	1413.7
-377.20	393.7
-379.35	495.9
-381.26	295.3
-382.29	223.8
-383.45	195.1
-384.32	851.1
-385.32	573.6
-386.38	281.9
-387.44	372.1
-389.18	1092.3
-391.35	143.0
-393.55	313.4
-395.20	188.5
-396.36	872.9
-397.35	174.3
-398.35	1475.0
-399.49	397.8
-400.36	422.6
-403.48	1135.6
-406.60	198.8
-407.34	428.9
-408.45	628.4
-409.37	1911.8
-410.35	1031.5
-415.41	272.8
-416.31	287.6
-417.20	245.3
-418.35	258.9
-419.28	185.4
-422.28	571.1
-423.26	471.1
-424.30	149.1
-425.42	1245.0
-426.32	7255.4
-427.18	259.9
-428.19	1130.3
-429.42	416.6
-430.81	285.8
-431.41	357.6
-432.36	240.0
-435.32	909.4
-438.64	361.4
-439.27	54.4
-440.27	809.1
-441.36	201.5
-442.57	1096.3
-443.42	1637.0
-444.22	1651.0
-445.22	174.6
-446.36	224.2
-447.43	448.3
-449.30	630.3
-450.25	116.6
-452.39	1079.1
-454.48	546.7
-455.29	392.5
-456.43	846.3
-457.33	2153.8
-458.15	103.2
-460.37	731.6
-462.30	404.7
-463.45	965.0
-464.31	754.6
-466.65	327.7
-468.43	259.0
-469.40	123.8
-470.45	334.1
-473.27	80.8
-474.36	296.7
-475.18	389.0
-476.35	275.5
-478.84	1268.7
-479.60	350.2
-480.25	478.7
-481.28	770.2
-483.32	627.3
-484.36	135.9
-485.28	121.0
-486.59	154.3
-489.34	509.7
-490.65	256.6
-491.39	626.4
-492.46	443.2
-494.55	1090.3
-495.26	191.5
-497.45	221.1
-498.27	412.9
-499.46	305.6
-500.41	634.9
-501.31	85.2
-502.09	2311.2
-503.46	436.5
-504.45	585.0
-505.53	213.1
-506.67	397.4
-507.44	114.2
-509.46	2200.0
-510.64	2040.6
-511.61	252.7
-512.43	636.6
-513.35	158.5
-514.40	247.4
-516.25	1191.0
-517.49	374.4
-519.29	1001.2
-520.59	670.9
-521.44	395.9
-522.43	360.9
-523.77	499.9
-524.65	242.1
-526.34	1341.7
-527.37	538.6
-528.43	566.7
-529.37	1119.6
-530.39	5931.5
-532.43	1483.7
-533.54	1449.0
-534.44	1211.7
-535.47	1938.9
-536.48	224.0
-537.60	442.1
-538.23	303.7
-539.39	205.9
-540.37	662.0
-541.40	359.4
-542.44	193.3
-543.47	205.7
-544.32	1001.0
-545.43	758.5
-546.45	2967.4
-548.63	265.2
-549.47	697.3
-550.44	127.1
-551.78	293.1
-552.48	1240.4
-553.60	526.4
-554.23	115.9
-555.30	161.4
-556.34	750.7
-557.40	1208.4
-558.97	1287.7
-560.37	844.6
-561.69	1191.9
-562.48	812.1
-563.42	1502.6
-564.74	1271.9
-565.38	136.2
-567.19	8214.9
-567.89	153.7
-569.62	2036.8
-570.58	169.8
-571.29	127.0
-572.22	730.9
-573.25	614.8
-574.20	125.3
-575.33	2576.5
-576.51	1125.2
-577.47	2884.2
-578.94	3577.9
-581.44	506.8
-582.10	101.7
-583.98	58.8
-584.85	275.1
-585.45	1952.1
-586.49	1193.3
-588.16	637.2
-589.36	529.6
-590.85	1117.8
-591.63	301.2
-592.67	1227.3
-594.30	2050.2
-595.62	1253.1
-596.39	1209.9
-597.45	120.3
-598.46	298.8
-599.46	469.8
-600.38	561.1
-601.56	2286.4
-602.55	20799.3
-603.81	2500.9
-604.62	386.5
-608.38	202.6
-610.53	684.2
-611.38	881.9
-612.49	7092.8
-614.63	150.6
-615.52	765.4
-616.55	154.3
-617.41	1141.4
-618.31	983.5
-620.59	775.8
-621.93	206.3
-623.36	304.0
-625.43	103.1
-627.16	520.0
-629.11	894.2
-629.73	206.0
-631.54	212.4
-632.77	291.7
-633.53	432.9
-636.15	1842.3
-637.09	1245.0
-638.46	394.5
-639.50	462.8
-640.47	210.5
-641.40	834.0
-642.30	294.5
-643.51	513.1
-644.33	339.9
-645.01	743.9
-646.67	830.2
-647.55	1401.8
-648.67	432.1
-649.42	376.0
-650.59	473.6
-651.58	158.1
-652.59	1572.5
-654.83	1355.6
-656.18	7619.7
-658.19	7473.3
-658.83	810.4
-659.50	895.9
-660.53	93.1
-661.45	616.7
-662.41	847.9
-663.48	232.1
-664.80	2414.4
-665.64	1775.8
-666.53	1901.9
-667.52	775.3
-669.48	213.6
-671.22	2566.9
-672.26	1757.5
-673.46	1861.9
-674.50	5050.3
-675.44	1522.8
-676.67	470.7
-678.35	850.8
-679.10	338.2
-679.83	487.1
-680.53	434.6
-681.42	520.5
-682.60	436.3
-683.58	243.0
-684.64	533.2
-685.72	1118.4
-687.29	2174.5
-688.14	1280.1
-689.43	2423.3
-690.51	2316.0
-691.53	17932.5
-692.50	8279.9
-693.98	203.4
-695.53	106.8
-697.21	1832.4
-700.28	20565.9
-700.90	5958.7
-701.61	2060.8
-702.25	497.4
-711.35	405.3
-714.49	212.7
-720.83	225.5
-721.48	273.2
-724.49	455.0
-725.47	299.5
-726.52	160.8
-728.12	1126.8
-729.51	3461.0
-731.27	207.2
-732.53	153.1
-734.55	3542.3
-735.67	2515.8
-736.62	493.4
-737.57	576.0
-741.38	154.2
-742.31	512.5
-743.37	2444.3
-744.57	335.0
-745.64	633.7
-747.62	169.2
-749.21	225.3
-754.53	91.7
-756.46	117.6
-760.42	4986.1
-761.33	59.9
-765.14	618.6
-770.58	279.5
-771.60	393.5
-772.38	60.1
-774.42	758.8
-776.46	264.7
-777.44	139.6
-780.39	69.8
-781.62	371.3
-782.35	85.3
-784.62	715.6
-785.55	676.6
-791.47	391.9
-799.57	795.7
-800.60	1440.0
-801.50	599.9
-802.46	253.2
-806.06	402.3
-806.88	402.8
-808.35	1624.9
-809.99	1121.0
-811.53	346.8
-812.59	671.5
-815.78	88.7
-816.74	401.5
-818.56	225.2
-819.66	324.4
-821.29	2712.9
-822.95	356.5
-824.25	773.3
-825.50	626.4
-826.43	402.1
-827.74	56.7
-828.61	1686.0
-829.37	182.7
-831.47	323.4
-833.55	3633.8
-834.45	536.6
-836.28	373.1
-837.39	174.0
-839.77	954.1
-840.53	233.3
-841.87	794.2
-843.54	8619.3
-844.21	176.6
-844.92	562.7
-846.46	1131.8
-849.77	115.9
-850.75	384.1
-853.30	212.3
-855.48	1278.3
-856.34	449.3
-858.65	596.3
-859.60	366.6
-865.40	406.8
-867.92	180.1
-870.25	2073.5
-871.49	2720.9
-872.68	416.5
-873.53	1112.4
-874.49	1071.1
-875.59	248.9
-878.23	2425.5
-880.56	536.2
-881.92	183.8
-884.64	94.6
-885.82	1701.1
-886.64	861.3
-888.50	9227.9
-889.41	987.2
-890.04	378.7
-891.37	330.9
-895.00	603.6
-896.43	454.7
-897.78	584.2
-901.57	87.6
-905.52	79.0
-906.61	313.2
-910.57	343.4
-911.55	322.7
-912.87	370.4
-913.55	641.1
-914.73	186.3
-916.66	251.6
-918.64	354.4
-920.17	254.6
-924.84	190.2
-926.91	153.8
-928.03	689.1
-930.64	553.5
-931.71	318.2
-937.48	137.3
-941.30	935.4
-941.99	104.6
-942.78	500.3
-943.65	532.4
-944.87	558.3
-946.50	85.3
-947.54	266.7
-956.62	598.5
-957.70	2436.0
-958.66	1637.0
-959.69	433.5
-961.56	742.4
-962.45	1897.2
-963.73	615.2
-964.54	826.7
-965.24	103.5
-968.82	307.8
-969.64	823.3
-970.85	677.6
-971.93	250.4
-973.76	728.8
-974.67	7455.7
-975.55	1835.1
-976.22	356.8
-986.67	86.3
-987.67	149.6
-989.76	1630.2
-990.83	697.4
-992.80	293.8
-997.46	855.2
-998.67	96.6
-1001.66	712.1
-1003.53	577.1
-1005.60	125.2
-1008.58	244.8
-1010.71	182.3
-1014.75	164.5
-1015.80	286.4
-1017.65	433.5
-1019.62	14427.7
-1020.76	4851.9
-1021.56	510.1
-1023.55	215.6
-1025.86	115.7
-1026.72	286.3
-1027.74	838.1
-1028.66	799.2
-1029.78	278.0
-1033.60	239.8
-1034.74	625.8
-1036.10	391.5
-1039.66	166.5
-1045.65	374.3
-1046.85	430.6
-1047.81	279.7
-1050.70	158.1
-1051.68	498.8
-1052.66	261.2
-1057.72	134.2
-1058.68	1367.1
-1059.45	194.5
-1060.41	262.8
-1064.68	163.4
-1067.60	507.1
-1068.58	1551.3
-1069.79	231.6
-1070.56	173.3
-1071.31	399.8
-1073.47	489.5
-1076.71	518.2
-1077.54	354.2
-1085.59	3654.2
-1086.62	5105.8
-1087.75	2585.0
-1088.40	70.4
-1100.60	508.2
-1101.67	65.6
-1103.60	23720.7
-1104.49	336.1
-1105.15	106.1
-1108.82	397.0
-1109.66	277.7
-1110.98	250.2
-1114.94	138.9
-1115.65	514.9
-1119.68	112.9
-1125.99	681.8
-1126.83	432.2
-1127.98	819.7
-1128.68	976.6
-1132.93	2437.7
-1133.81	1286.1
-1140.63	429.1
-1142.65	88.0
-1143.85	304.0
-1144.90	823.2
-1145.76	1772.1
-1146.76	1031.0
-1147.67	358.8
-1148.81	248.4
-1149.95	80.9
-1151.68	257.7
-1154.07	316.0
-1156.75	1098.8
-1157.77	1098.4
-1158.98	209.6
-1160.41	199.1
-1167.72	97.2
-1173.66	214.1
-1174.66	872.7
-1175.94	506.2
-1180.61	306.7
-1182.56	78.7
-1191.68	321.1
-1197.61	606.3
-1199.13	91.2
-1202.00	282.0
-1203.80	2311.3
-1204.84	1621.6
-1205.90	398.8
-1207.06	215.4
-1208.77	189.8
-1213.85	210.1
-1214.70	652.1
-1234.81	66.6
-1236.72	134.4
-1244.99	225.7
-1252.35	393.9
-1254.82	285.3
-1269.65	120.5
-1271.79	1256.4
-1272.82	441.7
-1274.05	247.6
-1286.68	329.7
-1288.98	143.3
-S	4	4	792.5
-Z	3	2356.7
-D	seq	VIYTTNAVEAVHRQFRKLTK
-D	modified seq	VIYTTNAVEAVHRQFRKLTK
-225.98	98.1
-229.08	365.6
-231.15	159.9
-235.04	444.5
-239.32	202.6
-240.28	285.6
-241.11	397.2
-242.14	145.8
-243.26	111.8
-244.21	129.2
-246.25	157.3
-247.13	414.9
-249.15	1701.0
-252.07	520.9
-253.21	962.4
-258.31	145.3
-259.18	213.6
-262.27	350.7
-263.15	240.0
-268.13	414.9
-271.32	320.7
-272.06	400.6
-274.33	417.9
-275.22	671.3
-276.22	268.0
-277.15	253.5
-278.17	312.3
-283.11	120.8
-285.13	87.2
-286.09	129.3
-288.20	265.7
-292.17	7058.9
-292.94	155.9
-293.56	205.0
-294.17	425.6
-295.32	232.5
-296.18	1102.0
-298.20	2978.7
-299.37	279.7
-302.19	130.7
-303.28	784.2
-304.29	347.6
-306.28	82.2
-308.12	1243.0
-309.32	105.5
-311.17	509.3
-312.23	222.2
-313.16	2815.7
-313.84	655.4
-315.43	51.0
-316.16	408.5
-317.21	4814.3
-318.19	1220.8
-319.18	54.9
-321.23	872.0
-325.22	569.9
-327.40	358.2
-328.37	671.8
-330.22	81.4
-331.17	218.7
-334.17	241.4
-338.34	1455.1
-339.16	179.2
-340.22	219.5
-341.24	625.5
-343.20	86.2
-345.24	233.8
-346.27	819.3
-347.20	149.4
-348.23	462.8
-349.11	360.5
-350.25	243.9
-352.50	236.4
-353.28	531.3
-355.11	553.8
-356.28	1893.9
-357.20	465.8
-358.21	904.5
-360.10	426.8
-361.34	329.7
-363.13	13003.2
-364.14	585.7
-365.25	845.2
-371.31	449.3
-373.30	2172.2
-374.15	333.4
-377.26	716.7
-379.54	276.4
-380.62	72.0
-381.33	2352.8
-382.36	165.1
-384.20	111.5
-390.22	856.4
-391.10	1032.6
-395.26	579.5
-397.28	285.0
-399.24	804.4
-400.22	348.1
-401.35	585.4
-403.18	1057.4
-405.24	4587.2
-406.25	148.7
-407.24	374.8
-409.23	4016.9
-413.26	720.0
-414.18	313.0
-415.27	3102.3
-416.42	723.5
-417.18	580.2
-418.35	350.1
-419.67	73.5
-420.47	704.1
-421.27	318.7
-422.19	143.0
-424.23	747.4
-425.46	604.9
-426.37	2784.2
-428.33	276.6
-430.36	4042.1
-431.23	3610.8
-432.37	275.4
-433.25	636.7
-436.50	147.2
-438.35	93.6
-440.56	181.2
-441.38	385.6
-442.40	1042.8
-443.30	755.1
-448.32	5891.3
-450.19	244.2
-452.33	187.8
-454.45	321.5
-455.53	53.5
-456.41	100.6
-458.42	1238.9
-459.30	2878.6
-460.39	1069.7
-461.33	2632.0
-462.74	521.9
-464.51	180.8
-465.20	65.8
-466.20	1268.0
-467.23	1396.7
-468.63	189.3
-470.38	399.3
-471.38	304.3
-473.42	1474.8
-474.30	138.2
-475.32	772.8
-476.25	18076.6
-477.28	1068.3
-478.39	1270.1
-480.67	402.3
-481.37	95.0
-482.40	462.7
-483.33	293.5
-484.44	393.1
-485.36	58.3
-487.13	394.9
-488.33	1593.4
-489.30	1145.4
-490.36	576.7
-492.26	152.0
-495.09	166.7
-496.37	49.9
-498.45	132.5
-499.16	167.1
-500.15	686.5
-501.38	7922.9
-502.34	211.8
-503.37	472.4
-504.60	1394.0
-505.49	643.3
-508.38	311.8
-510.59	103.2
-511.33	465.8
-512.28	263.5
-514.50	615.1
-516.27	1500.4
-518.35	1513.6
-525.35	103.2
-526.30	524.2
-528.09	1069.2
-529.35	810.7
-530.37	1752.4
-531.35	242.8
-532.31	549.0
-533.28	4312.1
-534.50	228.5
-535.21	349.0
-536.35	357.5
-537.00	213.5
-538.47	926.0
-542.15	174.6
-544.21	6565.5
-546.14	1258.4
-547.42	627.0
-548.16	474.7
-549.48	390.2
-550.43	343.0
-551.44	77.9
-552.35	627.9
-553.34	560.5
-554.35	1253.2
-555.27	266.9
-556.58	421.7
-557.37	800.2
-558.44	212.7
-559.90	1227.1
-561.31	7686.6
-562.20	1566.3
-563.45	641.7
-565.16	1369.9
-570.43	576.0
-571.39	1127.2
-572.43	3524.0
-573.40	392.2
-574.43	1254.0
-575.51	444.0
-576.50	680.4
-577.63	1327.2
-578.39	78.0
-579.35	584.2
-580.45	385.2
-583.24	368.6
-584.48	518.1
-585.54	16430.0
-586.35	38.9
-589.29	13074.9
-590.40	603.9
-591.47	88.9
-592.35	264.5
-593.40	717.7
-594.71	319.8
-596.60	193.9
-598.33	182.5
-600.77	433.9
-601.46	1661.3
-603.13	783.2
-606.68	6970.3
-607.39	29106.2
-608.44	581.4
-609.74	358.8
-610.36	235.4
-611.52	875.4
-612.38	1308.1
-613.43	213.6
-616.32	633.0
-617.01	365.3
-618.45	1516.8
-619.52	984.5
-620.46	294.7
-622.41	305.5
-623.36	422.0
-625.35	293.6
-627.77	1938.1
-628.47	2151.6
-629.36	1342.3
-631.58	127.6
-635.56	117.5
-636.38	1576.8
-637.61	351.2
-638.30	169.4
-639.32	213.7
-640.27	370.2
-642.14	2070.8
-646.25	2289.4
-649.47	167.6
-650.44	719.2
-653.28	76.4
-654.33	2244.3
-657.46	508.5
-659.44	131.6
-660.68	464.1
-662.47	322.5
-663.41	710.4
-664.52	1510.8
-665.52	486.9
-668.84	15673.0
-669.81	2321.8
-672.42	271.3
-673.08	262.6
-674.50	501.3
-675.44	564.4
-676.83	418.7
-678.78	249.3
-680.33	160.1
-682.34	85.2
-683.29	979.4
-684.89	630.3
-686.56	1023.5
-688.50	569.6
-691.71	1030.2
-692.49	2119.0
-693.34	765.6
-694.39	500.7
-697.44	613.3
-698.61	319.5
-700.35	1469.9
-701.52	578.8
-702.39	154.1
-703.44	96.8
-704.44	236.4
-705.65	409.7
-707.03	289.9
-712.26	615.6
-713.90	872.7
-714.53	292.3
-715.28	863.2
-716.52	194.1
-717.44	458.8
-718.62	1473.7
-719.51	1258.7
-720.95	3451.9
-722.46	949.4
-724.72	1002.0
-725.56	167.8
-726.74	1348.3
-727.78	2936.5
-728.49	1121.1
-729.40	1374.7
-730.59	133.2
-731.40	173.2
-732.45	399.9
-733.41	342.9
-734.91	1461.9
-735.80	696.2
-739.50	333.1
-740.65	439.1
-741.54	341.3
-743.95	2372.0
-744.95	1639.0
-746.64	554.3
-747.58	239.5
-748.62	1705.3
-749.43	3021.0
-751.45	1257.9
-752.38	775.8
-753.11	437.1
-754.24	372.5
-755.57	684.1
-756.40	2253.0
-757.50	4004.6
-758.51	4782.2
-759.26	1482.8
-760.78	1689.5
-761.55	888.6
-762.54	3019.2
-763.43	2451.8
-764.38	703.7
-765.56	390.5
-766.39	833.7
-769.69	656.5
-771.51	291.2
-773.57	4070.3
-774.51	17664.1
-775.52	11178.4
-776.44	7010.4
-777.72	491.1
-778.68	1173.6
-780.26	1388.8
-781.44	1367.1
-782.78	18719.8
-783.60	18549.0
-784.51	2777.5
-795.35	1607.1
-796.28	893.6
-797.53	421.6
-802.51	117.6
-809.02	390.1
-811.36	86.4
-812.47	60.7
-818.49	737.0
-819.75	572.1
-825.61	242.6
-827.59	1072.2
-828.60	664.3
-829.52	329.3
-835.44	228.3
-839.94	537.4
-857.80	630.9
-862.61	227.1
-863.51	109.8
-867.53	246.3
-868.71	167.6
-874.34	83.4
-875.66	415.3
-882.44	133.9
-883.67	459.0
-895.16	1067.8
-903.47	1018.7
-906.59	403.8
-908.52	385.8
-911.53	156.1
-913.70	173.8
-915.37	315.9
-916.61	96.6
-917.76	767.2
-918.45	217.8
-920.54	325.6
-923.81	391.1
-924.83	422.2
-926.45	257.6
-927.68	137.6
-936.48	529.7
-937.78	295.6
-940.61	94.1
-944.03	282.0
-946.58	436.8
-949.95	130.5
-950.62	543.2
-956.62	439.6
-964.00	293.0
-964.98	880.3
-965.71	52.1
-967.23	125.7
-968.38	559.9
-975.69	246.0
-978.66	1595.5
-980.26	1037.9
-981.70	556.6
-983.58	213.1
-986.07	280.2
-993.61	734.6
-994.47	951.7
-997.59	206.4
-999.41	409.0
-1001.15	188.8
-1002.17	1120.3
-1003.08	348.8
-1007.42	877.9
-1008.55	384.7
-1009.62	1114.4
-1010.77	226.5
-1015.74	427.9
-1018.51	481.1
-1019.48	64.9
-1029.99	489.0
-1032.54	436.6
-1039.95	160.4
-1041.86	169.1
-1043.57	59.3
-1045.11	2047.8
-1048.53	419.5
-1049.70	466.9
-1050.63	379.2
-1055.52	298.0
-1057.13	893.0
-1057.88	340.3
-1059.80	432.9
-1062.81	1594.1
-1063.56	490.5
-1065.06	3223.6
-1065.85	1120.7
-1067.69	177.2
-1068.32	835.1
-1072.25	899.0
-1073.80	5874.2
-1074.59	758.2
-1075.70	226.4
-1084.94	291.9
-1094.88	287.9
-1096.36	157.7
-1102.65	346.2
-1107.66	765.5
-1109.10	392.2
-1109.75	243.6
-1114.88	1223.5
-1118.70	54.2
-1122.08	218.7
-1124.15	964.0
-1125.63	583.0
-1126.61	377.4
-1134.02	618.8
-1138.61	402.3
-1149.21	108.5
-1157.72	326.1
-1161.28	205.0
-1163.01	219.3
-1164.56	238.8
-1166.71	372.0
-1167.73	550.6
-1169.80	1058.7
-1181.80	174.7
-1191.58	407.9
-1193.45	314.5
-1205.75	182.8
-1210.57	84.3
-1212.86	189.4
-1222.72	597.1
-1230.87	82.3
-1236.56	358.7
-1255.90	125.6
-1263.63	431.9
-1264.88	205.8
-1268.80	181.4
-1280.70	540.3
-1282.78	71.2
-1296.96	112.8
-1307.60	1382.0
-1308.74	508.7
-1309.97	250.3
-1317.53	444.1
-1318.57	464.4
-1320.32	134.4
-1337.48	358.0
-1339.30	413.2
-1341.64	369.9
-1348.55	289.2
-1380.81	109.0
-1383.70	91.3
-1384.32	491.3
-1402.81	354.8
-1403.84	276.4
-1408.88	152.6
-1410.81	92.3
-1417.65	557.0
-1419.17	159.5
-1429.28	347.1
-1445.73	113.1
-1455.15	414.2
-1582.90	247.7
-1611.73	251.4
-1643.21	322.7
-1647.00	465.6
-1663.82	211.6
-1706.91	302.1
-S	5	5	403.7
-Z	2	787.1
-D	seq	VMRMLR
-D	modified seq	VMRMLR
-110.12	252.7
-112.23	266.2
-127.17	506.6
-128.35	1371.8
-129.13	9472.6
-130.09	2111.5
-136.10	2477.8
-138.08	689.4
-143.04	588.7
-145.04	271.9
-147.12	3861.2
-148.24	293.9
-153.42	174.7
-154.16	463.9
-157.00	6902.0
-158.17	3452.9
-159.13	1992.8
-160.12	233.1
-167.08	300.8
-169.02	516.2
-170.28	192.3
-171.30	885.7
-172.19	1884.9
-173.13	667.4
-175.10	17585.0
-177.19	379.2
-178.07	134.4
-180.10	218.9
-181.12	1143.9
-182.43	798.5
-183.16	333.1
-185.19	260.7
-186.21	3935.4
-187.20	4079.2
-188.09	592.1
-191.22	532.2
-193.16	530.0
-195.51	522.9
-199.10	2081.1
-200.12	366.7
-201.15	5326.1
-202.06	140.7
-203.15	581.5
-204.16	10758.1
-208.05	1359.0
-209.18	241.4
-211.16	1200.8
-213.16	562.2
-214.36	711.8
-215.09	316.0
-216.16	1109.5
-217.04	587.7
-218.15	7243.7
-219.20	2733.9
-221.28	712.1
-222.07	588.5
-223.48	245.1
-226.02	565.0
-227.14	618.1
-229.22	4637.6
-230.22	636.5
-231.20	1164.2
-232.03	1612.6
-233.09	610.6
-234.19	2793.5
-235.25	2660.1
-236.18	736.3
-238.19	431.0
-239.17	983.3
-240.15	748.7
-241.13	563.3
-241.85	294.7
-244.21	8771.9
-245.19	3373.8
-246.53	5290.5
-247.49	3916.5
-248.29	527.0
-249.24	2091.6
-250.22	1591.0
-253.26	411.4
-254.22	394.1
-256.20	2758.4
-257.28	2298.3
-258.39	2186.3
-259.10	1531.0
-260.18	2096.9
-261.25	562.2
-262.13	475.2
-264.98	686.8
-265.63	211.6
-267.13	460.8
-269.18	1139.9
-270.31	2664.9
-271.23	6914.1
-273.26	190.8
-274.28	2458.3
-276.21	1554.0
-277.19	1264.0
-280.21	1494.1
-281.84	531.7
-283.23	11389.1
-284.26	2693.9
-284.87	1114.7
-286.28	1743.4
-288.19	191936.4
-289.21	32335.5
-290.17	13779.2
-290.97	4230.4
-292.71	574.2
-294.14	868.7
-296.32	11800.0
-297.26	635.7
-298.29	1427.9
-302.23	1802.1
-303.25	161.8
-304.34	3430.4
-305.20	808.6
-306.13	982.0
-308.21	32854.7
-309.18	1269.2
-309.91	5966.0
-311.19	3851.9
-313.28	6078.4
-314.18	2241.2
-315.33	104.8
-316.79	970.1
-317.69	1395.7
-318.66	42722.2
-319.31	4268.1
-320.20	1993.6
-321.10	698.3
-322.21	10550.7
-322.85	2879.3
-324.07	2669.7
-325.41	2745.4
-328.28	1991.7
-329.35	176.6
-330.31	1303.1
-331.24	1675.5
-332.37	550.2
-333.23	1263.9
-334.20	503.3
-336.67	793.0
-337.75	1283.4
-339.31	1329.3
-340.02	579.0
-341.08	1066.1
-341.78	2212.7
-342.40	2135.2
-344.35	1673.0
-345.16	1868.6
-345.80	1152.7
-347.25	4687.3
-350.29	4467.0
-351.09	1114.9
-353.05	2031.8
-354.27	3229.4
-358.81	8820.7
-360.16	8912.9
-361.26	285.6
-362.76	744.4
-365.33	983.8
-367.71	4753.2
-368.32	6103.0
-369.37	8101.6
-370.13	501.4
-372.23	21235.6
-373.53	4058.2
-375.23	8752.1
-376.24	2800.5
-377.26	1202.4
-379.04	1388.8
-380.05	2109.7
-381.52	10376.7
-382.87	3507.2
-383.59	1630.6
-385.04	13829.3
-386.22	40298.8
-387.61	7779.5
-388.51	3646.9
-389.34	945.2
-390.34	1586.9
-391.18	4189.7
-392.17	2260.2
-392.83	2758.2
-394.35	389341.9
-395.30	22181.1
-396.70	10698.0
-397.78	30156.6
-403.41	235.7
-410.69	847.9
-411.74	1207.0
-413.25	741.5
-414.38	892.8
-416.28	1197.2
-417.29	10833.2
-418.47	3862.4
-419.32	10421.7
-420.30	957.5
-421.37	527.8
-423.84	1305.1
-428.88	930.7
-430.27	785.3
-431.35	817.3
-433.96	1141.0
-435.36	274.3
-436.37	2226.2
-437.29	1542.5
-440.40	1268.8
-442.12	2193.9
-444.53	2283.1
-445.55	472.0
-448.73	2254.2
-451.01	835.6
-454.41	404.0
-455.34	519.5
-456.41	771.9
-457.27	1019.3
-460.58	1930.8
-461.26	2116.5
-462.31	2951.3
-467.79	1239.0
-468.42	407.0
-469.25	234.7
-470.36	354.8
-471.44	837.2
-472.50	2608.6
-473.48	1555.1
-474.71	2923.4
-475.35	909.9
-476.17	2608.9
-477.23	1345.7
-477.93	1246.1
-480.34	4109.6
-481.69	25206.6
-482.49	60629.5
-483.39	447.6
-485.37	1519.8
-486.35	1196.0
-488.48	1835.0
-489.34	1535.3
-490.85	451.7
-492.13	5389.1
-493.13	1364.9
-494.34	297.3
-496.35	23173.0
-497.28	496.3
-498.53	5168.1
-499.35	60038.7
-500.28	25246.9
-501.35	2488.9
-502.67	145.9
-503.42	2054.2
-504.58	2156.4
-506.46	759.3
-508.58	1500.0
-509.56	480.4
-510.63	1927.7
-511.59	699.5
-512.28	1875.7
-513.31	938.7
-515.95	1209.2
-517.33	1699.3
-519.83	1306.1
-523.35	1201.6
-525.37	802.2
-528.37	3993.0
-529.82	4392.7
-530.60	4753.8
-531.58	2319.6
-532.49	1480.5
-533.80	2361.1
-535.39	554.1
-538.23	21389.5
-539.11	13474.9
-540.02	51601.6
-540.79	1093.5
-543.75	839.1
-544.97	1402.7
-547.12	7339.3
-547.75	3405.6
-549.56	555.6
-551.73	1641.5
-556.39	1011.8
-557.57	487.3
-558.35	535.4
-560.41	1978.0
-561.53	345.8
-566.44	8961.7
-567.62	4998.6
-568.47	12812.6
-569.43	2164.2
-571.40	11632.0
-572.49	1417.8
-573.34	176.7
-574.36	408.5
-575.40	5182.1
-576.45	1369.9
-577.71	1758.8
-578.50	2202.4
-579.29	643.9
-586.57	252.6
-588.39	4323.0
-589.45	701.2
-590.69	406.0
-591.42	692.8
-592.37	423.2
-593.42	800.1
-594.37	1050.0
-597.54	604.1
-601.74	280.1
-603.43	1071.5
-604.47	3201.8
-605.37	2343.6
-607.38	1113.0
-623.55	216.0
-625.33	773.4
-629.50	631.9
-631.47	795.4
-632.60	485.6
-636.54	2480.1
-638.76	388.4
-640.40	736.4
-642.51	944.1
-643.43	8469.0
-645.36	602.2
-648.41	11978.3
-649.46	35299.3
-650.40	6514.7
-653.64	870.0
-656.86	1215.8
-659.50	2042.4
-662.45	729.4
-664.36	908.8
-667.53	795.9
-671.46	357.0
-677.50	184.3
-678.51	131.2
-679.55	741.9
-681.51	8984.0
-682.43	4643.0
-692.74	1851.9
-693.78	507.3
-698.22	354.9
-699.61	3988.2
-700.64	1040.9
-706.83	309.7
-708.48	628.2
-716.38	405.4
-733.63	715.2
-756.64	385.2
-780.72	431.5
-788.48	666.6
-789.73	717.3
-814.99	166.1
Binary file test-data/sp.tgz has changed
--- a/test-data/splib.html	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-<html><head><title>Spectral Library Composite Dataset </title></head><p/>
-<div>This composite dataset is composed of the following files:<p/><ul>
-<li><a href="library.splib" type="text/plain">library.splib (Spectral Library. Contains actual library spectra)</a></li>
-<li><a href="library.spidx" type="text/plain">library.spidx (Spectrum index)</a></li>
-<li><a href="library.pepidx" type="text/plain">library.pepidx (Peptide index)</a></li>
-</ul></div></html>
\ No newline at end of file
--- a/test-data/splib/library.pepidx	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-### test-data/library.pepidx
-### 
-### Total number of spectra in library: 5
-### Total number of distinct peptide ions in library: 5
-### Total number of distinct stripped peptides in library: 4
-### 
-### CHARGE            +1: 0 ; +2: 3 ; +3: 2 ; +4: 0 ; +5: 0 ; >+5: 0 ; Unk: 0
-### TERMINI           Tryptic: 0 ; Semi-tryptic: 4 ; Non-tryptic: 1
-### PROBABILITY       >0.9999: 5 ; 0.999-0.9999: 0 ; 0.99-0.999: 0 ; 0.9-0.99: 0 ; <0.9: 0
-### NREPS             20+: 0 ; 10-19: 0 ; 4-9: 0 ; 2-3: 0 ; 1: 5
-### MODIFICATIONS     None
-### ===
-FKWNGTDTNSAAEK	2|0|CID	111 
-FKWNGTDTNSAAEK	3|0|CID	17206 
-GGESIMNAQSQPQA	2|0|CID	37387 
-VIYTTNAVEAVHRQFRKLTK	3|0|CID	53188 
-VMRMLR	2|0|CID	70299 
--- a/test-data/splib/library.spidx	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2001 +0,0 @@
-10	
-11	
-12	
-13	
-14	
-15	
-16	
-17	
-18	
-19	
-20	
-21	
-22	
-23	
-24	
-25	
-26	
-27	
-28	
-29	
-30	
-31	
-32	
-33	
-34	
-35	
-36	
-37	
-38	
-39	
-40	
-41	
-42	
-43	
-44	
-45	
-46	
-47	
-48	
-49	
-50	
-51	
-52	
-53	
-54	
-55	
-56	
-57	
-58	
-59	
-60	
-61	
-62	
-63	
-64	
-65	
-66	
-67	
-68	
-69	
-70	
-71	
-72	
-73	
-74	
-75	
-76	
-77	
-78	
-79	
-80	
-81	
-82	
-83	
-84	
-85	
-86	
-87	
-88	
-89	
-90	
-91	
-92	
-93	
-94	
-95	
-96	
-97	
-98	
-99	
-100	
-101	
-102	
-103	
-104	
-105	
-106	
-107	
-108	
-109	
-110	
-111	
-112	
-113	
-114	
-115	
-116	
-117	
-118	
-119	
-120	
-121	
-122	
-123	
-124	
-125	
-126	
-127	
-128	
-129	
-130	
-131	
-132	
-133	
-134	
-135	
-136	
-137	
-138	
-139	
-140	
-141	
-142	
-143	
-144	
-145	
-146	
-147	
-148	
-149	
-150	
-151	
-152	
-153	
-154	
-155	
-156	
-157	
-158	
-159	
-160	
-161	
-162	
-163	
-164	
-165	
-166	
-167	
-168	
-169	
-170	
-171	
-172	
-173	
-174	
-175	
-176	
-177	
-178	
-179	
-180	
-181	
-182	
-183	
-184	
-185	
-186	
-187	
-188	
-189	
-190	
-191	
-192	
-193	
-194	
-195	
-196	
-197	
-198	
-199	
-200	
-201	
-202	
-203	
-204	
-205	
-206	
-207	
-208	
-209	
-210	
-211	
-212	
-213	
-214	
-215	
-216	
-217	
-218	
-219	
-220	
-221	
-222	
-223	
-224	
-225	
-226	
-227	
-228	
-229	
-230	
-231	
-232	
-233	
-234	
-235	
-236	
-237	
-238	
-239	
-240	
-241	
-242	
-243	
-244	
-245	
-246	
-247	
-248	
-249	
-250	
-251	
-252	
-253	
-254	
-255	
-256	
-257	
-258	
-259	
-260	
-261	
-262	
-263	
-264	
-265	
-266	
-267	
-268	
-269	
-270	
-271	
-272	
-273	
-274	
-275	
-276	
-277	
-278	
-279	
-280	
-281	
-282	
-283	
-284	
-285	
-286	
-287	
-288	
-289	
-290	
-291	
-292	
-293	
-294	
-295	
-296	
-297	
-298	
-299	
-300	
-301	
-302	
-303	
-304	
-305	
-306	
-307	
-308	
-309	
-310	
-311	
-312	
-313	
-314	
-315	
-316	
-317	
-318	
-319	
-320	
-321	
-322	
-323	
-324	
-325	
-326	
-327	
-328	
-329	
-330	
-331	
-332	
-333	
-334	
-335	
-336	
-337	
-338	
-339	
-340	
-341	
-342	
-343	
-344	
-345	
-346	
-347	
-348	
-349	
-350	
-351	
-352	
-353	
-354	
-355	
-356	
-357	
-358	
-359	
-360	
-361	
-362	
-363	
-364	
-365	
-366	
-367	
-368	
-369	
-370	
-371	
-372	
-373	
-374	
-375	
-376	
-377	
-378	
-379	
-380	
-381	
-382	
-383	
-384	
-385	
-386	
-387	
-388	
-389	
-390	
-391	
-392	
-393	
-394	
-395	
-396	
-397	
-398	
-399	
-400	
-401	
-402	
-403	70299 
-404	
-405	
-406	
-407	
-408	
-409	
-410	
-411	
-412	
-413	
-414	
-415	
-416	
-417	
-418	
-419	
-420	
-421	
-422	
-423	
-424	
-425	
-426	
-427	
-428	
-429	
-430	
-431	
-432	
-433	
-434	
-435	
-436	
-437	
-438	
-439	
-440	
-441	
-442	
-443	
-444	
-445	
-446	
-447	
-448	
-449	
-450	
-451	
-452	
-453	
-454	
-455	
-456	
-457	
-458	
-459	
-460	
-461	
-462	
-463	
-464	
-465	
-466	
-467	
-468	
-469	
-470	
-471	
-472	
-473	
-474	
-475	
-476	
-477	
-478	
-479	
-480	
-481	
-482	
-483	
-484	
-485	
-486	
-487	
-488	
-489	
-490	
-491	
-492	
-493	
-494	
-495	
-496	
-497	
-498	
-499	
-500	
-501	
-502	
-503	
-504	
-505	
-506	
-507	
-508	
-509	
-510	
-511	
-512	
-513	
-514	
-515	
-516	
-517	
-518	
-519	
-520	
-521	
-522	
-523	17206 
-524	
-525	
-526	
-527	
-528	
-529	
-530	
-531	
-532	
-533	
-534	
-535	
-536	
-537	
-538	
-539	
-540	
-541	
-542	
-543	
-544	
-545	
-546	
-547	
-548	
-549	
-550	
-551	
-552	
-553	
-554	
-555	
-556	
-557	
-558	
-559	
-560	
-561	
-562	
-563	
-564	
-565	
-566	
-567	
-568	
-569	
-570	
-571	
-572	
-573	
-574	
-575	
-576	
-577	
-578	
-579	
-580	
-581	
-582	
-583	
-584	
-585	
-586	
-587	
-588	
-589	
-590	
-591	
-592	
-593	
-594	
-595	
-596	
-597	
-598	
-599	
-600	
-601	
-602	
-603	
-604	
-605	
-606	
-607	
-608	
-609	
-610	
-611	
-612	
-613	
-614	
-615	
-616	
-617	
-618	
-619	
-620	
-621	
-622	
-623	
-624	
-625	
-626	
-627	
-628	
-629	
-630	
-631	
-632	
-633	
-634	
-635	
-636	
-637	
-638	
-639	
-640	
-641	
-642	
-643	
-644	
-645	
-646	
-647	
-648	
-649	
-650	
-651	
-652	
-653	
-654	
-655	
-656	
-657	
-658	
-659	
-660	
-661	
-662	
-663	
-664	
-665	
-666	
-667	
-668	
-669	
-670	
-671	
-672	
-673	
-674	
-675	
-676	
-677	
-678	
-679	
-680	
-681	
-682	
-683	
-684	
-685	
-686	
-687	
-688	
-689	
-690	
-691	
-692	
-693	
-694	
-695	
-696	
-697	
-698	
-699	
-700	
-701	
-702	
-703	
-704	
-705	
-706	
-707	
-708	
-709	37387 
-710	
-711	
-712	
-713	
-714	
-715	
-716	
-717	
-718	
-719	
-720	
-721	
-722	
-723	
-724	
-725	
-726	
-727	
-728	
-729	
-730	
-731	
-732	
-733	
-734	
-735	
-736	
-737	
-738	
-739	
-740	
-741	
-742	
-743	
-744	
-745	
-746	
-747	
-748	
-749	
-750	
-751	
-752	
-753	
-754	
-755	
-756	
-757	
-758	
-759	
-760	
-761	
-762	
-763	
-764	
-765	
-766	
-767	
-768	
-769	
-770	
-771	
-772	
-773	
-774	
-775	
-776	
-777	
-778	
-779	
-780	
-781	
-782	
-783	
-784	111 
-785	
-786	
-787	
-788	
-789	
-790	
-791	
-792	53188 
-793	
-794	
-795	
-796	
-797	
-798	
-799	
-800	
-801	
-802	
-803	
-804	
-805	
-806	
-807	
-808	
-809	
-810	
-811	
-812	
-813	
-814	
-815	
-816	
-817	
-818	
-819	
-820	
-821	
-822	
-823	
-824	
-825	
-826	
-827	
-828	
-829	
-830	
-831	
-832	
-833	
-834	
-835	
-836	
-837	
-838	
-839	
-840	
-841	
-842	
-843	
-844	
-845	
-846	
-847	
-848	
-849	
-850	
-851	
-852	
-853	
-854	
-855	
-856	
-857	
-858	
-859	
-860	
-861	
-862	
-863	
-864	
-865	
-866	
-867	
-868	
-869	
-870	
-871	
-872	
-873	
-874	
-875	
-876	
-877	
-878	
-879	
-880	
-881	
-882	
-883	
-884	
-885	
-886	
-887	
-888	
-889	
-890	
-891	
-892	
-893	
-894	
-895	
-896	
-897	
-898	
-899	
-900	
-901	
-902	
-903	
-904	
-905	
-906	
-907	
-908	
-909	
-910	
-911	
-912	
-913	
-914	
-915	
-916	
-917	
-918	
-919	
-920	
-921	
-922	
-923	
-924	
-925	
-926	
-927	
-928	
-929	
-930	
-931	
-932	
-933	
-934	
-935	
-936	
-937	
-938	
-939	
-940	
-941	
-942	
-943	
-944	
-945	
-946	
-947	
-948	
-949	
-950	
-951	
-952	
-953	
-954	
-955	
-956	
-957	
-958	
-959	
-960	
-961	
-962	
-963	
-964	
-965	
-966	
-967	
-968	
-969	
-970	
-971	
-972	
-973	
-974	
-975	
-976	
-977	
-978	
-979	
-980	
-981	
-982	
-983	
-984	
-985	
-986	
-987	
-988	
-989	
-990	
-991	
-992	
-993	
-994	
-995	
-996	
-997	
-998	
-999	
-1000	
-1001	
-1002	
-1003	
-1004	
-1005	
-1006	
-1007	
-1008	
-1009	
-1010	
-1011	
-1012	
-1013	
-1014	
-1015	
-1016	
-1017	
-1018	
-1019	
-1020	
-1021	
-1022	
-1023	
-1024	
-1025	
-1026	
-1027	
-1028	
-1029	
-1030	
-1031	
-1032	
-1033	
-1034	
-1035	
-1036	
-1037	
-1038	
-1039	
-1040	
-1041	
-1042	
-1043	
-1044	
-1045	
-1046	
-1047	
-1048	
-1049	
-1050	
-1051	
-1052	
-1053	
-1054	
-1055	
-1056	
-1057	
-1058	
-1059	
-1060	
-1061	
-1062	
-1063	
-1064	
-1065	
-1066	
-1067	
-1068	
-1069	
-1070	
-1071	
-1072	
-1073	
-1074	
-1075	
-1076	
-1077	
-1078	
-1079	
-1080	
-1081	
-1082	
-1083	
-1084	
-1085	
-1086	
-1087	
-1088	
-1089	
-1090	
-1091	
-1092	
-1093	
-1094	
-1095	
-1096	
-1097	
-1098	
-1099	
-1100	
-1101	
-1102	
-1103	
-1104	
-1105	
-1106	
-1107	
-1108	
-1109	
-1110	
-1111	
-1112	
-1113	
-1114	
-1115	
-1116	
-1117	
-1118	
-1119	
-1120	
-1121	
-1122	
-1123	
-1124	
-1125	
-1126	
-1127	
-1128	
-1129	
-1130	
-1131	
-1132	
-1133	
-1134	
-1135	
-1136	
-1137	
-1138	
-1139	
-1140	
-1141	
-1142	
-1143	
-1144	
-1145	
-1146	
-1147	
-1148	
-1149	
-1150	
-1151	
-1152	
-1153	
-1154	
-1155	
-1156	
-1157	
-1158	
-1159	
-1160	
-1161	
-1162	
-1163	
-1164	
-1165	
-1166	
-1167	
-1168	
-1169	
-1170	
-1171	
-1172	
-1173	
-1174	
-1175	
-1176	
-1177	
-1178	
-1179	
-1180	
-1181	
-1182	
-1183	
-1184	
-1185	
-1186	
-1187	
-1188	
-1189	
-1190	
-1191	
-1192	
-1193	
-1194	
-1195	
-1196	
-1197	
-1198	
-1199	
-1200	
-1201	
-1202	
-1203	
-1204	
-1205	
-1206	
-1207	
-1208	
-1209	
-1210	
-1211	
-1212	
-1213	
-1214	
-1215	
-1216	
-1217	
-1218	
-1219	
-1220	
-1221	
-1222	
-1223	
-1224	
-1225	
-1226	
-1227	
-1228	
-1229	
-1230	
-1231	
-1232	
-1233	
-1234	
-1235	
-1236	
-1237	
-1238	
-1239	
-1240	
-1241	
-1242	
-1243	
-1244	
-1245	
-1246	
-1247	
-1248	
-1249	
-1250	
-1251	
-1252	
-1253	
-1254	
-1255	
-1256	
-1257	
-1258	
-1259	
-1260	
-1261	
-1262	
-1263	
-1264	
-1265	
-1266	
-1267	
-1268	
-1269	
-1270	
-1271	
-1272	
-1273	
-1274	
-1275	
-1276	
-1277	
-1278	
-1279	
-1280	
-1281	
-1282	
-1283	
-1284	
-1285	
-1286	
-1287	
-1288	
-1289	
-1290	
-1291	
-1292	
-1293	
-1294	
-1295	
-1296	
-1297	
-1298	
-1299	
-1300	
-1301	
-1302	
-1303	
-1304	
-1305	
-1306	
-1307	
-1308	
-1309	
-1310	
-1311	
-1312	
-1313	
-1314	
-1315	
-1316	
-1317	
-1318	
-1319	
-1320	
-1321	
-1322	
-1323	
-1324	
-1325	
-1326	
-1327	
-1328	
-1329	
-1330	
-1331	
-1332	
-1333	
-1334	
-1335	
-1336	
-1337	
-1338	
-1339	
-1340	
-1341	
-1342	
-1343	
-1344	
-1345	
-1346	
-1347	
-1348	
-1349	
-1350	
-1351	
-1352	
-1353	
-1354	
-1355	
-1356	
-1357	
-1358	
-1359	
-1360	
-1361	
-1362	
-1363	
-1364	
-1365	
-1366	
-1367	
-1368	
-1369	
-1370	
-1371	
-1372	
-1373	
-1374	
-1375	
-1376	
-1377	
-1378	
-1379	
-1380	
-1381	
-1382	
-1383	
-1384	
-1385	
-1386	
-1387	
-1388	
-1389	
-1390	
-1391	
-1392	
-1393	
-1394	
-1395	
-1396	
-1397	
-1398	
-1399	
-1400	
-1401	
-1402	
-1403	
-1404	
-1405	
-1406	
-1407	
-1408	
-1409	
-1410	
-1411	
-1412	
-1413	
-1414	
-1415	
-1416	
-1417	
-1418	
-1419	
-1420	
-1421	
-1422	
-1423	
-1424	
-1425	
-1426	
-1427	
-1428	
-1429	
-1430	
-1431	
-1432	
-1433	
-1434	
-1435	
-1436	
-1437	
-1438	
-1439	
-1440	
-1441	
-1442	
-1443	
-1444	
-1445	
-1446	
-1447	
-1448	
-1449	
-1450	
-1451	
-1452	
-1453	
-1454	
-1455	
-1456	
-1457	
-1458	
-1459	
-1460	
-1461	
-1462	
-1463	
-1464	
-1465	
-1466	
-1467	
-1468	
-1469	
-1470	
-1471	
-1472	
-1473	
-1474	
-1475	
-1476	
-1477	
-1478	
-1479	
-1480	
-1481	
-1482	
-1483	
-1484	
-1485	
-1486	
-1487	
-1488	
-1489	
-1490	
-1491	
-1492	
-1493	
-1494	
-1495	
-1496	
-1497	
-1498	
-1499	
-1500	
-1501	
-1502	
-1503	
-1504	
-1505	
-1506	
-1507	
-1508	
-1509	
-1510	
-1511	
-1512	
-1513	
-1514	
-1515	
-1516	
-1517	
-1518	
-1519	
-1520	
-1521	
-1522	
-1523	
-1524	
-1525	
-1526	
-1527	
-1528	
-1529	
-1530	
-1531	
-1532	
-1533	
-1534	
-1535	
-1536	
-1537	
-1538	
-1539	
-1540	
-1541	
-1542	
-1543	
-1544	
-1545	
-1546	
-1547	
-1548	
-1549	
-1550	
-1551	
-1552	
-1553	
-1554	
-1555	
-1556	
-1557	
-1558	
-1559	
-1560	
-1561	
-1562	
-1563	
-1564	
-1565	
-1566	
-1567	
-1568	
-1569	
-1570	
-1571	
-1572	
-1573	
-1574	
-1575	
-1576	
-1577	
-1578	
-1579	
-1580	
-1581	
-1582	
-1583	
-1584	
-1585	
-1586	
-1587	
-1588	
-1589	
-1590	
-1591	
-1592	
-1593	
-1594	
-1595	
-1596	
-1597	
-1598	
-1599	
-1600	
-1601	
-1602	
-1603	
-1604	
-1605	
-1606	
-1607	
-1608	
-1609	
-1610	
-1611	
-1612	
-1613	
-1614	
-1615	
-1616	
-1617	
-1618	
-1619	
-1620	
-1621	
-1622	
-1623	
-1624	
-1625	
-1626	
-1627	
-1628	
-1629	
-1630	
-1631	
-1632	
-1633	
-1634	
-1635	
-1636	
-1637	
-1638	
-1639	
-1640	
-1641	
-1642	
-1643	
-1644	
-1645	
-1646	
-1647	
-1648	
-1649	
-1650	
-1651	
-1652	
-1653	
-1654	
-1655	
-1656	
-1657	
-1658	
-1659	
-1660	
-1661	
-1662	
-1663	
-1664	
-1665	
-1666	
-1667	
-1668	
-1669	
-1670	
-1671	
-1672	
-1673	
-1674	
-1675	
-1676	
-1677	
-1678	
-1679	
-1680	
-1681	
-1682	
-1683	
-1684	
-1685	
-1686	
-1687	
-1688	
-1689	
-1690	
-1691	
-1692	
-1693	
-1694	
-1695	
-1696	
-1697	
-1698	
-1699	
-1700	
-1701	
-1702	
-1703	
-1704	
-1705	
-1706	
-1707	
-1708	
-1709	
-1710	
-1711	
-1712	
-1713	
-1714	
-1715	
-1716	
-1717	
-1718	
-1719	
-1720	
-1721	
-1722	
-1723	
-1724	
-1725	
-1726	
-1727	
-1728	
-1729	
-1730	
-1731	
-1732	
-1733	
-1734	
-1735	
-1736	
-1737	
-1738	
-1739	
-1740	
-1741	
-1742	
-1743	
-1744	
-1745	
-1746	
-1747	
-1748	
-1749	
-1750	
-1751	
-1752	
-1753	
-1754	
-1755	
-1756	
-1757	
-1758	
-1759	
-1760	
-1761	
-1762	
-1763	
-1764	
-1765	
-1766	
-1767	
-1768	
-1769	
-1770	
-1771	
-1772	
-1773	
-1774	
-1775	
-1776	
-1777	
-1778	
-1779	
-1780	
-1781	
-1782	
-1783	
-1784	
-1785	
-1786	
-1787	
-1788	
-1789	
-1790	
-1791	
-1792	
-1793	
-1794	
-1795	
-1796	
-1797	
-1798	
-1799	
-1800	
-1801	
-1802	
-1803	
-1804	
-1805	
-1806	
-1807	
-1808	
-1809	
-1810	
-1811	
-1812	
-1813	
-1814	
-1815	
-1816	
-1817	
-1818	
-1819	
-1820	
-1821	
-1822	
-1823	
-1824	
-1825	
-1826	
-1827	
-1828	
-1829	
-1830	
-1831	
-1832	
-1833	
-1834	
-1835	
-1836	
-1837	
-1838	
-1839	
-1840	
-1841	
-1842	
-1843	
-1844	
-1845	
-1846	
-1847	
-1848	
-1849	
-1850	
-1851	
-1852	
-1853	
-1854	
-1855	
-1856	
-1857	
-1858	
-1859	
-1860	
-1861	
-1862	
-1863	
-1864	
-1865	
-1866	
-1867	
-1868	
-1869	
-1870	
-1871	
-1872	
-1873	
-1874	
-1875	
-1876	
-1877	
-1878	
-1879	
-1880	
-1881	
-1882	
-1883	
-1884	
-1885	
-1886	
-1887	
-1888	
-1889	
-1890	
-1891	
-1892	
-1893	
-1894	
-1895	
-1896	
-1897	
-1898	
-1899	
-1900	
-1901	
-1902	
-1903	
-1904	
-1905	
-1906	
-1907	
-1908	
-1909	
-1910	
-1911	
-1912	
-1913	
-1914	
-1915	
-1916	
-1917	
-1918	
-1919	
-1920	
-1921	
-1922	
-1923	
-1924	
-1925	
-1926	
-1927	
-1928	
-1929	
-1930	
-1931	
-1932	
-1933	
-1934	
-1935	
-1936	
-1937	
-1938	
-1939	
-1940	
-1941	
-1942	
-1943	
-1944	
-1945	
-1946	
-1947	
-1948	
-1949	
-1950	
-1951	
-1952	
-1953	
-1954	
-1955	
-1956	
-1957	
-1958	
-1959	
-1960	
-1961	
-1962	
-1963	
-1964	
-1965	
-1966	
-1967	
-1968	
-1969	
-1970	
-1971	
-1972	
-1973	
-1974	
-1975	
-1976	
-1977	
-1978	
-1979	
-1980	
-1981	
-1982	
-1983	
-1984	
-1985	
-1986	
-1987	
-1988	
-1989	
-1990	
-1991	
-1992	
-1993	
-1994	
-1995	
-1996	
-1997	
-1998	
-1999	
-2000	
-2001	
-2002	
-2003	
-2004	
-2005	
-2006	
-2007	
-2008	
-2009	
-2010	
Binary file test-data/splib/library.splib has changed
--- a/test-data/splib/library.sptxt	Wed Jun 20 12:58:33 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2905 +0,0 @@
-### library.sptxt  (Text version of library.splib)
-### SpectraST (version 5.0, TPP v5.0.0 Typhoon, Build 201803241129-exported (Linux-x86_64))
-### 
-### IMPORT FROM MS2 "/panfs/roc/groups/7/galaxy/galaxy/tmp/spectrast/test-data/msgf.ms2"
-### ===
-Name: FKWNGTDTNSAAEK/2
-LibID: 0
-MW: 1569.7412
-PrecursorMZ: 784.8706
-Status: Normal
-FullName: X.FKWNGTDTNSAAEK.X/2 (CID)
-Comment: AvePrecursorMz=785.3388 BinaryFileOffset=111 FracUnassigned=0.00,0/5;0.00,0/20;0.30,365/655 Fullname=X.FKWNGTDTNSAAEK.X/2 Prob=1.0000 ScanNum=1.1 Spec=Raw
-NumPeaks: 655
-222.1500	34.3	b3-17^2/-0.965	
-226.1200	68.7	?	
-231.1500	324.3	b3^2/-0.479,y5-44^2/0.010	
-232.2400	152.5	y2-44/0.074	
-241.2200	36.8	y2-35/0.102	
-242.5000	55.0	b2-34/0.382	
-243.2900	14.9	b2-34i/0.172	
-244.3300	123.0	y5-18^2/0.201,y5-17^2/-0.291	
-245.1000	46.5	y5-17^2i/-0.021	
-251.7300	50.3	?	
-253.2100	55.6	y5^2/0.076	
-257.1900	59.1	?	
-258.2500	179.2	y2-18/0.105	
-259.3000	109.1	y2-17/0.171,b2-17/0.156	
-261.3000	96.1	?	
-262.2000	37.4	?	
-266.2700	72.1	b4-45^2/0.131	
-267.1800	47.0	?	
-269.2000	37.2	?	
-270.1600	33.9	?	
-271.2400	19.9	?	
-272.1100	34.5	b4-34^2/0.486	
-275.3400	52.4	a4^2/0.687	
-276.2000	1221.6	b2/0.029,y2/0.045	
-277.2500	137.5	b2i/0.079	
-277.9300	11.5	b2i/-0.241	
-284.1400	102.9	?	
-285.1500	41.9	?	
-286.3900	38.8	y6-46^2/-0.763	
-291.4200	73.4	y6-36^2/-0.725	
-294.1900	33.1	b5-45^2/-0.460	
-295.4300	72.6	?	
-296.2500	44.1	?	
-297.1800	63.2	?	
-303.3600	98.1	y3-44/0.157,a5^2/0.197	
-305.2700	34.5	?	
-308.2800	72.6	b5-17^2/-0.368	
-310.3500	126.7	y6^2/0.194	
-311.2800	180.8	y3-36/0.109,y3-35/-0.875	
-313.2700	51.9	?	
-314.2800	23.8	?	
-315.2800	112.9	?	
-324.2900	137.6	?	
-325.2500	42.3	?	
-326.5600	49.7	?	
-327.3200	43.5	?	
-328.2900	23.8	y3-18/-0.892	
-330.2300	26.0	y3-17/0.064	
-331.3600	24.9	y3-17i/0.194	
-333.1200	51.7	?	
-334.0900	28.5	?	
-336.2000	87.4	?	
-339.2800	66.9	y7-44^2/0.595	
-340.8000	84.7	?	
-342.4300	62.1	y7-36^2/-0.239	
-343.3300	137.1	y7-35^2/0.169	
-344.2300	102.4	b6-45^2/-0.944	
-347.2800	265.5	y3/0.087	
-348.5000	54.1	y3i/0.307	
-349.5000	80.5	y3i/0.307,b6-35^2/-0.666	
-350.3400	22.0	b6-34^2/-0.318	
-352.2300	27.9	y7-17^2/0.064,y7-18^2/0.556	
-354.6500	89.6	a6^2/0.963	
-355.4600	52.5	?	
-357.4800	38.5	?	
-359.1500	27.1	b6-17^2/-0.021,b6-18^2/0.471	
-361.2200	14.2	y7^2/0.540	
-363.2500	33.2	?	
-365.0000	187.6	?	
-367.4600	40.1	b6^2/-0.225	
-368.2700	20.2	?	
-369.1600	51.2	?	
-371.1800	167.7	?	
-372.2100	46.5	y4-46/-0.014	
-373.3000	155.9	y4-44/-0.940	
-375.2500	76.7	?	
-378.7700	45.9	?	
-381.2800	158.0	?	
-382.0900	35.5	y4-36/-0.118	
-383.3100	115.1	y4-35/0.117	
-384.4300	39.2	y4-35i/0.237	
-385.3400	49.2	y4-35i/0.147	
-392.2900	20.7	?	
-395.0400	161.7	y8-46^2/-0.151,y8-45^2/-0.643	
-397.2800	105.0	?	
-398.3500	65.8	?	
-399.0700	33.7	?	
-401.3800	121.6	y4-17/0.177,b7-46^2/-0.815,y8-35^2/0.705	
-403.1700	62.7	b7-44^2/-0.033,b7-45^2/0.483	
-404.4500	61.1	?	
-406.0700	84.5	?	
-409.3000	150.2	y8-18^2/0.112,y8-17^2/-0.380	
-410.4500	64.1	a7^2/-0.751	
-412.3200	290.9	?	
-413.4500	31.3	?	
-415.3700	141.5	b7-18^2/-0.823	
-417.4500	88.8	b7-17^2/0.765	
-418.4300	247.1	y4/0.200,y8^2/0.237	
-419.3100	145.2	y4i/0.080	
-420.2700	202.6	y4i/0.040	
-421.3500	16.0	?	
-422.2700	171.3	?	
-423.2100	117.0	?	
-424.2600	265.8	?	
-425.5200	102.7	b7^2/0.322	
-427.3300	177.2	?	
-428.2500	129.8	b3-34/0.053	
-429.2100	154.6	b3-34i/0.013	
-430.1800	33.5	b3-34i/-0.017	
-431.3600	156.6	?	
-433.3600	42.3	?	
-434.3200	36.9	a3/0.065	
-437.2100	26.4	?	
-440.3400	541.1	?	
-441.2300	225.7	?	
-442.3800	122.6	?	
-444.2700	153.5	?	
-445.5000	102.1	b3-17/0.277,y9-45^2/-0.706,y9-46^2/-0.214	
-450.5800	33.5	y9-36^2/-0.127,y9-35^2/-0.619	
-452.3100	72.4	b8-46^2/-0.409	
-453.5800	80.8	b8-44^2/-0.147,b8-45^2/0.369	
-455.4600	130.9	?	
-457.4200	52.5	?	
-458.3500	187.2	b8-35^2/0.147,b8-34^2/-0.345,b8-36^2/0.639	
-459.8400	126.5	y9-18^2/0.128,y9-17^2/-0.364,y5-46/0.584	
-461.3400	89.1	y5-44/0.068	
-462.3400	1061.3	b3/0.090,a8^2/0.615	
-463.4900	456.3	b3i/0.240	
-464.3800	81.1	b3i/0.130	
-466.5500	34.9	b8-18^2/-0.167	
-467.3900	62.7	b8-17^2/0.181	
-468.5100	130.3	y9^2/-0.207,y5-36/-0.731	
-470.2500	58.6	y5-35/0.025	
-471.4300	272.3	y5-35i/0.205	
-472.1900	130.8	y5-35i/-0.035	
-473.4500	135.6	?	
-474.8000	232.0	b8^2/-0.922,y10-44^2/-0.433,y10-45^2/0.083,y10-46^2/0.575	
-477.4300	45.9	?	
-478.4500	53.0	?	
-479.3200	112.4	y10-36^2/0.103,y10-35^2/-0.389	
-480.4200	173.5	?	
-481.4000	88.3	?	
-484.4200	39.7	?	
-485.4300	148.1	?	
-486.3800	153.3	?	
-487.1200	258.9	y5-18/-0.131	
-488.4300	46.6	y5-17/0.195,y10-17^2/-0.285,y10-18^2/0.207	
-489.3200	62.0	y5-17i/0.085	
-491.2600	77.3	?	
-492.4300	147.3	?	
-494.3400	189.7	?	
-495.4300	274.9	?	
-497.4500	69.6	y10^2/0.222	
-498.2000	43.1	y10^2i/0.472	
-499.3300	88.4	?	
-500.4200	33.2	?	
-501.4200	104.5	?	
-502.3500	30.5	?	
-504.4700	63.1	?	
-505.3200	456.5	y5/0.058	
-506.0700	212.5	y5i/-0.192	
-507.3400	129.9	y5i/0.078	
-508.5000	43.1	?	
-510.3400	22.9	b9-45^2/0.107,b9-46^2/0.599	
-511.4700	135.4	b9-44^2/0.721	
-512.4400	55.8	?	
-513.3300	29.2	?	
-514.3700	232.8	b9-36^2/-0.363	
-515.3900	204.3	b9-35^2/0.165,b9-34^2/-0.327	
-516.7500	22.1	?	
-519.8400	61.6	?	
-521.3400	113.0	?	
-522.4800	132.8	?	
-523.4500	67.1	b9-18^2/-0.288	
-524.6800	53.1	b9-17^2/0.450	
-525.3800	22.1	b9-17^2i/0.650	
-526.3000	146.5	?	
-527.5000	34.8	?	
-528.3600	78.6	?	
-531.4400	115.1	b4-45/0.169,y11-44^2/-0.814,y11-45^2/-0.299,y11-46^2/0.193	
-535.5500	22.6	y11-36^2/-0.689	
-537.5200	192.6	y11-35^2/0.789	
-538.3600	28.0	?	
-539.3600	176.6	?	
-540.2100	57.6	?	
-541.3800	95.8	?	
-542.3900	350.9	b4-34/0.150	
-543.2700	206.8	b4-34i/0.030	
-544.1800	42.0	b4-34i/-0.060	
-545.4900	17.9	y11-17^2/-0.246,y11-18^2/0.246	
-548.3400	83.6	a4/0.042	
-549.4100	82.1	a4i/0.112	
-550.4400	45.4	a4i/0.142	
-552.3300	21.9	?	
-553.3700	144.2	b10-46^2/0.113,b10-45^2/-0.379	
-554.4600	195.6	y11^2/0.211,b10-44^2/0.195	
-555.5200	384.0	?	
-556.6500	176.7	?	
-557.4900	125.5	?	
-558.8600	301.5	b10-35^2/0.119,b10-34^2/-0.373,b10-36^2/0.611	
-559.5000	254.0	b4-17/0.234	
-560.4600	53.1	b4-17i/0.194	
-561.3800	140.2	b4-17i/0.114,a10^2/-0.882	
-564.4000	108.7	?	
-566.4700	78.4	?	
-567.5000	188.8	b10-18^2/0.246,b10-17^2/-0.246	
-568.4700	39.9	?	
-572.3600	124.2	?	
-573.3500	28.0	y6-46/0.051	
-574.8300	32.2	y6-45/0.547	
-575.8800	295.5	y6-44/0.565	
-576.5200	687.2	b4/0.227,b10^2/0.261	
-577.5800	1123.4	b4i/0.287	
-578.4100	561.9	b4i/0.117	
-579.4300	126.2	?	
-580.4800	38.2	?	
-581.3900	28.5	?	
-582.3500	44.2	?	
-583.3200	112.8	y6-36/0.037	
-584.4400	137.7	y6-35/0.173	
-585.3900	131.0	y6-35i/0.123	
-587.6500	286.9	?	
-588.3900	108.8	b5-45/0.097,b11-46^2/-0.385	
-589.4300	209.0	b5-45i/0.137,b11-44^2/-0.353,b11-45^2/0.163	
-590.4400	17.2	b5-45i/0.147	
-591.8200	288.3	?	
-592.7200	20.6	?	
-593.5500	108.4	b11-36^2/-0.217	
-594.2900	154.3	b11-35^2/0.031,b11-34^2/-0.461	
-595.5500	53.1	?	
-596.2200	84.5	?	
-597.2600	126.3	?	
-598.0700	141.4	a11^2/0.289	
-599.0100	269.4	b5-34/-0.251	
-600.0700	314.8	b5-34i/-0.191	
-602.6200	154.7	y6-17/0.342,b11-18^2/-0.153	
-603.7800	211.9	y6-17i/0.502,b11-17^2/0.515	
-604.5200	116.2	y6-17i/0.242,a5/-0.799	
-606.5300	112.9	?	
-609.6000	60.2	?	
-610.4900	228.5	?	
-611.4900	97.9	b11^2/-0.288	
-612.6200	113.0	?	
-613.2900	151.1	?	
-614.3900	149.5	?	
-615.3800	270.9	?	
-616.5800	312.7	b5-17/0.292	
-617.3000	8.2	b5-17i/0.012	
-619.4300	721.0	y6/0.125	
-620.4200	488.3	y6i/0.115	
-621.5600	381.1	y6i/0.255	
-622.5900	243.8	?	
-623.5900	293.7	?	
-624.4100	413.1	b12-46^2/0.116,b12-45^2/-0.376,y12-45^2/-0.368,y12-46^2/0.124	
-625.4100	192.0	b12-44^2/0.108,y12-44^2/0.116	
-626.5700	107.6	?	
-627.4200	67.8	?	
-628.4200	147.2	?	
-629.3600	51.3	b12-36^2/0.074,y12-36^2/0.082	
-630.2800	366.3	b12-34^2/0.010,b12-35^2/0.502,y12-35^2/0.510	
-631.2600	91.6	?	
-633.4600	685.5	b5/0.146,a12^2/0.161	
-634.3800	158.8	b5i/0.066	
-635.5000	207.6	b5i/0.186	
-637.2800	209.2	?	
-639.1500	1088.1	b12-17^2/0.367,b12-18^2/0.859,y12-17^2/0.374,y12-18^2/0.866	
-640.4400	761.7	?	
-641.4300	358.9	?	
-642.2600	158.1	?	
-643.4300	158.5	?	
-644.4600	255.4	?	
-645.3800	26.4	?	
-647.3200	898.0	b12^2/0.023,y12^2/0.031	
-647.9200	173.3	b12^2i/0.123	
-648.5400	242.7	b12^2i/0.243	
-650.7700	167.8	?	
-651.5100	156.6	?	
-653.2700	61.6	?	
-654.4500	222.8	?	
-656.6400	398.1	?	
-657.3700	30.4	?	
-658.3700	60.7	?	
-660.3800	115.5	?	
-661.8100	449.7	?	
-662.4700	136.5	?	
-665.7400	177.9	?	
-667.7000	103.5	?	
-668.7000	97.6	?	
-670.5900	84.3	?	
-671.7000	506.6	?	
-672.6100	137.1	?	
-673.3700	82.7	y7-46/-0.977	
-675.2800	32.3	y7-45/-0.051	
-676.4600	125.2	y7-44/0.098	
-677.3200	142.4	y7-44i/-0.042	
-679.3000	89.4	?	
-680.7400	116.1	?	
-682.5200	65.6	?	
-683.4100	9.2	?	
-684.2400	297.2	y7-36/-0.091	
-685.3500	97.1	y7-35/0.035	
-686.5500	66.0	y7-35i/0.235	
-687.4400	59.7	y7-35i/0.125	
-688.7600	178.6	b13-46^2/-0.055,b13-45^2/-0.547,b6-45/-0.581,y13-44^2/-0.582,y13-45^2/-0.066,y13-46^2/0.426	
-689.4800	71.2	b6-45i/-0.861	
-690.4400	244.5	b13-44^2/0.617	
-691.8000	517.8	?	
-692.4300	126.7	?	
-693.7400	333.9	b13-36^2/-0.067,y13-35^2/-0.078,y13-36^2/0.414	
-694.5400	565.0	b13-35^2/0.241,b13-34^2/-0.251	
-695.7400	96.7	?	
-696.4700	12.9	?	
-698.7500	278.9	b6-35/-0.575,a13^2/0.930	
-699.7100	144.1	b6-35i/-0.615	
-700.3700	70.6	b6-34/0.061	
-702.6800	982.4	y7-18/0.338,b13-18^2/-0.133,y13-17^2/-0.143,y13-18^2/0.349	
-703.5700	922.2	y7-17/0.244,b13-17^2/0.265	
-704.4300	198.8	y7-17i/0.104	
-705.7000	92.1	y7-17i/0.374,a6/-0.667	
-707.7800	282.7	?	
-708.6500	240.8	?	
-709.5600	198.9	?	
-711.5500	1396.2	y13^2/0.214,b13^2/-0.268	
-712.4300	702.8	?	
-713.1400	22.8	?	
-715.0100	103.0	?	
-716.6000	635.0	b6-18/0.249	
-717.6500	777.6	b6-17/0.315	
-720.4500	4293.9	y7/0.098,b13+18^2/-0.373	
-721.4100	1238.3	y7i/0.058	
-722.1700	339.9	y7i/-0.182	
-723.3200	158.0	?	
-724.3400	111.5	?	
-725.6700	39.2	?	
-726.4400	24.7	?	
-727.4900	97.8	?	
-730.3500	54.8	?	
-731.5200	113.3	?	
-732.9200	471.0	?	
-733.6600	479.0	?	
-734.5200	270.8	b6/0.158	
-735.6200	522.1	b6i/0.258	
-737.4000	274.2	?	
-738.4400	38.8	?	
-739.2800	347.0	?	
-740.6300	29.4	?	
-741.4700	438.2	?	
-742.0800	62.0	?	
-742.7000	146.4	?	
-743.8200	70.7	?	
-744.6300	153.2	?	
-745.6700	790.0	?	
-746.4000	330.9	?	
-747.0200	42.3	?	
-747.9900	76.9	?	
-749.3900	377.6	?	
-750.3400	243.2	?	
-751.3800	319.3	?	
-752.6500	2973.8	?	
-753.6200	789.2	?	
-754.5000	496.8	?	
-755.7800	275.4	?	
-756.7100	197.2	?	
-757.5400	377.2	?	
-758.5800	551.7	?	
-759.5100	51.1	?	
-760.7600	220.4	?	
-762.2700	383.2	p-46^2/0.402	
-763.0300	626.9	p-44^2/0.154,p-45^2/0.670	
-763.9400	296.4	?	
-764.7900	46.4	?	
-766.6700	2425.2	[p-35^2/-0.682]	
-767.6600	4964.7	p-35^2/0.308,p-36^2/0.800	
-768.5400	1487.0	[p-35^2/1.188]	
-769.2800	257.6	?	
-770.3000	362.4	?	
-771.8000	113.1	?	
-772.5600	35.9	?	
-773.5300	37.4	?	
-775.8200	4531.3	[p-17^2/-0.537]	
-776.6500	10000.0	p-17^2/0.293,p-18^2/0.785	
-777.5900	1176.1	[p-17^2/1.233]	
-778.2100	56.2	?	
-782.4700	30.5	?	
-788.5200	43.6	?	
-789.5300	25.9	y8-46/0.156,y8-45/-0.828	
-792.7700	101.9	?	
-794.4500	118.9	?	
-797.4500	58.2	?	
-798.5600	29.7	?	
-799.5300	52.7	y8-36/0.172,y8-35/-0.812	
-801.7200	212.4	?	
-811.5400	221.7	?	
-813.5100	25.2	b7-36/0.142	
-814.4600	270.5	b7-35/0.108	
-815.5100	213.5	b7-34/0.174	
-816.5400	37.4	b7-34i/0.204	
-817.5800	106.3	y8-18/0.211	
-818.4900	156.7	y8-17/0.137	
-819.6100	105.1	y8-17i/0.257	
-822.5400	27.8	?	
-827.8900	53.4	?	
-830.1100	96.6	?	
-831.6200	348.9	b7-18/0.242	
-832.5800	573.4	b7-17/0.218	
-833.4200	83.8	b7-17i/0.058	
-834.4500	54.0	b7-17i/0.088	
-835.4400	1407.5	y8/0.061	
-836.6200	604.1	y8i/0.241	
-838.6700	190.1	?	
-840.5500	90.0	?	
-842.7000	38.3	?	
-844.6300	124.5	?	
-846.6000	81.8	?	
-849.5700	1937.6	b7/0.181	
-850.5700	638.4	b7i/0.181	
-851.7400	174.8	b7i/0.351	
-853.6300	62.8	?	
-854.8100	13.0	?	
-859.3600	29.1	?	
-867.4600	50.7	?	
-869.6600	37.8	?	
-875.3900	44.7	?	
-879.0000	21.6	?	
-880.4800	97.8	?	
-884.2100	199.6	?	
-887.6300	18.7	?	
-888.6000	17.9	?	
-890.3500	57.5	y9-46/-0.071	
-895.4500	43.8	?	
-898.6900	61.7	?	
-899.5500	66.5	y9-36/-0.856	
-901.6900	90.6	y9-35/0.300	
-903.4300	34.6	?	
-907.4800	34.1	?	
-908.4400	63.5	?	
-909.4500	488.8	?	
-910.8100	218.8	?	
-912.3900	287.8	?	
-913.5700	142.1	b8-36/-0.846	
-915.5100	89.9	b8-35/0.110	
-916.5400	92.0	b8-34/0.156	
-917.3900	60.9	b8-34i/0.006	
-918.8400	49.1	y9-18/0.424	
-919.6200	49.8	y9-17/0.220	
-921.0600	164.2	?	
-923.4800	147.6	?	
-925.4500	44.2	?	
-926.8800	66.9	?	
-927.7000	22.4	?	
-928.5700	121.3	?	
-929.6300	135.9	?	
-930.6100	88.3	?	
-931.6900	22.4	?	
-932.6200	60.2	b8-18/0.194	
-933.4000	17.6	b8-17/-0.010	
-934.6200	41.0	b8-17i/0.210	
-935.8200	129.1	?	
-936.6300	854.8	y9/0.203	
-937.4500	526.2	y9i/0.023	
-938.0600	144.7	?	
-938.6900	25.1	y9i/0.263	
-939.9000	200.4	?	
-941.9300	17.2	?	
-942.7100	95.0	?	
-944.6400	49.9	?	
-947.4000	38.7	y10-46/-0.043	
-948.8300	81.8	y10-45/0.403	
-949.8400	173.3	y10-44/0.381	
-950.7200	93.4	b8/0.283	
-951.8600	212.2	b8i/0.423	
-952.6400	135.9	b8i/0.203	
-953.5800	144.3	?	
-954.4900	63.9	?	
-955.8100	43.3	?	
-958.8000	14.2	y10-35/0.389	
-959.5200	79.7	y10-35i/0.109	
-962.3500	121.0	?	
-964.6300	14.1	?	
-965.6800	201.2	?	
-967.0200	214.7	?	
-968.5000	173.5	?	
-969.3800	203.4	?	
-970.4500	242.9	?	
-971.9700	77.6	?	
-973.0200	187.2	?	
-975.3700	485.9	y10-18/-0.068	
-976.6200	440.2	y10-17/0.198	
-978.5500	99.3	?	
-980.4200	55.3	?	
-983.3000	75.9	?	
-984.6900	39.9	?	
-985.6300	31.3	?	
-988.7800	26.1	?	
-992.4800	552.1	?	
-993.5600	2905.4	y10/0.112	
-994.6800	1362.2	y10i/0.232	
-995.6000	580.3	y10i/0.152	
-996.8600	18.0	?	
-997.9100	42.2	?	
-998.7100	69.2	?	
-1002.5200	82.0	?	
-1003.4500	30.7	?	
-1004.5300	36.4	?	
-1007.6500	95.1	?	
-1008.6700	92.2	?	
-1010.7500	65.5	?	
-1011.6100	193.2	?	
-1012.6700	114.6	?	
-1014.6400	82.9	?	
-1020.4100	215.7	b9-44/-0.080,b9-45/0.952	
-1021.0200	187.9	?	
-1022.9900	35.2	?	
-1023.6600	131.5	?	
-1024.8700	137.2	?	
-1026.5300	76.8	?	
-1028.1900	203.1	b9-36/-0.268	
-1029.6200	25.5	b9-35/0.178	
-1030.2300	18.4	b9-34/-0.196	
-1031.6700	107.8	?	
-1033.1100	52.4	?	
-1040.7500	91.0	?	
-1046.4300	109.3	b9-18/-0.039	
-1047.5600	88.8	b9-17/0.107	
-1049.5400	108.4	?	
-1050.8300	32.2	?	
-1054.9600	32.2	?	
-1055.9900	52.6	?	
-1058.3800	72.4	?	
-1060.1500	105.4	?	
-1062.6300	40.7	y11-45/0.160,y11-44/-0.871	
-1064.6800	138.8	b9/0.200	
-1065.9200	143.2	b9i/0.440	
-1066.7400	61.1	b9i/0.260	
-1067.8000	51.3	?	
-1069.5300	36.3	?	
-1070.7200	60.4	y11-36/-0.750	
-1073.8400	145.7	?	
-1074.8900	112.7	?	
-1077.4200	327.8	?	
-1081.7100	54.5	?	
-1082.6400	123.8	?	
-1087.5300	57.7	?	
-1089.8100	341.7	y11-18/0.329	
-1090.6300	580.2	y11-17/0.165	
-1091.5900	160.4	y11-17i/0.125	
-1092.4400	41.2	y11-17i/-0.025	
-1095.8500	48.7	?	
-1096.6300	39.0	?	
-1098.6400	49.5	?	
-1103.7400	143.4	?	
-1104.5500	47.1	?	
-1106.4900	66.1	b10-45/-0.000,b10-46/0.984	
-1107.6200	3179.0	y11/0.129,b10-44/0.098	
-1108.6000	1836.8	y11i/0.109	
-1109.7400	323.8	y11i/0.249	
-1110.6400	106.3	?	
-1111.3200	40.9	?	
-1112.7000	108.9	?	
-1116.7800	215.7	b10-35/0.305,b10-34/-0.679	
-1117.9200	31.5	b10-34i/-0.539	
-1118.6300	104.8	b10-34i/-0.829	
-1121.7100	124.1	?	
-1130.8300	97.2	?	
-1133.2900	98.8	b10-18/-0.211	
-1134.0500	37.6	b10-18i/-0.451	
-1134.7200	215.8	b10-17/0.235	
-1135.9600	71.7	b10-17i/0.475	
-1137.9600	39.5	?	
-1139.8000	10.9	?	
-1147.3500	57.3	?	
-1148.4300	164.6	?	
-1149.8600	160.4	?	
-1150.8600	249.4	?	
-1151.7700	756.3	b10/0.258	
-1152.6500	144.4	b10i/0.138	
-1153.4000	150.1	?	
-1154.6400	160.3	?	
-1155.8800	73.1	?	
-1161.4600	41.0	?	
-1162.6800	103.5	?	
-1167.7300	27.6	?	
-1169.1000	90.7	?	
-1176.5400	83.5	b11-46/-0.003,b11-45/-0.987	
-1183.8300	57.0	?	
-1187.8900	94.1	b11-35/0.378	
-1188.8700	138.5	b11-34/0.374	
-1190.6200	45.5	?	
-1194.9400	119.5	a11/0.386	
-1198.9700	36.1	?	
-1199.7000	145.1	?	
-1204.7200	163.3	b11-18/0.182	
-1205.7500	304.0	b11-17/0.228	
-1206.6000	91.0	b11-17i/0.078	
-1209.8700	47.1	?	
-1213.7200	33.7	?	
-1214.7100	87.7	?	
-1218.3000	61.0	?	
-1222.5600	354.8	b11/0.011	
-1223.6700	155.4	b11i/0.121	
-1224.9000	185.2	?	
-1236.8900	22.3	?	
-1237.8000	13.8	?	
-1240.8900	33.4	?	
-1242.0400	36.9	?	
-1245.6300	76.2	?	
-1248.6000	46.6	b12-45/0.036,b12-44/-0.996,y12-44/-0.981,y12-45/0.051	
-1250.9000	38.5	?	
-1258.7300	305.9	b12-35/0.181,y12-35/0.197	
-1259.8400	218.8	b12-34/0.307	
-1260.7700	55.3	b12-34i/0.237	
-1264.1900	18.6	?	
-1264.8700	106.5	a12/-0.721	
-1271.1500	37.3	?	
-1275.9500	357.3	y12-18/0.390,b12-18/0.375	
-1276.8100	488.5	y12-17/0.266,b12-17/0.251	
-1277.7200	256.6	y12-17i/0.176	
-1278.7400	66.8	y12-17i/0.196	
-1285.4900	89.6	?	
-1287.8100	59.8	?	
-1290.7100	81.4	?	
-1293.6900	7202.5	b12/0.104,y12/0.119	
-1294.7200	4812.6	b12i/0.134	
-1295.6800	1853.2	b12i/0.094	
-1296.4800	47.4	?	
-1299.9100	44.7	?	
-1300.9100	40.6	?	
-1308.2700	65.4	?	
-1308.9400	62.3	?	
-1309.6100	126.1	?	
-1310.6800	18.4	?	
-1313.7400	66.3	?	
-1319.8100	39.9	?	
-1322.7100	56.0	?	
-1360.8100	113.7	?	
-1387.6600	9.7	b13-35/0.069	
-1389.0800	61.5	b13-34/0.505	
-1394.9700	66.6	a13/0.336	
-1396.1300	26.6	a13i/0.496	
-1403.8400	68.5	y13-18/0.185	
-1404.8500	82.2	y13-18i/0.195	
-1405.6800	202.5	y13-17/1.041,b13-17/0.078,b13-18/1.062	
-1407.8100	54.9	?	
-1421.6300	256.8	?	
-1422.8300	583.0	b13/0.202,y13/1.164	
-1423.7900	415.4	b13i/0.162	
-1424.9000	205.1	b13i/0.272	
-1440.0200	23.2	b13+18/-0.619	
-1442.0800	40.1	?	
-1442.9100	72.8	?	
-1451.9300	34.8	?	
-1459.6900	37.2	?	
-1472.7300	54.1	?	
-1505.7400	46.7	?	
-1565.0800	47.0	?	
-
-Name: FKWNGTDTNSAAEK/3
-LibID: 1
-MW: 1570.7485
-PrecursorMZ: 523.5828
-Status: Normal
-FullName: X.FKWNGTDTNSAAEK.X/3 (CID)
-Comment: AvePrecursorMz=523.8950 BinaryFileOffset=17206 FracUnassigned=0.00,0/5;0.23,5/20;0.25,361/705 Fullname=X.FKWNGTDTNSAAEK.X/3 Prob=1.0000 ScanNum=2.2 Spec=Raw
-NumPeaks: 705
-155.1300	7.0	b3^3/0.375,y3-36^2/-0.959,y5-44^3/0.701	
-157.2500	15.1	y5-35^3/-0.163,y3-35^2/0.669,y5-36^3/0.165	
-158.2800	21.6	?	
-159.2400	4.7	IWA/0.148	
-167.4400	27.7	?	
-168.2100	6.1	?	
-169.1400	19.4	y5^3/0.048,IWE/-0.860	
-171.1200	14.5	IWF/0.120	
-172.0200	22.8	IWFi/0.020	
-173.0900	15.5	IWFi/0.090	
-175.0700	113.7	y3^2/0.970	
-176.1000	3.3	?	
-177.1600	14.1	b4-45^3/-0.602	
-178.3300	4.3	?	
-180.0300	5.6	?	
-183.1600	25.7	a4^3/-0.278	
-184.0400	5.5	?	
-185.1700	47.1	?	
-187.2800	15.3	b4-17^3/0.186,y4-44^2/-0.344,y4-46^2/0.664	
-188.0300	3.3	y4-44^2i/-0.094	
-189.1900	13.1	?	
-190.0700	6.0	?	
-193.1200	2.8	b4^3/0.351,y6-44^3/0.677	
-194.2100	17.8	y6-36^3/-0.889	
-196.3000	14.3	b5-45^3/-0.469,y6-35^3/0.873	
-196.9600	6.3	?	
-199.1500	21.3	?	
-200.2400	29.8	y4-18^2/-0.373,b5-34^3/-0.185	
-201.2400	18.8	y4-17^2/0.135,y6-17^3/-0.191,y6-18^3/0.137	
-202.3600	18.9	a5^3/-0.085	
-203.1200	37.5	?	
-204.1300	9.4	?	
-205.1300	20.4	b5-17^3/-0.971	
-207.1300	7.4	y6^3/0.024	
-209.1900	45.2	y4^2/-0.428	
-211.1300	43.3	b5^3/-0.646	
-212.0400	6.7	?	
-213.1500	17.5	?	
-215.1500	44.2	b3-34^2/0.548	
-216.1000	14.1	?	
-217.0100	43.4	a3^2/-0.621	
-218.2000	31.0	?	
-219.1000	18.5	?	
-221.1300	159.9	?	
-221.8200	2.9	?	
-223.1100	3.6	b3-17^2/-0.005	
-224.1700	8.9	?	
-225.1900	11.5	y7-46^3/-0.264	
-226.1800	34.2	y7-44^3/0.054,y7-45^3/0.398	
-227.2400	74.4	?	
-228.1000	101.6	y7-36^3/-0.682	
-229.8400	85.2	y5-46^2/-0.292,y2-46/-0.310,b6-45^3/-0.612,y7-35^3/0.730	
-231.1900	80.1	b3^2/-0.439,y5-44^2/0.050	
-232.2300	13.3	y2-44/0.064	
-233.1000	2.5	y2-44i/-0.066	
-234.2700	9.5	y7-18^3/-0.515,b6-34^3/0.162,b6-35^3/0.490	
-235.1900	5.1	y7-17^3/0.077,y5-35^2/-0.426,y5-36^2/0.066,a6^3/-0.937	
-238.1700	5.1	?	
-240.1000	21.3	y7^3/-0.689,b6-17^3/0.317,b6-18^3/0.645,y2-36/-0.034	
-241.1400	7.1	y2-35/0.022	
-242.1500	8.4	b2-34/0.032	
-243.1400	2.4	b2-34i/0.022	
-244.2200	55.8	y5-18^2/0.091,y5-17^2/-0.401	
-245.2200	31.4	b6^3/-0.239	
-246.2000	20.4	?	
-247.2400	21.9	a2/-0.936	
-250.1800	5.8	?	
-251.1000	3.6	?	
-252.2100	2.9	?	
-253.3000	27.6	y5^2/0.166	
-254.3600	22.1	?	
-254.9700	4.6	?	
-256.1100	41.1	?	
-257.3100	6.2	?	
-258.1500	90.7	y2-18/0.005	
-259.1800	55.0	y2-17/0.051,b2-17/0.036	
-260.3100	13.4	y2-17i/0.181	
-261.5200	45.7	?	
-262.2800	5.7	?	
-263.2600	15.5	y8-46^3/-0.536	
-264.3500	10.2	y8-44^3/-0.118,y8-45^3/0.226	
-265.3100	3.2	?	
-266.4600	12.4	b4-45^2/0.321,y8-36^3/-0.664	
-268.2800	13.1	b7-46^3/-0.186,y8-35^3/0.828	
-269.0900	9.9	b7-44^3/-0.048,b7-45^3/0.296	
-270.1500	3.6	?	
-271.2400	16.5	b4-34^2/-0.384	
-272.2200	16.8	y8-18^3/-0.908,b7-34^3/-0.230,b7-35^3/0.098,b7-36^3/0.426	
-274.2400	10.8	y8-17^3/0.784,a4^2/-0.413,a7^3/-0.230	
-275.2500	6.2	?	
-276.2500	443.8	b2/0.079,y2/0.095	
-277.1700	59.7	b2i/-0.001	
-278.2600	41.0	b2i/0.089,b7-17^3/0.134,b7-18^3/0.462	
-279.2700	70.8	y8^3/0.139	
-280.2400	15.6	b4-17^2/0.103	
-281.2500	5.6	?	
-284.2300	96.9	b7^3/0.429	
-285.2100	46.5	?	
-286.2600	21.9	?	
-287.1900	19.6	y6-46^2/0.037	
-288.2900	70.4	b4^2/-0.360,y6-44^2/0.129,y6-45^2/0.645	
-289.2900	14.5	?	
-290.3500	8.7	?	
-291.1300	12.3	?	
-292.3100	9.9	y6-36^2/0.165	
-293.3600	33.4	y6-35^2/0.723	
-294.3100	1.9	?	
-295.2400	21.2	b5-45^2/0.590	
-296.1700	7.7	?	
-298.6100	48.9	y9-44^3/0.459,y9-45^3/0.803	
-299.4600	10.2	?	
-300.3000	8.3	b5-34^2/0.166	
-301.2600	111.2	y6-18^2/0.109,y6-17^2/-0.383,y3-46/0.073,y9-35^3/0.125,y9-36^3/0.453	
-302.2700	46.5	y3-46i/0.083,b8-44^3/-0.550,b8-45^3/-0.207,b8-46^3/0.121	
-303.4400	16.9	y3-44/0.237,a5^2/0.277	
-304.3200	112.3	y3-44i/0.117	
-305.2000	48.5	y3-44i/-0.003,b8-35^3/-0.605,b8-36^3/-0.277	
-306.4400	44.3	y9-18^3/-0.370,y9-17^3/-0.698,b8-34^3/0.307	
-308.4700	134.9	b5-17^2/-0.178,a8^3/0.318	
-309.2800	31.3	?	
-310.1700	83.1	y6^2/0.014	
-311.1600	42.7	b8-18^3/-0.320,y3-36/-0.011	
-312.2300	28.9	y9^3/-0.584,b8-17^3/0.422,y3-35/0.075	
-313.2100	12.8	y3-35i/0.055	
-314.2100	2.7	y3-35i/0.055	
-316.2900	11.8	y10-46^3/-0.196,y10-45^3/-0.524	
-317.2500	4.7	b5^2/0.089,y10-44^3/0.092	
-318.1800	17.8	b8^3/0.696	
-319.1700	13.1	?	
-320.1800	41.5	y10-35^3/0.038,y10-36^3/0.366	
-321.1200	54.4	?	
-322.1800	101.8	?	
-323.1800	15.5	?	
-324.2600	25.3	?	
-324.8900	26.9	?	
-326.2500	9.6	y10-17^3/0.105,y10-18^3/0.433	
-327.4200	13.0	?	
-328.3000	25.9	?	
-329.2700	7.1	y3-18/0.088	
-330.1100	17.7	y3-17/-0.056	
-330.7100	17.5	?	
-332.2000	51.2	y10^3/0.379	
-333.3400	17.2	?	
-334.3400	20.3	?	
-335.2900	18.5	?	
-336.3200	78.2	?	
-337.1200	34.0	y7-46^2/-0.557	
-338.1300	21.7	y7-45^2/-0.039	
-339.1600	31.6	y7-44^2/0.475	
-340.0800	49.8	b9-46^3/-0.083,b9-45^3/-0.411	
-341.1500	19.0	b9-44^3/0.315	
-342.3800	58.8	y7-36^2/-0.289	
-343.3200	49.6	y7-35^2/0.159,b9-35^3/-0.499,b9-36^3/-0.171	
-344.5000	61.8	b9-34^3/0.353	
-345.3200	173.6	b6-45^2/0.146,a9^3/-0.846	
-347.2300	261.7	y3/0.037	
-348.1000	16.8	y3i/-0.093	
-349.0600	31.5	y3i/-0.133	
-350.4000	542.1	b9-17^3/0.577,b9-18^3/0.905,b6-34^2/-0.258,b6-35^2/0.234	
-351.9900	246.9	y7-17^2/-0.176,y7-18^2/0.316	
-353.5200	160.4	a6^2/-0.167	
-354.2900	120.2	a6^2i/0.103,y11-45^3/-0.538,y11-46^3/-0.210	
-355.2900	33.0	b9^3/-0.208,y11-44^3/0.118	
-357.0800	88.8	?	
-357.9800	49.9	y11-36^3/0.152,y11-35^3/-0.176	
-359.2200	1253.3	b6-17^2/0.049,b6-18^2/0.541	
-360.5700	386.6	y7^2/-0.110	
-361.3200	112.8	y7^2i/0.140	
-362.3500	21.2	?	
-365.3100	27.2	?	
-366.3000	2.8	?	
-367.5800	242.5	b6^2/-0.105	
-368.2500	66.0	b6^2i/0.065	
-369.3000	12.2	y11^3/-0.535,b10-44^3/-0.545,b10-45^3/-0.202,b10-46^3/0.126	
-370.2700	3.8	?	
-371.3500	51.8	?	
-372.2500	50.2	y4-46/0.026,b10-35^3/-0.580,b10-36^3/-0.252	
-373.4800	33.5	y4-46i/0.256,b10-34^3/0.322	
-374.3300	17.1	y4-44/0.090	
-375.2300	14.6	y4-44i/-0.010,a10^3/0.053	
-376.5300	45.0	y4-44i/0.290	
-377.3100	90.5	?	
-378.2600	51.0	b10-18^3/-0.245,b10-17^3/-0.573	
-379.2600	33.7	?	
-380.4100	72.4	?	
-381.8700	86.8	y4-36/-0.338	
-382.8300	32.1	y4-35/-0.363	
-384.0400	25.3	b10^3/-0.469	
-385.3900	5.6	?	
-386.3600	26.2	?	
-387.2600	547.0	?	
-388.6000	41.5	?	
-389.3500	4.4	?	
-390.5500	25.4	?	
-391.8200	81.4	?	
-392.7800	28.7	b11-46^3/-0.073	
-393.4800	43.6	b11-44^3/-0.044,b11-45^3/0.299	
-394.4100	24.1	?	
-395.2700	6.9	y8-46^2/0.079	
-396.2800	11.6	y8-44^2/0.082,y8-45^2/0.597,b11-34^3/-0.557,b11-35^3/-0.229,b11-36^3/0.099	
-398.4800	22.8	a11^3/-0.376	
-399.3200	19.2	?	
-400.5800	88.0	y4-18/0.361,y4-17/-0.623,y8-35^2/-0.095,y8-36^2/0.397	
-401.2400	27.6	y8-35^2i/0.065	
-402.4400	280.9	b11-17^3/-0.072,b11-18^3/0.256,b7-45^2/-0.247,b7-46^2/0.245	
-403.1900	51.2	b7-44^2/-0.013	
-403.9900	14.7	?	
-405.2300	677.6	?	
-406.2200	5.7	?	
-407.5500	62.7	b7-35^2/-0.130,b7-36^2/0.362	
-408.5400	86.1	b11^3/0.352,b7-34^2/0.368	
-409.3800	409.8	y8-18^2/0.192,y8-17^2/-0.300	
-410.3300	85.4	?	
-411.3200	20.5	a7^2/0.119	
-411.9200	52.9	a7^2i/0.219	
-413.7000	49.2	?	
-414.7500	140.9	?	
-415.5100	76.0	?	
-416.5200	436.0	b7-17^2/-0.165,b7-18^2/0.327,b12-44^3/-0.684,b12-45^3/-0.340,b12-46^3/-0.012,y12-44^3/-0.678,y12-45^3/-0.335,y12-46^3/-0.007	
-417.3400	83.7	?	
-418.3000	715.9	y4/0.070,y8^2/0.107	
-419.4400	59.4	y4i/0.210,b12-36^3/-0.420,y12-36^3/-0.415	
-420.3100	20.0	y4i/0.080,b12-35^3/0.122,y12-35^3/0.127	
-421.2800	107.4	b12-34^3/0.764	
-422.4100	52.2	a12^3/-0.125	
-423.5200	51.5	?	
-424.3000	65.7	?	
-425.3600	950.2	b7^2/0.162,b12-18^3/-0.503,y12-18^3/-0.498	
-426.4200	133.0	b12-17^3/0.229,y12-17^3/0.234	
-427.3100	10.1	?	
-428.1100	3.2	b3-34/-0.087	
-429.4800	61.7	?	
-430.3900	29.5	?	
-431.3500	39.3	?	
-432.4900	63.6	b12^3/0.623,y12^3/0.628	
-433.5600	64.3	?	
-434.4300	46.5	a3/0.175	
-435.2400	18.8	a3i/-0.015	
-436.2100	9.9	a3i/-0.045	
-437.3800	162.0	?	
-438.3100	30.1	?	
-439.2100	28.1	?	
-440.4400	105.8	?	
-441.3100	39.6	?	
-442.5600	66.7	?	
-443.4500	77.0	?	
-444.5500	76.1	?	
-445.3800	78.3	b3-17/0.157,y9-45^2/-0.826,y9-46^2/-0.334	
-446.8600	37.3	y9-44^2/0.138	
-447.4900	36.1	y9-44^2i/0.268	
-448.3500	25.6	?	
-449.2900	51.6	?	
-450.0800	57.3	?	
-450.7000	46.6	y9-36^2/-0.007	
-451.5800	226.7	y9-35^2/0.381	
-452.4700	213.6	b8-46^2/-0.249	
-453.4300	132.1	b8-45^2/0.219,b8-44^2/-0.297	
-454.8800	312.6	?	
-456.0800	34.0	?	
-457.1700	104.4	?	
-458.3700	681.1	b8-35^2/0.167,b8-34^2/-0.325,b8-36^2/0.659	
-459.5100	286.0	y9-18^2/-0.202,y9-17^2/-0.694,y5-46/0.254,b13-45^3/-0.364,b13-46^3/-0.036,y13-44^3/-0.387,y13-45^3/-0.043,y13-46^3/0.285	
-460.4900	94.5	y5-46i/0.234,b13-44^3/0.272	
-461.1800	91.3	y5-44/-0.092	
-462.2900	322.9	b3/0.040,a8^2/0.565,b13-36^3/-0.584,y13-35^3/-0.591,y13-36^3/-0.263	
-463.3800	84.1	b3i/0.130,b13-34^3/-0.150,b13-35^3/0.178	
-464.5300	45.6	b3i/0.280	
-465.5100	146.1	a13^3/-0.039	
-466.6000	206.8	b8-18^2/-0.117	
-467.5300	452.4	b8-17^2/0.321	
-468.6900	187.8	y9^2/-0.027,b13-17^3/-0.515,b13-18^3/-0.187,y13-17^3/-0.195,y13-18^3/0.133,y5-36/-0.551	
-469.3100	52.5	y9^2i/0.093	
-470.4800	153.9	y5-35/0.255	
-471.3400	30.6	y5-35i/0.115	
-472.2600	77.0	y5-35i/0.035	
-473.2900	45.2	?	
-474.1300	146.0	y13^3/-0.430,y10-46^2/-0.095	
-475.0700	145.8	b13^3/0.189,y10-45^2/0.353	
-475.7400	359.9	b8^2/0.018,y10-44^2/0.507	
-476.4300	202.6	b8^2i/0.208	
-477.3800	15.7	?	
-478.3100	133.2	?	
-479.6500	100.7	y10-35^2/-0.059,y10-36^2/0.433	
-480.4400	37.4	b13+18^3/-0.445	
-482.1100	32.5	?	
-483.2900	60.4	?	
-484.5000	166.4	?	
-485.3500	11.0	?	
-486.4100	63.7	?	
-487.5300	147.2	y5-18/0.279	
-488.3900	986.3	y5-17/0.155,y10-17^2/-0.325,y10-18^2/0.167	
-489.3000	197.7	y5-17i/0.065	
-490.2800	239.6	y5-17i/0.045	
-491.1500	102.1	?	
-492.7900	91.9	?	
-493.4800	75.8	?	
-494.8400	100.8	?	
-495.5700	49.6	?	
-497.1700	488.1	y10^2/-0.058	
-497.9700	227.7	?	
-498.9700	41.7	?	
-499.6800	99.8	?	
-500.5700	413.1	?	
-501.4900	133.5	?	
-503.0000	684.3	?	
-503.9700	41.0	?	
-505.3200	1288.6	y5/0.058	
-506.2300	2585.4	y5i/-0.032	
-507.3200	486.4	y5i/0.058	
-508.6400	264.9	p-45^3/0.064,p-44^3/-0.280,p-46^3/0.392	
-509.4100	156.7	b9-46^2/-0.331	
-510.3400	92.5	b9-45^2/0.107,b9-44^2/-0.409	
-511.8900	10000.0	p-35^3/-0.014,p-36^3/0.314	
-512.7000	444.9	?	
-514.1000	1144.5	[b9-36^2/-0.633]	
-514.9500	1061.3	b9-36^2/0.217,b9-35^2/-0.275,b9-34^2/-0.767	
-515.9200	167.9	?	
-516.9700	410.5	?	
-517.7200	616.3	p-18^3/0.141,p-17^3/-0.187	
-519.1300	7.1	a9^2/0.384	
-520.2200	3.6	?	
-521.0300	3.9	?	
-522.0500	6.6	?	
-523.3900	19.4	p^3/-0.193,b9-18^2/-0.348	
-524.5400	5.4	b9-17^2/0.310	
-526.7000	27.3	?	
-528.1900	24.9	?	
-529.3700	11.1	?	
-530.5300	43.7	?	
-531.2800	31.6	b4-45/0.009,y11-45^2/-0.459,y11-46^2/0.033	
-532.9800	108.4	b9^2/0.237,y11-44^2/0.726	
-534.3400	137.3	?	
-535.4700	46.3	?	
-536.4200	127.3	y11-36^2/0.181,y11-35^2/-0.311	
-537.2600	19.8	?	
-538.3500	11.1	?	
-539.4900	209.1	?	
-540.6000	77.5	?	
-541.7600	39.5	b4-34/-0.480	
-542.3800	12.2	?	
-543.5100	69.0	?	
-544.6500	42.0	?	
-545.5100	293.0	y11-17^2/-0.226,y11-18^2/0.266	
-546.6700	19.8	?	
-548.2100	75.0	a4/-0.088	
-549.5700	56.8	?	
-550.4100	12.9	?	
-552.4200	34.7	?	
-553.7400	123.6	y11^2/-0.509,b10-45^2/-0.009,b10-46^2/0.483	
-554.6600	97.8	b10-44^2/0.395	
-555.4200	10.2	b10-44^2i/0.655	
-556.4100	16.9	?	
-557.6400	116.7	?	
-558.5100	201.6	b10-35^2/-0.231,b10-36^2/0.261	
-559.4100	196.5	b4-17/0.144,b10-34^2/0.177	
-560.2400	83.5	b4-17i/-0.026	
-561.3100	146.5	b4-17i/0.044	
-562.7500	163.0	a10^2/0.488	
-563.7500	257.2	?	
-564.9100	72.4	?	
-567.1400	203.6	b10-18^2/-0.114	
-568.0000	364.0	b10-17^2/0.254	
-569.4700	32.4	?	
-570.2200	56.8	?	
-571.7200	46.3	?	
-572.6600	305.1	y6-46/-0.639	
-573.5700	22.0	y6-46i/-0.729	
-574.5700	106.1	y6-45/0.287	
-575.4900	84.8	y6-44/0.175	
-576.4200	319.2	b4/0.127,b10^2/0.161	
-577.4100	31.8	b4i/0.117	
-578.4900	507.6	b4i/0.197	
-581.2800	23.3	?	
-582.4700	12.3	?	
-583.3100	23.5	y6-36/0.027	
-584.5000	87.8	y6-35/0.233	
-585.5800	94.4	y6-35i/0.313	
-586.3800	27.3	y6-35i/0.113	
-587.3900	46.2	?	
-588.4500	8.3	b5-45/0.157,b11-46^2/-0.325	
-589.7000	65.6	b11-44^2/-0.083,b5-45i/0.407,b11-45^2/0.433	
-591.5200	37.6	?	
-592.1600	29.6	?	
-593.4200	29.3	b11-36^2/-0.347	
-594.7200	49.3	b11-34^2/-0.031,b11-35^2/0.461	
-596.2900	8.7	?	
-598.1500	29.4	a11^2/0.369	
-600.0300	59.1	b5-34/0.769	
-601.4600	195.7	y6-18/0.166	
-602.5200	249.7	y6-17/0.242,b11-18^2/-0.253	
-603.4600	125.9	y6-17i/0.182,b11-17^2/0.195	
-605.1500	98.0	a5/-0.169	
-606.2500	23.7	a5i/-0.069	
-607.4200	38.7	a5i/0.101	
-608.2100	26.5	?	
-609.4800	15.3	?	
-611.2900	49.1	?	
-612.0000	82.0	b11^2/0.222	
-613.6000	82.8	?	
-614.7200	82.8	?	
-616.3500	127.5	b5-17/0.062	
-617.5500	213.5	b5-17i/0.262	
-618.3400	9.1	b5-17i/0.052	
-619.3800	722.0	y6/0.075	
-620.6000	530.1	y6i/0.295	
-621.7900	225.8	?	
-622.8800	39.0	?	
-623.5500	9.0	y12-46^2/-0.736	
-625.2900	87.8	y12-44^2/-0.004,b12-44^2/-0.012,b12-45^2/0.504,b12-46^2/0.996,y12-45^2/0.512	
-626.4600	107.0	?	
-627.2900	37.8	?	
-629.1800	217.5	y12-36^2/-0.098,b12-36^2/-0.106	
-630.1200	222.5	b12-34^2/-0.150,b12-35^2/0.342,y12-35^2/0.350	
-631.1900	67.4	?	
-632.7300	42.0	?	
-633.3700	151.0	b5/0.056,a12^2/0.071	
-634.2700	59.4	b5i/-0.044	
-635.4900	82.3	b5i/0.176	
-636.4300	52.6	?	
-638.5700	875.7	y12-17^2/-0.206,y12-18^2/0.286,b12-17^2/-0.213,b12-18^2/0.279	
-639.5300	198.8	?	
-640.4300	54.1	?	
-641.5200	167.0	?	
-642.8600	18.3	?	
-644.1900	9.8	?	
-645.3700	86.2	?	
-646.5800	55.5	?	
-647.5700	424.1	b12^2/0.273,y12^2/0.281	
-649.1000	22.0	?	
-650.2300	35.6	?	
-651.9000	44.4	?	
-652.8300	73.8	?	
-653.6300	104.6	?	
-654.6000	36.2	?	
-655.7800	38.8	?	
-656.5800	64.8	?	
-657.2600	17.7	?	
-659.1700	113.3	?	
-660.2200	43.7	?	
-661.2900	61.6	?	
-663.3300	321.5	?	
-664.4200	290.9	?	
-665.5600	25.4	?	
-667.4500	21.2	?	
-668.5600	35.3	?	
-669.5900	24.6	?	
-670.7600	74.7	?	
-671.8400	43.8	?	
-672.5800	77.9	?	
-673.6800	158.4	y7-46/-0.667	
-674.5500	53.4	y7-46i/-0.797	
-675.4500	61.6	y7-45/0.119	
-676.5700	119.7	y7-44/0.208	
-677.7700	48.3	y7-44i/0.408	
-678.5200	25.2	y7-44i/0.158	
-679.6500	74.0	?	
-680.5700	61.5	?	
-681.9100	151.3	?	
-682.7500	68.1	?	
-684.3900	51.0	y7-36/0.059	
-685.6400	163.1	y7-35/0.325	
-686.6800	36.3	y7-35i/0.365	
-688.3600	33.6	y13-46^2/0.026	
-689.4800	91.0	y13-44^2/0.138,b6-45/0.139,b13-44^2/-0.343,b13-45^2/0.173,b13-46^2/0.665,y13-45^2/0.654	
-690.3700	78.7	b6-45i/0.029	
-692.6500	43.3	?	
-693.7000	94.7	b13-36^2/-0.107,y13-35^2/-0.118,y13-36^2/0.374	
-694.5900	67.8	b13-34^2/-0.201,b13-35^2/0.291	
-695.5800	7.2	?	
-696.5100	91.4	?	
-698.5500	481.8	a13^2/0.730,b6-35/-0.775	
-699.4700	54.6	b6-35i/-0.855	
-700.4600	42.8	b6-34/0.151	
-701.4800	33.9	b6-34i/0.171	
-702.6100	283.9	y13-17^2/-0.213,y7-18/0.268,y13-18^2/0.279,b13-18^2/-0.203	
-703.4800	264.3	y7-17/0.154,b13-17^2/0.175	
-704.4700	45.3	y7-17i/0.144	
-705.5200	38.1	y7-17i/0.194	
-706.1600	40.7	a6/-0.207	
-708.1000	14.6	?	
-710.5000	651.2	y13^2/-0.836	
-711.6900	295.5	b13^2/-0.128	
-712.3500	79.8	b13^2i/0.032	
-713.1400	71.6	?	
-714.5100	20.2	?	
-715.4700	24.1	?	
-716.5700	229.4	b6-18/0.219	
-717.5200	189.1	b6-17/0.185	
-718.5100	92.9	b6-17i/0.175	
-719.7100	313.2	b6-17i/0.375	
-720.4000	597.9	y7/0.048,b13+18^2/-0.423	
-721.5100	229.3	y7i/0.158	
-722.4500	29.1	y7i/0.098	
-723.6900	7.8	?	
-724.4200	12.5	?	
-726.4600	3.9	?	
-728.4600	52.6	?	
-729.5300	96.1	?	
-730.4900	22.4	?	
-731.6300	61.1	?	
-732.5700	16.7	?	
-733.3900	26.5	?	
-734.4100	212.2	b6/0.048	
-735.4900	120.1	b6i/0.128	
-736.4800	24.6	b6i/0.118	
-737.5300	23.2	?	
-738.4000	11.5	?	
-739.2800	9.0	?	
-740.3900	34.5	?	
-742.5800	66.4	?	
-743.8400	34.5	?	
-744.7400	5.5	?	
-746.6100	7.5	?	
-749.2100	67.3	?	
-750.5200	33.5	?	
-751.9500	3.3	?	
-752.6800	20.1	?	
-754.1900	147.1	?	
-755.1600	18.9	?	
-756.4900	29.2	?	
-757.4700	26.7	?	
-758.5400	9.7	?	
-759.3700	103.1	?	
-760.3500	113.9	?	
-761.3700	14.4	?	
-762.5200	103.5	?	
-763.5000	129.3	?	
-764.3800	20.0	?	
-765.6900	25.9	?	
-766.4900	9.5	?	
-767.8500	559.0	?	
-768.5100	366.3	?	
-769.3200	22.8	?	
-770.5000	17.2	?	
-771.4000	43.0	?	
-772.5500	36.9	?	
-773.5000	41.3	?	
-774.7200	26.1	?	
-775.7000	76.4	?	
-776.6400	22.4	?	
-777.4400	4.4	?	
-778.5800	19.0	?	
-781.7500	7.1	?	
-782.5800	28.0	?	
-783.3600	16.7	?	
-784.4600	6.9	?	
-785.6100	4.4	?	
-786.6700	15.7	?	
-787.6700	51.7	?	
-788.6300	18.5	?	
-789.5800	20.1	y8-46/0.206,y8-45/-0.778	
-791.6000	9.4	y8-44/0.211	
-793.5200	14.6	?	
-794.5600	30.7	?	
-796.3400	8.5	?	
-797.7200	3.9	?	
-799.5800	35.8	y8-36/0.222	
-800.5300	46.7	y8-35/0.188	
-801.6400	199.9	y8-35i/0.298	
-802.6600	140.9	y8-35i/0.318	
-803.5200	77.5	b7-46/0.136	
-804.4700	250.7	b7-45/0.102	
-805.4500	63.4	b7-44/0.051	
-806.6500	54.9	b7-44i/0.251	
-807.7900	13.1	?	
-808.7200	62.9	?	
-809.4800	41.6	?	
-811.5000	12.8	?	
-813.4400	55.3	b7-36/0.072	
-814.6400	16.6	b7-35/0.288	
-815.5800	19.8	b7-34/0.244	
-817.5200	602.4	y8-18/0.151	
-818.5700	408.5	y8-17/0.217	
-819.6100	144.9	y8-17i/0.257	
-820.5000	17.0	y8-17i/0.147,a7/-0.894	
-822.4200	36.3	?	
-827.0900	12.2	?	
-828.4300	68.9	?	
-829.6800	24.1	?	
-830.3400	28.4	?	
-831.6000	41.8	b7-18/0.222	
-832.4100	55.2	b7-17/0.048	
-834.1900	12.7	?	
-835.4900	708.2	y8/0.111	
-836.3900	174.8	y8i/0.011	
-837.1200	1.0	?	
-838.5400	23.3	?	
-839.4900	13.6	?	
-840.4100	44.8	?	
-841.3400	6.0	?	
-844.8100	20.1	?	
-845.6900	49.6	?	
-846.7400	59.5	?	
-849.4700	177.7	b7/0.081	
-850.6200	150.9	b7i/0.231	
-851.5300	7.8	b7i/0.141	
-852.6200	7.1	?	
-853.5100	10.7	?	
-854.5900	14.0	?	
-856.5400	14.1	?	
-858.3100	5.5	?	
-859.5000	28.7	?	
-860.4200	24.4	?	
-861.5900	26.4	?	
-863.6100	12.9	?	
-864.6900	50.7	?	
-865.5900	49.6	?	
-867.8000	7.4	?	
-869.7900	6.9	?	
-870.5800	31.8	?	
-871.8300	26.5	?	
-872.5900	41.9	?	
-873.6500	5.9	?	
-874.6400	8.5	?	
-875.7200	3.6	?	
-879.6000	20.3	?	
-880.5600	19.1	?	
-881.6900	13.3	?	
-882.4700	11.6	?	
-883.5000	14.3	?	
-887.8500	6.5	?	
-888.5800	17.8	?	
-889.8600	24.6	y9-46/-0.561	
-890.7000	10.0	y9-46i/-0.721	
-891.6200	10.3	y9-45/0.215	
-892.7900	15.4	y9-44/0.353	
-893.8700	10.0	y9-44i/0.433	
-894.9600	12.4	y9-44i/0.523	
-896.6100	10.4	?	
-898.7500	15.9	?	
-899.6100	13.2	?	
-900.5400	11.7	y9-36/0.134,y9-35/-0.850	
-902.7600	75.1	?	
-903.5600	28.0	?	
-904.5900	15.8	b8-46/0.159	
-905.7700	15.0	b8-45/0.355,b8-44/-0.677	
-906.9200	3.2	b8-44i/-0.527	
-909.4900	7.6	?	
-911.3900	7.3	?	
-912.5500	2.2	?	
-913.5100	16.4	?	
-914.8600	13.9	b8-36/0.444	
-915.4800	10.9	b8-35/0.080	
-916.8200	3.7	b8-34/0.436	
-917.5600	20.0	b8-34i/0.176	
-918.4800	80.3	y9-18/0.064	
-919.7300	21.2	y9-17/0.330	
-922.7200	11.4	a8/0.278	
-931.7700	19.1	?	
-932.6600	53.8	b8-18/0.234	
-933.7600	23.7	b8-17/0.350	
-934.4100	13.4	?	
-936.6600	41.8	y9/0.233	
-937.5300	30.4	y9i/0.103	
-938.7700	10.7	y9i/0.343	
-941.4700	12.9	?	
-947.6100	10.4	y10-46/0.167	
-948.7700	6.8	y10-45/0.343,y10-44/-0.689	
-950.6200	28.3	b8/0.183	
-951.5400	21.8	b8i/0.103	
-959.4400	10.3	?	
-961.7600	12.3	?	
-964.8400	12.7	?	
-965.4600	14.3	?	
-970.6500	23.4	?	
-972.6600	12.6	?	
-975.7400	10.2	y10-18/0.302,y10-17/-0.682	
-976.6600	2.9	y10-17i/-0.762	
-977.4100	6.1	?	
-992.4600	4.8	?	
-993.6700	35.3	y10/0.222	
-994.6700	7.6	y10i/0.222	
-995.6700	4.3	y10i/0.222	
-1001.5800	4.4	?	
-1002.4800	14.4	?	
-1019.7300	5.5	b9-45/0.272,b9-44/-0.760	
-1023.7400	11.0	?	
-1024.9000	3.9	?	
-1025.9200	24.6	?	
-1031.4700	3.9	?	
-1035.3900	10.6	?	
-1043.4400	6.3	?	
-1049.5900	4.2	?	
-1054.8200	34.7	?	
-1064.7200	7.7	b9/0.240	
-1065.7600	3.3	b9i/0.280	
-1079.5600	11.7	?	
-1094.8100	8.8	?	
-1096.6900	8.2	?	
-1099.5800	17.0	?	
-1112.8700	13.5	?	
-1119.5100	13.4	?	
-1122.8100	12.0	a10/-0.707	
-1129.4800	12.8	?	
-1130.5000	3.7	?	
-1147.6900	7.5	?	
-1158.8100	5.5	?	
-1175.6300	9.1	b11-46/-0.913	
-1180.6300	10.3	?	
-1202.1300	9.0	?	
-1227.9000	2.5	?	
-1276.9500	9.0	y12-17/0.406,b12-17/0.391	
-1277.7000	8.7	y12-17i/0.156	
-1294.6700	4.1	?	
-1295.7700	4.3	?	
-
-Name: GGESIMNAQSQPQA/2
-LibID: 2
-MW: 1418.6449
-PrecursorMZ: 709.3225
-Status: Normal
-FullName: X.GGESIMNAQSQPQA.X/2 (CID)
-Comment: AvePrecursorMz=709.7640 BinaryFileOffset=37387 FracUnassigned=0.41,2/5;0.39,8/20;0.43,383/613 Fullname=X.GGESIMNAQSQPQA.X/2 Prob=1.0000 ScanNum=3.3 Spec=Raw
-NumPeaks: 613
-187.1400	49.6	?	
-200.1400	146.4	y2-18/0.037,y2-17/-0.947,b3-44/0.037,b5-44^2/-0.473,b5-46^2/0.535,y4-44^2/0.019,y4-45^2/0.535	
-208.0900	20.6	?	
-209.1600	63.9	b3-35/0.104,a5^2/0.549	
-211.1600	95.2	?	
-212.0800	140.7	?	
-213.7300	106.2	b5-18^2/0.127,b5-17^2/-0.365,y4-17^2/0.127,y4-18^2/0.619	
-215.2000	631.2	a3/-0.898	
-215.8300	39.9	?	
-218.0600	31.8	y2/-0.054	
-222.1600	61.0	y4^2/0.044,b5^2/-0.448	
-223.1700	35.8	?	
-226.2100	554.2	b3-18/0.128	
-227.3500	71.6	b3-17/0.284	
-228.0100	131.3	?	
-230.0400	56.6	?	
-233.1200	53.3	?	
-234.9100	31.4	?	
-237.2000	150.2	?	
-239.2700	104.8	?	
-244.0700	314.9	b3/-0.023,y5-44^2/0.433,y5-45^2/0.949	
-246.2100	85.4	?	
-248.1500	22.0	y5-35^2/0.036,y5-36^2/0.528	
-250.1900	70.6	?	
-252.2800	121.2	?	
-253.6800	53.5	?	
-257.3000	375.2	y5-17^2/0.181,y5-18^2/0.673	
-258.2100	79.2	?	
-259.0700	57.6	?	
-260.7600	69.3	?	
-262.3000	144.9	?	
-268.1100	115.3	?	
-269.2600	256.8	y3-46/0.099	
-270.2000	187.5	y3-45/0.055,b6-35^2/-0.410,b6-36^2/0.082	
-271.2700	52.9	y3-44/0.094	
-272.2600	354.5	y3-44i/0.084	
-273.2000	90.1	y3-44i/0.024,a6^2/-0.931	
-275.3200	478.5	?	
-276.2300	119.0	?	
-280.1900	72.2	b6-17^2/0.575,y3-35/0.061	
-282.1700	95.9	?	
-284.1700	558.5	b4-46/-0.949	
-286.1200	1239.0	?	
-288.2100	50.3	b6^2/0.082	
-292.2700	55.4	?	
-294.6800	65.8	b4-36/-0.424	
-296.1900	144.4	y3-18/-0.966,b4-35/0.102	
-298.1800	307.5	y3-17/0.040	
-299.2300	122.7	y3-17i/0.090	
-301.1900	98.7	?	
-302.3600	250.2	?	
-303.1800	145.9	a4/0.050	
-304.2800	139.6	a4i/0.150	
-307.2200	106.6	y6-45^2/0.069,y6-44^2/-0.446,y6-46^2/0.561	
-308.4900	192.1	?	
-310.3600	141.3	?	
-311.2700	82.4	y6-36^2/-0.381	
-312.1800	54.6	y6-35^2/0.037	
-313.2200	240.9	b4-18/0.106,b4-17/-0.878	
-315.1900	7521.2	y3/0.024	
-315.9900	29.7	y3i/-0.176	
-321.3500	76.7	y6-17^2/0.202,y6-18^2/0.694,b7-46^2/-0.797	
-323.2000	139.2	b7-44^2/0.045,b7-45^2/0.561	
-325.1900	120.9	?	
-326.3200	231.1	?	
-327.2700	67.9	b7-36^2/0.131,b7-35^2/-0.361	
-330.2600	104.3	y6^2/0.599	
-331.1700	300.3	b4/0.045,a7^2/0.018	
-332.1600	264.3	b4i/0.035	
-334.3000	15.4	?	
-336.3300	88.6	b7-18^2/0.185,b7-17^2/-0.307	
-338.1800	155.3	?	
-339.0600	346.4	?	
-340.2500	116.1	?	
-341.2800	146.9	?	
-342.4400	81.7	y7-46^2/0.263	
-343.3200	234.1	y7-44^2/0.135,y7-45^2/0.651	
-345.2200	173.6	b7^2/0.070	
-346.2100	300.2	?	
-347.2600	451.5	y7-36^2/0.091,y7-35^2/-0.401	
-349.2900	385.8	?	
-350.1800	205.2	?	
-350.9300	58.1	?	
-352.2400	85.5	?	
-353.4600	61.9	?	
-354.2700	44.5	?	
-355.1600	254.5	?	
-356.1700	117.6	y7-18^2/-0.005,y7-17^2/-0.497	
-357.3200	67.5	?	
-358.3000	239.2	b8-45^2/0.142,b8-44^2/-0.373,b8-46^2/0.634	
-359.4600	265.7	?	
-360.4100	113.7	?	
-363.1700	298.0	b8-35^2/0.020,b8-36^2/0.512	
-364.1900	185.4	?	
-365.3600	202.6	y7^2/0.180	
-366.3500	279.8	a8^2/-0.321	
-367.1800	73.1	?	
-368.4600	157.1	?	
-370.2600	108.3	?	
-371.4700	606.7	b8-18^2/-0.193	
-372.3800	596.0	b8-17^2/0.225	
-377.2000	166.0	?	
-379.3500	209.1	?	
-381.2600	124.5	b8^2/0.592	
-382.2900	94.3	?	
-383.4500	82.2	?	
-384.3200	358.8	?	
-385.3200	241.8	?	
-386.3800	118.8	?	
-387.4400	156.9	?	
-389.1800	460.5	?	
-391.3500	60.3	?	
-393.5500	132.1	?	
-395.2000	79.5	?	
-396.3600	368.0	?	
-397.3500	73.5	y4-46/0.131	
-398.3500	621.8	y4-45/0.147,b5-46/0.147	
-399.4900	167.7	y8-45^2/-0.201,y4-44/0.255,b5-46i/0.287,y8-46^2/0.291	
-400.3600	178.2	b5-44/0.141,y8-44^2/0.154	
-403.4800	478.7	y8-36^2/-0.711	
-406.6000	83.8	?	
-407.3400	180.8	?	
-408.4500	264.9	y4-35/0.262,b5-36/0.262	
-409.3700	806.0	b5-35/0.198	
-410.3500	434.9	b5-35i/0.178	
-415.4100	115.0	?	
-416.3100	121.2	a5/0.096	
-417.2000	103.4	a5i/-0.014	
-418.3500	109.1	a5i/0.136	
-419.2800	78.2	?	
-422.2800	240.8	y8^2/0.079,b9-44^2/-0.423,b9-45^2/0.093,b9-46^2/0.585	
-423.2600	198.6	?	
-424.3000	62.9	?	
-425.4200	524.9	y4-18/0.206	
-426.3200	3058.7	y4-17/0.122,b5-17/-0.862,b5-18/0.122,b9-35^2/-0.859,b9-36^2/-0.367	
-427.1800	109.6	y4-17i/-0.018	
-428.1900	476.5	y4-17i/-0.008	
-429.4200	175.6	?	
-430.8100	120.5	a9^2/0.110	
-431.4100	150.8	a9^2i/0.210	
-432.3600	101.2	?	
-435.3200	383.4	b9-18^2/-0.372,b9-17^2/-0.864	
-438.6400	152.4	?	
-439.2700	22.9	?	
-440.2700	341.1	?	
-441.3600	84.9	?	
-442.5700	462.2	?	
-443.4200	690.1	y4/0.195	
-444.2200	696.0	y4i/-0.005,b5/0.011,b9^2/-0.478	
-445.2200	73.6	y4i/-0.005	
-446.3600	94.5	?	
-447.4300	189.0	?	
-449.3000	265.7	?	
-450.2500	49.2	?	
-452.3900	454.9	?	
-454.4800	230.5	?	
-455.2900	165.5	?	
-456.4300	356.8	?	
-457.3300	908.0	?	
-458.1500	43.5	?	
-460.3700	308.4	?	
-462.3000	170.6	?	
-463.4500	406.8	?	
-464.3100	318.1	y9-46^2/-0.409,b10-46^2/-0.901,y9-45^2/-0.901	
-466.6500	138.1	b10-44^2/0.431,b10-45^2/0.947,y9-44^2/0.923	
-468.4300	109.2	?	
-469.4000	52.2	y9-36^2/-0.311	
-470.4500	140.8	b10-35^2/-0.245,b10-36^2/0.247,y9-35^2/0.247	
-473.2700	34.1	?	
-474.3600	125.1	a10^2/0.144	
-475.1800	164.0	?	
-476.3500	116.1	?	
-478.8400	534.8	y9-18^2/0.124,y9-17^2/-0.368,b10-18^2/-0.368	
-479.6000	147.6	b10-17^2/-0.100	
-480.2500	201.8	b10-17^2i/0.050	
-481.2800	324.7	?	
-483.3200	264.5	?	
-484.3600	57.3	y5-46/0.109	
-485.2800	51.0	y5-45/0.045	
-486.5900	65.0	y5-44/0.323	
-489.3400	214.9	?	
-490.6500	108.2	?	
-491.3900	264.1	?	
-492.4600	186.8	?	
-494.5500	459.6	y5-36/0.314,y5-35/-0.670	
-495.2600	80.7	y5-35i/-0.960	
-497.4500	93.2	?	
-498.2700	174.1	?	
-499.4600	128.8	?	
-500.4100	267.7	?	
-501.3100	35.9	?	
-502.0900	974.3	?	
-503.4600	184.0	?	
-504.4500	246.6	?	
-505.5300	89.8	?	
-506.6700	167.5	?	
-507.4400	48.1	?	
-509.4600	927.5	?	
-510.6400	860.3	?	
-511.6100	106.5	?	
-512.4300	268.4	y5-18/0.184	
-513.3500	66.8	y5-17/0.120	
-514.4000	104.3	y5-17i/0.170	
-516.2500	502.1	?	
-517.4900	157.8	?	
-519.2900	422.1	?	
-520.5900	282.8	?	
-521.4400	166.9	y10-46^2/0.179,y10-45^2/-0.313	
-522.4300	152.1	y10-44^2/0.161	
-523.7700	210.7	?	
-524.6500	102.1	?	
-526.3400	565.6	y10-36^2/0.087,y10-35^2/-0.405	
-527.3700	227.1	?	
-528.4300	238.9	?	
-529.3700	472.0	b6-46/0.126,b11-46^2/0.130	
-530.3900	2500.6	y5/0.133,b6-44/-0.870,b11-44^2/0.142,b11-45^2/0.658	
-532.4300	625.5	?	
-533.5400	610.9	?	
-534.4400	510.8	b11-36^2/0.208,b11-35^2/-0.284	
-535.4700	817.4	y10-18^2/0.212,y10-17^2/-0.280	
-536.4800	94.4	?	
-537.6000	186.4	?	
-538.2300	128.0	a11^2/-0.015	
-539.3900	86.8	b6-36/0.162	
-540.3700	279.1	b6-35/0.158	
-541.4000	151.5	b6-35i/0.188	
-542.4400	81.5	b6-35i/0.228	
-543.4700	86.7	b11-18^2/0.232	
-544.3200	422.0	y10^2/0.056,b11-17^2/0.590	
-545.4300	319.8	?	
-546.4500	1251.0	a6/-0.804	
-548.6300	111.8	?	
-549.4700	294.0	?	
-550.4400	53.6	?	
-551.7800	123.6	?	
-552.4800	522.9	b11^2/0.237	
-553.6000	221.9	?	
-554.2300	48.9	?	
-555.3000	68.0	?	
-556.3400	316.5	?	
-557.4000	509.4	b6-18/0.161	
-558.9700	542.9	b6-17/0.747	
-560.3700	356.1	?	
-561.6900	502.5	?	
-562.4800	342.4	?	
-563.4200	633.5	?	
-564.7400	536.2	y11-46^2/-0.037,y11-45^2/-0.529	
-565.3800	57.4	y11-44^2/-0.405	
-567.1900	3463.2	?	
-567.8900	64.8	?	
-569.6200	858.7	y11-36^2/-0.149,y11-35^2/-0.641	
-570.5800	71.6	?	
-571.2900	53.5	?	
-572.2200	308.1	?	
-573.2500	259.2	?	
-574.2000	52.8	?	
-575.3300	1086.2	b6/0.081	
-576.5100	474.4	b6i/0.261	
-577.4700	1215.9	b6i/0.221,b12-46^2/-0.297	
-578.9400	1508.3	y11-18^2/0.166,y11-17^2/-0.326,b12-44^2/0.166,b12-45^2/0.681	
-581.4400	213.7	?	
-582.1000	42.9	b12-36^2/-0.659	
-583.9800	24.8	b12-35^2/0.729	
-584.8500	116.0	?	
-585.4500	823.0	?	
-586.4900	503.1	a12^2/-0.282	
-588.1600	268.6	y11^2/0.380	
-589.3600	223.3	?	
-590.8500	471.2	?	
-591.6300	127.0	b12-18^2/-0.134	
-592.6700	517.4	b12-17^2/0.414	
-594.3000	864.3	?	
-595.6200	528.3	?	
-596.3900	510.1	?	
-597.4500	50.7	?	
-598.4600	126.0	?	
-599.4600	198.1	?	
-600.3800	236.5	?	
-601.5600	963.9	b12^2/0.791	
-602.5500	8768.4	?	
-603.8100	1054.3	?	
-604.6200	162.9	?	
-608.3800	85.4	?	
-610.5300	288.4	?	
-611.3800	371.8	?	
-612.4900	2990.1	y6-46/0.180,y6-45/-0.804	
-614.6300	63.5	y6-44/0.304	
-615.5200	322.7	y6-44i/0.194	
-616.5500	65.0	y6-44i/0.224	
-617.4100	481.2	?	
-618.3100	414.6	?	
-620.5900	327.1	?	
-621.9300	87.0	y6-36/-0.364	
-623.3600	128.2	y6-35/0.082	
-625.4300	43.5	?	
-627.1600	219.2	?	
-629.1100	377.0	y12-46^2/-0.188,y12-45^2/-0.680	
-629.7300	86.8	y12-44^2/-0.576	
-631.5400	89.5	?	
-632.7700	123.0	?	
-633.5300	182.5	y12-36^2/-0.760	
-636.1500	776.7	?	
-637.0900	524.9	?	
-638.4600	166.3	?	
-639.5000	195.1	?	
-640.4700	88.7	y6-18/0.165	
-641.4000	351.6	y6-17/0.111,b13-46^2/-0.396	
-642.3000	124.2	y6-17i/0.011,b13-44^2/-0.504,b13-45^2/0.012	
-643.5100	216.3	y6-17i/0.221,y12-17^2/-0.278,y12-18^2/0.214,b7-46/0.223	
-644.3300	143.3	b7-45/0.059	
-645.0100	313.6	b7-44/-0.292	
-646.6700	350.0	b13-36^2/-0.118	
-647.5500	591.0	b13-35^2/0.270	
-648.6700	182.2	?	
-649.4200	158.5	?	
-650.5900	199.7	a13^2/-0.211	
-651.5800	66.7	?	
-652.5900	662.9	y12^2/0.289,b7-36/-0.681	
-654.8300	571.5	b7-35/0.575	
-656.1800	3212.3	b13-17^2/-0.105,b13-18^2/0.387	
-658.1900	3150.5	y6/-0.125,y13-44^2/-0.627,y13-45^2/-0.111,y13-46^2/0.381	
-658.8300	341.6	y13-44^2i/-0.487	
-659.5000	377.7	?	
-660.5300	39.2	?	
-661.4500	260.0	a7/0.153	
-662.4100	357.5	a7i/0.113,y13-36^2/-0.391	
-663.4800	97.8	a7i/0.183,y13-35^2/0.187	
-664.8000	1017.8	b13^2/0.001	
-665.6400	748.6	?	
-666.5300	801.8	?	
-667.5200	326.8	?	
-669.4800	90.0	?	
-671.2200	1082.1	b7-18/-0.062,y13-18^2/-0.586	
-672.2600	740.9	b7-17/-0.006,y13-17^2/-0.038	
-673.4600	784.9	b7-17i/0.194	
-674.5000	2129.1	b7-17i/0.234,b13+18^2/0.696	
-675.4400	642.0	?	
-676.6700	198.4	?	
-678.3500	358.7	?	
-679.1000	142.6	?	
-679.8300	205.3	?	
-680.5300	183.2	y13^2/-0.282	
-681.4200	219.4	?	
-682.6000	183.9	?	
-683.5800	102.4	y7-46/0.233	
-684.6400	224.8	y7-45/0.309	
-685.7200	471.5	p-46^2/-0.600,y7-44/0.357	
-687.2900	916.7	p-44^2/-0.038,p-45^2/0.478	
-688.1400	539.7	?	
-689.4300	1021.6	b7/0.138	
-690.5100	976.4	b7i/0.218	
-691.5300	7559.9	p-36^2/0.218,p-35^2/-0.274	
-692.5000	3490.6	y7-36/-0.831	
-693.9800	85.7	y7-35/-0.335	
-695.5300	45.0	?	
-697.2100	772.5	?	
-700.2800	8670.0	p-18^2/-0.037,p-17^2/-0.529	
-700.9000	2512.0	p-17^2i/-0.409	
-701.6100	868.8	?	
-702.2500	209.7	?	
-711.3500	170.9	y7-18/0.008,y7-17/-0.976	
-714.4900	89.7	b8-46/0.166,b8-45/-0.818	
-720.8300	95.1	?	
-721.4800	115.2	?	
-724.4900	191.8	b8-36/0.182	
-725.4700	126.3	b8-35/0.178	
-726.5200	67.8	b8-35i/0.228	
-728.1200	475.0	?	
-729.5100	1459.1	y7/0.157	
-731.2700	87.3	?	
-732.5300	64.5	a8/0.195	
-734.5500	1493.3	?	
-735.6700	1060.6	?	
-736.6200	208.0	?	
-737.5700	242.8	?	
-741.3800	65.0	?	
-742.3100	216.1	b8-18/-0.009	
-743.3700	1030.5	b8-17/0.067	
-744.5700	141.2	b8-17i/0.267	
-745.6400	267.2	b8-17i/0.337	
-747.6200	71.3	?	
-749.2100	95.0	?	
-754.5300	38.7	?	
-756.4600	49.6	?	
-760.4200	2102.0	b8/0.091	
-761.3300	25.3	b8i/0.001	
-765.1400	260.8	?	
-770.5800	117.8	?	
-771.6000	165.9	?	
-772.3800	25.3	?	
-774.4200	319.9	?	
-776.4600	111.6	?	
-777.4400	58.9	?	
-780.3900	29.4	?	
-781.6200	156.5	?	
-782.3500	36.0	?	
-784.6200	301.7	?	
-785.5500	285.2	?	
-791.4700	165.2	?	
-799.5700	335.4	y8-44/0.164	
-800.6000	607.1	y8-44i/0.194	
-801.5000	252.9	y8-44i/0.094	
-802.4600	106.7	?	
-806.0600	169.6	?	
-806.8800	169.8	y8-36/-0.494	
-808.3500	685.0	y8-35/-0.008	
-809.9900	472.6	?	
-811.5300	146.2	?	
-812.5900	283.1	?	
-815.7800	37.4	?	
-816.7400	169.3	?	
-818.5600	94.9	?	
-819.6600	136.8	?	
-821.2900	1143.7	?	
-822.9500	150.3	?	
-824.2500	326.0	?	
-825.5000	264.1	y8-18/0.115	
-826.4300	169.5	y8-17/0.061	
-827.7400	23.9	?	
-828.6100	710.8	?	
-829.3700	77.0	?	
-831.4700	136.3	?	
-833.5500	1531.9	?	
-834.4500	226.2	?	
-836.2800	157.3	?	
-837.3900	73.4	?	
-839.7700	402.2	?	
-840.5300	98.4	?	
-841.8700	334.8	b9-46/-0.513	
-843.5400	3633.7	y8/0.144,b9-44/-0.858,b9-45/0.173	
-844.2100	74.4	?	
-844.9200	237.2	?	
-846.4600	477.1	?	
-849.7700	48.9	?	
-850.7500	161.9	?	
-853.3000	89.5	b9-35/-0.051,b9-36/0.933	
-855.4800	538.9	?	
-856.3400	189.4	?	
-858.6500	251.4	?	
-859.6000	154.5	a9/-0.793	
-865.4000	171.5	?	
-867.9200	75.9	?	
-870.2500	874.1	b9-18/-0.127	
-871.4900	1147.1	b9-17/0.129	
-872.6800	175.6	b9-17i/0.319	
-873.5300	469.0	b9-17i/0.169	
-874.4900	451.5	?	
-875.5900	104.9	?	
-878.2300	1022.5	?	
-880.5600	226.0	?	
-881.9200	77.5	?	
-884.6400	39.9	?	
-885.8200	717.1	?	
-886.6400	363.1	?	
-888.5000	3890.2	b9/0.112	
-889.4100	416.2	b9i/0.022	
-890.0400	159.6	?	
-891.3700	139.5	?	
-895.0000	254.5	?	
-896.4300	191.7	?	
-897.7800	246.3	?	
-901.5700	36.9	?	
-905.5200	33.3	?	
-906.6100	132.0	?	
-910.5700	144.8	?	
-911.5500	136.0	?	
-912.8700	156.2	?	
-913.5500	270.3	?	
-914.7300	78.5	?	
-916.6600	106.1	?	
-918.6400	149.4	?	
-920.1700	107.3	?	
-924.8400	80.2	?	
-926.9100	64.8	?	
-928.0300	290.5	y9-46/-0.401	
-930.6400	233.3	y9-44/0.194,b10-45/0.241	
-931.7100	134.1	b10-44/0.280	
-937.4800	57.9	y9-36/-0.935	
-941.3000	394.3	b10-35/0.917	
-941.9900	44.1	?	
-942.7800	210.9	?	
-943.6500	224.4	?	
-944.8700	235.4	?	
-946.5000	36.0	?	
-947.5400	112.4	a10/0.115	
-956.6200	252.3	y9-18/0.195	
-957.7000	1027.0	y9-17/0.291,b10-18/0.291	
-958.6600	690.1	y9-17i/0.251,b10-17/0.267	
-959.6900	182.8	y9-17i/0.281	
-961.5600	313.0	?	
-962.4500	799.8	?	
-963.7300	259.4	?	
-964.5400	348.5	?	
-965.2400	43.6	?	
-968.8200	129.8	?	
-969.6400	347.1	?	
-970.8500	285.7	?	
-971.9300	105.6	?	
-973.7600	307.2	?	
-974.6700	3143.1	y9/0.234	
-975.5500	773.6	y9i/0.114,b10/0.130	
-976.2200	150.4	?	
-986.6700	36.4	?	
-987.6700	63.1	?	
-989.7600	687.2	?	
-990.8300	294.0	?	
-992.8000	123.9	?	
-997.4600	360.5	?	
-998.6700	40.7	?	
-1001.6600	300.2	?	
-1003.5300	243.3	?	
-1005.6000	52.8	?	
-1008.5800	103.2	?	
-1010.7100	76.9	?	
-1014.7500	69.3	?	
-1015.8000	120.7	?	
-1017.6500	182.8	?	
-1019.6200	6082.3	?	
-1020.7600	2045.4	?	
-1021.5600	215.0	?	
-1023.5500	90.9	?	
-1025.8600	48.8	?	
-1026.7200	120.7	?	
-1027.7400	353.3	?	
-1028.6600	336.9	?	
-1029.7800	117.2	?	
-1033.6000	101.1	?	
-1034.7400	263.8	?	
-1036.1000	165.0	?	
-1039.6600	70.2	?	
-1045.6500	157.8	?	
-1046.8500	181.5	?	
-1047.8100	117.9	?	
-1050.7000	66.7	?	
-1051.6800	210.3	y10-36/0.181	
-1052.6600	110.1	y10-35/0.177	
-1057.7200	56.6	b11-46/0.247	
-1058.6800	576.3	b11-45/0.223	
-1059.4500	82.0	b11-44/-0.039	
-1060.4100	110.8	b11-44i/-0.079	
-1064.6800	68.9	?	
-1067.6000	213.8	b11-36/0.143	
-1068.5800	654.0	b11-35/0.139	
-1069.7900	97.6	y10-18/0.280	
-1070.5600	73.1	y10-17/0.066	
-1071.3100	168.5	y10-17i/-0.184	
-1073.4700	206.4	?	
-1076.7100	218.5	?	
-1077.5400	149.3	?	
-1085.5900	1540.5	b11-18/0.122	
-1086.6200	2152.5	b11-17/0.168	
-1087.7500	1089.8	y10/0.230	
-1088.4000	29.7	?	
-1100.6000	214.2	?	
-1101.6700	27.7	?	
-1103.6000	10000.0	b11/0.121	
-1104.4900	141.7	b11i/0.011	
-1105.1500	44.7	?	
-1108.8200	167.4	?	
-1109.6600	117.1	?	
-1110.9800	105.5	?	
-1114.9400	58.6	?	
-1115.6500	217.1	?	
-1119.6800	47.6	?	
-1125.9900	287.4	?	
-1126.8300	182.2	?	
-1127.9800	345.6	?	
-1128.6800	411.7	y11-46/0.133,y11-45/-0.851	
-1132.9300	1027.7	?	
-1133.8100	542.2	?	
-1140.6300	180.9	?	
-1142.6500	37.1	?	
-1143.8500	128.2	?	
-1144.9000	347.0	?	
-1145.7600	747.1	?	
-1146.7600	434.6	?	
-1147.6700	151.3	?	
-1148.8100	104.7	?	
-1149.9500	34.1	?	
-1151.6800	108.6	?	
-1154.0700	133.2	b12-46/-0.456	
-1156.7500	463.2	y11-18/0.208,b12-44/0.208	
-1157.7700	463.1	y11-17/0.244	
-1158.9800	88.4	y11-17i/0.454	
-1160.4100	83.9	?	
-1167.7200	41.0	?	
-1173.6600	90.3	?	
-1174.6600	367.9	y11/0.108	
-1175.9400	213.4	y11i/0.388	
-1180.6100	129.3	?	
-1182.5600	33.2	b12-18/0.039,b12-17/-0.945	
-1191.6800	135.4	?	
-1197.6100	255.6	?	
-1199.1300	38.4	?	
-1202.0000	118.9	?	
-1203.8000	974.4	?	
-1204.8400	683.6	?	
-1205.9000	168.1	?	
-1207.0600	90.8	?	
-1208.7700	80.0	?	
-1213.8500	88.6	?	
-1214.7000	274.9	?	
-1234.8100	28.1	?	
-1236.7200	56.7	?	
-1244.9900	95.1	?	
-1252.3500	166.1	?	
-1254.8200	120.3	?	
-1269.6500	50.8	?	
-1271.7900	529.7	?	
-1272.8200	186.2	?	
-1274.0500	104.4	?	
-1286.6800	139.0	y12-17/0.112	
-1288.9800	60.4	?	
-
-Name: VIYTTNAVEAVHRQFRKLTK/3
-LibID: 3
-MW: 2376.3499
-PrecursorMZ: 792.1166
-Status: Normal
-FullName: X.VIYTTNAVEAVHRQFRKLTK.X/3 (CID)
-Comment: AvePrecursorMz=792.5980 BinaryFileOffset=53188 FracUnassigned=0.68,4/5;0.64,12/20;0.23,219/527 Fullname=X.VIYTTNAVEAVHRQFRKLTK.X/3 Prob=1.0000 ScanNum=4.4 Spec=Raw
-NumPeaks: 527
-225.9800	33.7	b6-17^3/0.197,b6-18^3/0.525,a4^2/0.838	
-229.0800	125.6	?	
-231.1500	54.9	b6^3/-0.309,y2-17/0.016,b4-17^2/0.524	
-235.0400	152.7	?	
-239.3200	69.6	b4^2/0.181	
-240.2800	98.1	b7-45^3/0.149	
-241.1100	136.5	?	
-242.1400	50.1	?	
-243.2600	38.4	b7-36^3/0.129,b7-35^3/-0.199	
-244.2100	44.4	y4^2/-0.963	
-246.2500	54.0	a7^3/0.444	
-247.1300	142.5	?	
-249.1500	584.4	y2/0.990,b7-17^3/-0.312,b7-18^3/0.016,y6-46^3/-0.356	
-252.0700	179.0	?	
-253.2100	330.7	y6-35^3/0.048,y6-36^3/0.376	
-258.3100	49.9	?	
-259.1800	73.4	y6-17^3/0.014,y6-18^3/0.342	
-262.2700	120.5	?	
-263.1500	82.5	?	
-268.1300	142.5	?	
-271.3200	110.2	?	
-272.0600	137.6	b5-35^2/-0.084,b5-36^2/0.408	
-274.3300	143.6	?	
-275.2200	230.6	a5^2/-0.445	
-276.2200	92.1	b8-36^3/0.067,b8-35^3/-0.261	
-277.1500	87.1	?	
-278.1700	107.3	a8^3/-0.659	
-283.1100	41.5	b8-17^3/0.625,b8-18^3/0.953	
-285.1300	30.0	?	
-286.0900	44.4	?	
-288.2000	91.3	b8^3/0.040	
-292.1700	2425.2	y7-46^3/-0.022,y7-45^3/-0.350,y7-44^3/-0.694	
-292.9400	53.6	?	
-293.5600	70.4	?	
-294.1700	146.2	?	
-295.3200	79.9	?	
-296.1800	378.6	y7-35^3/0.332,y7-36^3/0.660	
-298.2000	1023.4	?	
-299.3700	96.1	y5-46^2/-0.851	
-302.1900	44.9	y7-17^3/0.338,y7-18^3/0.666,y5-44^2/0.961	
-303.2800	269.4	?	
-304.2900	119.4	y5-36^2/-0.923	
-306.2800	28.2	y5-35^2/0.575	
-308.1200	427.1	y7^3/0.593	
-309.3200	36.2	?	
-311.1700	175.0	?	
-312.2300	76.3	?	
-313.1600	967.4	?	
-313.8400	225.2	y5-18^2/-0.379,y5-17^2/-0.871	
-315.4300	17.5	y3-46/0.191	
-316.1600	140.3	b9-45^3/-0.008,y3-46i/-0.079,b9-46^3/0.320	
-317.2100	1654.0	y3-44/-0.045,b9-44^3/0.699	
-318.1900	419.4	y3-44i/-0.065	
-319.1800	18.9	b9-36^3/0.012,y3-44i/-0.075,b9-35^3/-0.316	
-321.2300	299.6	a9^3/-0.613	
-325.2200	195.8	b9-18^3/0.049,b9-17^3/-0.279,y3-35/-0.987,y3-36/-0.003	
-327.4000	123.1	?	
-328.3700	230.8	b6-36^2/-0.304,b6-35^2/-0.796	
-330.2200	28.0	?	
-331.1700	75.1	b9^3/-0.005	
-334.1700	82.9	?	
-338.3400	499.9	b6-17^2/0.169,b6-18^2/0.661	
-339.1600	61.6	b10-46^3/-0.359	
-340.2200	75.4	b10-44^3/0.030,b10-45^3/0.373	
-341.2400	214.9	?	
-343.2000	29.6	y3-18/-0.034,b10-35^3/0.025,b10-36^3/0.353	
-345.2400	80.3	a10^3/-0.282,y8-44^3/0.342,y8-45^3/0.686	
-346.2700	281.5	b6^2/-0.414	
-347.2000	51.3	?	
-348.2300	159.0	a3/0.002,y8-35^3/0.348,y8-36^3/0.676	
-349.1100	123.9	a3i/-0.118,b10-17^3/-0.068,b10-18^3/0.260	
-350.2500	83.8	a3i/0.022	
-352.5000	81.2	?	
-353.2800	182.5	y8-18^3/-0.278,y8-17^3/-0.606	
-355.1100	190.3	b10^3/0.256	
-356.2800	650.7	?	
-357.2000	160.0	?	
-358.2100	310.8	b3-17/-0.987	
-360.1000	146.6	y8^3/0.539,b7-45^2/0.408	
-361.3400	113.3	y3/0.095	
-363.1300	4467.5	?	
-364.1400	201.2	b7-36^2/-0.052	
-365.2500	290.4	b7-35^2/0.566	
-371.3100	154.4	?	
-373.3000	746.3	b7-18^2/0.102,b7-17^2/-0.390,y6-46^2/-0.455,b11-44^3/0.087,b11-45^3/0.431,b11-46^3/0.759	
-374.1500	114.5	y6-44^2/-0.613	
-377.2600	246.2	?	
-379.5400	95.0	y6-35^2/0.300,y6-36^2/0.792,a11^3/0.995	
-380.6200	24.7	?	
-381.3300	808.4	b11-18^3/-0.543,b11-17^3/-0.871	
-382.3600	56.7	b7^2/0.157	
-384.2000	38.3	?	
-390.2200	294.2	y9-45^3/-0.020,y9-44^3/-0.364,y9-46^3/0.308	
-391.1000	354.8	?	
-395.2600	199.1	?	
-397.2800	97.9	y6^2/0.522	
-399.2400	276.4	y9-18^3/-0.004,y9-17^3/-0.332	
-400.2200	119.6	?	
-401.3500	201.1	?	
-403.1800	363.3	?	
-405.2400	1576.0	y9^3/-0.007	
-406.2500	51.1	?	
-407.2400	128.8	?	
-409.2300	1380.1	b8-45^2/0.004	
-413.2600	247.4	b8-36^2/-0.467	
-414.1800	107.5	b8-35^2/-0.039	
-415.2700	1065.9	?	
-416.4200	248.6	?	
-417.1800	199.3	a8^2/-0.560	
-418.3500	120.3	b12-46^3/0.122,b12-45^3/-0.206,b12-44^3/-0.550	
-419.6700	25.3	?	
-420.4700	241.9	?	
-421.2700	109.5	b12-36^3/-0.286,b12-35^3/-0.614	
-422.1900	49.1	b8-18^2/-0.542,y10-46^3/-0.745	
-424.2300	256.8	a12^3/-0.001,y10-44^3/0.623,y10-45^3/0.967	
-425.4600	207.8	?	
-426.3700	956.6	y10-36^3/0.107,y10-35^3/-0.221	
-428.3300	95.0	b12-17^3/0.443,b12-18^3/0.771	
-430.3600	1388.7	?	
-431.2300	1240.6	b8^2/-0.507	
-432.3700	94.6	y10-18^3/0.103,y10-17^3/-0.225	
-433.2500	218.8	b12^3/-0.313	
-436.5000	50.6	?	
-438.3500	32.2	y10^3/0.080,y7-44^2/-0.443,y7-45^2/0.073,y7-46^2/0.565	
-440.5600	62.3	?	
-441.3800	132.5	?	
-442.4000	358.3	b4-35/0.166,y7-36^2/-0.377	
-443.3000	259.4	y7-35^2/0.031,y4-46/-0.034,b4-35i/0.066	
-448.3200	2024.1	a4/-0.956	
-450.1900	83.9	y11-35^3/-0.080,y11-36^3/0.248	
-452.3300	64.5	y7-17^2/0.056,y7-18^2/0.548,y4-36/-0.988	
-454.4500	110.5	y4-35/0.148	
-455.5300	18.4	y4-35i/0.228	
-456.4100	34.6	y11-17^3/0.136,y11-18^3/0.464	
-458.4200	425.6	?	
-459.3000	989.0	b4-18/0.040	
-460.3900	367.5	b4-17/0.146	
-461.3300	904.3	y7^2/0.543,y11^3/-0.619	
-462.7400	179.3	?	
-464.5100	62.1	?	
-465.2000	22.6	?	
-466.2000	435.6	?	
-467.2300	479.9	?	
-468.6300	65.0	?	
-470.3800	137.2	b13-46^3/0.119,b13-45^3/-0.209,b13-44^3/-0.553	
-471.3800	104.5	y4-18/0.051,y4-17/-0.933	
-473.4200	506.7	b9-46^2/0.164,b9-45^2/-0.328,b13-35^3/-0.497,b13-36^3/-0.169	
-474.3000	47.5	b9-44^2/0.037	
-475.3200	265.5	?	
-476.2500	6210.6	a13^3/-0.015	
-477.2800	367.0	b4/0.009	
-478.3900	436.4	b4i/0.119,b9-35^2/-0.350,b9-36^2/0.142	
-480.6700	138.2	b13-17^3/0.749,b13-18^3/1.077	
-481.3700	32.6	?	
-482.4000	159.0	a9^2/0.139	
-483.3300	100.8	?	
-484.4400	135.1	?	
-485.3600	20.0	b13^3/-0.237	
-487.1300	135.7	b9-18^2/-0.123	
-488.3300	547.4	b9-17^2/0.585	
-489.3000	393.5	y4/-0.040,y12-45^3/-0.656,y12-46^3/-0.328	
-490.3600	198.1	y4i/0.020,y12-44^3/0.060	
-492.2600	52.2	y12-36^3/-0.696	
-495.0900	57.3	?	
-496.3700	17.1	b9^2/0.112	
-498.4500	45.5	?	
-499.1600	57.4	y12-18^3/0.200	
-500.1500	235.9	y12-17^3/0.862	
-501.3800	2722.1	?	
-502.3400	72.8	?	
-503.3700	162.3	?	
-504.6000	478.9	y12^3/-0.363	
-505.4900	221.0	?	
-508.3800	107.1	b10-46^2/-0.394,b10-45^2/-0.886	
-510.5900	35.5	b10-44^2/0.808	
-511.3300	160.0	b10-44^2i/1.048	
-512.2800	90.5	b14-46^3/-0.668	
-514.5000	211.3	b10-35^2/0.242,b10-36^2/0.734,b14-44^3/0.881,b14-45^3/1.224	
-516.2700	515.5	b14-36^3/-0.006,y8-45^2/-0.057,y8-44^2/-0.573,y8-46^2/0.435,b14-35^3/-0.334	
-518.3500	520.0	a10^2/0.571,a14^3/-0.601	
-525.3500	35.5	?	
-526.3000	180.1	y13-35^3/-0.007,y13-36^3/0.321	
-528.0900	367.3	b14^3/-0.193	
-529.3500	278.5	?	
-530.3700	602.1	y8-17^2/0.045,y8-18^2/0.537	
-531.3500	83.4	?	
-532.3100	188.6	b10^2/0.533,y13-18^3/0.327	
-533.2800	1481.5	y13-17^3/0.969	
-534.5000	78.5	?	
-535.2100	119.9	?	
-536.3500	122.8	?	
-537.0000	73.4	?	
-538.4700	318.1	y8^2/-0.368,y13^3/0.484	
-542.1500	60.0	b5-36/-0.147	
-544.2100	2255.7	b5-35/0.929	
-546.1400	432.3	y14-46^3/-0.190,y14-45^3/-0.518	
-547.4200	215.4	y14-44^3/0.418	
-548.1600	163.1	?	
-549.4800	134.1	y14-36^3/-0.178,y14-35^3/-0.506	
-550.4300	117.8	a5/0.106	
-551.4400	26.8	a5i/0.116	
-552.3500	215.7	a5i/0.026	
-553.3400	192.6	?	
-554.3500	430.6	?	
-555.2700	91.7	y14-18^3/-0.392	
-556.5800	144.9	y14-17^3/0.590	
-557.3700	274.9	?	
-558.4400	73.1	b11-46^2/0.132,b11-45^2/-0.360	
-559.9000	421.6	b5-18/-0.408,b11-44^2/0.584	
-561.3100	2640.9	y14^3/-0.355,b5-17/0.018,b15-45^3/-0.988,b15-46^3/-0.660	
-562.2000	538.1	b5-17i/-0.092,b15-44^3/-0.442	
-563.4500	220.5	b5-17i/0.158,b11-35^2/-0.343,b11-36^2/0.149	
-565.1600	470.7	b15-36^3/-0.138,b15-35^3/-0.466	
-570.4300	197.9	?	
-571.3900	387.3	b15-18^3/0.088	
-572.4300	1210.7	b11-18^2/0.124,b11-17^2/-0.368,b15-17^3/0.800	
-573.4000	134.7	?	
-574.4300	430.8	?	
-575.5100	152.5	?	
-576.5000	233.8	?	
-577.6300	456.0	b15^3/0.324,b5/-0.688	
-578.3900	26.8	b5i/-0.928	
-579.3500	200.7	b5i/-0.968	
-580.4500	132.3	b11^2/-0.861	
-583.2400	126.6	?	
-584.4800	178.0	y9-46^2/0.115	
-585.5400	5644.8	y9-44^2/0.167,y9-45^2/0.683,y15-44^3/0.524,y15-45^3/0.868,y15-46^3/1.196	
-586.3500	13.4	?	
-589.2900	4492.1	y9-36^2/-0.067,y9-35^2/-0.559,y15-35^3/1.289	
-590.4000	207.5	?	
-591.4700	30.5	?	
-592.3500	90.9	?	
-593.4000	246.6	y15-18^3/-0.276,y15-17^3/-0.604	
-594.7100	109.9	?	
-596.6000	66.6	?	
-598.3300	62.7	y9-18^2/-0.032,y9-17^2/-0.524	
-600.7700	149.1	y15^3/1.090	
-601.4600	570.8	y5-44/0.009	
-603.1300	269.1	?	
-606.6800	2394.8	[y9^2/-0.687]	
-607.3900	10000.0	y9^2/0.023	
-608.4400	199.8	?	
-609.7400	123.3	y5-36/0.321	
-610.3600	80.9	y5-35/-0.044	
-611.5200	300.8	y5-35i/0.116	
-612.3800	449.4	y5-35i/-0.024	
-613.4300	73.4	b16-46^3/-0.574,b16-45^3/-0.902	
-616.3200	217.5	?	
-617.0100	125.5	b16-36^3/-0.322	
-618.4500	521.1	y16-45^3/0.095,y16-44^3/-0.249,b16-35^3/0.790,y16-46^3/0.423	
-619.5200	338.2	a16^3/-0.488	
-620.4600	101.2	y16-36^3/-0.895	
-622.4100	105.0	y16-35^3/0.727	
-623.3600	145.0	b16-18^3/0.024,b16-17^3/-0.304	
-625.3500	100.9	?	
-627.7700	665.9	y5-18/0.340,y16-17^3/0.083,y16-18^3/0.411,b12-44^2/-0.076,b12-45^2/0.440,b12-46^2/0.932	
-628.4700	739.2	y5-17/0.056	
-629.3600	461.2	y5-17i/-0.054,b16^3/0.021	
-631.5800	43.8	b12-36^2/-0.250,b12-35^2/-0.742	
-635.5600	40.4	y10-44^2/0.653	
-636.3800	541.7	a12^2/0.537	
-637.6100	120.7	?	
-638.3000	58.2	?	
-639.3200	73.4	y10-35^2/-0.063,y10-36^2/0.429	
-640.2700	127.2	b12-18^2/-0.565	
-642.1400	711.5	b12-17^2/0.813	
-646.2500	786.6	y5/0.809	
-649.4700	57.6	?	
-650.4400	247.1	b12^2/0.599	
-653.2800	26.2	y17-44^3/0.899,y17-45^3/1.242	
-654.3300	771.1	y17-36^3/-0.708	
-657.4600	174.7	y10^2/0.558,b6-35/0.136,b17-44^3/0.086,b17-45^3/0.430,b17-46^3/0.758	
-659.4400	45.2	?	
-660.6800	159.5	y17-18^3/-0.361,y17-17^3/-0.689,b17-35^3/0.321,b17-36^3/0.649	
-662.4700	110.8	?	
-663.4100	244.1	a17^3/0.704	
-664.5200	519.1	a6/0.154	
-665.5200	167.3	b17-18^3/-0.514,b17-17^3/-0.842	
-668.8400	5384.8	y11-46^2/-0.577	
-669.8100	797.7	y11-45^2/-0.099,y11-44^2/-0.615	
-672.4200	93.2	b17^3/0.382	
-673.0800	90.2	?	
-674.5000	172.2	b6-18/0.149,y11-35^2/-0.402,y11-36^2/0.090	
-675.4400	193.9	b6-17/0.105	
-676.8300	143.9	?	
-678.7800	85.7	?	
-680.3300	55.0	?	
-682.3400	29.3	?	
-683.2900	336.5	y11-18^2/-0.125,y11-17^2/-0.617	
-684.8900	216.6	?	
-686.5600	351.6	?	
-688.5000	195.7	?	
-691.7100	353.9	?	
-692.4900	728.0	y11^2/0.070,b6/0.129	
-693.3400	263.0	b6i/-0.021	
-694.3900	172.0	b6i/0.029,b18-44^3/-0.679,b18-45^3/-0.335,b18-46^3/-0.007	
-697.4400	210.7	b18-36^3/-0.285,b18-35^3/-0.613	
-698.6100	109.8	?	
-700.3500	505.0	a18^3/-0.051	
-701.5200	198.9	?	
-702.3900	52.9	?	
-703.4400	33.3	?	
-704.4400	81.2	b18-17^3/0.383,b18-18^3/0.711	
-705.6500	140.8	b13-44^2/-0.246,b13-45^2/0.270,b13-46^2/0.762,y18-45^3/-0.742,y18-46^3/-0.414	
-707.0300	99.6	y18-44^3/0.294	
-712.2600	211.5	?	
-713.9000	299.8	a13^2/0.006	
-714.5300	100.4	a13^2i/0.136	
-715.2800	296.6	y18-18^3/-0.116,y18-17^3/-0.444	
-716.5200	66.7	?	
-717.4400	157.6	?	
-718.6200	506.3	b13-18^2/-0.266,b7-45/0.243	
-719.5100	432.5	b13-17^2/0.132	
-720.9500	1186.0	y18^3/-0.449	
-722.4600	326.2	?	
-724.7200	344.3	?	
-725.5600	57.7	?	
-726.7400	463.2	?	
-727.7800	1008.9	b13^2/-0.111,b7-35/-0.581,b7-36/0.403,b19-45^3/-0.628,b19-46^3/-0.300	
-728.4900	385.2	b13^2i/0.099,b19-44^3/-0.262	
-729.4000	472.3	?	
-730.5900	45.8	?	
-731.4000	59.5	b19-36^3/-0.008	
-732.4500	137.4	b19-35^3/0.714	
-733.4100	117.8	?	
-734.9100	502.3	y12-44^2/-0.037,a7/-0.494,y12-45^2/0.479,y12-46^2/0.971,a19^3/0.827	
-735.8000	239.2	a7i/-0.604	
-739.5000	114.4	y12-35^2/0.077,y12-36^2/0.569	
-740.6500	150.9	?	
-741.5400	117.3	?	
-743.9500	814.9	b19^3/0.535,y19-44^3/-0.481,y19-45^3/-0.137,y19-46^3/0.191	
-744.9500	563.1	b7-18/-0.438	
-746.6400	190.4	b7-17/0.268,y6-46/0.136,y19-36^3/-0.447	
-747.5800	82.3	b7-17i/0.208,y19-35^3/0.165	
-748.6200	585.9	y12-17^2/0.192,y12-18^2/0.684,y6-44/0.101	
-749.4300	1037.9	b19+18^3/0.012	
-751.4500	432.2	?	
-752.3800	266.5	?	
-753.1100	150.2	y19-18^3/0.020,y19-17^3/-0.308	
-754.2400	128.0	?	
-755.5700	235.0	?	
-756.4000	774.1	y6-36/-0.088	
-757.5000	1375.9	y12^2/0.558,y6-35/0.028	
-758.5100	1643.0	y19^3/-0.584	
-759.2600	509.4	?	
-760.7800	580.5	?	
-761.5500	305.3	?	
-762.5400	1037.3	[b7/-0.858]	
-763.4300	842.4	b7/0.032	
-764.3800	241.8	b7i/-0.018	
-765.5600	134.2	b7i/0.162	
-766.3900	286.4	?	
-769.6900	225.6	b14-44^2/-0.236,b14-45^2/0.280,b14-46^2/0.772	
-771.5100	100.0	?	
-773.5700	1398.4	[y6-18/-0.928]	
-774.5100	6068.8	y6-18/0.012,b14-35^2/0.108,b14-36^2/0.600	
-775.5200	3840.6	y6-17/0.038	
-776.4400	2408.6	p-46^3/-0.341,p-45^3/-0.669	
-777.7200	168.7	p-44^3/0.267	
-778.6800	403.2	a14^2/0.757	
-780.2600	477.1	p-36^3/0.150,p-35^3/-0.178	
-781.4400	469.7	?	
-782.7800	6431.6	b14-18^2/-0.135	
-783.6000	6372.9	b14-17^2/0.193,y13-44^2/-0.881,y13-45^2/-0.365,y13-46^2/0.127	
-784.5100	954.3	?	
-795.3500	552.2	?	
-796.2800	307.0	?	
-797.5300	144.8	y13-18^2/0.060,y13-17^2/-0.432	
-802.5100	40.4	?	
-809.0200	134.0	?	
-811.3600	29.7	?	
-812.4700	20.9	?	
-818.4900	253.2	y14-46^2/-0.502	
-819.7500	196.6	y14-44^2/-0.249,y14-45^2/0.266	
-825.6100	83.3	b8-36/-0.836,y14-35^2/1.134	
-827.5900	368.4	b8-35/0.160	
-828.6000	228.2	b8-35i/0.170	
-829.5200	113.1	b8-35i/0.090	
-835.4400	78.4	a8/0.968	
-839.9400	184.6	?	
-857.8000	216.8	b15-17^2/0.859,b15-18^2/1.351	
-862.6100	78.0	b8/0.143	
-863.5100	37.7	b8i/0.043	
-867.5300	84.6	?	
-868.7100	57.6	?	
-874.3400	28.7	y7-46/-0.222	
-875.6600	142.7	y7-45/0.114,y7-44/-0.918,y15-45^2/-0.845,y15-46^2/-0.353	
-882.4400	46.0	y15-35^2/0.943,y15-36^2/1.435	
-883.6700	157.7	y7-36/-0.876	
-895.1600	366.9	?	
-903.4700	350.0	y7-17/-0.071,y7-18/0.913	
-906.5900	138.7	?	
-908.5200	132.5	?	
-911.5300	53.6	?	
-913.7000	59.7	?	
-915.3700	108.5	?	
-916.6100	33.2	?	
-917.7600	263.6	?	
-918.4500	74.8	?	
-920.5400	111.9	y7/-0.028,b16-44^2/-0.970,b16-45^2/-0.454,b16-46^2/0.038	
-923.8100	134.4	?	
-924.8300	145.1	b16-36^2/-0.665	
-926.4500	88.5	y16-46^2/-0.087,b16-35^2/0.463,y16-45^2/-0.579	
-927.6800	47.3	y16-44^2/0.135	
-936.4800	182.0	b16-17^2/1.488	
-937.7800	101.6	?	
-940.6100	32.3	y16-18^2/0.076,y16-17^2/-0.416	
-944.0300	96.9	b16^2/0.525	
-946.5800	150.1	b9-45/0.092,b9-44/-0.940	
-949.9500	44.8	?	
-950.6200	186.6	y16^2/1.080	
-956.6200	151.0	b9-35/0.148	
-964.0000	100.7	a9/0.485	
-964.9800	302.4	a9i/0.465	
-965.7100	17.9	a9i/0.195	
-967.2300	43.2	?	
-968.3800	192.4	?	
-975.6900	84.5	?	
-978.6600	548.2	y17-44^2/0.591,y17-45^2/1.107	
-980.2600	356.6	?	
-981.7000	191.2	y17-36^2/-0.353,y17-35^2/-0.845	
-983.5800	73.2	b17-46^2/-0.970	
-986.0700	96.3	b17-44^2/0.512,b17-45^2/1.028	
-993.6100	252.4	a17^2/0.055	
-994.4700	327.0	?	
-997.5900	70.9	?	
-999.4100	140.5	y17^2/-0.653,b17-17^2/0.371,b17-18^2/0.863	
-1001.1500	64.9	?	
-1002.1700	384.9	?	
-1003.0800	119.8	?	
-1007.4200	301.6	b17^2/-0.133	
-1008.5500	132.2	?	
-1009.6200	382.9	?	
-1010.7700	77.8	?	
-1015.7400	147.0	b10-46/-0.801	
-1018.5100	165.3	b10-44/-0.047,b10-45/0.985	
-1019.4800	22.3	b10-44i/-0.077	
-1029.9900	168.0	y8-46/-0.673	
-1032.5400	150.0	y8-44/-0.139,y8-45/0.893	
-1039.9500	55.1	y8-36/-0.698	
-1041.8600	58.1	y8-35/0.228,b18-44^2/-0.240,b18-45^2/0.276,b18-46^2/0.768	
-1043.5700	20.4	?	
-1045.1100	703.6	b10-17/-0.410,b10-18/0.574,b18-36^2/-0.974	
-1048.5300	144.1	?	
-1049.7000	160.4	a18^2/-0.397	
-1050.6300	130.3	?	
-1055.5200	102.4	b18-17^2/-0.061,b18-18^2/0.431	
-1057.1300	306.8	?	
-1057.8800	116.9	y8-18/-0.778,y18-46^2/-0.712	
-1059.8000	148.7	y8-17/0.158,y18-44^2/0.200,y18-45^2/0.716	
-1062.8100	547.7	b10/0.263,y18-36^2/-0.775	
-1063.5600	168.5	b10i/0.013	
-1065.0600	1107.5	b18^2/0.965,y18-35^2/0.983	
-1065.8500	385.0	b18^2i/1.255	
-1067.6900	60.9	?	
-1068.3200	286.9	?	
-1072.2500	308.9	?	
-1073.8000	2018.2	y18-17^2/0.718,y18-18^2/1.210	
-1074.5900	260.5	y18-17^2i/1.008	
-1075.7000	77.8	y8/-0.969	
-1084.9400	100.3	?	
-1094.8800	98.9	?	
-1096.3600	54.2	b19-36^2/-0.248,b19-35^2/-0.740	
-1102.6500	118.9	?	
-1107.6600	263.0	?	
-1109.1000	134.7	?	
-1109.7500	83.7	?	
-1114.8800	420.4	b19^2/0.261,b11-46/-0.730,y19-45^2/-0.746,y19-46^2/-0.254	
-1118.7000	18.6	?	
-1122.0800	75.1	y19-35^2/1.461	
-1124.1500	331.2	b19+18^2/0.526	
-1125.6300	200.3	b11-36/0.036	
-1126.6100	129.7	b11-35/0.032	
-1134.0200	212.6	a11/0.400	
-1138.6100	138.2	y19^2/0.473	
-1149.2100	37.3	?	
-1157.7200	112.0	?	
-1161.2800	70.4	b11/-0.335	
-1163.0100	75.3	?	
-1164.5600	82.0	?	
-1166.7100	127.8	?	
-1167.7300	189.2	y9-46/0.008,y9-45/-0.976	
-1169.8000	363.7	y9-44/0.062	
-1181.8000	60.0	?	
-1191.5800	140.1	?	
-1193.4500	108.1	?	
-1205.7500	62.8	?	
-1210.5700	29.0	?	
-1212.8600	65.1	y9/-0.868	
-1222.7200	205.1	?	
-1230.8700	28.3	?	
-1236.5600	123.2	?	
-1255.9000	43.2	?	
-1263.6300	148.4	b12-35/-0.007,b12-36/0.977	
-1264.8800	70.7	b12-35i/0.243	
-1268.8000	62.3	y10-44/-0.006	
-1280.7000	185.6	b12-18/0.037,b12-17/-0.947	
-1282.7800	24.5	?	
-1296.9600	38.8	?	
-1307.6000	474.8	?	
-1308.7400	174.8	?	
-1309.9700	86.0	?	
-1317.5300	152.6	?	
-1318.5700	159.6	?	
-1320.3200	46.2	?	
-1337.4800	123.0	y11-46/-0.348	
-1339.3000	142.0	y11-45/0.488,y11-44/-0.543	
-1341.6400	127.1	?	
-1348.5500	99.4	y11-35/-0.246,y11-36/0.738	
-1380.8100	37.4	?	
-1383.7000	31.4	?	
-1384.3200	168.8	y11/0.487	
-1402.8100	121.9	?	
-1403.8400	95.0	?	
-1408.8800	52.4	b13-46/0.110,b13-45/-0.874	
-1410.8100	31.7	b13-44/0.025	
-1417.6500	191.4	?	
-1419.1700	54.8	b13-36/0.416,b13-35/-0.568	
-1429.2800	119.3	?	
-1445.7300	38.9	?	
-1455.1500	142.3	b13/0.375	
-1582.9000	85.1	b14/0.066	
-1611.7300	86.4	y13/-0.214	
-1643.2100	110.9	?	
-1647.0000	160.0	y14-36/0.040,y14-35/-0.944	
-1663.8200	72.7	?	
-1706.9100	103.8	?	
-
-Name: VMRMLR/2
-LibID: 4
-MW: 806.4608
-PrecursorMZ: 403.2304
-Status: Normal
-FullName: X.VMRMLR.X/2 (CID)
-Comment: AvePrecursorMz=403.5411 BinaryFileOffset=70299 FracUnassigned=0.53,4/5;0.54,14/20;0.44,252/355 Fullname=X.VMRMLR.X/2 Prob=1.0000 ScanNum=5.5 Spec=Raw
-NumPeaks: 355
-110.1200	6.5	?	
-112.2300	6.8	IRB/0.230	
-127.1700	13.0	y2-35^2/0.083	
-128.3500	35.2	?	
-129.1300	243.3	IRA/0.016,y1-46/0.017	
-130.0900	54.2	IRAi/-0.024	
-136.1000	63.6	y2-17^2/0.008,y2-18^2/0.500	
-138.0800	17.7	?	
-143.0400	15.1	?	
-145.0400	7.0	y2^2/0.435	
-147.1200	99.2	?	
-148.2400	7.5	?	
-153.4200	4.5	?	
-154.1600	11.9	?	
-157.0000	177.3	y1-18/-0.108	
-158.1700	88.7	y1-17/0.078	
-159.1300	51.2	y1-17i/0.038	
-160.1200	6.0	y1-17i/0.028	
-167.0800	7.7	?	
-169.0200	13.3	?	
-170.2800	4.9	?	
-171.3000	22.7	?	
-172.1900	48.4	?	
-173.1300	17.1	?	
-175.1000	451.7	y1/-0.019	
-177.1900	9.7	b3-34^2/0.104	
-178.0700	3.5	?	
-180.1000	5.6	a3^2/-0.015	
-181.1200	29.4	?	
-182.4300	20.5	?	
-183.1600	8.6	?	
-185.1900	6.7	?	
-186.2100	101.1	b3-17^2/0.611	
-187.2000	104.8	y3-46^2/0.077	
-188.0900	15.2	y3-44^2/-0.040	
-191.2200	13.7	?	
-193.1600	13.6	b3^2/-0.952,y3-35^2/0.553	
-195.5100	13.4	?	
-199.1000	53.5	?	
-200.1200	9.4	?	
-201.1500	136.8	y3-18^2/0.030,y3-17^2/-0.462	
-202.0600	3.6	?	
-203.1500	14.9	a2/0.029	
-204.1600	276.3	a2i/0.039	
-208.0500	34.9	?	
-209.1800	6.2	y3^2/-0.945	
-211.1600	30.8	?	
-213.1600	14.4	?	
-214.3600	18.3	b2-17/0.270	
-215.0900	8.1	b2-17i/0.000	
-216.1600	28.5	b2-17i/0.070	
-217.0400	15.1	?	
-218.1500	186.0	?	
-219.2000	70.2	?	
-221.2800	18.3	?	
-222.0700	15.1	?	
-223.4800	6.3	?	
-226.0200	14.5	?	
-227.1400	15.9	?	
-229.2200	119.1	?	
-230.2200	16.3	?	
-231.2000	29.9	b2/0.084	
-232.0300	41.4	b2i/-0.086	
-233.0900	15.7	b2i/-0.026	
-234.1900	71.7	?	
-235.2500	68.3	?	
-236.1800	18.9	?	
-238.1900	11.1	?	
-239.1700	25.3	?	
-240.1500	19.2	?	
-241.1300	14.5	?	
-241.8500	7.6	y2-46/-0.348,b4-34^2/-0.756	
-244.2100	225.3	y2-44/-0.003	
-245.1900	86.7	y2-44i/-0.023,a4^2/-0.445	
-246.5300	135.9	?	
-247.4900	100.6	?	
-248.2900	13.5	?	
-249.2400	53.7	?	
-250.2200	40.9	b4-17^2/-0.899	
-253.2600	10.6	y2-35/0.094	
-254.2200	10.1	y2-35i/0.054	
-256.2000	70.8	?	
-257.2800	59.0	?	
-258.3900	56.2	?	
-259.1000	39.3	?	
-260.1800	53.9	b4^2/0.547	
-261.2500	14.4	?	
-262.1300	12.2	?	
-264.9800	17.6	y4-46^2/-0.193	
-265.6300	5.4	y4-44^2/-0.551	
-267.1300	11.8	?	
-269.1800	29.3	?	
-270.3100	68.4	y2-18/0.118	
-271.2300	177.6	y2-17/0.054,y4-35^2/0.573	
-273.2600	4.9	?	
-274.2800	63.1	?	
-276.2100	39.9	?	
-277.1900	32.5	?	
-280.2100	38.4	y4-17^2/0.547	
-281.8400	13.7	?	
-283.2300	292.5	?	
-284.2600	69.2	?	
-284.8700	28.6	?	
-286.2800	44.8	?	
-288.1900	4929.8	y2/-0.013,y4^2/0.014	
-289.2100	830.5	y2i/0.007	
-290.1700	353.9	y2i/-0.033	
-290.9700	108.7	?	
-292.7100	14.7	?	
-294.1400	22.3	?	
-296.3200	303.1	?	
-297.2600	16.3	?	
-298.2900	36.7	b5-34^2/-0.858	
-302.2300	46.3	a5^2/0.053	
-303.2500	4.2	?	
-304.3400	88.1	?	
-305.2000	20.8	?	
-306.1300	25.2	?	
-308.2100	843.9	b5-17^2/0.549	
-309.1800	32.6	?	
-309.9100	153.2	?	
-311.1900	98.9	?	
-313.2800	156.1	?	
-314.1800	57.6	?	
-315.3300	2.7	?	
-316.7900	24.9	b5^2/0.615	
-317.6900	35.8	?	
-318.6600	1097.3	?	
-319.3100	109.6	?	
-320.2000	51.2	?	
-321.1000	17.9	?	
-322.2100	271.0	?	
-322.8500	74.0	?	
-324.0700	68.6	?	
-325.4100	70.5	b5+18^2/0.230	
-328.2800	51.2	?	
-329.3500	4.5	?	
-330.3100	33.5	y5-46^2/-0.383	
-331.2400	43.0	y5-44^2/-0.461	
-332.3700	14.1	?	
-333.2300	32.5	?	
-334.2000	12.9	?	
-336.6700	20.4	y5-35^2/0.492	
-337.7500	33.0	?	
-339.3100	34.1	?	
-340.0200	14.9	?	
-341.0800	27.4	?	
-341.7800	56.8	?	
-342.4000	54.8	?	
-344.3500	43.0	y5-18^2/-0.341	
-345.1600	48.0	y5-17^2/-0.023	
-345.8000	29.6	y5-17^2i/0.117	
-347.2500	120.4	?	
-350.2900	114.7	?	
-351.0900	28.6	?	
-353.0500	52.2	b3-34/-0.114	
-354.2700	82.9	y5^2/0.574	
-358.8100	226.6	a3/-0.412	
-360.1600	228.9	?	
-361.2600	7.3	?	
-362.7600	19.1	?	
-365.3300	25.3	?	
-367.7100	122.1	?	
-368.3200	156.8	?	
-369.3700	208.1	b3-17/-0.821	
-370.1300	12.9	b3-17i/-1.061	
-372.2300	545.4	?	
-373.5300	104.2	y3-46/0.292	
-375.2300	224.8	y3-44/-0.024	
-376.2400	71.9	y3-44i/-0.014	
-377.2600	30.9	y3-44i/0.006	
-379.0400	35.7	?	
-380.0500	54.2	p-46^2/-0.178	
-381.5200	266.5	p-44^2/0.285	
-382.8700	90.1	?	
-383.5900	41.9	?	
-385.0400	355.2	y3-35/0.834	
-386.2200	1035.0	p-35^2/0.508	
-387.6100	199.8	b3/0.393	
-388.5100	93.7	b3i/0.293	
-389.3400	24.3	b3i/0.123	
-390.3400	40.8	?	
-391.1800	107.6	?	
-392.1700	58.1	?	
-392.8300	70.8	?	
-394.3500	10000.0	p-18^2/0.125,p-17^2/-0.367	
-395.3000	569.7	?	
-396.7000	274.8	?	
-397.7800	774.6	?	
-403.4100	6.1	p^2/0.180	
-410.6900	21.8	?	
-411.7400	31.0	?	
-413.2500	19.0	?	
-414.3800	22.9	?	
-416.2800	30.7	?	
-417.2900	278.2	?	
-418.4700	99.2	?	
-419.3200	267.7	y3/0.077	
-420.3000	24.6	y3i/0.057	
-421.3700	13.6	y3i/0.127	
-423.8400	33.5	?	
-428.8800	23.9	?	
-430.2700	20.2	?	
-431.3500	21.0	?	
-433.9600	29.3	?	
-435.3600	7.0	?	
-436.3700	57.2	?	
-437.2900	39.6	?	
-440.4000	32.6	?	
-442.1200	56.3	?	
-444.5300	58.6	?	
-445.5500	12.1	?	
-448.7300	57.9	?	
-451.0100	21.5	?	
-454.4100	10.4	?	
-455.3400	13.3	?	
-456.4100	19.8	?	
-457.2700	26.2	?	
-460.5800	49.6	?	
-461.2600	54.4	?	
-462.3100	75.8	?	
-467.7900	31.8	?	
-468.4200	10.5	?	
-469.2500	6.0	?	
-470.3600	9.1	?	
-471.4400	21.5	?	
-472.5000	67.0	?	
-473.4800	39.9	?	
-474.7100	75.1	?	
-475.3500	23.4	?	
-476.1700	67.0	?	
-477.2300	34.6	?	
-477.9300	32.0	?	
-480.3400	105.6	?	
-481.6900	647.4	?	
-482.4900	1557.2	?	
-483.3900	11.5	b4-34/-0.815	
-485.3700	39.0	?	
-486.3500	30.7	?	
-488.4800	47.1	?	
-489.3400	39.4	?	
-490.8500	11.6	a4/0.587	
-492.1300	138.4	a4i/0.867	
-493.1300	35.1	a4i/0.867	
-494.3400	7.6	?	
-496.3500	595.2	?	
-497.2800	12.7	?	
-498.5300	132.7	?	
-499.3500	1542.1	?	
-500.2800	648.5	?	
-501.3500	63.9	b4-17/0.119	
-502.6700	3.7	?	
-503.4200	52.8	?	
-504.5800	55.4	?	
-506.4600	19.5	?	
-508.5800	38.5	?	
-509.5600	12.3	?	
-510.6300	49.5	?	
-511.5900	18.0	?	
-512.2800	48.2	?	
-513.3100	24.1	?	
-515.9500	31.1	?	
-517.3300	43.6	b4/-0.928	
-519.8300	33.5	?	
-523.3500	30.9	?	
-525.3700	20.6	?	
-528.3700	102.6	?	
-529.8200	112.8	y4-46/0.481	
-530.6000	122.1	y4-46i/0.261	
-531.5800	59.6	y4-44/0.225	
-532.4900	38.0	y4-44i/0.135	
-533.8000	60.6	y4-44i/0.445	
-535.3900	14.2	?	
-538.2300	549.4	?	
-539.1100	346.1	?	
-540.0200	1325.4	y4-35/-0.288	
-540.7900	28.1	y4-35i/-0.518	
-543.7500	21.6	?	
-544.9700	36.0	?	
-547.1200	188.5	?	
-547.7500	87.5	?	
-549.5600	14.3	?	
-551.7300	42.2	?	
-556.3900	26.0	?	
-557.5700	12.5	y4-18/0.236	
-558.3500	13.8	y4-17/0.032	
-560.4100	50.8	?	
-561.5300	8.9	?	
-566.4400	230.2	?	
-567.6200	128.4	?	
-568.4700	329.1	?	
-569.4300	55.6	?	
-571.4000	298.8	?	
-572.4900	36.4	?	
-573.3400	4.5	?	
-574.3600	10.5	?	
-575.4000	133.1	y4/0.055	
-576.4500	35.2	y4i/0.105	
-577.7100	45.2	?	
-578.5000	56.6	?	
-579.2900	16.5	?	
-586.5700	6.5	?	
-588.3900	111.0	?	
-589.4500	18.0	?	
-590.6900	10.4	?	
-591.4200	17.8	?	
-592.3700	10.9	?	
-593.4200	20.6	?	
-594.3700	27.0	?	
-597.5400	15.5	b5-34/0.251	
-601.7400	7.2	?	
-603.4300	27.5	a5/0.083	
-604.4700	82.2	a5i/0.123	
-605.3700	60.2	a5i/0.023	
-607.3800	28.6	?	
-623.5500	5.5	?	
-625.3300	19.9	?	
-629.5000	16.2	?	
-631.4700	20.4	b5/0.128	
-632.6000	12.5	b5i/0.258	
-636.5400	63.7	?	
-638.7600	10.0	?	
-640.4000	18.9	?	
-642.5100	24.2	?	
-643.4300	217.5	?	
-645.3600	15.5	?	
-648.4100	307.7	?	
-649.4600	906.6	b5+18/0.108	
-650.4000	167.3	b5+18i/0.048	
-653.6400	22.3	?	
-656.8600	31.2	?	
-659.5000	52.5	y5-46/-0.880	
-662.4500	18.7	y5-44/0.055	
-664.3600	23.3	?	
-667.5300	20.4	?	
-671.4600	9.2	y5-35/0.112	
-677.5000	4.7	?	
-678.5100	3.4	?	
-679.5500	19.1	?	
-681.5100	230.7	?	
-682.4300	119.3	?	
-692.7400	47.6	?	
-693.7800	13.0	?	
-698.2200	9.1	?	
-699.6100	102.4	?	
-700.6400	26.7	?	
-706.8300	8.0	y5/0.445	
-708.4800	16.1	?	
-716.3800	10.4	?	
-733.6300	18.4	?	
-756.6400	9.9	?	
-780.7200	11.1	?	
-788.4800	17.1	?	
-789.7300	18.4	?	
-814.9900	4.3	?	
-