Mercurial > repos > greg > multilocus_genotype
view multilocus_genotype.R @ 7:18001e7cb199 draft
Uploaded
author | greg |
---|---|
date | Wed, 28 Nov 2018 13:49:18 -0500 |
parents | a7cce4091e80 |
children | d2057e183772 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("adegenet")) suppressPackageStartupMessages(library("ape")) suppressPackageStartupMessages(library("data.table")) #suppressPackageStartupMessages(library("dbplyr")) suppressPackageStartupMessages(library("dplyr")) suppressPackageStartupMessages(library("ggplot2")) suppressPackageStartupMessages(library("knitr")) suppressPackageStartupMessages(library("optparse")) suppressPackageStartupMessages(library("poppr")) suppressPackageStartupMessages(library("RColorBrewer")) suppressPackageStartupMessages(library("RPostgres")) #suppressPackageStartupMessages(library("tidyr")) suppressPackageStartupMessages(library("vcfR")) suppressPackageStartupMessages(library("vegan")) option_list <- list( make_option(c("--database_connection_string"), action="store", dest="database_connection_string", help="Corals (stag) database connection string"), make_option(c("--input_affy_metadata"), action="store", dest="input_affy_metadata", help="Affymetrix 96 well plate input file"), make_option(c("--input_pop_info"), action="store", dest="input_pop_info", help="Population information input file"), make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"), make_option(c("--output_mlg_id"), action="store", dest="output_mlg_id", help="Mlg Id data output file"), make_option(c("--output_stag_db_report"), action="store", dest="output_stag_db_report", help="stag db report output file") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list); args <- parse_args(parser, positional_arguments=TRUE); opt <- args$options; get_file_path = function(file_name) { file_path = paste("output_plots_dir", file_name, sep="/"); return(file_path); } # Read in VCF input file. vcf <- read.vcfR(opt$input_vcf); #Missing GT in samples submitted gt <- extract.gt(vcf, element="GT", as.numeric=FALSE); missing_gt <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))}); missing_gt <- (missing_gt / nrow(vcf)) * 100; missing_gt_data_frame <- data.frame(missing_gt); hets <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/1", x))))} ); hets <- (hets / nrow(vcf)) * 100; ht <- data.frame(hets); refA <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/0", x))))} ); refA <- (refA / nrow(vcf)) * 100; rA <- data.frame(refA); altB <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("1/1", x))))} ); altB <- (altB / nrow(vcf)) * 100; aB <- data.frame(altB); # Convert VCF file into a genind for the Poppr package. # TODO: probably should not hard-code 2 cores. gl <- vcfR2genlight(vcf, n.cores=2); genind <- new("genind", (as.matrix(gl))); # Add population information to the genind object. poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=T, na.strings=c("", "NA")); genind@pop <- as.factor(poptab$region); # Convert genind object to a genclone object. gclo <- as.genclone(genind); # Calculate the bitwise distance between individuals. xdis <- bitwise.dist(gclo); # Multilocus genotypes (threshold of 1%). mlg.filter(gclo, distance=xdis) <- 0.01; m <- mlg.table(gclo, background=TRUE, color=TRUE); # Create table of MLGs. id <- mlg.id(gclo); dt <- data.table(id, keep.rownames=TRUE); setnames(dt, c("id"), c("user_specimen_id")); # Read user's Affymetrix 96 well plate csv file. pinfo <- read.csv(opt$input_affy_metadata, stringsAsFactors=FALSE); pinfo <- pinfo$user_specimen_id; pi <- data.table(pinfo); setnames(pi, c("pinfo"), c("user_specimen_id")); # Instantiate database connection. # The connection string has this format: # postgresql://user:password@host/dbname conn_string <- opt$database_connection_string; conn_items <- strsplit(conn_string, "://")[[1]]; string_needed <- conn_items[1]; items_needed <- strsplit(string_needed, "@")[[1]]; user_pass_string <- items_needed[1]; host_dbname_string <- items_needed[2]; user_pass_items <- strsplit(user_pass_string, ":")[[1]]; host_dbname_items <- strsplit(host_dbname_string, "/")[[1]]; user <- user_pass_items[1]; pass <- user_pass_items[2]; host <- host_dbname_items[1]; dbname <- host_dbname_items[2]; # FIXME: is there a way to not hard-code the port? conn <- DBI::dbConnect(RPostgres::Postgres(), host=host, port='5432', dbname=dbname, user=user, password=pass); # Import the sample table. sample_table <- tbl(conn, "sample"); # Select user_specimen_id and mlg columns. smlg <- sample_table %>% select(user_specimen_id, coral_mlg_clonal_id, symbio_mlg_clonal_id); # Convert to dataframe. sm <- data.frame(smlg); sm[sm==""] <- NA; # Convert missing data into data table. mi <-setDT(missing_gt_data_frame, keep.rownames=TRUE)[]; # Change names to match db. setnames(mi, c("rn"), c("user_specimen_id")); setnames(mi, c("myMiss"), c("percent_missing_data_coral")); # Round missing data to two digits. mi$percent_missing <- round(mi$percent_missing, digits=2); # Convert heterozygosity data into data table. ht <-setDT(ht, keep.rownames=TRUE)[]; # Change names to match db. setnames(ht, c("rn"), c("user_specimen_id")); setnames(ht, c("hets"), c("percent_mixed_coral")); # Round missing data to two digits. ht$percent_mixed<-round(ht$percent_mixed, digits=2); # Convert refA data into data.table. rA <-setDT(rA, keep.rownames=TRUE)[]; # Change names to match db. setnames(rA, c("rn"), c("user_specimen_id")); setnames(rA, c("refA"), c("percent_reference_coral")); # round missing data to two digits. rA$percent_reference<-round(rA$percent_reference, digits=2); # Convert altB data into data table. aB <-setDT(aB, keep.rownames=TRUE)[]; # Change names to match db. setnames(aB, c("rn"), c("user_specimen_id")); setnames(aB, c("altB"), c("percent_alternative_coral")); # Round missing data to two digits. aB$percent_alternative<-round(aB$percent_alternative, digits=2); #convert mlg id to data.table format dt <- data.table(id, keep.rownames=TRUE); # Change name to match db. setnames(dt, c("id"), c("user_specimen_id")); # Transform. df3 <- dt %>% group_by(row_number()) %>% dplyr::rename(group='row_number()') %>% unnest (user_specimen_id) %>% # Join with mlg table. left_join(sm %>% select("user_specimen_id","coral_mlg_clonal_id"), by='user_specimen_id'); # If found in database, group members on previous mlg id. uniques <- unique(df3[c("group", "coral_mlg_clonal_id")]); uniques <- uniques[!is.na(uniques$coral_mlg_clonal_id),]; na.mlg <- which(is.na(df3$coral_mlg_clonal_id)); na.group <- df3$group[na.mlg]; df3$coral_mlg_clonal_id[na.mlg] <- uniques$coral_mlg_clonal_id[match(na.group, uniques$group)]; # Determine if the sample mlg matched previous genotyped sample. df4<- df3 %>% group_by(group) %>% mutate(DB_match = ifelse(is.na(coral_mlg_clonal_id),"no_match","match")); # Create new mlg id for samples that did not match those in the database. none <- unique(df4[c("group", "coral_mlg_clonal_id")]); none <- none[is.na(none$coral_mlg_clonal_id),]; na.mlg2 <- which(is.na(df4$coral_mlg_clonal_id)); n.g <- df4$group[na.mlg2]; ct <- length(unique(n.g)); # List of new group ids, the sequence starts at the number of # ids present in df4$coral_mlg_clonal_ids plus 1. Not sure if # the df4 file contains all ids. If it doesn't then look below # to change the seq() function. n.g_ids <- sprintf("HG%04d", seq((sum(!is.na(unique(df4["coral_mlg_clonal_id"]))) + 1), by=1, length=ct)); # This is a key for pairing group with new ids. rat <- cbind(unique(n.g), n.g_ids); # this for loop assigns the new id iteratively for all that have NA. for (i in 1:length(na.mlg2)) { df4$coral_mlg_clonal_id[na.mlg2[i]] <- n.g_ids[match(df4$group[na.mlg2[i]], unique(n.g))]; } # Merge data frames for final table. report_user <- pi %>% # Join with the second file (only the first and third column). left_join(df4 %>% select("user_specimen_id","coral_mlg_clonal_id","DB_match"), by='user_specimen_id') %>% # Join with the second file (only the first and third column). left_join(mi %>% select("user_specimen_id","percent_missing_coral"), by='user_specimen_id') %>% # Join with the second file (only the first and third column). left_join(ht %>% select("user_specimen_id","percent_mixed_coral"), by='user_specimen_id') %>% # Join with the second file (only the first and third column); left_join(rA %>% select("user_specimen_id","percent_reference_coral"), by='user_specimen_id') %>% # Join with the second file (only the first and third column). left_join(aB %>% select("user_specimen_id","percent_alternative_coral"), by='user_specimen_id') %>% mutate(DB_match = ifelse(is.na(DB_match), "failed", DB_match))%>% mutate(coral_mlg_clonal_id=ifelse(is.na(coral_mlg_clonal_id), "failed", coral_mlg_clonal_id))%>% ungroup() %>% select(-group); write.csv(report_user, file=paste(opt$output_stag_db_report), quote=FALSE); # Rarifaction curve. # Start PDF device driver. dev.new(width=10, height=7); file_path = get_file_path("geno_rarifaction_curve.pdf"); pdf(file=file_path, width=10, height=7); rarecurve(m, ylab="Number of expected MLGs", sample=min(rowSums(m)), border=NA, fill=NA, font=2, cex=1, col="blue"); dev.off(); # Genotype accumulation curve, sample is number of # loci randomly selected for to make the curve. dev.new(width=10, height=7); file_path = get_file_path("geno_accumulation_curve.pdf"); pdf(file=file_path, width=10, height=7); genotype_curve(gind, sample=5, quiet=TRUE); dev.off(); # Create a phylogeny of samples based on distance matrices. cols <- palette(brewer.pal(n=12, name='Set3')); set.seed(999); # Start PDF device driver. dev.new(width=10, height=7); file_path = get_file_path("nj_phylogeny.pdf"); pdf(file=file_path, width=10, height=7); # Organize branches by clade. tree <- gclo %>% aboot(dist=provesti.dist, sample=10, tree="nj", cutoff=50, quiet=TRUE) %>% ladderize(); plot.phylo(tree, tip.color=cols[obj2$pop],label.offset=0.0125, cex=0.7, font=2, lwd=4); # Add a scale bar showing 5% difference.. add.scale.bar(length=0.05, cex=0.65); nodelabels(tree$node.label, cex=.5, adj=c(1.5, -0.1), frame="n", font=3, xpd=TRUE); dev.off();