# HG changeset patch # User glogobyte # Date 1603870484 0 # Node ID e51ebc7677012adac8f4ce18eb6859367e439e59 # Parent 41de387b39826075e3796f66fd20889b1bf4c28f Deleted selected files diff -r 41de387b3982 -r e51ebc767701 viz_ultra.py --- a/viz_ultra.py Wed Oct 28 07:32:14 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,271 +0,0 @@ -import argparse -from functions import * -from viz_graphs import * -import sys -import pandas as pd -import matplotlib.pyplot as plt -import matplotlib.patches as mpatches -import matplotlib.font_manager as font_manager -import time -from multiprocessing import Process, Queue, Lock, Pool, Manager, Value - - -################################################################################################################################################################################################################## - -def top_diff(miRNA_info, number,flag,l): - - Kind=[] - - miRNA_info.sort(key = lambda x: abs(x[1]),reverse=True) - miRNA_info = miRNA_info[:number] - miRNA_info.sort(key = lambda x: x[0]) - - for x in miRNA_info: - if x[1] > 0: - Kind.append(True) - elif x[1] < 0: - Kind.append(False) - else: - Kind.append("Zero") - - top_miRNA = {"Names": [x[0] for x in miRNA_info], - "Log2FC": [x[1] for x in miRNA_info], - "Kind": Kind}; - - df_miRNA = pd.DataFrame(data=top_miRNA) - df_miRNA = df_miRNA.sort_values(by=['Names']) - if df_miRNA.empty==False: - h1=df_miRNA.plot.barh(x= 'Names',y='Log2FC',color=df_miRNA.Kind.map({True: 'g', False: 'r', 'Zero':'k'})) - figure = plt.gcf() # get current figure - figure.set_size_inches(5, 12) # set figure's size manually to your full screen (32x18) - up_reg = mpatches.Patch(color='green', label='Upregulated') - down_reg = mpatches.Patch(color='red', label='Downregulated') - font = font_manager.FontProperties(weight='bold', style='normal') - l3 = plt.legend(handles=[up_reg,down_reg],bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0) - h1.set_ylabel(" ", fontsize=3, fontweight='bold') - h1.set_xlabel("Log2FC", fontsize=12, fontweight='bold') - plt.axvline(x=0, color="k") - - plt.grid(axis='y', linewidth=0.2) - plt.grid(axis='x', linewidth=0.2) - if flag=='t': - plt.savefig('tem.png', bbox_inches='tight', dpi=300) - if flag=='nt': - plt.savefig('non.png', bbox_inches='tight', dpi=300) - -#################################################################################################################################################################################################################### - -def unique(sequence): - seen = set() - return [x for x in sequence if not (x in seen or seen.add(x))] - -########################################################################################################################################################################################################################################################################### - -def top_scatter_non(matures,isoforms,non_temp,uni_names,number): - - mat_names=[] - mat_log2fc=[] - - iso_names=[] - iso_log2fc=[] - - non_temp_names=[] - non_temp_log2fc=[] - - count=0 - for x in uni_names: - flag = False - if countlog2fc and float(x[2])log2fc and float(x[2])log2fc and float(x[2])1 and float(x[2])1 and float(x[2])1 and float(x[2])