changeset 16:457837475adc draft

Deleted selected files
author jbrayet
date Tue, 18 Aug 2015 10:14:47 -0400
parents 417f971f592d
children de5cce939dae
files Sequenza_analysis.R
diffstat 1 files changed, 0 insertions(+), 214 deletions(-) [+]
line wrap: on
line diff
--- a/Sequenza_analysis.R	Tue Aug 18 09:52:48 2015 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,214 +0,0 @@
-#!/usr/bin/env Rscript
-
-
-#parse command line
-args <- commandArgs(trailingOnly = TRUE)
-USAGE ="\n\nUSAGE: ./Sequenza_analysis.R -normal normal.mpileup -tumor tumor.mpileup -out resdir -gcContent gcContentFile -name sampleName -cellularity cellularityValue -ploidy ploidyValue\n\nkill execution"
-if("-h"%in%args | "--h"%in%args |"-help"%in%args | "--help"%in%args){
-	write(paste("\n---Help---",USAGE,sep=""),stdout())
-	quit()
-}
-if(length(args)!=14){
-	write(paste("\n---ERROR---\n\nThis script take exactly 7 arguments",USAGE,sep=""),stdout())	
-	quit()
-}
-
-#input files
-NORMALPILEUP =args[(which(args=="-normal")+1)]
-TUMORPILEUP =args[(which(args=="-tumor")+1)]
-SAMPLEID =args[(which(args=="-name")+1)]
-GCCONTENTFILE =args[(which(args=="-gcContent")+1)]
-CELLULARITY =args[(which(args=="-cellularity")+1)]
-PLOIDY =args[(which(args=="-ploidy")+1)]
-OUT_DIR =args[(which(args=="-out")+1)]
-
-###################Python PATH####################
-PYTHON_PATH = "python2.7"
-##################################################
-
-library("sequenza")
-
-#Note on the helper program sequenza-utils.py.
-UTILS =system.file("exec", "sequenza-utils.py", package="sequenza")
-
-##########################################################
-NORMALPILEUP_GZIP =NORMALPILEUP
-TUMORPILEUP_GZIP =TUMORPILEUP
-##########################################################
-
-#Generate a seqz file
-system(paste("time ",PYTHON_PATH," ",UTILS," pileup2seqz -gc ",GCCONTENTFILE," -n ",NORMALPILEUP_GZIP," -t ",TUMORPILEUP_GZIP," | gzip > ",OUT_DIR,"/out.seqz.gz",sep=""))
-system(paste("time ",PYTHON_PATH," ",UTILS," seqz-binning -w 50 -s ",OUT_DIR,"/out.seqz.gz | gzip > ",OUT_DIR,"/out.small.seqz.gz",sep=""))
-
-#### Exploring the seqz file and depth ratio normalization details
-##Read the seqz file
-data.file =paste(OUT_DIR,"/out.small.seqz.gz",sep="")
-seqz.data <- read.seqz(data.file)
-
-#Normalization of depth ratio
-gc.stats <- gc.sample.stats(data.file)
-
-gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
-
-seqz.data$adjusted.ratio <- seqz.data$depth.ratio/gc.vect[as.character(seqz.data$GC.percent)]
-
-png(paste(OUT_DIR,"/",SAMPLEID,"_gc_stat.png",sep=""),width=1000)
-    par(mfrow = c(1,2), cex = 1, las = 1, bty = 'l')
-    matplot(gc.stats$gc.values, gc.stats$raw, type = 'b', col = 1, pch = c(1, 19, 1), lty = c(2, 1, 2), xlab = 'GC content (%)', ylab = 'Uncorrected depth ratio')
-    legend('topright', legend = colnames(gc.stats$raw), pch = c(1, 19, 1))
-    hist2(seqz.data$depth.ratio, seqz.data$adjusted.ratio, breaks = prettyLog, key = vkey, panel.first = abline(0, 1, lty = 2), xlab = 'Uncorrected depth ratio', ylab = 'GC-adjusted depth ratio')
-dev.off()
-
-
-
-if (as.numeric(PLOIDY)==0){
-
-	#### Analyzing sequencing data with sequenza
-
-	##Extract the information from the seqz file.
-	test <- sequenza.extract(data.file)
-
-	#Plot chromosome view with mutations, BAF, depth ratio and segments
-	chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]], ratio.windows = test$ratio[[1]], min.N.ratio = 1, segments = test$segments[[1]], main = test$chromosomes[1])
-
-
-	#Inference of cellularity and ploidy
-	CP <- sequenza.fit(test)
-
-	#Results of model fitting
-	sequenza.results(sequenza.extract = test, cp.table = CP, sample.id =SAMPLEID, out.dir=OUT_DIR)
-
-	#Confidence intervals, confidence region and point estimate
-	cint <- get.ci(CP)
-	cp.plot(CP)
-	cp.plot.contours(CP, add = TRUE, likThresh = c(0.95))
-
-	EstimatedValues <- read.table(file=paste(OUT_DIR,"/",SAMPLEID,"_alternative_solutions.txt",sep=""),header=TRUE)
-
-	pdf(file=paste(OUT_DIR,"/",SAMPLEID,"_analyse.pdf",sep=""),height=10,width=25)
-
-		for(i in 1:length(EstimatedValues[,1])){
-
-			cellularity=EstimatedValues[i,1]
-			ploidy=EstimatedValues[i,2]
-			avg.depth.ratio=mean(test$gc$adj[,2])
-			seg.tab=na.exclude(do.call(rbind,test$segments))
-
-			cn.alleles<-baf.bayes(Bf=seg.tab$Bf,depth.ratio=seg.tab$depth.ratio,cellularity=cellularity,ploidy=ploidy,avg.depth.ratio=avg.depth.ratio)
-			seg.tab=cbind(seg.tab,cn.alleles)
-
-			write.table(seg.tab, file = paste(OUT_DIR,"/segments_",i,".txt",sep=""), col.names = TRUE, row.names = FALSE, sep = "\t")
-
-			if (i==1){
-
-				par(mfrow=c(2,1))
-
-				genome.view(seg.cn=seg.tab, info.type="CNt")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE)
-				mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = -2, outer = TRUE, cex=1.5, font=2)
-
-				genome.view(seg.cn=seg.tab, info.type="AB")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE)
-
-			}else{
-
-				genome.view(seg.cn=seg.tab, info.type="CNt")
-				mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2)
-
-				genome.view(seg.cn=seg.tab, info.type="AB")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.08),pch=15,xpd=TRUE)
-			}
-
-			sequenza:::plotRawGenome(test, cellularity = cellularity,  ploidy = ploidy)
-			mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2)
-		}
-
-	dev.off()
-	
-	cellularity <- cint$max.cellularity
-	ploidy <- cint$max.ploidy
-	avg.depth.ratio <- mean(test$gc$adj[, 2])
-	write(paste("cellularity : ",cellularity,"\nploidy : ",ploidy,"\naverage.depth.ratio : ",avg.depth.ratio,sep=""),file=paste(OUT_DIR,"/",SAMPLEID,"_cellularity_ploidy.txt",sep=""))
-
-} else {
-
-	cellularity.user <- as.numeric(CELLULARITY)
-	ploidy.user <- as.numeric(PLOIDY)
-
-	#### Analyzing sequencing data with sequenza
-
-	##Extract the information from the seqz file.
-	test <- sequenza.extract(data.file)
-	
-	#Plot chromosome view with mutations, BAF, depth ratio and segments
-	chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]], ratio.windows = test$ratio[[1]], min.N.ratio = 1, segments = test$segments[[1]], main = test$chromosomes[1])
-
-
-	#Inference of cellularity and ploidy
-	CP <- sequenza.fit(test)
-
-	#Results of model fitting
-	sequenza.results(sequenza.extract = test, cp.table = CP, sample.id=SAMPLEID, out.dir=OUT_DIR,ploidy=ploidy.user,cellularity=cellularity.user)
-
-
-	#Confidence intervals, confidence region and point estimate
-	cint <- get.ci(CP)
-	cp.plot(CP)
-	cp.plot.contours(CP, add = TRUE, likThresh = c(0.95))
-
-	EstimatedValues <- read.table(file=paste(OUT_DIR,"/",SAMPLEID,"_alternative_solutions.txt",sep=""),header=TRUE)
-	userValues=c(as.numeric(cellularity.user),as.numeric(ploidy.user),as.numeric(0.0))
-	EstimatedValues=rbind(userValues,EstimatedValues)
-
-	pdf(file=paste(OUT_DIR,"/",SAMPLEID,"_analyse.pdf",sep=""),height=10,width=25)
-
-		for(i in 1:length(EstimatedValues[,1])){
-
-			cellularity=EstimatedValues[i,1]
-			ploidy=EstimatedValues[i,2]
-			avg.depth.ratio=mean(test$gc$adj[,2])
-			seg.tab=na.exclude(do.call(rbind,test$segments))
-
-			cn.alleles<-baf.bayes(Bf=seg.tab$Bf,depth.ratio=seg.tab$depth.ratio,cellularity=cellularity,ploidy=ploidy,avg.depth.ratio=avg.depth.ratio)
-			seg.tab=cbind(seg.tab,cn.alleles)
-
-			write.table(seg.tab, file = paste(OUT_DIR,"/segments_",i,".txt",sep=""), col.names = TRUE, row.names = FALSE, sep = "\t")
-
-			if (i==1){
-
-				par(mfrow=c(2,1))
-
-				genome.view(seg.cn=seg.tab, info.type="CNt")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE)
-				mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = -2, outer = TRUE, cex=1.5, font=2)
-
-				genome.view(seg.cn=seg.tab, info.type="AB")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE)
-
-			}else{
-
-				genome.view(seg.cn=seg.tab, info.type="CNt")
-				mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2)
-
-				genome.view(seg.cn=seg.tab, info.type="AB")
-				legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.08),pch=15,xpd=TRUE)
-			}
-
-			sequenza:::plotRawGenome(test, cellularity = cellularity,  ploidy = ploidy)
-			mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2)
-		}
-
-	dev.off()
-
-	#Call CNVs and mutations using the estimated parameters
-	
-	avg.depth.ratio <- mean(test$gc$adj[, 2])
-	write(paste("cellularity : ",cellularity.user,"\nploidy : ",ploidy.user,"\naverage.depth.ratio : ",avg.depth.ratio,sep=""),file=paste(OUT_DIR,"/",SAMPLEID,"_cellularity_ploidy.txt",sep=""))
-
-
-
-}
-
-
-
-