changeset 7:831dcb48efa1 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/minimap2 commit 7cb87c310b34cb2af2547ad8a14679107fd86d5d
author iuc
date Sat, 04 Nov 2017 05:40:54 -0400
parents 4d84d86b368e
children 6090793a47e8
files minimap2.xml test-data/all_fasta.loc test-data/bwa-mem-fastq1.fq.gz test-data/bwa-mem-mt-genome.fa test-data/bwa-mem-test1-fasta.bam test-data/bwa-mem-test1.bam test-data/bwa-mem-test2.bam test-data/minimap2-test1-fasta.bam test-data/minimap2-test1-fasta.cram test-data/minimap2-test1.bam test-data/minimap2-test2.bam tool_data_table_conf.xml.test
diffstat 12 files changed, 73 insertions(+), 1517 deletions(-) [+]
line wrap: on
line diff
--- a/minimap2.xml	Fri Nov 03 17:26:44 2017 -0400
+++ b/minimap2.xml	Sat Nov 04 05:40:54 2017 -0400
@@ -1,13 +1,13 @@
 <?xml version="1.0"?>
 <tool id="minimap2" name="Map with minimap2" version="2.3" profile="17.01">
-    <description>- A fast pairwise aligner for genomic and spliced nucleotide sequences</description>
+    <description>A fast pairwise aligner for genomic and spliced nucleotide sequences</description>
     <requirements>
         <requirement type="package" version="2.3">minimap2</requirement>
         <requirement type="package" version="1.6">samtools</requirement>
     </requirements>
     <version_command>minimap2 --version</version_command>
     <command>
-        <![CDATA[
+<![CDATA[
     #if $reference_source.reference_source_selector == 'history':
         ln -f -s '$reference_source.ref_file' reference.fa &&
     #else:
@@ -62,10 +62,17 @@
         -B $alignment_options.B
     #end if
     #if $alignment_options.O:
-        -O $alignment_options.O
-    #end if
+        #if $alignment_options.O2:
+            -O $alignment_options.O,$alignment_options.O2
+        #end if
+            -O $alignment_options.O
+        #end if
     #if $alignment_options.E:
-        -E $alignment_options.E
+        #if $alignment_options.E2:
+            -E $alignment_options.E,$alignment_options.E2
+        #else
+            -E $alignment_options
+        #end if
     #end if
     #if $alignment_options.z:
         $alignment_options.z
@@ -92,15 +99,15 @@
     #else if $fastq_input.fastq_input_selector == 'paired':
          '$fastq_input.fastq_input1' '$fastq_input.fastq_input2'
     #else if $fastq_input.fastq_input_selector == 'paired_collection':
-        '$fastq_input.fastq_input1.forward' '$fastq_input.fastq_input2.reverse'
+        '$fastq_input.fastq_input1.forward' '$fastq_input.fastq_input1.reverse'
     #end if
     | samtools sort
     -@\${GALAXY_SLOTS:-2}
-    -O BAM
+    -O $io_options.output_format
     #if $io_options.output_format == 'CRAM':
-        -l 0| samtools view -T reference.fa -C
+        --reference reference.fa
     #end if
-    > '$alignment_output'
+    -o '$alignment_output'
 ]]>
     </command>
     <inputs>
@@ -163,7 +170,7 @@
             <option value="splice">long-read spliced alignment</option>
             <option value="sr">short single-end reads without splicing</option>
         </param>
-        <section name="mapping_options" title="Set advanced mapping options" help="Sets -f, -g, -G, -F, -r, -n, -m, -X, -p, and -N options." expanded="False">
+        <section name="mapping_options" title="Set advanced mapping options" help="Sets -f, -g, -G, -F, -r, -n, -m, -X, -p and -N options." expanded="False">
             <param argument="-f" type="float" value="" optional="true" label="filter out top FLOAT fraction of repetitive minimizers" help="default=0.0002"/>
             <param argument="-g" type="integer" value="" optional="true" label="stop chain enlongation if there are no minimizers in INT-bp" help="default=5000"/>
             <param argument="-G" type="integer" value="" optional="true" label="max intron length in thousand (effective with -xsplice; changing -r)" help="default=200"/>
@@ -175,19 +182,13 @@
             <param argument="-p" type="float" value="" max="1" optional="true" label="min secondary-to-primary score ratio" help="default=0.8"/>
             <param argument="-N" type="integer" min="0" optional="true" label="retain at most INT secondary alignments" help="default=5"/>
         </section>
-        <section name="alignment_options" title="Set advanced alignment options" help="Sets -Q, -L, -R, -c, --cs, and -K options." expanded="False">
+        <section name="alignment_options" title="Set advanced alignment options" help="Sets -A, -B, -O, -E, -z, -s and -u options." expanded="False">
             <param argument="-A" type="integer" optional="true" label="Score for a sequence match" help="default=2"/>
             <param argument="-B" type="integer" optional="true" label="Penalty for a mismatch" help="-B; default=4" />
-            <param argument="-O" type="text" optional="true" label="Gap open penalties for deletions and insertions" help="-O; default=4,24">
-                <sanitizer invalid_char="">
-                    <valid initial="string.digits"><add value=","/> </valid>
-                </sanitizer>
-            </param>
-            <param argument="-E" type="text" optional="true" label="Gap extension penalties; a gap of size k cost &#39;-O + -E*k&#39;. If two numbers are specified, the first is the penalty of extending a deletion and the second for extending an insertion" help="-E; default=2,1">
-                <sanitizer invalid_char="">
-                    <valid initial="string.digits"><add value=","/> </valid>
-                </sanitizer>
-            </param>
+            <param argument="-O" type="integer" min="0" optional="true" label="Gap open penalties for deletions" help="-O; default=4"/>
+            <param name="-O2" type="integer" min="0" optional="true" label="Gap open penalties for insertions" help="-O; default=24"/>
+            <param argument="-E" type="integer" min="0" optional="true" label="Gap extension penalties; a gap of size k cost &#39;-O + -E*k&#39;. If two numbers are specified, the first is the penalty of extending a deletion and the second for extending an insertion" help="-E; default=2"/>
+            <param name="E2" type="integer" min="0" optional="true" label="Gap extension penalty for extending an insertion; if left empty uses the value specified for Gap extension penalties above" help="-E; default=1"/>
             <param argument="-z" type="integer" optional="true" label="Z-drop score" help="default=400"/>
             <param argument="-s" type="integer" optional="true" label="minimal peak DP alignment score" help="default=80"/>
             <param argument="-u" type="select" optional="true" label="how to find GT-AG">
@@ -196,7 +197,7 @@
                 <option value="b">both strands</option>
             </param>
         </section>
-        <section name="io_options" title="Set advanced output options" help="Sets -T, -h, -a, -C, -V, -Y, and -M options." expanded="False">
+        <section name="io_options" title="Set advanced output options" help="Sets -Q, -L, -R, -c, --cs and -K options." expanded="False">
             <param name="output_format" type="select" label="Produce BAM or CRAM file?">
                 <option value="BAM">BAM</option>
                 <option value="CRAM">CRAM</option>
@@ -237,39 +238,66 @@
     </outputs>
     <tests>
         <test>
+            <!-- test single input -->
+            <param name="reference_source_selector" value="history" />
+            <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
+            <param name="fastq_input_selector" value="single"/>
+            <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/>
+            <param name="analysis_type_selector" value="sr"/>
+            <output name="alignment_output" ftype="bam" file="minimap2-test1-fasta.bam" lines_diff="2" />
+        </test>
+        <test>
+            <!-- test cram output -->
+            <param name="reference_source_selector" value="history" />
+            <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
+            <param name="fastq_input_selector" value="single"/>
+            <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/>
+            <param name="analysis_type_selector" value="sr"/>
+            <param name="output_format" value="CRAM"/>
+            <output name="alignment_output" ftype="cram" file="minimap2-test1-fasta.cram" compare="sim_size" />
+        </test>
+        <test>
+            <!-- test paired input -->
             <param name="reference_source_selector" value="history" />
             <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
             <param name="fastq_input_selector" value="paired"/>
             <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fastq1.fq"/>
             <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/>
             <param name="analysis_type_selector" value="sr"/>
-            <output name="alignment_output" ftype="bam" file="bwa-mem-test1.bam" lines_diff="2" />
+            <output name="alignment_output" ftype="bam" file="minimap2-test1.bam" lines_diff="2" />
         </test>
         <test>
-            <param name="reference_source_selector" value="history" />
-            <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
-            <param name="fastq_input_selector" value="single"/>
-            <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/>
-            <param name="analysis_type_selector" value="sr"/>
-            <output name="alignment_output" ftype="bam" file="bwa-mem-test1-fasta.bam" lines_diff="2" />
-        </test>
-        <test>
+            <!-- test paired input with one pair compressed -->
             <param name="reference_source_selector" value="history" />
             <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
             <param name="fastq_input_selector" value="paired"/>
             <param name="fastq_input1" ftype="fastqsanger.gz" value="bwa-mem-fastq1.fq.gz"/>
             <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/>
             <param name="analysis_type_selector" value="sr"/>
-            <output name="alignment_output" ftype="bam" file="bwa-mem-test1.bam" lines_diff="2" />
+            <output name="alignment_output" ftype="bam" file="minimap2-test1.bam" lines_diff="2" />
         </test>
         <test>
+            <!-- test collection input -->
             <param name="reference_source_selector" value="history" />
             <param name="ref_file" ftype="fasta" value="bwa-mem-mt-genome.fa"/>
-            <param name="fastq_input_selector" value="paired"/>
-            <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fastq1.fq"/>
-            <param name="fastq_input2" ftype="fastqsanger" value="bwa-mem-fastq2.fq"/>
+            <param name="fastq_input_selector" value="paired_collection"/>
+            <param name="fastq_input1">
+                <collection type="paired">
+                    <element name="forward" value="bwa-mem-fastq1.fq" />
+                    <element name="reverse" value="bwa-mem-fastq2.fq" />
+                </collection>
+            </param>
             <param name="analysis_type_selector" value="sr"/>
-            <output name="alignment_output" ftype="bam" file="bwa-mem-test2.bam" lines_diff="2" />
+            <output name="alignment_output" ftype="bam" file="minimap2-test2.bam" lines_diff="2" />
+        </test>
+        <test>
+            <!-- test data table reference -->
+            <param name="reference_source_selector" value="cached" />
+            <param name="ref_file" value="bwa-mem-mt-genome"/>
+            <param name="fastq_input_selector" value="single"/>
+            <param name="fastq_input1" ftype="fastqsanger" value="bwa-mem-fasta1.fa"/>
+            <param name="analysis_type_selector" value="sr"/>
+            <output name="alignment_output" ftype="bam" file="minimap2-test1-fasta.bam" lines_diff="2" />
         </test>
     </tests>
     <help>
@@ -496,13 +524,6 @@
    low-complexity regions where seed positions may be suboptimal. This
    should not be a big concern because even the optimal alignment may be
    wrong in such regions.
-
--  Minimap2 requires SSE2 instructions to compile. It is possible to add
-   non-SSE2 support, but it would make minimap2 slower by several times.
-
-In general, minimap2 is a young project with most code written since
-June, 2017. It may have bugs and room for improvements. Bug reports and
-suggestions are warmly welcomed.
     </help>
     <citations>
         <citation type="doi">10.1093/bioinformatics/btp324</citation>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/all_fasta.loc	Sat Nov 04 05:40:54 2017 -0400
@@ -0,0 +1,1 @@
+bwa-mem-mt-genome	bwa-mem-mt-genome	bwa-mem-mt-genome	${__HERE__}/bwa-mem-mt-genome.fa
\ No newline at end of file
Binary file test-data/bwa-mem-fastq1.fq.gz has changed
--- a/test-data/bwa-mem-mt-genome.fa	Fri Nov 03 17:26:44 2017 -0400
+++ b/test-data/bwa-mem-mt-genome.fa	Sat Nov 04 05:40:54 2017 -0400
@@ -1,4 +1,4 @@
->gi|251831106|ref|NC_012920.1| Homo sapiens mitochondrion, complete genome
+>gi|251831106|ref|NC_012920.1|
 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGG
 GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTC
 CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACTTACTAAAGTGTGTTA
@@ -118,1478 +118,6 @@
 TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
 AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
 ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
-ATGGTCTGAGCTATGATATCAATTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGG
-AATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAA
-GTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAG
-GATTCATCTTTCTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
-ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAATAGGAGCTGTATTTGCCATC
-ATAGGAGGCTTCATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCC
-ATTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAAT
-GCCCCGACGTTACTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTCATTC
-ATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
-TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGA
-AGAACCCGTATACATAAAATCTAGACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAA
-CCCCATGGCCTCCATGACTTTTTCAAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAAT
-TATAGGCTAAATCCTATATATCTTAATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTACTTCCCCT
-ATCATAGAAGAGCTTATCACCTTTCATGATCACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCC
-TGTATGCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAAATAGA
-AACCGTCTGAACTATCCTGCCCGCCATCATCCTAGTCCTCATCGCCCTCCCATCCCTACGCATCCTTTAC
-ATAACAGACGAGGTCAACGATCCCTCCCTTACCATCAAATCAATTGGCCACCAATGGTACTGAACCTACG
-AGTACACCGACTACGGCGGACTAATCTTCAACTCCTACATACTTCCCCCATTATTCCTAGAACCAGGCGA
-CCTGCGACTCCTTGACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATAATTACA
-TCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTTAAAAACAGATGCAATTCCCGGACGTC
-TAAACCAAACCACTTTCACCGCTACACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGC
-AAACCACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGAAATAGGGCCCGTATTT
-ACCCTATAGCACCCCCTCTACCCCCTCTAGAGCCCACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTT
 AAAGATTAAGAGAACCAACACCTCTTTACAGTGAAATGCCCCAACTAAATACTACCGTATGGCCCACCAT
 AATTACCCCCATACTCCTTACACTATTCCTCATCACCCAACTAAAAATATTAAACACAAACTACCACCTA
 CCTCCCTCACCAAAGCCCATAAAAATAAAAAATTATAACAAACCCTGAGAACCAAAATGAACGAAAATCT
@@ -1708,4 +236,3 @@
 TCAGATAGGGGTCCCTTGACCACCATCCTCCGTGAAATCAATATCCCGCACAAGAGTGCTACTCTCCTCG
 CTCCGGGCCCATAACACTTGGGGGTAGCTAAAGTGAACTGTATCCGACATCTGGTTCCTACTTCAGGGTC
 ATAAAGCCTAAATAGCCCACACGTTCCCCTTAAATAAGACATCACGATG
-
Binary file test-data/bwa-mem-test1-fasta.bam has changed
Binary file test-data/bwa-mem-test1.bam has changed
Binary file test-data/bwa-mem-test2.bam has changed
Binary file test-data/minimap2-test1-fasta.bam has changed
Binary file test-data/minimap2-test1-fasta.cram has changed
Binary file test-data/minimap2-test1.bam has changed
Binary file test-data/minimap2-test2.bam has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_data_table_conf.xml.test	Sat Nov 04 05:40:54 2017 -0400
@@ -0,0 +1,7 @@
+<tables>
+    <!-- Locations of all fasta files under genome directory -->
+    <table name="all_fasta" comment_char="#" allow_duplicate_entries="False">
+        <columns>value, dbkey, name, path</columns>
+        <file path="${__HERE__}/test-data/all_fasta.loc" />
+    </table>
+</tables>