diff cca.xml @ 1:2e7bc1bb2dbe draft default tip

Uploaded
author iuc
date Fri, 09 Jan 2015 12:56:07 -0500
parents ffcdde989859
children
line wrap: on
line diff
--- a/cca.xml	Tue Jul 29 06:30:45 2014 -0400
+++ b/cca.xml	Fri Jan 09 12:56:07 2015 -0500
@@ -1,97 +1,101 @@
-<tool id="cca1" name="Canonical Correlation Analysis" version="1.1.0">
-    <description> </description>
-    <expand macro="requirements" />
-    <macros>
-        <import>statistic_tools_macros.xml</import>
-    </macros>
-    <command interpreter="python">
-        cca.py 
-          $input1
-          $x_cols
-          $y_cols
-          $x_scale
-          $y_scale
-          $std_scores
-          $out_file1
-          $out_file2
-    </command>
-  <inputs>
-    <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/>
-    <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
-        <validator type="no_options" message="Please select at least one column."/>
-    </param>
-    <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
-        <validator type="no_options" message="Please select at least one column."/>
-    </param>
-    <param name="x_scale" type="select" label="Type of Scaling for X variables" help="Can be used to center and/or scale variables">
-        <option value="none" selected="true">None</option>
-        <option value="center">Center only</option>
-        <option value="scale">Scale only</option>
-        <option value="both">Center and Scale</option>
-    </param>
-    <param name="y_scale" type="select" label="Type of Scaling for Y variables" help="Can be used to center and/or scale variables">
-        <option value="none" selected="true">None</option>
-        <option value="center">Center only</option>
-        <option value="scale">Scale only</option>
-        <option value="both">Center and Scale</option>
-    </param>
-    <param name="std_scores" type="select" label="Report standardized scores?" help="Selecting 'Yes' will rescale scores (and coefficients) to produce scores of unit variance">
-        <option value="no" selected="true">No</option>
-        <option value="yes">Yes</option>
-    </param>
-  </inputs>
-  <outputs>
-    <data format="input" name="out_file1" metadata_source="input1" />
-    <data format="pdf" name="out_file2" />
-  </outputs>
-  <tests>
-    <test>
-        <param name="input1" value="iris.tabular"/>
-        <param name="x_cols" value="3,4"/>
-        <param name="y_cols" value="1,2"/>
-        <param name="x_scale" value="both"/>
-        <param name="y_scale" value="scale"/>
-        <param name="std_scores" value="yes"/>
-        <output name="out_file1" file="cca_out1.tabular"/>
-        <output name="out_file2" file="cca_out2.pdf"/>
-    </test>
-  </tests>
-  <help>
-
-
-.. class:: infomark
-
-**TIP:** If your data is not TAB delimited, use *Edit Datasets-&gt;Convert characters*
-
------
-
-.. class:: infomark
-
-**What it does**
-
-This tool uses functions from 'yacca' library from R statistical package to perform Canonical Correlation Analysis (CCA) on the input data. 
-It outputs two files, one containing the summary statistics of the performed CCA, and the other containing helioplots, which display structural loadings of X and Y variables on different canonical components.   
-
-*Carter T. Butts (2009). yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.*
-
------
-
-.. class:: warningmark
-
-**Note**
-
-- This tool currently treats all predictor and response variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results.
-
-- Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.
-
-- The summary statistics in the output are described below:
-
-  - correlation: Canonical correlation between the canonical variates (i.e. transformed variables)
-  - F-statistic: F-value obtained from F Test for Canonical Correlations Using Rao's Approximation
-  - p-value: denotes significance of canonical correlations
-  - Coefficients: represent the coefficients of X and Y variables on each canonical variate
-  - Loadings: represent the correlations between the original variables in each set and their respective canonical variates 
-  - CrossLoadings: represent the correlations between the original variables in each set and the opposite canonical variates 
-  
-  </help>
-</tool>
+<tool id="cca1" name="Canonical Correlation Analysis" version="1.1.0">
+    <description> </description>
+    <expand macro="requirements" />
+    <macros>
+        <import>statistic_tools_macros.xml</import>
+    </macros>
+    <command interpreter="python">
+<![CDATA[
+        cca.py
+          $input1
+          $x_cols
+          $y_cols
+          $x_scale
+          $y_scale
+          $std_scores
+          $out_file1
+          $out_file2
+]]>
+    </command>
+  <inputs>
+    <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/>
+    <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
+        <validator type="no_options" message="Please select at least one column."/>
+    </param>
+    <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
+        <validator type="no_options" message="Please select at least one column."/>
+    </param>
+    <param name="x_scale" type="select" label="Type of Scaling for X variables" help="Can be used to center and/or scale variables">
+        <option value="none" selected="true">None</option>
+        <option value="center">Center only</option>
+        <option value="scale">Scale only</option>
+        <option value="both">Center and Scale</option>
+    </param>
+    <param name="y_scale" type="select" label="Type of Scaling for Y variables" help="Can be used to center and/or scale variables">
+        <option value="none" selected="true">None</option>
+        <option value="center">Center only</option>
+        <option value="scale">Scale only</option>
+        <option value="both">Center and Scale</option>
+    </param>
+    <param name="std_scores" type="select" label="Report standardized scores?" help="Selecting 'Yes' will rescale scores (and coefficients) to produce scores of unit variance">
+        <option value="no" selected="true">No</option>
+        <option value="yes">Yes</option>
+    </param>
+  </inputs>
+  <outputs>
+    <data format="input" name="out_file1" metadata_source="input1" />
+    <data format="pdf" name="out_file2" />
+  </outputs>
+  <tests>
+    <test>
+        <param name="input1" value="iris.tabular"/>
+        <param name="x_cols" value="3,4"/>
+        <param name="y_cols" value="1,2"/>
+        <param name="x_scale" value="both"/>
+        <param name="y_scale" value="scale"/>
+        <param name="std_scores" value="yes"/>
+        <output name="out_file1" file="cca_out1.tabular"/>
+        <output name="out_file2" file="cca_out2.pdf"/>
+    </test>
+  </tests>
+  <help>
+<![CDATA[
+
+
+.. class:: infomark
+
+**TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters*
+
+-----
+
+.. class:: infomark
+
+**What it does**
+
+This tool uses functions from 'yacca' library from R statistical package to perform Canonical Correlation Analysis (CCA) on the input data.
+It outputs two files, one containing the summary statistics of the performed CCA, and the other containing helioplots, which display structural loadings of X and Y variables on different canonical components.
+
+*Carter T. Butts (2009). yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.*
+
+-----
+
+.. class:: warningmark
+
+**Note**
+
+- This tool currently treats all predictor and response variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results.
+
+- Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.
+
+- The summary statistics in the output are described below:
+
+  - correlation: Canonical correlation between the canonical variates (i.e. transformed variables)
+  - F-statistic: F-value obtained from F Test for Canonical Correlations Using Rao's Approximation
+  - p-value: denotes significance of canonical correlations
+  - Coefficients: represent the coefficients of X and Y variables on each canonical variate
+  - Loadings: represent the correlations between the original variables in each set and their respective canonical variates
+  - CrossLoadings: represent the correlations between the original variables in each set and the opposite canonical variates
+
+]]>
+  </help>
+</tool>