diff logistic_regression_vif.py @ 0:ffcdde989859 draft

Uploaded
author iuc
date Tue, 29 Jul 2014 06:30:45 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/logistic_regression_vif.py	Tue Jul 29 06:30:45 2014 -0400
@@ -0,0 +1,229 @@
+#!/usr/bin/env python
+
+#from galaxy import eggs
+import sys, string
+#from rpy import *
+import rpy2.robjects as robjects
+import rpy2.rlike.container as rlc
+import rpy2.rinterface as ri
+r = robjects.r
+import numpy
+
+def stop_err(msg):
+    sys.stderr.write(msg)
+    sys.exit()
+
+infile = sys.argv[1]
+y_col = int(sys.argv[2])-1
+x_cols = sys.argv[3].split(',')
+outfile = sys.argv[4]
+
+
+print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
+fout = open(outfile,'w')
+elems = []
+for i, line in enumerate( file ( infile )):
+    line = line.rstrip('\r\n')
+    if len( line )>0 and not line.startswith( '#' ):
+        elems = line.split( '\t' )
+        break 
+    if i == 30:
+        break # Hopefully we'll never get here...
+
+if len( elems )<1:
+    stop_err( "The data in your input dataset is either missing or not formatted properly." )
+
+y_vals = []
+x_vals = []
+x_vector = []
+for k,col in enumerate(x_cols):
+    x_cols[k] = int(col)-1
+    x_vals.append([])
+
+NA = 'NA'
+for ind,line in enumerate( file( infile )):
+    if line and not line.startswith( '#' ):
+        try:
+            fields = line.split("\t")
+            try:
+                yval = float(fields[y_col])
+            except:
+                yval = r('NA')
+            y_vals.append(yval)
+            for k,col in enumerate(x_cols):
+                try:
+                    xval = float(fields[col])
+                except:
+                    xval = r('NA')
+                x_vals[k].append(xval)
+                x_vector.append(xval)
+        except Exception, e:
+            print e
+            pass
+
+#x_vals1 = numpy.asarray(x_vals).transpose()
+
+check1=0
+check0=0
+for i in y_vals:
+    if i == 1:
+        check1=1
+    if i == 0:
+        check0=1
+if check1==0 or check0==0:
+    sys.exit("Warning: logistic regression must have at least two classes")
+
+for i in y_vals:
+    if i not in [1,0,r('NA')]:
+        print >>fout, str(i)
+        sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.")
+    
+    
+#dat= r.list(x=array(x_vals1), y=y_vals)
+novif=0
+#set_default_mode(NO_CONVERSION)
+#try:
+#    linear_model = r.glm(r("y ~ x"), data = r.na_exclude(dat),family="binomial")
+#    #r('library(car)')
+#    #r.assign('dat',dat)
+#    #r.assign('ncols',len(x_cols))
+#    #r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')).as_py()
+#   
+#except RException, rex:
+#    stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
+
+fv = robjects.FloatVector(x_vector)
+m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
+# ensure order for generating formula
+od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
+dat = robjects.DataFrame(od)
+# convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
+formula = ' + '.join(dat.names).replace('+','~',1)
+print formula
+try:
+    linear_model = r.glm(formula,  data =  r['na.exclude'](dat), family="binomial")
+except Exception, rex:
+    stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
+
+if len(x_cols)>1:
+    try:
+        r('library(car)')
+        r.assign('dat',dat)
+        r.assign('ncols',len(x_cols))
+        #vif=r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")'))
+        od2 = rlc.OrdDict([('datx', m)])
+        glm_data_frame = robjects.DataFrame(od2)
+        glm_result = r.glm("dat$y ~ .", data = r['na.exclude'](glm_data_frame),family="binomial")
+        print 'Have glm'
+        vif = r.vif(glm_result)
+    except Exception, rex:        
+        print rex
+else:
+    novif=1
+    
+#set_default_mode(BASIC_CONVERSION)
+
+#coeffs=linear_model.as_py()['coefficients']
+coeffs=linear_model.rx2('coefficients')
+#null_deviance=linear_model.as_py()['null.deviance']
+null_deviance=linear_model.rx2('null.deviance')[0]
+#residual_deviance=linear_model.as_py()['deviance']
+residual_deviance=linear_model.rx2('deviance')[0]
+#yintercept= coeffs['(Intercept)']
+yintercept= coeffs.rx2('(Intercept)')[0]
+
+summary = r.summary(linear_model)
+#co = summary.get('coefficients', 'NA')
+co = summary.rx2("coefficients")
+print co
+"""
+if len(co) != len(x_vals)+1:
+    stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.")
+"""
+
+try:
+    yintercept = r.round(float(yintercept), digits=10)[0]
+    #pvaly = r.round(float(co[0][3]), digits=10)
+    pvaly = r.round(float(co.rx(1,4)[0]), digits=10)[0]
+except Exception, e:
+    print str(e)
+    pass
+print >>fout, "response column\tc%d" %(y_col+1)
+tempP=[]
+for i in x_cols:
+    tempP.append('c'+str(i+1))
+tempP=','.join(tempP)
+print >>fout, "predictor column(s)\t%s" %(tempP)
+print >>fout, "Y-intercept\t%s" %(yintercept)
+print >>fout, "p-value (Y-intercept)\t%s" %(pvaly)
+
+print coeffs
+if len(x_vals) == 1:    #Simple linear  regression case with 1 predictor variable
+    try:
+        #slope = r.round(float(coeffs['x']), digits=10)
+        raw_slope = coeffs.rx2('x')[0]
+        slope = r.round(float(raw_slope), digits=10)[0] 
+    except:
+        slope = 'NA'
+    try:
+        #pval = r.round(float(co[1][3]), digits=10)
+        pval = r.round(float(co.rx2(2,4)[0]), digits=10)[0]
+    except:
+        pval = 'NA'
+    print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope)
+    print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval)
+else:    #Multiple regression case with >1 predictors
+    ind=1
+    #while ind < len(coeffs.keys()):
+    print len(coeffs.names)
+    while ind < len(coeffs.names):
+        try:
+            #slope = r.round(float(coeffs['x'+str(ind)]), digits=10)
+            raw_slope = coeffs.rx2('x.' + str(ind))[0]
+            slope = r.round(float(raw_slope), digits=10)[0]
+        except:
+            slope = 'NA'
+        print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope)
+
+        try:
+            #pval = r.round(float(co[ind][3]), digits=10)
+            pval = r.round(float(co.rx2(ind+1, 4)[0]), digits=10)[0]
+        except:
+            pval = 'NA'
+        print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval)
+        ind+=1
+
+#rsq = summary.get('r.squared','NA')
+rsq = summary.rx2('r.squared')
+if rsq == ri.RNULLType():
+    rsq = 'NA'
+else:
+    rsq = rsq[0]
+
+
+try:
+    #rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)
+    rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)[0]
+    #null_deviance= r.round(float(null_deviance), digits=5)
+    null_deviance= r.round(float(null_deviance), digits=5)[0]
+    #residual_deviance= r.round(float(residual_deviance), digits=5)
+    residual_deviance= r.round(float(residual_deviance), digits=5)[0]
+    
+except:
+    pass
+
+print >>fout, "Null deviance\t%s" %(null_deviance)
+
+print >>fout, "Residual deviance\t%s" %(residual_deviance)
+print >>fout, "pseudo R-squared\t%s" %(rsq)
+print >>fout, "\n"
+print >>fout, 'vif'
+
+if novif==0:
+    #py_vif=vif.as_py()
+    count=0
+    for i in sorted(vif.names):
+        print >>fout,'c'+str(x_cols[count]+1) ,str(vif.rx2(i)[0])
+        count+=1
+elif novif==1:
+    print >>fout, "vif can calculate only when model have more than 1 predictor"