Mercurial > repos > greg > multilocus_genotype
comparison multilocus_genotype.R @ 7:18001e7cb199 draft
Uploaded
author | greg |
---|---|
date | Wed, 28 Nov 2018 13:49:18 -0500 |
parents | a7cce4091e80 |
children | d2057e183772 |
comparison
equal
deleted
inserted
replaced
6:a71901fd5325 | 7:18001e7cb199 |
---|---|
1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
2 | 2 |
3 suppressPackageStartupMessages(library("adegenet")) | 3 suppressPackageStartupMessages(library("adegenet")) |
4 suppressPackageStartupMessages(library("ape")) | 4 suppressPackageStartupMessages(library("ape")) |
5 suppressPackageStartupMessages(library("data.table")) | |
6 #suppressPackageStartupMessages(library("dbplyr")) | |
7 suppressPackageStartupMessages(library("dplyr")) | |
5 suppressPackageStartupMessages(library("ggplot2")) | 8 suppressPackageStartupMessages(library("ggplot2")) |
6 suppressPackageStartupMessages(library("knitr")) | 9 suppressPackageStartupMessages(library("knitr")) |
7 suppressPackageStartupMessages(library("optparse")) | 10 suppressPackageStartupMessages(library("optparse")) |
8 suppressPackageStartupMessages(library("poppr")) | 11 suppressPackageStartupMessages(library("poppr")) |
9 suppressPackageStartupMessages(library("RColorBrewer")) | 12 suppressPackageStartupMessages(library("RColorBrewer")) |
13 suppressPackageStartupMessages(library("RPostgres")) | |
14 #suppressPackageStartupMessages(library("tidyr")) | |
10 suppressPackageStartupMessages(library("vcfR")) | 15 suppressPackageStartupMessages(library("vcfR")) |
11 suppressPackageStartupMessages(library("vegan")) | 16 suppressPackageStartupMessages(library("vegan")) |
12 | 17 |
13 option_list <- list( | 18 option_list <- list( |
19 make_option(c("--database_connection_string"), action="store", dest="database_connection_string", help="Corals (stag) database connection string"), | |
20 make_option(c("--input_affy_metadata"), action="store", dest="input_affy_metadata", help="Affymetrix 96 well plate input file"), | |
21 make_option(c("--input_pop_info"), action="store", dest="input_pop_info", help="Population information input file"), | |
14 make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"), | 22 make_option(c("--input_vcf"), action="store", dest="input_vcf", help="VCF input file"), |
15 make_option(c("--input_pop_info"), action="store", dest="input_pop_info", help="Population information input file"), | 23 make_option(c("--output_mlg_id"), action="store", dest="output_mlg_id", help="Mlg Id data output file"), |
16 make_option(c("--output_missing_data"), action="store", dest="output_missing_data", help="Missing data outputfile"), | 24 make_option(c("--output_stag_db_report"), action="store", dest="output_stag_db_report", help="stag db report output file") |
17 make_option(c("--output_mlg_id"), action="store", dest="output_mlg_id", help="Mlg Id data outputfile") | |
18 ) | 25 ) |
19 | 26 |
20 parser <- OptionParser(usage="%prog [options] file", option_list=option_list); | 27 parser <- OptionParser(usage="%prog [options] file", option_list=option_list); |
21 args <- parse_args(parser, positional_arguments=TRUE); | 28 args <- parse_args(parser, positional_arguments=TRUE); |
22 opt <- args$options; | 29 opt <- args$options; |
24 get_file_path = function(file_name) { | 31 get_file_path = function(file_name) { |
25 file_path = paste("output_plots_dir", file_name, sep="/"); | 32 file_path = paste("output_plots_dir", file_name, sep="/"); |
26 return(file_path); | 33 return(file_path); |
27 } | 34 } |
28 | 35 |
29 # Extract Provesti's distance from the distance matrix. | |
30 provesti_distance <- function(distance, selection) { | |
31 eval(parse(text=paste("as.matrix(distance)[", selection, "]"))); | |
32 } | |
33 | |
34 # Read in VCF input file. | 36 # Read in VCF input file. |
35 vcf <- read.vcfR(opt$input_vcf); | 37 vcf <- read.vcfR(opt$input_vcf); |
36 | 38 |
37 #Missing GT in samples submitted | 39 #Missing GT in samples submitted |
38 gt <- extract.gt(vcf, element="GT", as.numeric=FALSE); | 40 gt <- extract.gt(vcf, element="GT", as.numeric=FALSE); |
39 myMiss <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))}); | 41 missing_gt <- apply(gt, MARGIN=2, function(x){ sum(is.na(x))}); |
40 myMiss <- (myMiss / nrow(vcf)) * 100; | 42 missing_gt <- (missing_gt / nrow(vcf)) * 100; |
41 miss <- data.frame(myMiss); | 43 missing_gt_data_frame <- data.frame(missing_gt); |
42 write.table(miss, file=opt$output_missing_data, quote=FALSE); | 44 |
43 | 45 hets <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/1", x))))} ); |
44 # Convert VCF file into formats compatiable with the Poppr package. | 46 hets <- (hets / nrow(vcf)) * 100; |
45 genind <- vcfR2genind(vcf); | 47 ht <- data.frame(hets); |
48 | |
49 refA <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("0/0", x))))} ); | |
50 refA <- (refA / nrow(vcf)) * 100; | |
51 rA <- data.frame(refA); | |
52 | |
53 altB <- apply(gt, MARGIN=2, function(x) {sum(lengths(regmatches(x, gregexpr("1/1", x))))} ); | |
54 altB <- (altB / nrow(vcf)) * 100; | |
55 aB <- data.frame(altB); | |
56 | |
57 # Convert VCF file into a genind for the Poppr package. | |
58 # TODO: probably should not hard-code 2 cores. | |
59 gl <- vcfR2genlight(vcf, n.cores=2); | |
60 genind <- new("genind", (as.matrix(gl))); | |
61 | |
46 # Add population information to the genind object. | 62 # Add population information to the genind object. |
47 poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=T, na.strings = c("", "NA")); | 63 poptab <- read.table(opt$input_pop_info, check.names=FALSE, header=T, na.strings=c("", "NA")); |
48 genind@pop <- as.factor(poptab$region); | 64 genind@pop <- as.factor(poptab$region); |
49 # Convert genind to genclone object | 65 |
66 # Convert genind object to a genclone object. | |
50 gclo <- as.genclone(genind); | 67 gclo <- as.genclone(genind); |
51 # Calculate the bitwise distance between individuals, | 68 |
52 # the following is similar to Provesti's distance. | 69 # Calculate the bitwise distance between individuals. |
53 xdis <- bitwise.dist(gclo, missing_match=FALSE); | 70 xdis <- bitwise.dist(gclo); |
54 | 71 |
55 # Multilocus genotypes (threshold of 1.6%). | 72 # Multilocus genotypes (threshold of 1%). |
56 mlg.filter(gclo, distance=xdis) <- 0.016; | 73 mlg.filter(gclo, distance=xdis) <- 0.01; |
57 # Start PDF device driver. | |
58 dev.new(width=10, height=7); | |
59 file_path = get_file_path("mlg_table.pdf"); | |
60 pdf(file=file_path, width=10, height=7); | |
61 m <- mlg.table(gclo, background=TRUE, color=TRUE); | 74 m <- mlg.table(gclo, background=TRUE, color=TRUE); |
62 dev.off(); | |
63 | 75 |
64 # Create table of MLGs. | 76 # Create table of MLGs. |
65 id <- mlg.id(gclo); | 77 id <- mlg.id(gclo); |
66 df <- data.frame(matrix((id), byrow=T)); | 78 dt <- data.table(id, keep.rownames=TRUE); |
67 write.table(df, file=opt$output_mlg_id); | 79 setnames(dt, c("id"), c("user_specimen_id")); |
80 | |
81 # Read user's Affymetrix 96 well plate csv file. | |
82 pinfo <- read.csv(opt$input_affy_metadata, stringsAsFactors=FALSE); | |
83 pinfo <- pinfo$user_specimen_id; | |
84 pi <- data.table(pinfo); | |
85 setnames(pi, c("pinfo"), c("user_specimen_id")); | |
86 | |
87 # Instantiate database connection. | |
88 # The connection string has this format: | |
89 # postgresql://user:password@host/dbname | |
90 conn_string <- opt$database_connection_string; | |
91 conn_items <- strsplit(conn_string, "://")[[1]]; | |
92 string_needed <- conn_items[1]; | |
93 items_needed <- strsplit(string_needed, "@")[[1]]; | |
94 user_pass_string <- items_needed[1]; | |
95 host_dbname_string <- items_needed[2]; | |
96 user_pass_items <- strsplit(user_pass_string, ":")[[1]]; | |
97 host_dbname_items <- strsplit(host_dbname_string, "/")[[1]]; | |
98 user <- user_pass_items[1]; | |
99 pass <- user_pass_items[2]; | |
100 host <- host_dbname_items[1]; | |
101 dbname <- host_dbname_items[2]; | |
102 # FIXME: is there a way to not hard-code the port? | |
103 conn <- DBI::dbConnect(RPostgres::Postgres(), host=host, port='5432', dbname=dbname, user=user, password=pass); | |
104 | |
105 # Import the sample table. | |
106 sample_table <- tbl(conn, "sample"); | |
107 | |
108 # Select user_specimen_id and mlg columns. | |
109 smlg <- sample_table %>% select(user_specimen_id, coral_mlg_clonal_id, symbio_mlg_clonal_id); | |
110 | |
111 # Convert to dataframe. | |
112 sm <- data.frame(smlg); | |
113 sm[sm==""] <- NA; | |
114 | |
115 # Convert missing data into data table. | |
116 mi <-setDT(missing_gt_data_frame, keep.rownames=TRUE)[]; | |
117 # Change names to match db. | |
118 setnames(mi, c("rn"), c("user_specimen_id")); | |
119 setnames(mi, c("myMiss"), c("percent_missing_data_coral")); | |
120 # Round missing data to two digits. | |
121 mi$percent_missing <- round(mi$percent_missing, digits=2); | |
122 | |
123 # Convert heterozygosity data into data table. | |
124 ht <-setDT(ht, keep.rownames=TRUE)[]; | |
125 # Change names to match db. | |
126 setnames(ht, c("rn"), c("user_specimen_id")); | |
127 setnames(ht, c("hets"), c("percent_mixed_coral")); | |
128 # Round missing data to two digits. | |
129 ht$percent_mixed<-round(ht$percent_mixed, digits=2); | |
130 | |
131 # Convert refA data into data.table. | |
132 rA <-setDT(rA, keep.rownames=TRUE)[]; | |
133 # Change names to match db. | |
134 setnames(rA, c("rn"), c("user_specimen_id")); | |
135 setnames(rA, c("refA"), c("percent_reference_coral")); | |
136 # round missing data to two digits. | |
137 rA$percent_reference<-round(rA$percent_reference, digits=2); | |
138 | |
139 # Convert altB data into data table. | |
140 aB <-setDT(aB, keep.rownames=TRUE)[]; | |
141 # Change names to match db. | |
142 setnames(aB, c("rn"), c("user_specimen_id")); | |
143 setnames(aB, c("altB"), c("percent_alternative_coral")); | |
144 # Round missing data to two digits. | |
145 aB$percent_alternative<-round(aB$percent_alternative, digits=2); | |
146 | |
147 #convert mlg id to data.table format | |
148 dt <- data.table(id, keep.rownames=TRUE); | |
149 # Change name to match db. | |
150 setnames(dt, c("id"), c("user_specimen_id")); | |
151 | |
152 # Transform. | |
153 df3 <- dt %>% | |
154 group_by(row_number()) %>% | |
155 dplyr::rename(group='row_number()') %>% | |
156 unnest (user_specimen_id) %>% | |
157 # Join with mlg table. | |
158 left_join(sm %>% | |
159 select("user_specimen_id","coral_mlg_clonal_id"), by='user_specimen_id'); | |
160 | |
161 # If found in database, group members on previous mlg id. | |
162 uniques <- unique(df3[c("group", "coral_mlg_clonal_id")]); | |
163 uniques <- uniques[!is.na(uniques$coral_mlg_clonal_id),]; | |
164 na.mlg <- which(is.na(df3$coral_mlg_clonal_id)); | |
165 na.group <- df3$group[na.mlg]; | |
166 df3$coral_mlg_clonal_id[na.mlg] <- uniques$coral_mlg_clonal_id[match(na.group, uniques$group)]; | |
167 | |
168 # Determine if the sample mlg matched previous genotyped sample. | |
169 df4<- df3 %>% | |
170 group_by(group) %>% | |
171 mutate(DB_match = ifelse(is.na(coral_mlg_clonal_id),"no_match","match")); | |
172 | |
173 # Create new mlg id for samples that did not match those in the database. | |
174 none <- unique(df4[c("group", "coral_mlg_clonal_id")]); | |
175 none <- none[is.na(none$coral_mlg_clonal_id),]; | |
176 na.mlg2 <- which(is.na(df4$coral_mlg_clonal_id)); | |
177 n.g <- df4$group[na.mlg2]; | |
178 ct <- length(unique(n.g)); | |
179 | |
180 # List of new group ids, the sequence starts at the number of | |
181 # ids present in df4$coral_mlg_clonal_ids plus 1. Not sure if | |
182 # the df4 file contains all ids. If it doesn't then look below | |
183 # to change the seq() function. | |
184 n.g_ids <- sprintf("HG%04d", seq((sum(!is.na(unique(df4["coral_mlg_clonal_id"]))) + 1), by=1, length=ct)); | |
185 # This is a key for pairing group with new ids. | |
186 rat <- cbind(unique(n.g), n.g_ids); | |
187 # this for loop assigns the new id iteratively for all that have NA. | |
188 for (i in 1:length(na.mlg2)) { | |
189 df4$coral_mlg_clonal_id[na.mlg2[i]] <- n.g_ids[match(df4$group[na.mlg2[i]], unique(n.g))]; | |
190 } | |
191 | |
192 # Merge data frames for final table. | |
193 report_user <- pi %>% | |
194 # Join with the second file (only the first and third column). | |
195 left_join(df4 %>% | |
196 select("user_specimen_id","coral_mlg_clonal_id","DB_match"), | |
197 by='user_specimen_id') %>% | |
198 # Join with the second file (only the first and third column). | |
199 left_join(mi %>% | |
200 select("user_specimen_id","percent_missing_coral"), | |
201 by='user_specimen_id') %>% | |
202 # Join with the second file (only the first and third column). | |
203 left_join(ht %>% | |
204 select("user_specimen_id","percent_mixed_coral"), | |
205 by='user_specimen_id') %>% | |
206 # Join with the second file (only the first and third column); | |
207 left_join(rA %>% | |
208 select("user_specimen_id","percent_reference_coral"), | |
209 by='user_specimen_id') %>% | |
210 # Join with the second file (only the first and third column). | |
211 left_join(aB %>% | |
212 select("user_specimen_id","percent_alternative_coral"), | |
213 by='user_specimen_id') %>% | |
214 mutate(DB_match = ifelse(is.na(DB_match), "failed", DB_match))%>% | |
215 mutate(coral_mlg_clonal_id=ifelse(is.na(coral_mlg_clonal_id), "failed", coral_mlg_clonal_id))%>% | |
216 ungroup() %>% | |
217 select(-group); | |
218 | |
219 write.csv(report_user, file=paste(opt$output_stag_db_report), quote=FALSE); | |
68 | 220 |
69 # Rarifaction curve. | 221 # Rarifaction curve. |
70 H.obj <- mlg.table(gclo, plot=TRUE); | |
71 # Start PDF device driver. | 222 # Start PDF device driver. |
72 dev.new(width=10, height=7); | 223 dev.new(width=10, height=7); |
73 file_path = get_file_path("geno_rarifaction_curve.pdf"); | 224 file_path = get_file_path("geno_rarifaction_curve.pdf"); |
74 pdf(file=file_path, width=10, height=7); | 225 pdf(file=file_path, width=10, height=7); |
75 rarecurve(H.obj, ylab="Number of expected MLGs", sample=min(rowSums(H.obj)), border=NA, fill=NA, font=2, cex=1, col="blue"); | 226 rarecurve(m, ylab="Number of expected MLGs", sample=min(rowSums(m)), border=NA, fill=NA, font=2, cex=1, col="blue"); |
76 dev.off() | 227 dev.off(); |
228 | |
229 # Genotype accumulation curve, sample is number of | |
230 # loci randomly selected for to make the curve. | |
231 dev.new(width=10, height=7); | |
232 file_path = get_file_path("geno_accumulation_curve.pdf"); | |
233 pdf(file=file_path, width=10, height=7); | |
234 genotype_curve(gind, sample=5, quiet=TRUE); | |
235 dev.off(); | |
77 | 236 |
78 # Create a phylogeny of samples based on distance matrices. | 237 # Create a phylogeny of samples based on distance matrices. |
79 cols <- palette(brewer.pal(n=12, name='Set3')); | 238 cols <- palette(brewer.pal(n=12, name='Set3')); |
80 set.seed(999); | 239 set.seed(999); |
81 # Start PDF device driver. | 240 # Start PDF device driver. |
82 dev.new(width=10, height=7); | 241 dev.new(width=10, height=7); |
83 file_path = get_file_path("nj_phylogeny.pdf"); | 242 file_path = get_file_path("nj_phylogeny.pdf"); |
84 pdf(file=file_path, width=10, height=7); | 243 pdf(file=file_path, width=10, height=7); |
85 # Organize branches by clade. | 244 # Organize branches by clade. |
86 tree <- gclo %>% aboot(dist=provesti.dist, sample=10, tree="nj", cutoff=50, quiet=TRUE) %>% ladderize(); | 245 tree <- gclo %>% |
246 aboot(dist=provesti.dist, sample=10, tree="nj", cutoff=50, quiet=TRUE) %>% | |
247 ladderize(); | |
87 plot.phylo(tree, tip.color=cols[obj2$pop],label.offset=0.0125, cex=0.7, font=2, lwd=4); | 248 plot.phylo(tree, tip.color=cols[obj2$pop],label.offset=0.0125, cex=0.7, font=2, lwd=4); |
88 # Add a scale bar showing 5% difference.. | 249 # Add a scale bar showing 5% difference.. |
89 add.scale.bar(length=0.05, cex=0.65); | 250 add.scale.bar(length=0.05, cex=0.65); |
90 nodelabels(tree$node.label, cex=.5, adj=c(1.5, -0.1), frame="n", font=3, xpd=TRUE); | 251 nodelabels(tree$node.label, cex=.5, adj=c(1.5, -0.1), frame="n", font=3, xpd=TRUE); |
91 dev.off() | 252 dev.off(); |
92 | 253 |