Mercurial > repos > jbrayet > sequenza
view Sequenza_analysis.R @ 39:31adf1afb841 draft default tip
Uploaded
author | jbrayet |
---|---|
date | Mon, 24 Aug 2015 05:19:14 -0400 |
parents | de5cce939dae |
children |
line wrap: on
line source
#!/usr/bin/env Rscript #parse command line args <- commandArgs(trailingOnly = TRUE) USAGE ="\n\nUSAGE: ./Sequenza_analysis.R -normal normal.mpileup -tumor tumor.mpileup -out resdir -gcContent gcContentFile -name sampleName -cellularity cellularityValue -ploidy ploidyValue\n\nkill execution" if("-h"%in%args | "--h"%in%args |"-help"%in%args | "--help"%in%args){ write(paste("\n---Help---",USAGE,sep=""),stdout()) quit() } if(length(args)!=14){ write(paste("\n---ERROR---\n\nThis script take exactly 7 arguments",USAGE,sep=""),stdout()) quit() } #input files NORMALPILEUP =args[(which(args=="-normal")+1)] TUMORPILEUP =args[(which(args=="-tumor")+1)] SAMPLEID =args[(which(args=="-name")+1)] GCCONTENTFILE =args[(which(args=="-gcContent")+1)] CELLULARITY =args[(which(args=="-cellularity")+1)] PLOIDY =args[(which(args=="-ploidy")+1)] OUT_DIR =args[(which(args=="-out")+1)] ###################Python PATH#################### PYTHON_PATH = "python2.7" ################################################## library("sequenza") #Note on the helper program sequenza-utils.py. UTILS =system.file("exec", "sequenza-utils.py", package="sequenza") ########################################################## NORMALPILEUP_GZIP =NORMALPILEUP TUMORPILEUP_GZIP =TUMORPILEUP ########################################################## #Generate a seqz file system(paste("time ",PYTHON_PATH," ",UTILS," pileup2seqz -gc ",GCCONTENTFILE," -n ",NORMALPILEUP_GZIP," -t ",TUMORPILEUP_GZIP," | gzip > ",OUT_DIR,"/out.seqz.gz",sep="")) system(paste("time ",PYTHON_PATH," ",UTILS," seqz-binning -w 50 -s ",OUT_DIR,"/out.seqz.gz | gzip > ",OUT_DIR,"/out.small.seqz.gz",sep="")) #### Exploring the seqz file and depth ratio normalization details ##Read the seqz file data.file =paste(OUT_DIR,"/out.small.seqz.gz",sep="") seqz.data <- read.seqz(data.file) #Normalization of depth ratio gc.stats <- gc.sample.stats(data.file) gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values) seqz.data$adjusted.ratio <- seqz.data$depth.ratio/gc.vect[as.character(seqz.data$GC.percent)] png(paste(OUT_DIR,"/",SAMPLEID,"_gc_stat.png",sep=""),width=1000, type = "cairo") par(mfrow = c(1,2), cex = 1, las = 1, bty = 'l') matplot(gc.stats$gc.values, gc.stats$raw, type = 'b', col = 1, pch = c(1, 19, 1), lty = c(2, 1, 2), xlab = 'GC content (%)', ylab = 'Uncorrected depth ratio') legend('topright', legend = colnames(gc.stats$raw), pch = c(1, 19, 1)) hist2(seqz.data$depth.ratio, seqz.data$adjusted.ratio, breaks = prettyLog, key = vkey, panel.first = abline(0, 1, lty = 2), xlab = 'Uncorrected depth ratio', ylab = 'GC-adjusted depth ratio') dev.off() if (as.numeric(PLOIDY)==0){ #### Analyzing sequencing data with sequenza ##Extract the information from the seqz file. test <- sequenza.extract(data.file) #Plot chromosome view with mutations, BAF, depth ratio and segments chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]], ratio.windows = test$ratio[[1]], min.N.ratio = 1, segments = test$segments[[1]], main = test$chromosomes[1]) #Inference of cellularity and ploidy CP <- sequenza.fit(test) #Results of model fitting sequenza.results(sequenza.extract = test, cp.table = CP, sample.id =SAMPLEID, out.dir=OUT_DIR) #Confidence intervals, confidence region and point estimate cint <- get.ci(CP) cp.plot(CP) cp.plot.contours(CP, add = TRUE, likThresh = c(0.95)) EstimatedValues <- read.table(file=paste(OUT_DIR,"/",SAMPLEID,"_alternative_solutions.txt",sep=""),header=TRUE) pdf(file=paste(OUT_DIR,"/",SAMPLEID,"_analyse.pdf",sep=""),height=10,width=25) for(i in 1:length(EstimatedValues[,1])){ cellularity=EstimatedValues[i,1] ploidy=EstimatedValues[i,2] avg.depth.ratio=mean(test$gc$adj[,2]) seg.tab=na.exclude(do.call(rbind,test$segments)) cn.alleles<-baf.bayes(Bf=seg.tab$Bf,depth.ratio=seg.tab$depth.ratio,cellularity=cellularity,ploidy=ploidy,avg.depth.ratio=avg.depth.ratio) seg.tab=cbind(seg.tab,cn.alleles) write.table(seg.tab, file = paste(OUT_DIR,"/segments_",i,".txt",sep=""), col.names = TRUE, row.names = FALSE, sep = "\t") if (i==1){ par(mfrow=c(2,1)) genome.view(seg.cn=seg.tab, info.type="CNt") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE) mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = -2, outer = TRUE, cex=1.5, font=2) genome.view(seg.cn=seg.tab, info.type="AB") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE) }else{ genome.view(seg.cn=seg.tab, info.type="CNt") mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2) genome.view(seg.cn=seg.tab, info.type="AB") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.08),pch=15,xpd=TRUE) } sequenza:::plotRawGenome(test, cellularity = cellularity, ploidy = ploidy) mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2) } dev.off() cellularity <- cint$max.cellularity ploidy <- cint$max.ploidy avg.depth.ratio <- mean(test$gc$adj[, 2]) write(paste("cellularity : ",cellularity,"\nploidy : ",ploidy,"\naverage.depth.ratio : ",avg.depth.ratio,sep=""),file=paste(OUT_DIR,"/",SAMPLEID,"_cellularity_ploidy.txt",sep="")) } else { cellularity.user <- as.numeric(CELLULARITY) ploidy.user <- as.numeric(PLOIDY) #### Analyzing sequencing data with sequenza ##Extract the information from the seqz file. test <- sequenza.extract(data.file) #Plot chromosome view with mutations, BAF, depth ratio and segments chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]], ratio.windows = test$ratio[[1]], min.N.ratio = 1, segments = test$segments[[1]], main = test$chromosomes[1]) #Inference of cellularity and ploidy CP <- sequenza.fit(test) #Results of model fitting sequenza.results(sequenza.extract = test, cp.table = CP, sample.id=SAMPLEID, out.dir=OUT_DIR,ploidy=ploidy.user,cellularity=cellularity.user) #Confidence intervals, confidence region and point estimate cint <- get.ci(CP) cp.plot(CP) cp.plot.contours(CP, add = TRUE, likThresh = c(0.95)) EstimatedValues <- read.table(file=paste(OUT_DIR,"/",SAMPLEID,"_alternative_solutions.txt",sep=""),header=TRUE) userValues=c(as.numeric(cellularity.user),as.numeric(ploidy.user),as.numeric(0.0)) EstimatedValues=rbind(userValues,EstimatedValues) pdf(file=paste(OUT_DIR,"/",SAMPLEID,"_analyse.pdf",sep=""),height=10,width=25) for(i in 1:length(EstimatedValues[,1])){ cellularity=EstimatedValues[i,1] ploidy=EstimatedValues[i,2] avg.depth.ratio=mean(test$gc$adj[,2]) seg.tab=na.exclude(do.call(rbind,test$segments)) cn.alleles<-baf.bayes(Bf=seg.tab$Bf,depth.ratio=seg.tab$depth.ratio,cellularity=cellularity,ploidy=ploidy,avg.depth.ratio=avg.depth.ratio) seg.tab=cbind(seg.tab,cn.alleles) write.table(seg.tab, file = paste(OUT_DIR,"/segments_",i,".txt",sep=""), col.names = TRUE, row.names = FALSE, sep = "\t") if (i==1){ par(mfrow=c(2,1)) genome.view(seg.cn=seg.tab, info.type="CNt") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE) mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = -2, outer = TRUE, cex=1.5, font=2) genome.view(seg.cn=seg.tab, info.type="AB") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.1),pch=15,xpd=TRUE) }else{ genome.view(seg.cn=seg.tab, info.type="CNt") mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2) genome.view(seg.cn=seg.tab, info.type="AB") legend("bottomright",bty="n",c("Tumor Copy Number"),col=c("red"),inset=c(0.0,-0.08),pch=15,xpd=TRUE) } sequenza:::plotRawGenome(test, cellularity = cellularity, ploidy = ploidy) mtext(text=paste("\n",SAMPLEID," Choice ",i," ploidy=",ploidy," cellularity=",cellularity,sep=""), side = 3, line = 1, outer = TRUE, cex=1.5, font=2) } dev.off() #Call CNVs and mutations using the estimated parameters avg.depth.ratio <- mean(test$gc$adj[, 2]) write(paste("cellularity : ",cellularity.user,"\nploidy : ",ploidy.user,"\naverage.depth.ratio : ",avg.depth.ratio,sep=""),file=paste(OUT_DIR,"/",SAMPLEID,"_cellularity_ploidy.txt",sep="")) }