Mercurial > repos > iuc > minimap2
changeset 7:831dcb48efa1 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/minimap2 commit 7cb87c310b34cb2af2547ad8a14679107fd86d5d
author | iuc |
---|---|
date | Sat, 04 Nov 2017 05:40:54 -0400 |
parents | 4d84d86b368e |
children | 6090793a47e8 |
files | minimap2.xml test-data/all_fasta.loc test-data/bwa-mem-fastq1.fq.gz test-data/bwa-mem-mt-genome.fa test-data/bwa-mem-test1-fasta.bam test-data/bwa-mem-test1.bam test-data/bwa-mem-test2.bam test-data/minimap2-test1-fasta.bam test-data/minimap2-test1-fasta.cram test-data/minimap2-test1.bam test-data/minimap2-test2.bam tool_data_table_conf.xml.test |
diffstat | 12 files changed, 73 insertions(+), 1517 deletions(-) [+] |
line wrap: on
line diff
--- a/minimap2.xml Fri Nov 03 17:26:44 2017 -0400 +++ b/minimap2.xml Sat Nov 04 05:40:54 2017 -0400 @@ -1,13 +1,13 @@ <?xml version="1.0"?> <tool id="minimap2" name="Map with minimap2" version="2.3" profile="17.01"> - <description>- A fast pairwise aligner for genomic and spliced nucleotide sequences</description> + <description>A fast pairwise aligner for genomic and spliced nucleotide sequences</description> <requirements> <requirement type="package" version="2.3">minimap2</requirement> <requirement type="package" version="1.6">samtools</requirement> </requirements> <version_command>minimap2 --version</version_command> <command> - <![CDATA[ +<![CDATA[ #if $reference_source.reference_source_selector == 'history': ln -f -s '$reference_source.ref_file' reference.fa && #else: @@ -62,10 +62,17 @@ -B $alignment_options.B #end if #if $alignment_options.O: - -O $alignment_options.O - #end if + #if $alignment_options.O2: + -O $alignment_options.O,$alignment_options.O2 + #end if + -O $alignment_options.O + #end if #if $alignment_options.E: - -E $alignment_options.E + #if $alignment_options.E2: + -E $alignment_options.E,$alignment_options.E2 + #else + -E $alignment_options + #end if #end if #if $alignment_options.z: $alignment_options.z @@ -92,15 +99,15 @@ #else if $fastq_input.fastq_input_selector == 'paired': '$fastq_input.fastq_input1' '$fastq_input.fastq_input2' #else if $fastq_input.fastq_input_selector == 'paired_collection': - '$fastq_input.fastq_input1.forward' '$fastq_input.fastq_input2.reverse' + '$fastq_input.fastq_input1.forward' '$fastq_input.fastq_input1.reverse' #end if | samtools sort -@\${GALAXY_SLOTS:-2} - -O BAM + -O $io_options.output_format #if $io_options.output_format == 'CRAM': - -l 0| samtools view -T reference.fa -C + --reference reference.fa #end if - > '$alignment_output' + -o '$alignment_output' ]]> </command> <inputs> @@ -163,7 +170,7 @@ <option value="splice">long-read spliced alignment</option> <option value="sr">short single-end reads without splicing</option> </param> - <section name="mapping_options" title="Set advanced mapping options" help="Sets -f, -g, -G, -F, -r, -n, -m, -X, -p, and -N options." expanded="False"> + <section name="mapping_options" title="Set advanced mapping options" help="Sets -f, -g, -G, -F, -r, -n, -m, -X, -p and -N options." expanded="False"> <param argument="-f" type="float" value="" optional="true" label="filter out top FLOAT fraction of repetitive minimizers" help="default=0.0002"/> <param argument="-g" type="integer" value="" optional="true" label="stop chain enlongation if there are no minimizers in INT-bp" help="default=5000"/> <param argument="-G" type="integer" value="" optional="true" label="max intron length in thousand (effective with -xsplice; changing -r)" help="default=200"/> @@ -175,19 +182,13 @@ <param argument="-p" type="float" value="" max="1" optional="true" label="min secondary-to-primary score ratio" help="default=0.8"/> <param argument="-N" type="integer" min="0" optional="true" label="retain at most INT secondary alignments" help="default=5"/> </section> - <section name="alignment_options" title="Set advanced alignment options" help="Sets -Q, -L, -R, -c, --cs, and -K options." expanded="False"> + <section name="alignment_options" title="Set advanced alignment options" help="Sets -A, -B, -O, -E, -z, -s and -u options." expanded="False"> <param argument="-A" type="integer" optional="true" label="Score for a sequence match" help="default=2"/> <param argument="-B" type="integer" optional="true" label="Penalty for a mismatch" help="-B; default=4" /> - <param argument="-O" type="text" optional="true" label="Gap open penalties for deletions and insertions" help="-O; default=4,24"> - <sanitizer invalid_char=""> - <valid initial="string.digits"><add value=","/> </valid> - </sanitizer> - </param> - <param argument="-E" type="text" optional="true" label="Gap extension penalties; a gap of size k cost '-O + -E*k'. If two numbers are specified, the first is the penalty of extending a deletion and the second for extending an insertion" help="-E; default=2,1"> - <sanitizer invalid_char=""> - <valid initial="string.digits"><add value=","/> </valid> - </sanitizer> - </param> + <param argument="-O" type="integer" min="0" optional="true" label="Gap open penalties for deletions" help="-O; default=4"/> + <param name="-O2" type="integer" min="0" optional="true" label="Gap open penalties for insertions" help="-O; default=24"/> + <param argument="-E" type="integer" min="0" optional="true" label="Gap extension penalties; a gap of size k cost '-O + -E*k'. If two numbers are specified, the first is the penalty of extending a deletion and the second for extending an insertion" help="-E; default=2"/> + <param name="E2" type="integer" min="0" optional="true" label="Gap extension penalty for extending an insertion; if left empty uses the value specified for Gap extension penalties above" help="-E; default=1"/> <param argument="-z" type="integer" optional="true" label="Z-drop score" help="default=400"/> <param argument="-s" type="integer" optional="true" label="minimal peak DP alignment score" help="default=80"/> <param argument="-u" type="select" optional="true" label="how to find GT-AG"> @@ -196,7 +197,7 @@ <option value="b">both strands</option> </param> </section> - <section name="io_options" title="Set advanced output options" help="Sets -T, -h, -a, -C, -V, -Y, and -M options." expanded="False"> + <section name="io_options" title="Set advanced output options" help="Sets -Q, -L, -R, -c, --cs and -K options." expanded="False"> <param name="output_format" type="select" label="Produce BAM or CRAM file?"> <option value="BAM">BAM</option> <option value="CRAM">CRAM</option> @@ -237,39 +238,66 @@ </outputs> <tests> <test> + <!-- test single input --> + <param name="reference_source_selector" value="history" /> + <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> + <param name="fastq_input_selector" value="single"/> + <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/> + <param name="analysis_type_selector" value="sr"/> + <output name="alignment_output" ftype="bam" file="minimap2-test1-fasta.bam" lines_diff="2" /> + </test> + <test> + <!-- test cram output --> + <param name="reference_source_selector" value="history" /> + <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> + <param name="fastq_input_selector" value="single"/> + <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/> + <param name="analysis_type_selector" value="sr"/> + <param name="output_format" value="CRAM"/> + <output name="alignment_output" ftype="cram" file="minimap2-test1-fasta.cram" compare="sim_size" /> + </test> + <test> + <!-- test paired input --> <param name="reference_source_selector" value="history" /> <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> <param name="fastq_input_selector" value="paired"/> <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fastq1.fq"/> <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/> <param name="analysis_type_selector" value="sr"/> - <output name="alignment_output" ftype="bam" file="bwa-mem-test1.bam" lines_diff="2" /> + <output name="alignment_output" ftype="bam" file="minimap2-test1.bam" lines_diff="2" /> </test> <test> - <param name="reference_source_selector" value="history" /> - <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> - <param name="fastq_input_selector" value="single"/> - <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/> - <param name="analysis_type_selector" value="sr"/> - <output name="alignment_output" ftype="bam" file="bwa-mem-test1-fasta.bam" lines_diff="2" /> - </test> - <test> + <!-- test paired input with one pair compressed --> <param name="reference_source_selector" value="history" /> <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> <param name="fastq_input_selector" value="paired"/> <param name="fastq_input1" ftype="fastqsanger.gz" value="bwa-mem-fastq1.fq.gz"/> <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/> <param name="analysis_type_selector" value="sr"/> - <output name="alignment_output" ftype="bam" file="bwa-mem-test1.bam" lines_diff="2" /> + <output name="alignment_output" ftype="bam" file="minimap2-test1.bam" lines_diff="2" /> </test> <test> + <!-- test collection input --> <param name="reference_source_selector" value="history" /> <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/> - <param name="fastq_input_selector" value="paired"/> - <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fastq1.fq"/> - <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/> + <param name="fastq_input_selector" value="paired_collection"/> + <param name="fastq_input1"> + <collection type="paired"> + <element name="forward" value="bwa-mem-fastq1.fq" /> + <element name="reverse" value="bwa-mem-fastq2.fq" /> + </collection> + </param> <param name="analysis_type_selector" value="sr"/> - <output name="alignment_output" ftype="bam" file="bwa-mem-test2.bam" lines_diff="2" /> + <output name="alignment_output" ftype="bam" file="minimap2-test2.bam" lines_diff="2" /> + </test> + <test> + <!-- test data table reference --> + <param name="reference_source_selector" value="cached" /> + <param name="ref_file" value="bwa-mem-mt-genome"/> + <param name="fastq_input_selector" value="single"/> + <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/> + <param name="analysis_type_selector" value="sr"/> + <output name="alignment_output" ftype="bam" file="minimap2-test1-fasta.bam" lines_diff="2" /> </test> </tests> <help> @@ -496,13 +524,6 @@ low-complexity regions where seed positions may be suboptimal. This should not be a big concern because even the optimal alignment may be wrong in such regions. - -- Minimap2 requires SSE2 instructions to compile. It is possible to add - non-SSE2 support, but it would make minimap2 slower by several times. - -In general, minimap2 is a young project with most code written since -June, 2017. It may have bugs and room for improvements. Bug reports and -suggestions are warmly welcomed. </help> <citations> <citation type="doi">10.1093/bioinformatics/btp324</citation>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/all_fasta.loc Sat Nov 04 05:40:54 2017 -0400 @@ -0,0 +1,1 @@ +bwa-mem-mt-genome bwa-mem-mt-genome bwa-mem-mt-genome ${__HERE__}/bwa-mem-mt-genome.fa \ No newline at end of file
--- a/test-data/bwa-mem-mt-genome.fa Fri Nov 03 17:26:44 2017 -0400 +++ b/test-data/bwa-mem-mt-genome.fa Sat Nov 04 05:40:54 2017 -0400 @@ -1,4 +1,4 @@ ->gi|251831106|ref|NC_012920.1| Homo sapiens mitochondrion, complete genome +>gi|251831106|ref|NC_012920.1| GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGG GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTC CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACTTACTAAAGTGTGTTA @@ -118,1478 +118,6 @@ TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT -ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG -AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA -GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG -GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT -ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC -ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC -ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT -GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC -ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC -TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA -AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA -CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT -TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT -ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC -TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA -AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC -ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG -AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA -CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA -TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC -TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC -AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT -ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT AAAGATTAAGAGAACCAACACCTCTTTACAGTGAAATGCCCCAACTAAATACTACCGTATGGCCCACCAT AATTACCCCCATACTCCTTACACTATTCCTCATCACCCAACTAAAAATATTAAACACAAACTACCACCTA CCTCCCTCACCAAAGCCCATAAAAATAAAAAATTATAACAAACCCTGAGAACCAAAATGAACGAAAATCT @@ -1708,4 +236,3 @@ TCAGATAGGGGTCCCTTGACCACCATCCTCCGTGAAATCAATATCCCGCACAAGAGTGCTACTCTCCTCG CTCCGGGCCCATAACACTTGGGGGTAGCTAAAGTGAACTGTATCCGACATCTGGTTCCTACTTCAGGGTC ATAAAGCCTAAATAGCCCACACGTTCCCCTTAAATAAGACATCACGATG -
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tool_data_table_conf.xml.test Sat Nov 04 05:40:54 2017 -0400 @@ -0,0 +1,7 @@ +<tables> + <!-- Locations of all fasta files under genome directory --> + <table name="all_fasta" comment_char="#" allow_duplicate_entries="False"> + <columns>value, dbkey, name, path</columns> + <file path="${__HERE__}/test-data/all_fasta.loc" /> + </table> +</tables>