1
|
1 <tool id="cca1" name="Canonical Correlation Analysis" version="1.1.0">
|
|
2 <description> </description>
|
|
3 <expand macro="requirements" />
|
|
4 <macros>
|
|
5 <import>statistic_tools_macros.xml</import>
|
|
6 </macros>
|
|
7 <command interpreter="python">
|
|
8 <![CDATA[
|
|
9 cca.py
|
|
10 $input1
|
|
11 $x_cols
|
|
12 $y_cols
|
|
13 $x_scale
|
|
14 $y_scale
|
|
15 $std_scores
|
|
16 $out_file1
|
|
17 $out_file2
|
|
18 ]]>
|
|
19 </command>
|
|
20 <inputs>
|
|
21 <param format="tabular" name="input1" type="data" label="Select data" help="Dataset missing? See TIP below."/>
|
|
22 <param name="x_cols" label="Select columns containing X variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
|
|
23 <validator type="no_options" message="Please select at least one column."/>
|
|
24 </param>
|
|
25 <param name="y_cols" label="Select columns containing Y variables " type="data_column" data_ref="input1" numerical="True" multiple="true" >
|
|
26 <validator type="no_options" message="Please select at least one column."/>
|
|
27 </param>
|
|
28 <param name="x_scale" type="select" label="Type of Scaling for X variables" help="Can be used to center and/or scale variables">
|
|
29 <option value="none" selected="true">None</option>
|
|
30 <option value="center">Center only</option>
|
|
31 <option value="scale">Scale only</option>
|
|
32 <option value="both">Center and Scale</option>
|
|
33 </param>
|
|
34 <param name="y_scale" type="select" label="Type of Scaling for Y variables" help="Can be used to center and/or scale variables">
|
|
35 <option value="none" selected="true">None</option>
|
|
36 <option value="center">Center only</option>
|
|
37 <option value="scale">Scale only</option>
|
|
38 <option value="both">Center and Scale</option>
|
|
39 </param>
|
|
40 <param name="std_scores" type="select" label="Report standardized scores?" help="Selecting 'Yes' will rescale scores (and coefficients) to produce scores of unit variance">
|
|
41 <option value="no" selected="true">No</option>
|
|
42 <option value="yes">Yes</option>
|
|
43 </param>
|
|
44 </inputs>
|
|
45 <outputs>
|
|
46 <data format="input" name="out_file1" metadata_source="input1" />
|
|
47 <data format="pdf" name="out_file2" />
|
|
48 </outputs>
|
|
49 <tests>
|
|
50 <test>
|
|
51 <param name="input1" value="iris.tabular"/>
|
|
52 <param name="x_cols" value="3,4"/>
|
|
53 <param name="y_cols" value="1,2"/>
|
|
54 <param name="x_scale" value="both"/>
|
|
55 <param name="y_scale" value="scale"/>
|
|
56 <param name="std_scores" value="yes"/>
|
|
57 <output name="out_file1" file="cca_out1.tabular"/>
|
|
58 <output name="out_file2" file="cca_out2.pdf"/>
|
|
59 </test>
|
|
60 </tests>
|
|
61 <help>
|
|
62 <![CDATA[
|
|
63
|
|
64
|
|
65 .. class:: infomark
|
|
66
|
|
67 **TIP:** If your data is not TAB delimited, use *Edit Datasets->Convert characters*
|
|
68
|
|
69 -----
|
|
70
|
|
71 .. class:: infomark
|
|
72
|
|
73 **What it does**
|
|
74
|
|
75 This tool uses functions from 'yacca' library from R statistical package to perform Canonical Correlation Analysis (CCA) on the input data.
|
|
76 It outputs two files, one containing the summary statistics of the performed CCA, and the other containing helioplots, which display structural loadings of X and Y variables on different canonical components.
|
|
77
|
|
78 *Carter T. Butts (2009). yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.*
|
|
79
|
|
80 -----
|
|
81
|
|
82 .. class:: warningmark
|
|
83
|
|
84 **Note**
|
|
85
|
|
86 - This tool currently treats all predictor and response variables as continuous numeric variables. Running the tool on categorical variables might result in incorrect results.
|
|
87
|
|
88 - Rows containing non-numeric (or missing) data in any of the chosen columns will be skipped from the analysis.
|
|
89
|
|
90 - The summary statistics in the output are described below:
|
|
91
|
|
92 - correlation: Canonical correlation between the canonical variates (i.e. transformed variables)
|
|
93 - F-statistic: F-value obtained from F Test for Canonical Correlations Using Rao's Approximation
|
|
94 - p-value: denotes significance of canonical correlations
|
|
95 - Coefficients: represent the coefficients of X and Y variables on each canonical variate
|
|
96 - Loadings: represent the correlations between the original variables in each set and their respective canonical variates
|
|
97 - CrossLoadings: represent the correlations between the original variables in each set and the opposite canonical variates
|
|
98
|
|
99 ]]>
|
|
100 </help>
|
|
101 </tool>
|