|
55
|
1 #!/usr/bin/env Rscript
|
|
|
2
|
|
|
3 #usage $0 STEP RIGHT chipPeaks outputFile.png output.txt [controlPeaks] [1 for pdf]
|
|
|
4 args <- commandArgs(TRUE)
|
|
|
5 #print (args)
|
|
|
6 myStep <- type.convert(args[2])
|
|
|
7 maxValue <- type.convert(args[3])
|
|
|
8
|
|
|
9 dataTable <-read.table(file=paste(args[4],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
|
10 chip.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
|
11 ifReg <- 0
|
|
|
12 if (length(unique(chip.genes.ClosestPeakDist$Reg))>1) {
|
|
|
13 ifReg <- 1
|
|
|
14 }
|
|
|
15 ifControl <- 0
|
|
|
16
|
|
|
17 #options(bitmapType='cairo')
|
|
|
18 print(installed.packages())
|
|
|
19
|
|
|
20 ifPDF <- 0
|
|
|
21 if (length(args)>=8) {
|
|
|
22 ifPDF=args[8]
|
|
|
23 }
|
|
|
24 if (length(args)==7 & args[7]==1) {
|
|
|
25 ifPDF=1
|
|
|
26 }
|
|
|
27
|
|
|
28 suppressMessages(library(Hmisc))
|
|
|
29
|
|
|
30 if (length(args)>=7 & args[7]!=1 & args[7]!=0) {
|
|
|
31 dataTable <-read.table(file=paste(args[7],".genes.ClosestPeakDist", sep=""), header=TRUE);
|
|
|
32 control.genes.ClosestPeakDist<-data.frame(dataTable)
|
|
|
33 ifControl <- 1
|
|
|
34 }
|
|
|
35 if (ifReg & ifControl) {
|
|
|
36 if (ifPDF==1) {
|
|
|
37 pdf(file = args[5], width = 19, height = 8, pointsize = 20, bg = "white")
|
|
|
38 } else {
|
|
|
39 png(filename = args[5], type = "cairo", width = 38.1 , height = 18, units = "cm", pointsize = 20, bg = "white")
|
|
|
40 plot(1:10)
|
|
|
41 }
|
|
|
42 op <- par(mfrow = c(2,3))
|
|
|
43 } else {
|
|
|
44 if (ifPDF==1) {
|
|
|
45 pdf(file = args[5], type = "cairo", width = 10, height = 13, pointsize = 20, bg = "white")
|
|
|
46 } else {
|
|
|
47 png(filename = args[5], width = 18, height = 23.3, units = "cm", pointsize = 20, bg = "white")
|
|
|
48 plot(1:10)
|
|
|
49 }
|
|
|
50 # plot(1:10)
|
|
|
51 op <- par(mfrow = c(2,1))
|
|
|
52 }
|
|
|
53 myColor <- 1
|
|
|
54 myColor[1] <- colors()[131]
|
|
|
55 myColor[2] <- "darkolivegreen3"
|
|
|
56 myColor[3] <- "azure4"
|
|
|
57 myColor[4] <- "royalblue3"
|
|
|
58 myColor[5] <- colors()[17]
|
|
|
59
|
|
|
60 myColorControl <- 1
|
|
|
61
|
|
|
62 myColorControl[1] <- colors()[24]
|
|
|
63 myColorControl[2] <- colors()[278]
|
|
|
64 myColorControl[3] <- colors()[305]
|
|
|
65 myColorControl[4] <- colors()[219]
|
|
|
66 myColorControl[5] <- colors()[343]
|
|
|
67
|
|
|
68
|
|
|
69
|
|
|
70 #for cumulative:
|
|
|
71 dist_real_f <- chip.genes.ClosestPeakDist
|
|
|
72 if (ifControl) {
|
|
|
73 dist_control_f <- control.genes.ClosestPeakDist
|
|
|
74 }
|
|
|
75 step <- myStep
|
|
|
76 lim <- maxValue
|
|
|
77 x <- 0
|
|
|
78 count <- 1
|
|
|
79 countL <-1
|
|
|
80 n.types <- 1
|
|
|
81 myLevels <- 0
|
|
|
82 countTotalCont <- 0
|
|
|
83 countTotal <-0
|
|
|
84 countLCont <- 0
|
|
|
85 cumTotalCont <- 0
|
|
|
86 if (ifReg) {
|
|
|
87 n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
|
88 myLevels <- levels(chip.genes.ClosestPeakDist$Reg)
|
|
|
89 cum = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
|
90 for (i in c(1:n.types)) {
|
|
|
91 t <- which ((dist_real_f$Reg==myLevels[i]))
|
|
|
92 countL[i] <- length(t)
|
|
|
93 }
|
|
|
94 count <-1
|
|
|
95 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
96 for (t in c(1:n.types)) {
|
|
|
97 tt <- which ((dist_real_f$Reg==myLevels[t])&(dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
98 cum[count,t] <- length(tt)
|
|
|
99 }
|
|
|
100 x[count] <- i
|
|
|
101 count <- count + 1
|
|
|
102 }
|
|
|
103 ymax <- max(cum[,1]/countL[1], na.rm=TRUE)
|
|
|
104 for (i in c(2:n.types)) {
|
|
|
105 ymax <- max(ymax,max(cum[,i]/countL[i], na.rm=TRUE))
|
|
|
106 }
|
|
|
107 myLocCol <- myColor[2]
|
|
|
108
|
|
|
109 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
|
110
|
|
|
111 plot (x,cum[,1]/countL[1] ,col = myColor[2],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
|
112 for (i in c(2:n.types)) {
|
|
|
113 colorr <- i+1
|
|
|
114 myLocCol <- c(myLocCol,myColor[colorr])
|
|
|
115 lines (x,cum[,i]/countL[i] ,col = myColor[colorr],type="l", lwd = 2)
|
|
|
116 # print (myColor[colorr])
|
|
|
117 }
|
|
|
118
|
|
|
119 gradi <- 1000
|
|
|
120 if (lim>10000) {
|
|
|
121 gradi <- 10000
|
|
|
122 }
|
|
|
123 if (lim<3000) {
|
|
|
124 gradi <- 500
|
|
|
125 }
|
|
|
126 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
127 axisxlab <- paste(axisx/1000,"", sep = "")
|
|
|
128 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
129 ymax <- max(cum[,i]/countL[i], na.rm=TRUE)
|
|
|
130
|
|
|
131 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
132
|
|
|
133 legend(lim*0.45, ymax*0.45, myLevels, cex=1, lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
134
|
|
|
135 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
136
|
|
|
137 if (ifControl) {
|
|
|
138 count <-1
|
|
|
139 n.types <- length(levels(control.genes.ClosestPeakDist$Reg))
|
|
|
140 myLevels <- levels(control.genes.ClosestPeakDist$Reg)
|
|
|
141 cumCont = matrix( 0, nrow=lim/step +1, ncol=n.types, byrow = TRUE)
|
|
|
142 for (i in c(1:n.types)) {
|
|
|
143 t <- which ((dist_control_f$Reg==myLevels[i]))
|
|
|
144 countLCont[i] <- length(t)
|
|
|
145 }
|
|
|
146 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
147 for (t in c(1:n.types)) {
|
|
|
148 tt <- which ((dist_control_f$Reg==myLevels[t])&(dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
149 cumCont[count,t] <- length(tt)
|
|
|
150 }
|
|
|
151 x[count] <- i
|
|
|
152 count <- count + 1
|
|
|
153 }
|
|
|
154 ymax <- max(cumCont[,1]/countLCont[1], na.rm=TRUE)
|
|
|
155 for (i in c(2:n.types)) {
|
|
|
156 ymax <- max(ymax,max(cumCont[,i]/countLCont[i], na.rm=TRUE))
|
|
|
157 }
|
|
|
158 myLocColCntr <- myColorControl[2]
|
|
|
159 plot (x,cumCont[,1]/countLCont[1] ,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" , ylim=c(0,ymax))
|
|
|
160 for (i in c(2:n.types)) {
|
|
|
161 colorr <- i+1
|
|
|
162 myLocColCntr <- c(myLocColCntr,myColorControl[colorr])
|
|
|
163 lines (x,cumCont[,i]/countLCont[i] ,col = myColorControl[colorr],type="l", lwd = 2)
|
|
|
164 }
|
|
|
165 if (lim>10000) {
|
|
|
166 gradi <- 10000
|
|
|
167 }
|
|
|
168 if (lim<3000) {
|
|
|
169 gradi <- 500
|
|
|
170 }
|
|
|
171 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
172 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
173 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
174 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
175 legend(lim*0.45, ymax*0.45, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
176 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
177 #real_vs_control_cumulative:
|
|
|
178 count <-1
|
|
|
179 countTotal <- length(dist_real_f$Reg)
|
|
|
180 cumTotal <- 0
|
|
|
181 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
182 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
183 cumTotal[count] <- length(t)
|
|
|
184 x[count] <- i
|
|
|
185 count <- count + 1
|
|
|
186 }
|
|
|
187 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
|
188 gradi <- 1000
|
|
|
189 if (lim>10000) {
|
|
|
190 gradi <- 10000
|
|
|
191 }
|
|
|
192 if (lim<3000) {
|
|
|
193 gradi <- 500
|
|
|
194 }
|
|
|
195 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
196 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
197 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
198 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
|
199 minor.tick(nx=5,tick.ratio=0.5)
|
|
|
200 countTotalCont <- length(dist_control_f$Reg)
|
|
|
201 cumTotalCont <- 0
|
|
|
202 count <- 1
|
|
|
203 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
204 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
205 cumTotalCont[count] <- length(t)
|
|
|
206 x[count] <- i
|
|
|
207 count <- count + 1
|
|
|
208 }
|
|
|
209 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
|
210 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
211 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
212 }
|
|
|
213 } else {
|
|
|
214 countTotal <- length(dist_real_f$Reg)
|
|
|
215 cumTotal <- 0
|
|
|
216 count <-1
|
|
|
217
|
|
|
218 gradi <- 1000
|
|
|
219 if (lim>10000) {
|
|
|
220 gradi <- 10000
|
|
|
221 }
|
|
|
222 if (lim<3000) {
|
|
|
223 gradi <- 500
|
|
|
224 }
|
|
|
225
|
|
|
226 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
227 t <- which ((dist_real_f$Dist<=i)&(dist_real_f$Dist>=-i))
|
|
|
228 cumTotal[count] <- length(t)
|
|
|
229 x[count] <- i
|
|
|
230 count <- count + 1
|
|
|
231 }
|
|
|
232 par(mar=c(5.1, 7.1, 4.1, 2.1))
|
|
|
233
|
|
|
234 plot (x,cumTotal/countTotal ,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(0, lim),xaxt="n" )
|
|
|
235 axisx <- seq(length=lim/gradi+1, from=0, by=gradi)
|
|
|
236 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
237 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
238 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (cumulative)")
|
|
|
239 ymax <- max(cumTotal/countTotal, na.rm=TRUE)
|
|
|
240 if (ifControl) {
|
|
|
241 countTotalCont <- length(dist_control_f$Reg)
|
|
|
242 cumTotalCont <- 0
|
|
|
243 count <- 1
|
|
|
244 for (i in seq(length=lim/step +1, from=0, by=step)) {
|
|
|
245 t <- which ((dist_control_f$Dist<=i)&(dist_control_f$Dist>=-i))
|
|
|
246 cumTotalCont[count] <- length(t)
|
|
|
247 x[count] <- i
|
|
|
248 count <- count + 1
|
|
|
249 }
|
|
|
250 lines (x,cumTotalCont/countTotalCont ,col = colors()[328],type="l", lwd = 2)
|
|
|
251 legend(lim*0.45, ymax*0.45, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
252 } else {
|
|
|
253 legend(lim*0.45, ymax*0.45, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
|
254 }
|
|
|
255 }
|
|
|
256
|
|
|
257 sink(args[6], append=FALSE, split=FALSE)
|
|
|
258 if (ifReg) {
|
|
|
259 if (ifControl) {
|
|
|
260 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
|
261 cat("\t")
|
|
|
262 for (i in c(1:n.types)) {
|
|
|
263 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", sep=""))
|
|
|
264 cat("\t")
|
|
|
265 }
|
|
|
266
|
|
|
267 for (i in c(1:n.types)) {
|
|
|
268 cat(paste("% ", myLevels[i]," genes w/ a peak in Control", sep=""))
|
|
|
269 cat("\t")
|
|
|
270 }
|
|
|
271 cat("\n")
|
|
|
272 for (i in c(1:length(x))) {
|
|
|
273 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
|
274 cat("\t")
|
|
|
275 for (t in c(1:n.types)) {
|
|
|
276 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
|
277 }
|
|
|
278 for (t in c(1:n.types)) {
|
|
|
279 cat(paste(cumCont[i,t]/countLCont[t],"\t", sep=""))
|
|
|
280 }
|
|
|
281 cat("\n")
|
|
|
282 }
|
|
|
283 }else {
|
|
|
284 cat (paste("Dist_TSS","\t",sep=''))
|
|
|
285 for (i in c(1:n.types)) {
|
|
|
286 cat(paste("% ", myLevels[i]," genes w/ a peak in ChIP", "\t", sep=""))
|
|
|
287 }
|
|
|
288 cat("\n")
|
|
|
289 for (i in c(1:length(x))) {
|
|
|
290 cat(paste(x[i],"\t",sep=""))
|
|
|
291 for (t in c(1:n.types)) {
|
|
|
292 cat(paste(cum[i,t]/countL[t],"\t", sep=""))
|
|
|
293 }
|
|
|
294 cat("\n")
|
|
|
295 }
|
|
|
296 }
|
|
|
297 } else {
|
|
|
298 if (ifControl) {
|
|
|
299 cat (paste("Dist_TSS","% genes w/ a peak in ChIP","% genes w/ a peak in control",sep='\t'))
|
|
|
300 cat("\n")
|
|
|
301 for (i in c(1:length(x))) {
|
|
|
302 cat(paste(x[i],cumTotal[i]/countTotal,cumTotalCont[i]/countTotalCont,sep="\t"))
|
|
|
303 cat("\n")
|
|
|
304 }
|
|
|
305 }else {
|
|
|
306 cat (paste("Dist_TSS","% genes w/ a peak in ChIP",sep='\t'))
|
|
|
307 cat("\n")
|
|
|
308 for (i in c(1:length(x))) {
|
|
|
309 cat(paste(x[i],cumTotal[i]/countTotal,sep="\t"))
|
|
|
310 cat("\n")
|
|
|
311 }
|
|
|
312
|
|
|
313 }
|
|
|
314 }
|
|
|
315
|
|
|
316
|
|
|
317 #stop sinking:
|
|
|
318 sink()
|
|
|
319
|
|
|
320 #around TSS:
|
|
|
321 lim <- maxValue
|
|
|
322 step <- myStep
|
|
|
323 my_breaks <- seq(length=lim/step*2 +1, from=-lim, by=step)
|
|
|
324 chip.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
|
325 dist_real_f <- chip.genes
|
|
|
326 if (ifControl) {
|
|
|
327 control.genes <- read.table(file=paste(args[4],".genes", sep=""), header=TRUE) ;
|
|
|
328 dist_control_f<-data.frame(control.genes)
|
|
|
329 }
|
|
|
330 if (ifReg) {
|
|
|
331 #n.types <- length(levels(chip.genes.ClosestPeakDist$Reg))
|
|
|
332 #myLevels <- levels(dist_real_f$Reg)
|
|
|
333
|
|
|
334 t<- which (dist_real_f$Reg==myLevels[1])
|
|
|
335 values_real <-dist_real_f$Dist[t]
|
|
|
336 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
337 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
338 for (i in c(2:n.types)) {
|
|
|
339 t<- which (dist_real_f$Reg==myLevels[i])
|
|
|
340 values_real <-dist_real_f$Dist[t]
|
|
|
341 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
342 ymax <- max(ymax,max(hTSSreal$density, na.rm=TRUE))
|
|
|
343 }
|
|
|
344
|
|
|
345
|
|
|
346 t<- which (dist_real_f$Reg==myLevels[1])
|
|
|
347 values_real <-dist_real_f$Dist[t]
|
|
|
348 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
349 plot (hTSSreal$mids,hTSSreal$density,col = myLocCol[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax), xaxt="n" )
|
|
|
350
|
|
|
351 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
352
|
|
|
353 for (i in c(2:n.types)) {
|
|
|
354 t<- which (dist_real_f$Reg==myLevels[i])
|
|
|
355 values_real <-dist_real_f$Dist[t]
|
|
|
356 hTSSreal = hist(values_real,plot=FALSE,breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
357 lines (hTSSreal$mids,hTSSreal$density,col = myLocCol[i],type="l", lwd = 2)
|
|
|
358 }
|
|
|
359 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocCol, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
360
|
|
|
361 gradi <- 1000
|
|
|
362 if (lim>10000) {
|
|
|
363 gradi <- 10000
|
|
|
364 }
|
|
|
365 if (lim<3000) {
|
|
|
366 gradi <- 500
|
|
|
367 }
|
|
|
368
|
|
|
369 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
370 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
371 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
372
|
|
|
373
|
|
|
374 #minor.tick(nx=10,tick.ratio=0.5)
|
|
|
375 if (ifControl) {
|
|
|
376 t<- which (dist_control_f$Reg==myLevels[1])
|
|
|
377 values_control <-dist_control_f$Dist[t]
|
|
|
378 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
379 ymax <- max(hTSScontrol$density, na.rm=TRUE)
|
|
|
380 for (i in c(2:n.types)) {
|
|
|
381 t<- which (dist_control_f$Reg==myLevels[i])
|
|
|
382 values_control <-dist_control_f$Dist[t]
|
|
|
383 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
384 ymax <- max(ymax,max(hTSScontrol$density, na.rm=TRUE))
|
|
|
385 }
|
|
|
386 t<- which (dist_control_f$Reg==myLevels[1])
|
|
|
387 values_control <-dist_control_f$Dist[t]
|
|
|
388 hTSScontrol= hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
389 plot (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),ylim = c(0, ymax),xaxt="n" )
|
|
|
390 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
391 for (i in c(2:n.types)) {
|
|
|
392 t<- which (dist_control_f$Reg==myLevels[i])
|
|
|
393 values_control <-dist_control_f$Dist[t]
|
|
|
394 hTSScontrol = hist(values_control,plot=FALSE,breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
395 lines (hTSScontrol$mids,hTSScontrol$density,col = myLocColCntr[i],type="l", lwd = 2)
|
|
|
396 }
|
|
|
397
|
|
|
398 gradi <- 1000
|
|
|
399 if (lim>10000) {
|
|
|
400 gradi <- 10000
|
|
|
401 }
|
|
|
402 if (lim<3000) {
|
|
|
403 gradi <- 500
|
|
|
404 }
|
|
|
405
|
|
|
406 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
407 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
408 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
409
|
|
|
410 legend(lim*0.1, ymax*0.9, myLevels, cex=1 , lwd = 2, bty = "n", col = myLocColCntr, lty = c(1), pt.bg= c(myLocCol) , merge = TRUE)
|
|
|
411
|
|
|
412 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
413 #control vs real
|
|
|
414 values_real <-dist_real_f$Dist
|
|
|
415 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
416 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
|
417 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
418 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
419 values_control <-dist_control_f$Dist
|
|
|
420 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
421 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
|
422 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
423
|
|
|
424 gradi <- 1000
|
|
|
425 if (lim>10000) {
|
|
|
426 gradi <- 10000
|
|
|
427 }
|
|
|
428 if (lim<3000) {
|
|
|
429 gradi <- 500
|
|
|
430 }
|
|
|
431
|
|
|
432 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
433 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
434 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
435
|
|
|
436
|
|
|
437
|
|
|
438 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
439 }
|
|
|
440 } else {
|
|
|
441 values_real <-dist_real_f$Dist
|
|
|
442 hTSSreal = hist(values_real, plot=FALSE, breaks = c(min(values_real),my_breaks,max(values_real)) )
|
|
|
443 plot (hTSSreal$mids,hTSSreal$density,col = myColor[1],type="l", main="",xlab="",ylab="", lwd = 2, xlim = c(-lim, lim),xaxt="n")
|
|
|
444 title( main="",xlab="Distance from TSS (Kb)",ylab="Proportion of genes with a peak\nat a given distance (density)")
|
|
|
445 ymax <- max(hTSSreal$density, na.rm=TRUE)
|
|
|
446 if (ifControl) {
|
|
|
447 values_control <-dist_control_f$Dist
|
|
|
448 hTSScontrol = hist(values_control, plot=FALSE, breaks = c(min(values_control),my_breaks,max(values_control)) )
|
|
|
449 lines (hTSScontrol$mids,hTSScontrol$density,col = colors()[328],type="l", lwd = 2)
|
|
|
450 legend(lim*0.2, ymax*0.9, c("ChIP","Control"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1], colors()[328]), lty = c(1), pt.bg= c(myColor[1], colors()[328]) , merge = TRUE)
|
|
|
451 } else {
|
|
|
452 legend(lim*0.2, ymax*0.9, c("ChIP"), cex=1 , lwd = 2, bty = "n", col = c(myColor[1]), lty = c(1), pt.bg= c(myColor[1]) , merge = TRUE)
|
|
|
453 }
|
|
|
454
|
|
|
455 gradi <- 1000
|
|
|
456 if (lim>10000) {
|
|
|
457 gradi <- 10000
|
|
|
458 }
|
|
|
459 if (lim<3000) {
|
|
|
460 gradi <- 500
|
|
|
461 }
|
|
|
462
|
|
|
463 axisx <- seq(length=2*lim/gradi+1, from=-lim, by=gradi)
|
|
|
464 axisxlab <- paste(axisx/1000, sep = "")
|
|
|
465 axis(1, at=axisx,labels=axisxlab , las=1, cex.axis=1)
|
|
|
466
|
|
|
467
|
|
|
468 # minor.tick(nx=10,tick.ratio=0.5)
|
|
|
469 }
|
|
|
470 suppressMessages(dev.off())
|
|
|
471 q();
|
|
|
472 cat (paste("peak height","# peaks in ChIP","# peaks in Control","#control/chip","\n",sep='\t'))
|
|
|
473 for (xval in c(minValue:maxValue)) {
|
|
|
474 for (i in (1:length(chipHist$mids))) {
|
|
|
475 if (xval==chipHist$mids[i]) {
|
|
|
476 ychip <- chipHist$counts[i]
|
|
|
477 }
|
|
|
478 }
|
|
|
479 for (i in (1:length(controlHist$mids))) {
|
|
|
480 if (xval==controlHist$mids[i]) {
|
|
|
481 ycontrol <- controlHist$counts[i]
|
|
|
482 }
|
|
|
483 }
|
|
|
484 cat (paste(xval,ychip,ycontrol,ycontrol/ychip,"\n",sep='\t'))
|
|
|
485 }
|