Mercurial > repos > glogobyte > viztool
changeset 14:e51ebc767701 draft
Deleted selected files
author | glogobyte |
---|---|
date | Wed, 28 Oct 2020 07:34:44 +0000 |
parents | 41de387b3982 |
children | 6db3bd727fde |
files | viz_ultra.py |
diffstat | 1 files changed, 0 insertions(+), 271 deletions(-) [+] |
line wrap: on
line diff
--- a/viz_ultra.py Wed Oct 28 07:32:14 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,271 +0,0 @@ -import argparse -from functions import * -from viz_graphs import * -import sys -import pandas as pd -import matplotlib.pyplot as plt -import matplotlib.patches as mpatches -import matplotlib.font_manager as font_manager -import time -from multiprocessing import Process, Queue, Lock, Pool, Manager, Value - - -################################################################################################################################################################################################################## - -def top_diff(miRNA_info, number,flag,l): - - Kind=[] - - miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True) - miRNA_info = miRNA_info[:number] - miRNA_info.sort(key = lambda x: x[0]) - - for x in miRNA_info: - if x[1] > 0: - Kind.append(True) - elif x[1] < 0: - Kind.append(False) - else: - Kind.append("Zero") - - top_miRNA = {"Names": [x[0] for x in miRNA_info], - "Log2FC": [x[1] for x in miRNA_info], - "Kind": Kind}; - - df_miRNA = pd.DataFrame(data=top_miRNA) - df_miRNA = df_miRNA.sort_values(by=['Names']) - if df_miRNA.empty==False: - h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'})) - figure = plt.gcf() # get current figure - figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18) - up_reg = mpatches.Patch(color='green', label='Upregulated') - down_reg = mpatches.Patch(color='red', label='Downregulated') - font = font_manager.FontProperties(weight='bold', style='normal') - l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) - h1.set_ylabel(" ", fontsize=3, fontweight='bold') - h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold') - plt.axvline(x=0, color="k") - - plt.grid(axis='y', linewidth=0.2) - plt.grid(axis='x', linewidth=0.2) - if flag=='t': - plt.savefig('tem.png', bbox_inches='tight', dpi=300) - if flag=='nt': - plt.savefig('non.png', bbox_inches='tight', dpi=300) - -#################################################################################################################################################################################################################### - -def unique(sequence): - seen = set() - return [x for x in sequence if not (x in seen or seen.add(x))] - -########################################################################################################################################################################################################################################################################### - -def top_scatter_non(matures,isoforms,non_temp,uni_names,number): - - mat_names=[] - mat_log2fc=[] - - iso_names=[] - iso_log2fc=[] - - non_temp_names=[] - non_temp_log2fc=[] - - count=0 - for x in uni_names: - flag = False - if count<number: - for y in matures: - if x in y[0]: - mat_log2fc.append(y[1]) - mat_names.append(x) - flag=True - for y in isoforms: - if x in y[0]: - iso_log2fc.append(y[1]) - iso_names.append(x) - flag=True - for y in non_temp: - if x in y[0]: - non_temp_log2fc.append(y[1]) - non_temp_names.append(x) - flag=True - if flag==True: - count+=1 - - mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc)) - iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc)) - non_df = pd.DataFrame(dict(names=non_temp_names, log2fc= non_temp_log2fc)) - - iso_df.sort_values(by=['names']) - mat_df.sort_values(by=['names']) - non_df.sort_values(by=['names']) - - fig, ax = plt.subplots() - - h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red') - h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green') - h2=ax.scatter(non_df['log2fc'],non_df['names'],edgecolors='k',linewidth=1, marker='o', c='blue') - - l3 = plt.legend([h1,h2,h3],["Reference miRNA","Non-template","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) - plt.axvline(x=0, color="k") - plt.grid(axis='y', linewidth=0.2) - plt.grid(axis='x', linewidth=0.2) - plt.xlabel("Log2FC", fontsize=12, fontweight='bold') - plt.yticks(rotation=0,ha="right", fontsize=10) - plt.xticks(rotation=0,ha="right", fontsize=10) - plt.tight_layout() - figure = plt.gcf() # get current figure - figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18) - plt.savefig('a2.png', bbox_inches='tight', dpi=300) - -######################################################################################################################################################################################################################################### -def top_scatter_tem(matures,isoforms,uni_names,number): - - mat_names=[] - mat_log2fc=[] - - iso_names=[] - iso_log2fc=[] - - count=0 - for x in uni_names: - flag = False - if count<number: - for y in matures: - if x in y[0]: - mat_log2fc.append(y[1]) - mat_names.append(x) - flag=True - for y in isoforms: - if x in y[0]: - iso_log2fc.append(y[1]) - iso_names.append(x) - flag=True - if flag==True: - count+=1 - - mat_df = pd.DataFrame(dict(names=mat_names, log2fc=mat_log2fc)) - iso_df = pd.DataFrame(dict(names=iso_names, log2fc=iso_log2fc)) - - iso_df.sort_values(by=['names']) - mat_df.sort_values(by=['names']) - - fig, ax = plt.subplots() - - h3=ax.scatter(iso_df['log2fc'],iso_df['names'],edgecolors='k',linewidth=1, marker='o', c='red') - h1=ax.scatter(mat_df['log2fc'],mat_df['names'],edgecolors='k',linewidth=1, marker='o', c='green') - - l3 = plt.legend([h1,h3],["Reference miRNA","Template isomiRs"],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) - plt.axvline(x=0, color="k") - plt.grid(axis='y', linewidth=0.2) - plt.grid(axis='x', linewidth=0.2) - plt.xlabel("Log2FC", fontsize=12, fontweight='bold') - plt.yticks(rotation=0,ha="right", fontsize=10) - plt.xticks(rotation=0,ha="right", fontsize=10) - plt.tight_layout() - figure = plt.gcf() # get current figure - figure.set_size_inches(16, 12) # set figure's size manually to your full screen (32x18) - plt.savefig('a2.png', bbox_inches='tight', dpi=300) - - -############################################################################################################################################################################################################################################## -def preproccess(non_templated,matures,isoforms,log2fc,pval): - - non_temp = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>log2fc and float(x[2])<pval] - mat = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>log2fc and float(x[2])<pval] - iso = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>log2fc and float(x[2])<pval] - mat_iso = mat+iso - - if not non_temp and not mat and not iso: - sys.exit("There aren't entries which meet these criteria") - - mat.sort(key = lambda x: abs(float(x[1])),reverse=True) - iso.sort(key = lambda x: abs(float(x[1])),reverse=True) - non_temp.sort(key = lambda x: abs(float(x[1])),reverse=True) - - all=mat+iso+non_temp - all.sort(key = lambda x: abs(float(x[1])), reverse=True) - names=[x[0].split("_")[0] for x in all] - uni_names=unique(names) - - diff_non_templated = [[x[0],float(x[1]),float(x[2])] for x in non_templated if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] - diff_matures = [[x[0],float(x[1]),float(x[2])] for x in matures if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] - diff_isoforms = [[x[0],float(x[1]),float(x[2])] for x in isoforms if abs(float(x[1]))>1 and float(x[2])<pval and x[0].split("_")[0] in uni_names] - - diff_matures.sort(key = lambda x: abs(float(x[1])),reverse=True) - diff_isoforms.sort(key = lambda x: abs(float(x[1])),reverse=True) - diff_non_templated.sort(key = lambda x: abs(float(x[1])),reverse=True) - - return diff_matures,diff_isoforms,diff_non_templated,uni_names,non_temp,mat_iso - -################################################################################################################################################################################################################################################################## -starttime = time.time() - -parser = argparse.ArgumentParser() -parser.add_argument("-in", "--input", help="choose type of analysis", action="store") -parser.add_argument("-p_value", "--pval", help="choose type of analysis", action="store") -parser.add_argument("-fc", "--log2fc", help="choose type of analysis", action="store") -parser.add_argument("-top", "--top_mirnas", help="choose type of analysis", action="store") -parser.add_argument("-tool_dir", "--tool_directory", help="tool directory path", action="store") -parser.add_argument("-statistic", "--stat", help="tool directory path", action="store") -parser.add_argument("-diff_tool", "--tool", help="tool directory path", action="store") - -args = parser.parse_args() - -l=Lock() -number = int(args.top_mirnas) -log2fc = float(args.log2fc) -pval = float(args.pval) - -if args.tool=="2": - - raw_EdgeR = read(args.input,0) - EdgeR = [x.rstrip("\n").split("\t") for x in raw_EdgeR] - del EdgeR[0] - - if args.stat=="1": - non_templated = [[x[0],x[1],x[4]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[4]!="NA"] - matures = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"] - isoforms = [[x[0],x[1],x[4]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[4]!="NA"] - else: - non_templated = [[x[0],x[1],x[5]] for x in EdgeR if "__" in x[0] and x[1]!="NA" and x[5]!="NA"] - matures = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"] - isoforms = [[x[0],x[1],x[5]] for x in EdgeR if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[1]!="NA" and x[5]!="NA"] - -if args.tool=="1": - - raw_Deseq = read(args.input,0) - Deseq = [x.rstrip("\n").split("\t") for x in raw_Deseq] - - if args.stat=="1": - non_templated = [[x[0],x[2],x[5]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[5]!="NA"] - matures = [[x[0],x[2],x[5]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"] - isoforms = [[x[0],x[2],x[5]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[5]!="NA"] - else: - non_templated = [[x[0],x[2],x[6]] for x in Deseq if "__" in x[0] and x[2]!="NA" and x[6]!="NA"] - matures = [[x[0],x[2],x[6]] for x in Deseq if 'chr' in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"] - isoforms = [[x[0],x[2],x[6]] for x in Deseq if 'chr' not in x[0].split("_")[-1] and "__" not in x[0] and x[2]!="NA" and x[6]!="NA"] - - -diff_matures,diff_isoforms,diff_non_templated,names,non_temp,mat_iso = preproccess(non_templated,matures,isoforms,log2fc,pval) - -if non_templated!=[]: - analysis="2" - p=[Process(target=top_diff,args=(non_temp,number,"nt",l))] - p.extend([Process(target=top_diff,args=(mat_iso,number,"t",l))]) - p.extend([Process(target=top_scatter_non,args=(diff_matures,diff_isoforms,diff_non_templated,names,number))]) - -else: - analysis="1" - p=[Process(target=top_diff,args=(mat_iso,number,"t"))] - p.extend([Process(target=top_scatter_tem,args=(diff_matures,diff_isoforms,names,number))]) - -[x.start() for x in p] -[x.join() for x in p] - -pdf_after_DE(analysis,args.top_mirnas) - -print('That took {} seconds'.format(time.time() - starttime)) -