Mercurial > repos > iuc > rpy_statistics_collection
comparison logistic_regression_vif.py @ 0:ffcdde989859 draft
Uploaded
author | iuc |
---|---|
date | Tue, 29 Jul 2014 06:30:45 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ffcdde989859 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 #from galaxy import eggs | |
4 import sys, string | |
5 #from rpy import * | |
6 import rpy2.robjects as robjects | |
7 import rpy2.rlike.container as rlc | |
8 import rpy2.rinterface as ri | |
9 r = robjects.r | |
10 import numpy | |
11 | |
12 def stop_err(msg): | |
13 sys.stderr.write(msg) | |
14 sys.exit() | |
15 | |
16 infile = sys.argv[1] | |
17 y_col = int(sys.argv[2])-1 | |
18 x_cols = sys.argv[3].split(',') | |
19 outfile = sys.argv[4] | |
20 | |
21 | |
22 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
23 fout = open(outfile,'w') | |
24 elems = [] | |
25 for i, line in enumerate( file ( infile )): | |
26 line = line.rstrip('\r\n') | |
27 if len( line )>0 and not line.startswith( '#' ): | |
28 elems = line.split( '\t' ) | |
29 break | |
30 if i == 30: | |
31 break # Hopefully we'll never get here... | |
32 | |
33 if len( elems )<1: | |
34 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
35 | |
36 y_vals = [] | |
37 x_vals = [] | |
38 x_vector = [] | |
39 for k,col in enumerate(x_cols): | |
40 x_cols[k] = int(col)-1 | |
41 x_vals.append([]) | |
42 | |
43 NA = 'NA' | |
44 for ind,line in enumerate( file( infile )): | |
45 if line and not line.startswith( '#' ): | |
46 try: | |
47 fields = line.split("\t") | |
48 try: | |
49 yval = float(fields[y_col]) | |
50 except: | |
51 yval = r('NA') | |
52 y_vals.append(yval) | |
53 for k,col in enumerate(x_cols): | |
54 try: | |
55 xval = float(fields[col]) | |
56 except: | |
57 xval = r('NA') | |
58 x_vals[k].append(xval) | |
59 x_vector.append(xval) | |
60 except Exception, e: | |
61 print e | |
62 pass | |
63 | |
64 #x_vals1 = numpy.asarray(x_vals).transpose() | |
65 | |
66 check1=0 | |
67 check0=0 | |
68 for i in y_vals: | |
69 if i == 1: | |
70 check1=1 | |
71 if i == 0: | |
72 check0=1 | |
73 if check1==0 or check0==0: | |
74 sys.exit("Warning: logistic regression must have at least two classes") | |
75 | |
76 for i in y_vals: | |
77 if i not in [1,0,r('NA')]: | |
78 print >>fout, str(i) | |
79 sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") | |
80 | |
81 | |
82 #dat= r.list(x=array(x_vals1), y=y_vals) | |
83 novif=0 | |
84 #set_default_mode(NO_CONVERSION) | |
85 #try: | |
86 # linear_model = r.glm(r("y ~ x"), data = r.na_exclude(dat),family="binomial") | |
87 # #r('library(car)') | |
88 # #r.assign('dat',dat) | |
89 # #r.assign('ncols',len(x_cols)) | |
90 # #r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')).as_py() | |
91 # | |
92 #except RException, rex: | |
93 # stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
94 | |
95 fv = robjects.FloatVector(x_vector) | |
96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
97 # ensure order for generating formula | |
98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
99 dat = robjects.DataFrame(od) | |
100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
101 formula = ' + '.join(dat.names).replace('+','~',1) | |
102 print formula | |
103 try: | |
104 linear_model = r.glm(formula, data = r['na.exclude'](dat), family="binomial") | |
105 except Exception, rex: | |
106 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
107 | |
108 if len(x_cols)>1: | |
109 try: | |
110 r('library(car)') | |
111 r.assign('dat',dat) | |
112 r.assign('ncols',len(x_cols)) | |
113 #vif=r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')) | |
114 od2 = rlc.OrdDict([('datx', m)]) | |
115 glm_data_frame = robjects.DataFrame(od2) | |
116 glm_result = r.glm("dat$y ~ .", data = r['na.exclude'](glm_data_frame),family="binomial") | |
117 print 'Have glm' | |
118 vif = r.vif(glm_result) | |
119 except Exception, rex: | |
120 print rex | |
121 else: | |
122 novif=1 | |
123 | |
124 #set_default_mode(BASIC_CONVERSION) | |
125 | |
126 #coeffs=linear_model.as_py()['coefficients'] | |
127 coeffs=linear_model.rx2('coefficients') | |
128 #null_deviance=linear_model.as_py()['null.deviance'] | |
129 null_deviance=linear_model.rx2('null.deviance')[0] | |
130 #residual_deviance=linear_model.as_py()['deviance'] | |
131 residual_deviance=linear_model.rx2('deviance')[0] | |
132 #yintercept= coeffs['(Intercept)'] | |
133 yintercept= coeffs.rx2('(Intercept)')[0] | |
134 | |
135 summary = r.summary(linear_model) | |
136 #co = summary.get('coefficients', 'NA') | |
137 co = summary.rx2("coefficients") | |
138 print co | |
139 """ | |
140 if len(co) != len(x_vals)+1: | |
141 stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
142 """ | |
143 | |
144 try: | |
145 yintercept = r.round(float(yintercept), digits=10)[0] | |
146 #pvaly = r.round(float(co[0][3]), digits=10) | |
147 pvaly = r.round(float(co.rx(1,4)[0]), digits=10)[0] | |
148 except Exception, e: | |
149 print str(e) | |
150 pass | |
151 print >>fout, "response column\tc%d" %(y_col+1) | |
152 tempP=[] | |
153 for i in x_cols: | |
154 tempP.append('c'+str(i+1)) | |
155 tempP=','.join(tempP) | |
156 print >>fout, "predictor column(s)\t%s" %(tempP) | |
157 print >>fout, "Y-intercept\t%s" %(yintercept) | |
158 print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) | |
159 | |
160 print coeffs | |
161 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
162 try: | |
163 #slope = r.round(float(coeffs['x']), digits=10) | |
164 raw_slope = coeffs.rx2('x')[0] | |
165 slope = r.round(float(raw_slope), digits=10)[0] | |
166 except: | |
167 slope = 'NA' | |
168 try: | |
169 #pval = r.round(float(co[1][3]), digits=10) | |
170 pval = r.round(float(co.rx2(2,4)[0]), digits=10)[0] | |
171 except: | |
172 pval = 'NA' | |
173 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
174 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
175 else: #Multiple regression case with >1 predictors | |
176 ind=1 | |
177 #while ind < len(coeffs.keys()): | |
178 print len(coeffs.names) | |
179 while ind < len(coeffs.names): | |
180 try: | |
181 #slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
182 raw_slope = coeffs.rx2('x.' + str(ind))[0] | |
183 slope = r.round(float(raw_slope), digits=10)[0] | |
184 except: | |
185 slope = 'NA' | |
186 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) | |
187 | |
188 try: | |
189 #pval = r.round(float(co[ind][3]), digits=10) | |
190 pval = r.round(float(co.rx2(ind+1, 4)[0]), digits=10)[0] | |
191 except: | |
192 pval = 'NA' | |
193 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
194 ind+=1 | |
195 | |
196 #rsq = summary.get('r.squared','NA') | |
197 rsq = summary.rx2('r.squared') | |
198 if rsq == ri.RNULLType(): | |
199 rsq = 'NA' | |
200 else: | |
201 rsq = rsq[0] | |
202 | |
203 | |
204 try: | |
205 #rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) | |
206 rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)[0] | |
207 #null_deviance= r.round(float(null_deviance), digits=5) | |
208 null_deviance= r.round(float(null_deviance), digits=5)[0] | |
209 #residual_deviance= r.round(float(residual_deviance), digits=5) | |
210 residual_deviance= r.round(float(residual_deviance), digits=5)[0] | |
211 | |
212 except: | |
213 pass | |
214 | |
215 print >>fout, "Null deviance\t%s" %(null_deviance) | |
216 | |
217 print >>fout, "Residual deviance\t%s" %(residual_deviance) | |
218 print >>fout, "pseudo R-squared\t%s" %(rsq) | |
219 print >>fout, "\n" | |
220 print >>fout, 'vif' | |
221 | |
222 if novif==0: | |
223 #py_vif=vif.as_py() | |
224 count=0 | |
225 for i in sorted(vif.names): | |
226 print >>fout,'c'+str(x_cols[count]+1) ,str(vif.rx2(i)[0]) | |
227 count+=1 | |
228 elif novif==1: | |
229 print >>fout, "vif can calculate only when model have more than 1 predictor" |